JP4848735B2 - Polymers for electrochemical devices of polymerizable imidazole salts - Google Patents

Polymers for electrochemical devices of polymerizable imidazole salts Download PDF

Info

Publication number
JP4848735B2
JP4848735B2 JP2005303481A JP2005303481A JP4848735B2 JP 4848735 B2 JP4848735 B2 JP 4848735B2 JP 2005303481 A JP2005303481 A JP 2005303481A JP 2005303481 A JP2005303481 A JP 2005303481A JP 4848735 B2 JP4848735 B2 JP 4848735B2
Authority
JP
Japan
Prior art keywords
salt
polymer
polymerization
imidazole
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005303481A
Other languages
Japanese (ja)
Other versions
JP2007112722A (en
Inventor
弘充 中島
弘幸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2005303481A priority Critical patent/JP4848735B2/en
Publication of JP2007112722A publication Critical patent/JP2007112722A/en
Application granted granted Critical
Publication of JP4848735B2 publication Critical patent/JP4848735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、重合性イミダゾール塩、その製造方法、その重合物及びそれを利用した電気化学ディバイスに関する。   The present invention relates to a polymerizable imidazole salt, a production method thereof, a polymer thereof, and an electrochemical device using the polymer.

1992年に、大気中で安定なイオン液体が報告されて以来、種々のイオン液体が報告されるようになってきた(例えば非特許文献1)。このようなイオン液体は、熱安定性に優れ、蒸気圧がほぼゼロで難燃性であり、また、高イオン密度であるため高イオン伝導度を示し、高極性である等興味深い特性を持つ。これらの性質を生かして、有機合成溶媒や触媒、分離抽出溶媒、各種電池用電解質材料等、数多くの応用が報告されている。しかしながら、電解質溶液として用いる際には、イオン液体自身もイオンから成るため、電位勾配に沿って移動してしまうという欠点を有しており、目的イオンの伝導場としては適していない。   Since the ionic liquid stable in the atmosphere was reported in 1992, various ionic liquids have been reported (for example, Non-Patent Document 1). Such an ionic liquid is excellent in thermal stability, has a vapor pressure of almost zero, is incombustible, and has a high ion density, exhibits high ionic conductivity, and has interesting properties such as high polarity. Utilizing these properties, many applications such as organic synthesis solvents, catalysts, separation / extraction solvents, and various battery electrolyte materials have been reported. However, when used as an electrolyte solution, since the ionic liquid itself is also made of ions, it has a drawback of moving along a potential gradient, and is not suitable as a conduction field for target ions.

そこで目的イオンが電位勾配に沿って移動してしまうことがないように、イオン液体自身を高分子化する試みがなされている。しかし、ビニルイミダゾールテトラフルオロボレートの重合体では、高分子化することでフレキシビリティーが低下してしまい、モノマーに比べて伝導度が約10Scm−1(50℃)も低下してしまう(例えば非特許文献2)。 Therefore, attempts have been made to polymerize the ionic liquid itself so that the target ions do not move along the potential gradient. However, in the polymer of vinyl imidazole tetrafluoroborate, flexibility is reduced due to the polymerization, and the conductivity is reduced by about 10 5 Scm −1 (50 ° C.) as compared with the monomer ( For example, Non-Patent Document 2).

一方、この重合物を電気化学ディバイスとして用いる場合、耐熱性が悪いと高温での使用時に分解反応が起きたり、ディバイスの寸法が変わったりして好ましくないため、少しでも高い耐熱性が求められている。この重合物の耐熱性を上げる目的で、イオン液体と通常市販されている架橋性モノマーとの共重合を試みても、期待する耐熱性が得られなかったり、イミダゾール環を有していないためにイオン伝導度が落ちたりする。
J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 965 (1992). M. Hirao, K. Ito, and H. Ohno, Electrochim. Acta, 45, 1291 (2000). So Y-H. Macromolecules, 25, 516(1992).
On the other hand, when this polymer is used as an electrochemical device, if the heat resistance is poor, a decomposition reaction occurs at the time of use at a high temperature or the dimensions of the device change, which is not preferable. Yes. In order to increase the heat resistance of this polymer, the expected heat resistance is not obtained even when an attempt is made to copolymerize an ionic liquid with a commercially available crosslinkable monomer, or it does not have an imidazole ring. Ionic conductivity may drop.
JS Wilkes and MJ Zaworotko, J. Chem. Soc., Chem. Commun., 965 (1992). M. Hirao, K. Ito, and H. Ohno, Electrochim. Acta, 45, 1291 (2000). So YH. Macromolecules, 25, 516 (1992).

本発明が解決しようとする課題は、電位勾配中にあっても移動しにくいような高分子物質を得るためのイミダゾール塩を提供することにあり、好ましくは、高電荷密度及び高耐熱性をもつ高分子を得るためのイミダゾール塩を提供することにある。併せて、本発明では、電気化学的ディバイスとして使用可能な、上記イミダゾール塩を重合してなる高分子物質の提供、及びそのような高分子物質を含む電気化学ディバイスの提供を解決課題とする。   The problem to be solved by the present invention is to provide an imidazole salt for obtaining a polymer substance that is difficult to move even in a potential gradient, and preferably has high charge density and high heat resistance. The object is to provide an imidazole salt for obtaining a polymer. In addition, an object of the present invention is to provide a polymer material obtained by polymerizing the imidazole salt, which can be used as an electrochemical device, and to provide an electrochemical device containing such a polymer material.

本発明者らは、同一分子内にイミダゾリウムカチオンを複数個存在させ、さらに重合性基を一分子中に二個有するイミダゾール塩が上記課題を解決し得ることを見出した。
すなわち、本発明は以下の事項を含む:
[1]一般式(1);
The present inventors have found that an imidazole salt having a plurality of imidazolium cations in the same molecule and further having two polymerizable groups in one molecule can solve the above problem.
That is, the present invention includes the following items:
[1] General formula (1);

Figure 0004848735
Figure 0004848735

(式中、Xは四級アンモニウム塩の対アニオンを、RはCH=CRC(O)OCHCH−(Rはそれぞれ独立にH又はCH)、又はCH=CHCCH−を、nは1〜100の整数を示す。)で表される重合性イミダゾール塩。
[2]Xがリチウムビス(トリフルオロメタンスルホニル)イミドアニオンである[1]に記載の重合性イミダゾール塩。
[3][1]又は[2]に記載の重合性イミダゾール塩をモノマー単位として含有する重合体。
[4]非重合性イミダゾール塩の存在下で単独重合又は共重合してなる[3]に記載の重合体。
[5]一般式(2);
(Wherein, X represents a counter anion of a quaternary ammonium salt, R represents CH 2 ═CR 1 C (O) OCH 2 CH 2 — (R 1 is independently H or CH 3 ), or CH 2 ═CHC. 6 H 4 CH 2 —, where n is an integer of 1 to 100).
[2] The polymerizable imidazole salt according to [1], wherein X is a lithium bis (trifluoromethanesulfonyl) imide anion.
[3] A polymer containing the polymerizable imidazole salt according to [1] or [2] as a monomer unit.
[4] The polymer according to [3] obtained by homopolymerization or copolymerization in the presence of a non-polymerizable imidazole salt.
[5] General formula (2);

Figure 0004848735
Figure 0004848735

(式中、nは1〜100の整数を示す。)で表されるビスイミダゾールと、一般式(3);YCHCHOH (3)
(式中、Yはハロゲン原子である。)で表される化合物を反応させて、一般式4);
(Wherein n represents an integer of 1 to 100) and general formula (3); YCH 2 CH 2 OH (3)
(Wherein Y is a halogen atom) and a compound represented by the general formula 4) is reacted.

Figure 0004848735
Figure 0004848735

(式中、nとYは上記と同義である。)で表される四級アンモニウム塩を得、ついて所望により前記四級アンモニウム塩を塩交換反応に供した後に、(メタ)アクリル酸と脱水縮合反応させることからなる一般式(5); (Wherein n and Y have the same meanings as described above), and after subjecting the quaternary ammonium salt to a salt exchange reaction if desired, (meth) acrylic acid and dehydration General formula (5) consisting of condensation reaction;

Figure 0004848735
Figure 0004848735

(式中、Xは四級アンモニウム塩の対アニオンを、
はCH=CRC(O)OCHCH−(Rはそれぞれ独立にH又はCH)を示す。)
で表される重合性イミダゾール塩の製造方法。
[6]一般式(6);
(In the formula, X represents a counter anion of a quaternary ammonium salt,
R 2 represents CH 2 ═CR 1 C (O) OCH 2 CH 2 — (R 1 independently represents H or CH 3 ). )
The manufacturing method of polymeric imidazole salt represented by these.
[6] General formula (6);

Figure 0004848735
Figure 0004848735

(式中、nは1〜100の整数を示す。)で表されるビスイミダゾールと、一般式(7); (Wherein n represents an integer of 1 to 100) and the general formula (7);

Figure 0004848735
Figure 0004848735

(式中、Zはハロゲン原子を示す。)で表されるハロゲン化メチルスチレンとを反応させて一般式(8); (Wherein Z represents a halogen atom) is reacted with a halogenated methylstyrene represented by the general formula (8);

Figure 0004848735
Figure 0004848735

(式中、nとZは上記と同義である。)で表される四級アンモニウム塩を得、ついで所望により前記四級アンモニウム塩を塩交換反応に供することからなる、一般式(9); (Wherein n and Z are as defined above), and then optionally subjecting the quaternary ammonium salt to a salt exchange reaction, the general formula (9);

Figure 0004848735
Figure 0004848735

(式中、Xは四級アンモニウム塩の対アニオンを、
はCH=CHCCH−を、nは1〜100の整数を示す。)で表される重合性イミダゾール塩の製造方法。
[7][3]又は[4]に記載の重合体を含む電気化学ディバイス。
(In the formula, X represents a counter anion of a quaternary ammonium salt,
R 3 represents CH 2 ═CHC 6 H 4 CH 2 —, and n represents an integer of 1 to 100. The manufacturing method of polymerizable imidazole salt represented by this.
[7] An electrochemical device comprising the polymer according to [3] or [4].

本発明の重合性イミダゾール塩は、同一分子内にイミダゾリウムカチオンが複数個存在しているため電荷密度の高いイオン液体であり、重合しても伝導度が低下しにくく、良好な伝導度を有する高分子物質を提供することができる。すなわち、本発明の重合性イミダゾール塩を単独重合又は他のモノマーと共重合することによって得られる重合体は、目的イオンが電位勾配に沿って移動することなく、良好な伝導度を有するため、各種電気化学ディバイス用のイオン伝導体として有用である。また、本発明の重合性イミダゾール塩は、重合性基を一分子中に2個有するため、重合後の耐熱性にも優れ、既存のイオン性モノマーに少量配合するだけで、重合物質の耐熱性を高めることができる。   The polymerizable imidazole salt of the present invention is an ionic liquid having a high charge density due to the presence of a plurality of imidazolium cations in the same molecule. A polymeric material can be provided. That is, since the polymer obtained by homopolymerizing the copolymerizable imidazole salt of the present invention or copolymerizing with other monomers has good conductivity without the target ion moving along the potential gradient, It is useful as an ionic conductor for electrochemical devices. In addition, since the polymerizable imidazole salt of the present invention has two polymerizable groups in one molecule, it is excellent in heat resistance after polymerization. Can be increased.

一般式(1)において、対アニオンであるXとしては、例えば、BF 、PF 、AsF 、SbF 、AlCl4 、AlCl 、NO 、(CFSO、(CSO、(CSO、(CSO、(CFSO、(CSO、(CSO、(CSO、F(HF) 、CFSO 、ジシアンアミドイオン((CN))、有機カルボン酸イオン(トリフロロ酢酸イオン、酢酸イオン等)、ハロゲン化物イオン(Cl、Br、I等)等より選ばれた少なくとも1種が挙げられる。これらのうち(CFSO(ビス(トリフルオロメタンスルホニル)イミドアニオン)が、一般式(1)のガラス転移点を−40℃以下とすることができるため特に好ましい。 In the general formula (1), as the counter anion X , for example, BF 4 , PF 6 , AsF 6 , SbF 6 , AlCl 4 , Al 2 Cl 7 , NO 3 , (CF 3 SO 2) 2 N -, (C 2 F 5 SO 2) 2 N -, (C 3 F 7 SO 2) 2 N -, (C 4 F 9 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (C 2 F 5 SO 2) 3 C -, (C 3 F 7 SO 2) 3 C -, (C 4 F 9 SO 2) 3 C -, F (HF) n -, CF 3 SO 3 -, dicyanamide ion ((CN) 2 N -), organic carboxylate ion (trifluoroacetic acid ion, acetate ion, etc.), a halide ion (Cl -, Br -, I -, etc.) at least selected from such One type is mentioned. Of these (CF 3 SO 2) 2 N - ( bis (trifluoromethanesulfonyl) imide anion) has the general formula a glass transition point of (1) especially preferred because it is possible to -40 ℃ or less.

一般式(1)において、nは整数であって、その値は、1〜100であり、好ましくは2〜18であり、より好ましくは2〜8である。   In General formula (1), n is an integer, The value is 1-100, Preferably it is 2-18, More preferably, it is 2-8.

一般式(1)の化合物は、例えば、非置換のビスイミダゾールを、ハロゲン化アルコールと反応させて四級アンモニウム塩としたのち、(メタ)アクリル酸と反応させる方法、あるいは、非置換のビスイミダゾールを、ハロゲン化メチルスチレンと反応させる方法などによって製造することができる。   The compound of the general formula (1) is, for example, a method in which an unsubstituted bisimidazole is reacted with a halogenated alcohol to form a quaternary ammonium salt and then reacted with (meth) acrylic acid, or an unsubstituted bisimidazole Can be produced by a method of reacting with halogenated methylstyrene.

一般式(1)においてRがCH=CHC(O)OCHCH−である化合物の製造方法の一例を、スキーム1に示す。 An example of a method for producing a compound in which R in the general formula (1) is CH 2 ═CHC (O) OCH 2 CH 2 — is shown in Scheme 1.

Figure 0004848735
Figure 0004848735

2−ブロモエタノール(a)とビスイミダゾール(b)との四級アンモニウム化反応は、好ましくは−20〜100℃、より好ましくは20〜60℃において行われる。反応温度が低いと、反応終結までの時間が長くなり好ましくない。2−ブロモエタノールの使用量は、ビスイミダゾールが有するイミダゾール環1モルあたり、好ましくは1モル以上であり、好ましくは1.2〜2モルである。使用量が少ないと反応完結に時間がかかり、逆に、多すぎるとコストアップの原因となる。反応時間も特に制限されることはない。反応後の精製方法としては反応混合物をジエチルエーテル中に滴下し再沈殿精製することが挙げられ、その結果、イミダゾール塩(c)を得ることができる。再沈殿溶媒は、イミダゾール塩を溶解せず、かつ原料のアルコール及びビスイミダゾールを溶解することができれば特に限定無く使用可能であり、例えば酢酸エチル等も好適である。   The quaternary ammonium reaction of 2-bromoethanol (a) and bisimidazole (b) is preferably performed at -20 to 100 ° C, more preferably 20 to 60 ° C. If the reaction temperature is low, the time until completion of the reaction becomes long, which is not preferable. The amount of 2-bromoethanol used is preferably 1 mol or more and preferably 1.2 to 2 mol per mol of the imidazole ring of bisimidazole. If the amount used is small, it takes time to complete the reaction. Conversely, if the amount is too large, the cost increases. The reaction time is not particularly limited. As a purification method after the reaction, the reaction mixture may be dropped into diethyl ether and purified by reprecipitation, and as a result, an imidazole salt (c) can be obtained. The reprecipitation solvent can be used without particular limitation as long as it does not dissolve the imidazole salt and can dissolve the starting alcohol and bisimidazole. For example, ethyl acetate is also suitable.

イミダゾール塩(c)の対アニオンをブロマイド以外の他のハロゲン塩、あるいは、Xの定義として前記した各種塩に置き換える場合には、公知の方法によって交換反応を行うことができる。例えば、Xがビス(トリフルオロメタンスルホニル)イミドアニオン(以下、「TFSI」とも表記する)である塩とする場合には、得られたイミダゾールブロマイド塩(c)を水に溶解した後、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を加え室温にて5分〜5時間程度攪拌することにより、ビス(トリフルオロメタンスルホニル)イミドアニオン(d)に交換された塩が得られる。LiTFSIの使用量は、理論当量以上であれば特に問題はないが、量が多すぎるとコストアップにつながるため好ましくない。アニオン交換反応後に水で洗浄し、分相することでビス(トリフルオロメタンスルホニル)イミドアニオン塩(TFSI塩)(d)を得ることができる。 When the counter anion of the imidazole salt (c) is replaced with a halogen salt other than bromide, or various salts described above as the definition of X, an exchange reaction can be performed by a known method. For example, when the salt is a salt in which X is a bis (trifluoromethanesulfonyl) imide anion (hereinafter also referred to as “TFSI ”), the resulting imidazole bromide salt (c) is dissolved in water, By adding bis (trifluoromethanesulfonyl) imide (LiTFSI) and stirring at room temperature for about 5 minutes to 5 hours, a salt exchanged with bis (trifluoromethanesulfonyl) imide anion (d) is obtained. The amount of LiTFSI used is not particularly problematic as long as it is greater than or equal to the theoretical equivalent, but an excessive amount is not preferable because it leads to an increase in cost. By washing with water after anion exchange reaction and phase separation, bis (trifluoromethanesulfonyl) imide anion salt (TFSI salt) (d) can be obtained.

一般式(1)中、RがCH=CRC(O)OCHCH−(RはH)である化合物は、例えば、イミダゾール塩(c又はd)とアクリル酸をアセトニトリル(CHCN)中、縮合剤として例えばN、N’−ジシクロヘキシルカルボジイミド(DCC)の存在下に脱水縮合反応させることにより得られる。アクリル酸の使用量は特に制限はなく、イミダゾール基に対して1.0〜10倍当量で可能であるが、好ましくは1.5〜2倍程度である。用いる縮合剤も特に制限はなく一般に使用される既知のものを用いることができ、その量も、イミダゾール基に対して、2倍〜20倍当量程度、好ましくは5〜10倍量用いることができる。反応温度も特に制限はないが、反応初期に発熱することがあるので氷冷下で混合することが好ましい。反応中は重合防止のため重合禁止剤を加えるとともに、乾燥した空気バブリングを行うことが好ましい。反応後、脱溶剤、不要なウレアの濾過をした後、エーテル洗浄を行い、目的とするモノマーを得ることができる。 In the general formula (1), a compound in which R is CH 2 ═CR 1 C (O) OCH 2 CH 2 — (R 1 is H) is, for example, an imidazole salt (c or d) and acrylic acid in acetonitrile (CH 3 CN) is obtained by a dehydration condensation reaction in the presence of, for example, N, N′-dicyclohexylcarbodiimide (DCC) as a condensing agent. There is no restriction | limiting in particular in the usage-amount of acrylic acid, Although it is possible by 1.0-10 times equivalent with respect to an imidazole group, Preferably it is about 1.5-2 times. There is no particular limitation on the condensing agent to be used, and a commonly used condensing agent can be used, and the amount thereof can be used in an amount of about 2 to 20 times equivalent, preferably 5 to 10 times the amount of the imidazole group. . The reaction temperature is not particularly limited, but it may be exothermic at the initial stage of the reaction, so that it is preferable to mix under ice cooling. During the reaction, it is preferable to add a polymerization inhibitor to prevent polymerization and to perform dry air bubbling. After the reaction, solvent removal and unnecessary urea filtration are performed, and then ether washing is performed to obtain the target monomer.

前記反応において、アクリル酸をメタクリル酸に変更することによって、一般式(1)中、RがCH=CRC(O)OCHCH−(RはCH)である化合物が得られる。 In the reaction, by changing acrylic acid to methacrylic acid, a compound in which R is CH 2 ═CR 1 C (O) OCH 2 CH 2 — (R 1 is CH 3 ) is obtained in the general formula (1). It is done.

一般式(1)においてRがCH=CHCCH2−である化合物の製造方法の一例を、スキーム2に示す。 An example of a method for producing a compound in which R is CH 2 ═CHC 6 H 4 CH 2 — in General Formula (1) is shown in Scheme 2.

Figure 0004848735
Figure 0004848735

クロロメチルスチレン(f)(例えば、セイミケミカル(株)製)とビスイミダゾール(g)との四級アンモニウム化反応は、−20〜100℃、好ましくは20〜60℃において行われる。反応温度が低いと、反応終結までの時間が長くなり好ましくない。クロロメチルスチレンの使用量は、1モルのイミダゾール環に対して、好ましくは1モル以上、より好ましくは1.2〜2モルである。前記量が少ないと反応完結に時間がかかり、逆に、多すぎるとコストアップの原因となる。反応時間も特に制限されることはない。反応後の精製方法としては反応混合物をジエチルエーテル中に滴下し再沈殿精製することが挙げられ、その結果、イミダゾール塩(h)を得ることができる。再沈殿溶媒は、イミダゾール塩を溶解せず、かつ原料のクロロメチルスチレン及びビスイミダゾールを溶解することができれば特に限定無く使用可能であり、例えば酢酸エチル等も好適である。   The quaternary ammonium reaction of chloromethylstyrene (f) (for example, manufactured by Seimi Chemical Co., Ltd.) and bisimidazole (g) is performed at −20 to 100 ° C., preferably 20 to 60 ° C. If the reaction temperature is low, the time until completion of the reaction becomes long, which is not preferable. The amount of chloromethylstyrene to be used is preferably 1 mol or more, more preferably 1.2 to 2 mol, per 1 mol of imidazole ring. If the amount is small, it takes time to complete the reaction. Conversely, if the amount is too large, the cost increases. The reaction time is not particularly limited. As a purification method after the reaction, the reaction mixture is dropped into diethyl ether and purified by reprecipitation, and as a result, an imidazole salt (h) can be obtained. The reprecipitation solvent can be used without particular limitation as long as it does not dissolve the imidazole salt and can dissolve the raw material chloromethylstyrene and bisimidazole. For example, ethyl acetate is also suitable.

イミダゾール塩(h)の対アニオンをクロライド以外の他のハロゲン塩、あるいは、Xの定義として前記した各種塩に置き換える場合には、公知の方法によって交換反応を行うことができる。例えば、XがTFSIである塩とする場合には、得られたイミダゾールクロライド塩(h)を水に溶解した後、LiTFSIを加え室温にて5分〜5時間程度攪拌することにより、ビス(トリフルオロメタンスルホニル)イミドアニオン(i)に交換された塩が得られる。LiTFSIの使用量は、理論当量以上であれば特に問題はないが、量が多すぎるとコストアップにつながるため好ましくない。アニオン交換反応後に水で洗浄し、分相することでビス(トリフルオロメタンスルホニル)イミドアニオン塩(TFSI塩)(i)を得ることができる。また、反応中は重合防止のため重合禁止剤を加えるとともに、乾燥した空気バブリングを行うことが好ましい。 Other halogen salts other than chloride counter anion of imidazole salt (h) or,, X - in the case of replacing the various salts mentioned above as the definitions may be exchanged reaction by known methods. For example, in the case of preparing a salt in which X is TFSI , the obtained imidazole chloride salt (h) is dissolved in water, LiTFSI is added, and the mixture is stirred at room temperature for about 5 minutes to 5 hours. A salt exchanged for (trifluoromethanesulfonyl) imide anion (i) is obtained. The amount of LiTFSI used is not particularly problematic as long as it is greater than or equal to the theoretical equivalent, but an excessive amount is not preferable because it leads to an increase in cost. By washing with water after the anion exchange reaction and phase separation, bis (trifluoromethanesulfonyl) imide anion salt (TFSI salt) (i) can be obtained. Further, during the reaction, it is preferable to add a polymerization inhibitor to prevent polymerization and to perform dry air bubbling.

前記製造方法における製造原料であるビスイミダゾール(b、g)は、非特許文献3に記載の方法によって合成される公知化合物である。   Bisimidazole (b, g) which is a production raw material in the production method is a known compound synthesized by the method described in Non-Patent Document 3.

一般式(1)で表されるイミダゾール塩は、一般的な重合方法によって重合することができる。重合方法に特に制限は無く、電磁波を用いた重合や熱重合を適用することができる。重合温度及び重合時間は、モノマーの種類、組成、あるいは所望とする重合物質の分子量などによって任意に設定できるが、例えば0〜200℃程度の重合温度で、1〜48時間の加熱条件が例示される。
熱重合をする場合には適当なラジカル開始剤を用いてもよい。ラジカル開始剤としては、10時間半減期温度が160℃以下の有機過酸化物又はアゾ化合物等を用いることができ、具体的には例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t−ブチルペルオキシ−2−エチルヘキサノエート、t−ブチルペルオキシピバレート、t−ブチルペルオキシジイソブチレート、過酸化ラウロイル、t−ブチルペルオキシアセテート、t−ペルオキシオクトエイト、t−ブチルペルオキシベンゾエイト、アゾビスイソブチロニトリル、ジメチルアゾビスイソブチレート等が挙げられ使用に際しては1種又は2種以上を用いることができる。前記ラジカル重合開始剤の使用量は全仕込みモノマー100重量部に対し10重量部以下、特に好ましくは5重量部以下である。
重合反応は、例えば窒素、二酸化炭素、ヘリウムなどの不活性ガス雰囲気下で行うのが望ましい。
The imidazole salt represented by the general formula (1) can be polymerized by a general polymerization method. There is no particular limitation on the polymerization method, and polymerization using electromagnetic waves or thermal polymerization can be applied. The polymerization temperature and the polymerization time can be arbitrarily set depending on the type and composition of the monomer, or the molecular weight of the desired polymer substance, but examples include a heating temperature of about 0 to 200 ° C. and a heating condition of 1 to 48 hours. The
In the case of thermal polymerization, a suitable radical initiator may be used. As the radical initiator, an organic peroxide or an azo compound having a 10-hour half-life temperature of 160 ° C. or less can be used. Specifically, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy 2-ethylhexanoate, t-butylperoxypivalate, t-butylperoxydiisobutyrate, lauroyl peroxide, t-butylperoxyacetate, t-peroxyoctate, t-butylperoxybenzoate, azobisisobuty Examples include rhonitrile, dimethylazobisisobutyrate and the like, and one or more can be used in use. The amount of the radical polymerization initiator used is 10 parts by weight or less, particularly preferably 5 parts by weight or less, based on 100 parts by weight of all charged monomers.
The polymerization reaction is desirably performed in an inert gas atmosphere such as nitrogen, carbon dioxide, and helium.

さらに、電気化学ディバイスとして使用される重合体を製造する場合には、加熱重合又は共重合をさせる時に、例えば前記モノマーとラジカル重合開始剤とを直接所望の型枠内に仕込み、前記条件で重合させることができる。   Furthermore, when producing a polymer to be used as an electrochemical device, when the heat polymerization or copolymerization is performed, for example, the monomer and the radical polymerization initiator are directly charged into a desired mold, and polymerization is performed under the above conditions. Can be made.

また、重合時に、所期のイオン伝導度を損なわない範囲で、一般式(1)以外のモノマーを共存させることも可能である。共重合可能なモノマーとしては特に制限はなく、[(アクリロイルオキシ)エチル]−3−エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、2−アクリロオイルオキシ−1,3−ビス(3−エチルイミダゾリウムー1−イル)プロパンビス[ビス(トリフルオロメタンスルホニル)イミド]、のようなイオン液体モノマーや、エチレングリコールジメタクリレート、ジエチレングリコールジビニルエーテル、などの非イオン液体のモノマーが例示される。
他のモノマーを重合時に共存させる場合、一般式(1)のモノマーの配合割合は、全モノマーにし、0.3mol%以上が好ましく、0.5mol%程度以上がより好ましい。
Further, at the time of polymerization, a monomer other than the general formula (1) can be allowed to coexist within a range that does not impair the desired ionic conductivity. The copolymerizable monomer is not particularly limited, and [(acryloyloxy) ethyl] -3-ethylimidazolium bis (trifluoromethanesulfonyl) imide, 2-acryloyloxy-1,3-bis (3-ethylimidazo Examples include ionic liquid monomers such as (Lum-1-yl) propanebis [bis (trifluoromethanesulfonyl) imide], and nonionic liquid monomers such as ethylene glycol dimethacrylate and diethylene glycol divinyl ether.
When other monomers are allowed to coexist at the time of polymerization, the mixing ratio of the monomer of the general formula (1) is preferably 0.3 mol% or more, more preferably about 0.5 mol% or more, based on all monomers.

また、本発明の重合性イミダゾ−ル塩を、単独重合又は他の重合性イミダゾール塩と共重合する場合に、イオン伝導度を上げる目的で、非重合性イミダゾール塩を共存させることが出来る。共存可能なイミダゾール塩としては特に制限されることはないが、カチオン成分として、1-エチル−3−メチルイミダゾールなどのイミダゾール又は置換イミダゾール、アニオン成分としては例えば、BF 、PF 、AsF 、SbF 、AlCl 、AlCl 、NO 、(CFSO、(CSO、(CSO、(CSO、(CFSO、(CSO、(CSO、(CSO、F(HF) 、CFSO 、ジシアンアミドイオン((CN))、有機カルボン酸イオン(トリフロロ酢酸イオン、酢酸イオン等)、ハロゲン化物イオン(Cl、Br、Iなど)などが挙げられ、この組み合わせで出来るイミダゾール塩が使用できる。そのうち、カチオン成分として1−エチル3−メチルイミダゾール、アニオン成分として、(CFSO(ビス(トリフルオロメタンスルホニル)イミドアニオン)の組み合わせの1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド(EMITF)が好ましい。
非重合性イミダゾール塩の配合量は任意であり、例えば、全モノマーの重量に対し、1〜300mol%程度、好ましくは10〜200mol%、さらに好ましくは50〜100mol%程度とする。
In addition, when the polymerizable imidazole salt of the present invention is homopolymerized or copolymerized with another polymerizable imidazole salt, a non-polymerizable imidazole salt can coexist for the purpose of increasing ionic conductivity. Without being particularly limited can coexist imidazole salts, as cationic component, imidazole or substituted imidazoles such as 1-ethyl-3-methylimidazole, as anionic component for example, BF 4 -, PF 6 - , AsF 6 -, SbF 6 -, AlCl 4 -, Al 2 Cl 7 -, NO 3 -, (CF 3 SO 2) 2 N -, (C 2 F 5 SO 2) 2 N -, (C 3 F 7 SO 2 ) 2 N , (C 4 F 9 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2 ) 3 C , (C 3 F 7 SO 2 ) 3 C , (C 4 F 9 SO 2 ) 3 C , F (HF) n , CF 3 SO 3 , dicyanamide ion ((CN) 2 N ), organic carboxylate ion (trifluoroacetate ion, acetic acid ion ), Halide ions (Cl , Br , I − and the like) and the like, and imidazole salts formed by this combination can be used. Of these, 1-ethyl 3-methyl-imidazole as a cationic component, as anionic component, (CF 3 SO 2) 2 N - ( bis (trifluoromethanesulfonyl) imide anion) a combination of 1-ethyl-3- methylimidazolium bis ( Trifluoromethanesulfonyl) imide (EMITF) is preferred.
The blending amount of the non-polymerizable imidazole salt is arbitrary, for example, about 1 to 300 mol%, preferably 10 to 200 mol%, more preferably about 50 to 100 mol%, based on the weight of all monomers.

本発明の重合性イミダゾール塩は、イオン性の液体であり、それ自体で、又は他の高分子材料に含浸させたゲル状のイオン伝導体として、各種電気化学ディバイスの構成材料として利用することができる。また、その場合、負極、正極、集電体、セパレーターなどの構成部材は従来公知のものをそのまま使用することができる。
本発明の重合性イミダゾール塩を重合して得られる重合体は、各種電気化学ディバイスとして利用可能である。電気化学ディバイスとして特に制限なく、従来より既知のイオン伝導体、電極、容器などが挙げられ、フィルム状、シート状、あるいは各種成形物品の形状をとることができる。例えば、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、燃料電池、太陽電池、電気二重層キャパシタなどや、液晶、センサー部材、発光素子、触媒など、多方面に応用可能である。本発明の重合体を使用する電気化学ディバイスにおいて、イオン伝導体、負極、正極、集電体、セパレーター等従来公知のものをそのまま使用できる。
本発明の重合体は単独でイオン性伝導体を構成してもよく、また既存の1種又は2種以上のイオン性液体と混合して使用してもよい。さらに、本発明の重合性イミダゾール塩の重合時に、硬化物の物性を向上させる目的で、各種の塩や公知のイオン液体を添加することも可能である。
The polymerizable imidazole salt of the present invention is an ionic liquid, and can be used as a constituent material for various electrochemical devices by itself or as a gel-like ionic conductor impregnated in another polymer material. it can. In that case, conventionally known constituent members such as a negative electrode, a positive electrode, a current collector, and a separator can be used as they are.
The polymer obtained by polymerizing the polymerizable imidazole salt of the present invention can be used as various electrochemical devices. The electrochemical device is not particularly limited and includes conventionally known ion conductors, electrodes, containers, and the like, and can be in the form of a film, a sheet, or various shaped articles. For example, it can be applied to various fields such as lithium primary battery, lithium secondary battery, lithium ion secondary battery, fuel cell, solar cell, electric double layer capacitor, liquid crystal, sensor member, light emitting element, catalyst and the like. In the electrochemical device using the polymer of the present invention, conventionally known ones such as an ionic conductor, a negative electrode, a positive electrode, a current collector and a separator can be used as they are.
The polymer of the present invention may constitute an ionic conductor alone, or may be used by mixing with one or more existing ionic liquids. Furthermore, during the polymerization of the polymerizable imidazole salt of the present invention, various salts and known ionic liquids can be added for the purpose of improving the physical properties of the cured product.

電気化学ディバイスの一例として電気二重層キャパシタに応用する場合、電極材料としては活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマーなどが使用される。
以下に、本発明を実施例によってさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
When applied to an electric double layer capacitor as an example of an electrochemical device, activated carbon, porous metal oxide, porous metal, conductive polymer or the like is used as an electrode material.
Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(モノマー1の合成)

Figure 0004848735
(Synthesis of monomer 1)
Figure 0004848735

リアクター中、1,4-ビス(イミダゾール-1-イル)ブタン 5.71g(30mmol)及び2-ブロモエタノール 22.60 g(181mmol)をジメチルホルムアミド 10 mlに溶解させ、その後50℃において3日間攪拌を行った。その後、200mlのジエチルエーテル中に滴下し再沈殿精製(2回)することで、淡黄色固体としてイミダゾリウムブロミド塩を得た(13.2 g, 100%)。得られたブロミド塩6.60g(15mmol)を150mlのイオン交換水に溶解した後、LiTFSI 8.7 g(30mmol)を加えてアニオン交換反応に供し、水不溶分をイオン交換水で洗浄した後、十分に乾燥しTFSI塩6.39 gを、淡黄色液体として得た。TFSI塩 6.39 g(7.6mmol)、アクリル酸 5.6 g(77.7mmol)、少量の重合禁止剤をアセトニトリル 80 mlに溶解した後、氷冷下、DCC 9.45 g(45.8mmol)を加えた。空気バブリング下、室温にて5時間攪拌反応を行った後、脱溶剤、不要なウレアの濾過をした後、エーテル洗浄を行い、目的とするモノマー1( 6.32g、6.7mmol)を淡黄色液体として得た。
1H-NMR(400MHz, DMSO-d6, ppm): δ 9.21(s, 2H), 7.84-7.83(m, 2H), 7.77(m, 2H), 6.33(d,d, 2H, J=1.5, 17.2 Hz), 6.15(d,d, 2H, J=10.3, 17.2 Hz), 5.98(d,d, 2H, J=1.5, 10.3Hz), 4.52-4.48(m, 8H), 4.27-4.22(m, 4H), 1.77-1.76(m, 4H).
モノマー1のイオン伝導度(50℃)は、−3.28log [σi ( S cm-1 )]である。
In the reactor, 5.71 g (30 mmol) of 1,4-bis (imidazol-1-yl) butane and 22.60 g (181 mmol) of 2-bromoethanol were dissolved in 10 ml of dimethylformamide, and then stirred at 50 ° C. for 3 days. . Then, it was dropped into 200 ml of diethyl ether and purified by reprecipitation (twice) to obtain an imidazolium bromide salt as a pale yellow solid (13.2 g, 100%). The obtained bromide salt (6.60 g, 15 mmol) was dissolved in 150 ml of ion-exchanged water, then LiTFSI (8.7 g, 30 mmol) was added to the anion-exchange reaction, and the water-insoluble matter was washed with ion-exchanged water. Drying afforded 6.39 g of TFSI salt as a pale yellow liquid. 6.39 g (7.6 mmol) of TFSI salt, 5.6 g (77.7 mmol) of acrylic acid and a small amount of a polymerization inhibitor were dissolved in 80 ml of acetonitrile, and then 9.45 g (45.8 mmol) of DCC was added under ice cooling. After stirring for 5 hours at room temperature under air bubbling, solvent removal, unnecessary urea filtration, ether washing and the target monomer 1 (6.32 g, 6.7 mmol) as a pale yellow liquid Obtained.
1 H-NMR (400 MHz, DMSO-d 6 , ppm): δ 9.21 (s, 2H), 7.84-7.83 (m, 2H), 7.77 (m, 2H), 6.33 (d, d, 2H, J = 1.5 , 17.2 Hz), 6.15 (d, d, 2H, J = 10.3, 17.2 Hz), 5.98 (d, d, 2H, J = 1.5, 10.3 Hz), 4.52-4.48 (m, 8H), 4.27-4.22 ( m, 4H), 1.77-1.76 (m, 4H).
The ionic conductivity (50 ° C.) of monomer 1 is −3.28 log [σ i (S cm −1 )].

(モノマー2の合成)

Figure 0004848735
(Synthesis of monomer 2)
Figure 0004848735

1,4-ビス(イミダゾール-1-イル)ブタンの代わりに1,6-ビス(イミダゾール-1-イル)ヘキサンを用い実施例1と同様に反応させることによりモノマー2を淡黄色液体として得た(9.96 g、10.2mmol、97% from TFSI塩)
1H-NMR(400MHz, DMSO-d6, ppm): δ9.21(s, 2H), 7.82(m, 2H), 7.78(m, 2H), 6.33(d,d, 2H, J=1.5, 17.4 Hz), 6.15(d,d, 2H, J=10.3, 17.4 Hz), 5.98(d,d, 2H, J=1.5, 10.3Hz), 4.52-4.44(m, 8H), 4.18-4.12(m, 4H), 1.77-1.76(m, 4H). 1.25-1.23(m, 4H).
モノマー2のイオン伝導度(50℃)は、−3.28log [σi ( S cm-1 )]である。
Monomer 2 was obtained as a pale yellow liquid by reacting in the same manner as in Example 1 using 1,6-bis (imidazol-1-yl) hexane instead of 1,4-bis (imidazol-1-yl) butane. (9.96 g, 10.2 mmol, 97% from TFSI salt)
1 H-NMR (400 MHz, DMSO-d 6 , ppm): δ9.21 (s, 2H), 7.82 (m, 2H), 7.78 (m, 2H), 6.33 (d, d, 2H, J = 1.5, 17.4 Hz), 6.15 (d, d, 2H, J = 10.3, 17.4 Hz), 5.98 (d, d, 2H, J = 1.5, 10.3 Hz), 4.52-4.44 (m, 8H), 4.18-4.12 (m , 4H), 1.77-1.76 (m, 4H). 1.25-1.23 (m, 4H).
The ionic conductivity (50 ° C.) of the monomer 2 is −3.28 log [σ i (S cm −1 )].

(モノマー3の合成)

Figure 0004848735
(Synthesis of monomer 3)
Figure 0004848735

リアクター中、1,4-ビス(イミダゾール-1-イル)ブタン1.904 g(10.0 mmol)及びクロロメチルスチレン9.2 g(60 mmol)をジメチルホルムアミド10 mlに溶解させ、その後50℃において2日間攪拌をした。その後、200mlのジエチルエーテル中に滴下し再沈殿精製(2回)することで、イミダゾリウムクロリド塩を得た。得られたクロリド塩を150mlのイオン交換水に溶解した後、LiTFSI 5.9 g(20.6 mmol)を加えアニオン交換反応をし、水不溶分をイオン交換水で洗浄し目的のモノマー3を、淡黄色液体として得た(8.49 g、86%)。
1H-NMR(400MHz, DMSO-d6, ppm): δ9.26, 9.24(s, 2H), 7.85 - 7.78(m, 4H), 7.54 - 7.29 (m, 8H), 6.79-6.71(m, 2H), 5.90-5.85(m, 2H), 5.41, 5.40(s, 2H), 5.35-5.30(m, 2H), 4.21(m, 4H), 1.79(m, 4H).
モノマー3のイオン伝導度(50℃)は、−3.43log [σi ( S cm-1 )]である。
In the reactor, 1.904 g (10.0 mmol) of 1,4-bis (imidazol-1-yl) butane and 9.2 g (60 mmol) of chloromethylstyrene were dissolved in 10 ml of dimethylformamide, and then stirred at 50 ° C. for 2 days. . Thereafter, it was dropped into 200 ml of diethyl ether and purified by reprecipitation (twice) to obtain an imidazolium chloride salt. After the obtained chloride salt was dissolved in 150 ml of ion-exchanged water, 5.9 g (20.6 mmol) of LiTFSI was added to carry out an anion exchange reaction, and the water-insoluble matter was washed with ion-exchanged water. (8.49 g, 86%).
1 H-NMR (400 MHz, DMSO-d 6 , ppm): δ 9.26, 9.24 (s, 2H), 7.85-7.78 (m, 4H), 7.54-7.29 (m, 8H), 6.79-6.71 (m, 2H), 5.90-5.85 (m, 2H), 5.41, 5.40 (s, 2H), 5.35-5.30 (m, 2H), 4.21 (m, 4H), 1.79 (m, 4H).
The ionic conductivity (50 ° C.) of the monomer 3 is −3.43 log [σ i (S cm −1 )].

(モノマー4の合成)

Figure 0004848735
(Synthesis of monomer 4)
Figure 0004848735

1,4-ビス(イミダゾール-1-イル)ブタンの代わりに1,6-ビス(イミダゾール-1-イル)ヘキサンを用い実施例3と同様に反応させることによりモノマー4を淡黄色液体として得た (7.81 g, 77 %)。
1H-NMR(500MHz, DMSO-d6, ppm): d 9.22, 9.20(s, 2H), 7.78-7.73(m, 4H), 7.48-7.26(m, 8H), 6.71-6.66(m, 2H), 5.83-5.79(m, 2H), 5.36, 5.35(s, 2H), 5.27-5.23(m, 2H), 4.02-4.16(m, 4H), 1.73(m, 4H), 1.21(m, 4H).
モノマー4のイオン伝導度(50℃)は、−3.64log [σi ( S cm-1 )]である。
Monomer 4 was obtained as a pale yellow liquid by reacting in the same manner as in Example 3 using 1,6-bis (imidazol-1-yl) hexane instead of 1,4-bis (imidazol-1-yl) butane. (7.81 g, 77%).
1 H-NMR (500 MHz, DMSO-d 6 , ppm): d 9.22, 9.20 (s, 2H), 7.78-7.73 (m, 4H), 7.48-7.26 (m, 8H), 6.71-6.66 (m, 2H ), 5.83-5.79 (m, 2H), 5.36, 5.35 (s, 2H), 5.27-5.23 (m, 2H), 4.02-4.16 (m, 4H), 1.73 (m, 4H), 1.21 (m, 4H ).
The ionic conductivity (50 ° C.) of the monomer 4 is −3.64 log [σ i (S cm −1 )].

(重合例1)
合成により得られたモノマーのラジカル重合を行った。
実施例1〜4のイオン液体型モノマーに重合開始剤としてジメチル−2,2’−アゾビス(イソブチレート) (MAIB)を2mol%添加し均一になるまで攪拌した。その後、真空中脱気した後、窒素置換し0.5mm厚のスペーサーを挟んだ2枚のガラス板の間にサンプルを注入し、窒素雰囲気下70℃で8時間キャスト重合させた。得られた重合体は、更に60℃で24時間加熱真空乾燥させ、測定サンプルとした。
(Polymerization example 1)
The radical polymerization of the monomer obtained by synthesis was performed.
2 mol% of dimethyl-2,2′-azobis (isobutyrate) (MAIB) as a polymerization initiator was added to the ionic liquid monomers of Examples 1 to 4 and stirred until uniform. Then, after deaeration in a vacuum, the sample was poured between two glass plates that were purged with nitrogen and sandwiched with a 0.5 mm thick spacer, and cast polymerization was performed at 70 ° C. for 8 hours in a nitrogen atmosphere. The obtained polymer was further heated and vacuum dried at 60 ° C. for 24 hours to obtain a measurement sample.

(重合例2)
モノマー1に他の各種モノマーを添加した系での重合は、各種モノマーとMAIB(2mol%)の混合物に種々の架橋剤を所定量添加し、さらに各種塩を加えた後、重合例1と同様の手順で合成した。
(Polymerization example 2)
Polymerization in a system in which various other monomers are added to monomer 1 is the same as polymerization example 1 after adding a predetermined amount of various cross-linking agents to a mixture of various monomers and MAIB (2 mol%) and further adding various salts. The procedure was as follows.

(重合確認)
重合例1及び2で得られた重合性イミダゾール塩重合体は、固体として得られた。また、モノマーが残存していないことはフーリエ変換赤外分光法(FT−IR)でも確認した。測定方法はモノマーには液膜法を、重合物質にはKBr法を用いた。モノマーにおいて観察される重合基のピークが、重合体においては消失することが確認できた。
(熱分解温度:Td)
熱分解温度は、TA Instruments社製Q−500を用いて、25℃から500℃の温度範囲で、空気中10℃/minの昇温速度で測定した。また、データは10% 重量減少温度で求めた。結果を、表1及び2に示す。
(イオン伝導度測定)
得られた化合物のイオン伝導度は、インピーダンスアナライザー(Solartron gain phase analyzer,Model 1260, Schlumberger)を用いて交流インピーダンス法により10Hzから1MHzの範囲で測定した。全ての測定は窒素雰囲気下のグローブボックス内で10〜60℃の範囲で行った。結果を表2に示す。
(Polymerization confirmation)
The polymerizable imidazole salt polymer obtained in Polymerization Examples 1 and 2 was obtained as a solid. Further, it was confirmed by Fourier transform infrared spectroscopy (FT-IR) that no monomer remained. For the measurement method, a liquid film method was used for the monomer, and a KBr method was used for the polymerized material. It was confirmed that the peak of the polymer group observed in the monomer disappeared in the polymer.
(Thermal decomposition temperature: Td)
The thermal decomposition temperature was measured at a temperature rising rate of 10 ° C./min in air in a temperature range of 25 ° C. to 500 ° C. using Q-500 manufactured by TA Instruments. The data was obtained at a 10% weight loss temperature. The results are shown in Tables 1 and 2.
(Ion conductivity measurement)
The ionic conductivity of the obtained compound was measured in the range of 10 Hz to 1 MHz by an AC impedance method using an impedance analyzer (Solartron gain phase analyzer, Model 1260, Schlumberger). All measurements were performed in the range of 10-60 ° C. in a glove box under a nitrogen atmosphere. The results are shown in Table 2.

Figure 0004848735
Figure 0004848735

Figure 0004848735
Figure 0004848735

表2中、配合組成欄の略号は以下のものを示す。
AEITF:[(アクリロイルオキシ)エチル]−3−エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
EGDM:エチレングリコールジメタクリレート
EMITF:1-エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド
In Table 2, the abbreviations in the blending composition column indicate the following.
AEITF: [(acryloyloxy) ethyl] -3-ethylimidazolium bis (trifluoromethanesulfonyl) imide EGDM: ethylene glycol dimethacrylate EMTF: 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide

本発明のモノマー1〜4は、単独重合においては400℃以上の高耐熱性ポリマーを与え、AEITFの如き単官能モノマーとの共重合でさえも、重合後のイオン伝導度を損なうことなく380℃以上の耐熱性を付与できる。さらにこの共重合系にエチルイミダゾール系の塩を添加すると、重合前のモノマーの伝導度を越えるポリマーが得られる。
Monomers 1 to 4 of the present invention give a high heat-resistant polymer of 400 ° C. or higher in homopolymerization, and even at copolymerization with a monofunctional monomer such as AEITF, 380 ° C. without impairing ionic conductivity after polymerization. The above heat resistance can be provided. Further, when an ethylimidazole salt is added to this copolymerization system, a polymer exceeding the conductivity of the monomer before polymerization can be obtained.

Claims (5)

一般式(1);
Figure 0004848735
(式中、Xは四級アンモニウム塩の対アニオンを、
RはCH=CRC(O)OCHCH−(Rはそれぞれ独立にH又はCH
は1〜100の整数を示す。)で表される重合性ビスイミダゾール塩をモノマー単位として含有する、電気化学ディバイス用重合体
General formula (1);
Figure 0004848735
(In the formula, X represents a counter anion of a quaternary ammonium salt,
R is CH 2 = CR 1 C (O ) OCH 2 CH 2 - (R 1 is H or CH 3 independently),
n shows the integer of 1-100. The polymer for electrochemical devices containing the polymerizable bisimidazole salt represented by this as a monomer unit .
がビス(トリフルオロメタンスルホニル)イミドアニオンである請求項1に記載の電気化学ディバイス用重合体X - gabi scan (trifluoromethanesulfonyl) electrochemical devices polymer of claim 1 wherein the imide anion. 非重合性イミダゾール塩の存在下で単独重合又は共重合してなる請求項1または2に記載の電気化学ディバイス用重合体と非重合性イミダゾール塩とを含む組成物 A composition comprising the polymer for electrochemical devices according to claim 1 or 2 and a non-polymerizable imidazole salt obtained by homopolymerization or copolymerization in the presence of a non-polymerizable imidazole salt . 請求項又は記載の電気化学ディバイス用重合体を含む電気化学ディバイス。 Electrochemical devices, including the claims 1 or 2 electrochemical devices for polymer according. 請求項3記載の組成物を含む電気化学ディバイス。An electrochemical device comprising the composition of claim 3.
JP2005303481A 2005-10-18 2005-10-18 Polymers for electrochemical devices of polymerizable imidazole salts Expired - Fee Related JP4848735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303481A JP4848735B2 (en) 2005-10-18 2005-10-18 Polymers for electrochemical devices of polymerizable imidazole salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303481A JP4848735B2 (en) 2005-10-18 2005-10-18 Polymers for electrochemical devices of polymerizable imidazole salts

Publications (2)

Publication Number Publication Date
JP2007112722A JP2007112722A (en) 2007-05-10
JP4848735B2 true JP4848735B2 (en) 2011-12-28

Family

ID=38095234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303481A Expired - Fee Related JP4848735B2 (en) 2005-10-18 2005-10-18 Polymers for electrochemical devices of polymerizable imidazole salts

Country Status (1)

Country Link
JP (1) JP4848735B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157453B2 (en) * 2005-12-28 2013-03-06 ダイキン工業株式会社 Process for producing N-Rf group-containing heteroaromatic ring compound
JP5164541B2 (en) * 2007-11-29 2013-03-21 富士フイルム株式会社 Polishing liquid and polishing method
JP5581011B2 (en) * 2009-06-10 2014-08-27 Jx日鉱日石エネルギー株式会社 Polymerizable ionic liquid and polymer using the same
JP5781075B2 (en) 2009-08-28 2015-09-16 スリーエム イノベイティブ プロパティズ カンパニー Polymerizable ionic liquids and antistatic coatings containing polyfunctional cations
US20120148773A1 (en) * 2010-12-09 2012-06-14 Parent J Scott Thermoset Ionomer Derivatives of Halogenated Polymers
US9136559B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
US20120171576A1 (en) * 2010-12-29 2012-07-05 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
GB201112389D0 (en) * 2011-07-19 2011-08-31 Fujifilm Mfg Europe Bv Curable compositions and membranes
WO2014175449A1 (en) * 2013-04-26 2014-10-30 国立大学法人 東京大学 Novel graphene nano dispersion and method for preparing same
CN103877910B (en) * 2014-03-13 2015-11-11 陕西省石油化工研究设计院 1,2-bis-(2-alcohol ether methylene imidazolinyl) ethane surfactant and preparation method thereof
TW201708206A (en) * 2015-07-22 2017-03-01 國立大學法人東京大學 Non-aqueous electrolyte
WO2017208773A1 (en) * 2016-05-31 2017-12-07 株式会社カネカ Heat-resistant composition and thermal interface material
US10147974B2 (en) * 2017-05-01 2018-12-04 Dioxide Materials, Inc Battery separator membrane and battery employing same
CN108383794A (en) * 2018-01-24 2018-08-10 复旦大学 Ion conductor containing phenyl/xenyl and hydroxyalkyl and preparation method and applications
CN108539264B (en) * 2018-05-18 2020-04-21 吉林大学 Ionic gel polymer electrolyte with damage repairing capability, preparation method and application thereof
CN114478886B (en) * 2022-02-16 2023-09-26 烟台新特路新材料科技有限公司 Imidazole polyion liquid and preparation method thereof
CN115557896A (en) * 2022-09-30 2023-01-03 中纺院(浙江)技术研究院有限公司 Bifunctional imidazole ionic liquid and synthesis method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270408A (en) * 1985-09-25 1987-03-31 Mita Ind Co Ltd Stereoregular polymer and its production
JPS63142006A (en) * 1986-12-05 1988-06-14 Nitto Electric Ind Co Ltd Photocurable resin composition
JPH11130817A (en) * 1997-08-28 1999-05-18 Junji Kido Vinyl-based polymer and electroluminescent element using the same
JP4812055B2 (en) * 1999-04-14 2011-11-09 日本化薬株式会社 Method for producing polymer electrolyte and photoelectric conversion element
JP2005200359A (en) * 2004-01-16 2005-07-28 Tosoh Corp Ionic compound

Also Published As

Publication number Publication date
JP2007112722A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4848735B2 (en) Polymers for electrochemical devices of polymerizable imidazole salts
Nakajima et al. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives
KR100588475B1 (en) Solid polymer electrolyte composite using polysiloxane-based compound
JP4995185B2 (en) Cyclic siloxane compound crosslinking agent, solid polymer electrolyte composition containing the crosslinking agent, and solid polymer electrolyte for small lithium polymer secondary battery
JP2003277506A (en) Novel crosslinking agent and crosslinking type solid polymer electrolyte containing it
JP5249042B2 (en) Proton conducting compound and proton conducting polymer
CN110699020A (en) Polyion liquid adhesive and preparation method thereof
CN114478886B (en) Imidazole polyion liquid and preparation method thereof
CN110233288A (en) Full solid state polymer electrolyte and preparation method thereof with half interpenetrating network structure
Sood et al. 1, 2, 3-Triazolium-based poly (acrylate ionic liquid) s
CN1970582A (en) Poly(N- ethenyl-N'-alkyl- imidazole) ion liquid structural material and its preparation method
Oh et al. Poly (vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries
KR101351846B1 (en) Semi-ipn type solid polymer electrolyte composition comprising polycarbonate based plasticizer with oligoethyleneglycol side chain
JP6512555B2 (en) Cationic glycidyl polymer
KR101720049B1 (en) Solid polymer electrolytes comprising polymer crosslinked tannic acid derivative for secondary lithium battery
US11643496B2 (en) Polymer electrolyte having superior ion conductivity and mechanical strength and method of manufacturing same
JP2008260915A (en) Novel alicyclic vinyl ether polymers
JP2004263153A (en) Amine-curing type epoxy resin electrolyte having sulfonic acid group and method for producing the same
Wang et al. Synthesis of triazole-dendronized polyacetylenes by metathesis cyclopolymerization and their conductivity
JP4788121B2 (en) Polymerizable imidazole salt
Gal et al. Synthesis, structural and spectral properties of an ionic polyacetylene: Poly [N‐(5‐nitro‐2‐furanmethylene)‐2‐ethynylpyridinium bromide]
US9184459B2 (en) Sulfonated polymers useful for forming fuel cell membranes
Wang et al. Enhanced Ionic and Electronic Conductivity of Polyacetylene with Dendritic 1, 2, 3‐Triazolium‐Oligo (ethylene glycol) Pendants
CN108676173B (en) Polyion liquid with ionic bond as framework and preparation method thereof
CN110931272B (en) Photo-crosslinkable pseudocapacitor electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees