JP4848608B2 - Refrigerant circuit - Google Patents

Refrigerant circuit Download PDF

Info

Publication number
JP4848608B2
JP4848608B2 JP2001276040A JP2001276040A JP4848608B2 JP 4848608 B2 JP4848608 B2 JP 4848608B2 JP 2001276040 A JP2001276040 A JP 2001276040A JP 2001276040 A JP2001276040 A JP 2001276040A JP 4848608 B2 JP4848608 B2 JP 4848608B2
Authority
JP
Japan
Prior art keywords
refrigerant
bypass pipe
pipe
heat exchanger
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276040A
Other languages
Japanese (ja)
Other versions
JP2003083644A (en
Inventor
邦生 杉山
与一 山田
茂夫 隨木
芳樹 長崎
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001276040A priority Critical patent/JP4848608B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to EP02020405A priority patent/EP1293735B1/en
Priority to ES02020405T priority patent/ES2284756T3/en
Priority to AT02020405T priority patent/ATE356962T1/en
Priority to DE60218793T priority patent/DE60218793T2/en
Priority to PT02020405T priority patent/PT1293735E/en
Priority to CNB021315442A priority patent/CN1173139C/en
Publication of JP2003083644A publication Critical patent/JP2003083644A/en
Application granted granted Critical
Publication of JP4848608B2 publication Critical patent/JP4848608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

In a refrigerant circuit, an expansion valve 4 is connected to a heat exchanger 5 by a refrigerant pipe, and a bypass pipe 7/9 is provided. By way of a bypass pipe 9 having a check valve 10, a refrigerant is returned to a refrigerant circuit from a refrigerant amount control tank 8 that is installed in the bypass pipe 7/9. <IMAGE>

Description

【0001】
【発明の属する技術分野】
本発明は、混合冷媒を使用する冷凍サイクルの冷媒量の制御に関するものである。
【0002】
【従来の技術】
ヒートポンプに利用される、圧縮機、四方弁、熱交換器、膨張弁、アキュムレータからなる従来の冷凍サイクルとして、特開平7−120119号公報に記載されたものを図2に示す。図2において、101は圧縮機、102は冷房運転時と暖房運転時の冷媒の流れを変える四方弁、103は室内熱交換器、104〜107は逆止弁、108は受液器、109は膨張弁、110は室外熱交換器、111は室内送風ファン、112は室外送風ファンである。
次に動作について説明する。
冷房運転時、圧縮機101で圧縮された冷媒は、四方弁102を通って室外熱交換器110に流れ、逆止弁104、受液器108、膨張弁109、逆止弁107、室内熱交換器103を順次流れて、四方弁102を介して圧縮機101へ戻ってくる。
また、暖房運転時においては、圧縮された冷媒は圧縮機101から四方弁102を通って室内熱交換器103に流れ、逆止弁105、受液器108、膨張弁109、逆止弁106、室外熱交換器110を順次流れて、四方弁102を介して圧縮機101へ戻ってくる。
ここで、運転時に冷媒回路に必要な冷媒を比較すると、一般的には室外熱交換器110の方が室内熱交換器103よりも冷媒を凝縮する効率が良いので冷媒が通る部分の内容積を小さくすることができ、暖房運転時の方が冷房運転時よりも必要な冷媒は少なくて済む。
そして、膨張弁109の手前に設けた受液器108は、冷媒液を溜めることにより、冷房運転時と暖房運転時の必要な冷媒量の差を調整するものである。
【0003】
ここで、図2の冷媒回路の冷凍サイクルをp−h線図で表すと、図3のようになる。この図において、a−b間は圧縮機101による圧縮行程、b−c間は熱交換器103もしくは110による凝縮行程、c−d間は膨張弁109による膨張行程、d−a間は熱交換器110もしくは103による蒸発行程を示す。
このとき、この冷媒回路の受液器108には冷媒液と冷媒ガスが混在しているため、図3の点cに示すように、受液器内部の冷媒は飽和液状態となっている。この飽和液冷媒は、受液器108を出た後、図示されない液配管やストレーナ、液ライン電磁弁と、膨張弁109を通り、蒸発器に流れ込むが、過冷却されてないため、液配管等に抵抗が有る場合は、冷媒液と冷媒ガスが混在したフラッシュガス状態となりやすい。冷媒がフラッシュガス状態となると、膨張弁109を流れる冷媒量が著しく減少するため、所定の冷凍能力が得られなくなる。
【0004】
解決策として、熱交換器の液出口側の冷媒配管にバイパス配管を介して冷媒量調整用タンクを設け、一時的に余剰冷媒液を溜め込む方法が有る。
図4は、別の従来の空冷ヒートポンプチラーにおける基本的な冷媒回路の一例である。
この図において、201は圧縮機、202は冷暖房運転時に冷媒の流れを切替える四方弁、203は空気側熱交換器、204は膨張弁、205は水側熱交換器、206はアキュムレータ、208は水側熱交換器205の液出口側の冷媒配管にバイパス配管207を介して設けた冷媒量調整用タンクである。
【0005】
次に、この冷媒回路の動作について説明する。
冷房運転時、圧縮機201で圧縮された冷媒は、四方弁202を通って空気側熱交換器203、膨張弁204、水側熱交換器205を通り、四方弁202を通ってアキュムレータ206を介して圧縮機201へ戻ってくる。
また、暖房運転時においては、圧縮機201で圧縮された冷媒は、四方弁202を通って、水側熱交換器205、膨張弁204、空気側熱交換器203を通り、四方弁202を通ってアキュムレータ206を介して圧縮機201へ戻ってくる。
ここで、冷房運転時と暖房運転時で冷媒回路に必要な冷媒量を比較すると、水側熱交換器205の方が空気側熱交換器203より冷媒を凝縮する効率が良いので、熱交換器の冷媒側における内容積を小さくすることができ、冷房運転時よりも暖房運転時の方が冷媒回路に必要な冷媒量は少なくて済み、余剰分の冷媒液は、バイパス配管207を介して冷媒量調整用タンク208に流れ込んで貯留される。このとき、冷媒量調整用タンク208内は、冷媒液で満たされる。
また、暖房運転後に、冷房運転に切替えると、今度は逆に冷媒回路に必要な冷媒量が不足するため、冷媒量調整用タンク208内に貯留した冷媒液が冷媒回路に流れ込み、不足分を補うこととなる。このとき、冷媒量調整用タンク208内は冷媒ガスのみとなる。
【0006】
すなわち、この冷媒回路では、暖房運転時において必要な冷媒量は冷房運転時の必要量よりも少なくなるので、余剰分は冷媒量調整用タンク208に流れ込む。逆に、冷房運転時には冷媒量が不足し、冷媒量調整用タンク208から流れ出す冷媒が不足分を補う。
【0007】
なお、冷媒量調整用タンク208の容量は、暖房運転時の余剰冷媒液量で決められている。
【0008】
【発明が解決しようとする課題】
しかし、上述の方法では、例えば、冷媒として、HFC134a、HFC32、HFC125を定まった比率で混合した混合冷媒:HFC407Cを使用した場合に以下のような問題が発生する。
まず、アキュムレータ206内に冷媒液が溜まった状態で暖房を開始する場合について説明する。
停止中は、アキュムレータ206内部に溜まった冷媒液は、その成分の内で最も凝縮しやすいHFC134aが多い組成となっており、アキュムレータ206を除いた冷媒回路内の冷媒は、残りの成分であるHFC32及びHFC125が多い組成となっているので、暖房運転を開始すると、冷媒量調整用タンク208に流れ込む余剰冷媒液も、HFC32及びHFC125が多い組成となってしまう。
その結果、冷媒量調整用タンク208を除く冷媒回路内において、HFC32及びHFC125が減少し、その一方で、HFC134aを多く含むアキュムレータ206内の液冷媒が蒸発して冷媒回路内を流れるので、冷媒量調整用タンク208を除く冷媒回路内の冷媒はHFC134aが多い組成となり、冷媒の特性上、冷凍能力は減少傾向となる。
【0009】
次に、アキュムレータ206内に冷媒液が溜まってない状態で暖房運転を開始する場合について、説明する。
停止中は、冷媒回路内の冷媒は標準の組成であるが、暖房運転を開始すると、始動時の過渡的状態では、水側熱交換器205で、凝縮し易いHFC134aが他の成分であるHFC32及びHFC125よりも先に液化するので、冷媒量調整用タンク208に流れ込む余剰冷媒液はHFC134aが多い傾向となる。
その結果、冷媒量調整用タンク208を除く冷媒回路内の冷媒は、残りの成分であるHFC32及びHFC125が多い組成となってしまい、冷媒の特性上、冷凍能力は増加傾向となる。
しかしながら、高圧圧力も上昇傾向となってしまうので、高圧圧力上昇を回避するために圧縮機201の吐出口と四方弁202との間の冷媒配管に設けられる保護装置である、図示されない高圧開閉器の作動による警報発令及び運転停止が起こり易くなってしまう。
【0010】
また、運転状況によっては、冷媒量調整用タンク208内に冷媒ガスと冷媒液が同時に貯留される。このとき、冷媒量調整用タンク208内の冷媒ガスは蒸発し易いHFC32及びHFC125が標準組成よりも多くなり、冷媒量調整用タンク208を除く冷媒回路内の冷媒においてHFC32及びHFC125が減少する。すなわち、冷媒量調整用タンク208を除く冷媒回路内の冷媒組成は、冷媒量調整用タンク208内の冷媒ガス量により変化するので、それに伴って冷凍能力が変化してしまうという問題が生じる。
【0011】
この発明は上述のような課題を解決するためになされたもので、冷媒回路中を流れる混合冷媒の組成を標準組成に保つことを目的としたものである。
【0012】
【課題を解決するための手段】
圧縮機と、冷房運転と暖房運転とを切替える四方弁と、暖房運転時に蒸発器として動作する第1の熱交換器と、膨張弁と、暖房運転時に凝縮器として動作する第2の熱交換器と、アキュムレータとを冷媒配管により接続し、使用する冷媒が混合冷媒である冷媒回路において、前記膨張弁と前記第2の熱交換器との間の冷媒配管から分岐する第1のバイパス用配管と、前記膨張弁と前記弟1のバイパス用配管の分岐点との間の冷媒配管から分岐する第2のバイパス用配管と、前記第1のバイパス用配管と前記第2のバイパス用配管とに接続された冷媒量調整用タンクと、前記第2のバイパス用配管に設けられ、前記冷媒量調整用タンクへの冷媒の流れを阻止する逆止弁と、を備えたものである。
【0013】
【0014】
また、第2のバイパス用配管の径が第1のバイパス用配管の径よりも小径である。
【0015】
【発明の実施の形態】
実施の形態1.
図1は、実施の形態1を示す空冷ヒートポンプチラーにおける基本的な冷媒回路の一例である。
図において、1は圧縮機、2は冷暖房運転時に冷媒の流れを切替える四方弁、3は空気側熱交換器、4は膨張弁、5は水側熱交換器、6はアキュムレータ、8はバイパス配管7を介して設けた冷媒量調整用タンク、9は冷媒量調整用タンク8に溜まった冷媒液を冷媒回路に戻す、逆止弁10を有するバイパス配管である。このバイパス配管9にはバイパス配管7より小径の管を用い、例えば、バイパス配管7に外径9.52mmの管を用いた場合に、バイパス配管9には、外径6.4mmの管を用いる。
なお、この冷媒回路においては、冷媒は非共沸の混合冷媒HFC407Cを用いる。
【0016】
次にこの冷媒回路の動作について説明する。
図1の冷媒回路において、暖房運転時において余剰分はバイパス配管7を介して冷媒量調整用タンク8に流れ込み、冷房運転時には冷媒量調整用タンク8から流れ出す冷媒が不足分を補う点は、従来の技術を示す図4の冷媒回路と同じである。
異なる点は、暖房運転時に、冷媒回路の主配管におけるバイパス配管9取付位置の圧力がバイパス配管7取付位置の圧力より低いことを利用して、冷媒量調整用タンク8の上部に設けられた逆止弁10を有するバイパス配管9を通じ、冷媒量調整用タンク8に溜まった冷媒の一部を、常時、冷媒回路に戻している点である。
【0017】
ここで、アキュムレータ6内に液冷媒が溜まった状態で運転を停止しているものと想定する。このとき、アキュムレータ6内部に溜まった冷媒液は、その成分の内で最も凝縮しやすいHFC134aが多い組成となっている。したがって、アキュムレータ6を除いた冷媒回路内の冷媒は、残りの成分であるHFC32及びHFC125が多い組成となっている。
したがって、この状態で暖房運転を開始すると、冷媒量調整用タンク8に流れ込む余剰冷媒液もHFC32及びHFC125が多い組成である。
一方、HFC134aを多く含むアキュムレータ6内の液冷媒が蒸発して冷媒回路内を流れるので、冷媒量調整用タンク8を除く冷媒回路内の冷媒はHFC134aが多い組成となる。
ここで、冷媒回路の主配管におけるバイパス配管7とバイパス配管9の取付位置の圧力差を利用して、冷媒量調整用タンク8に溜まったHFC32及びHFC125が多い組成の冷媒液の一部は、冷媒量調整用タンク8の上部に設けられた逆止弁10を有するバイパス配管9を通じて冷媒回路に戻されるので、時間経過と共にHFC134aが多い組成の冷媒と混じり合い、運転安定時には冷媒回路内の冷媒は標準組成に戻る。
このとき、バイパス配管9を通じて冷媒回路に戻される冷媒量は、バイパス配管9の径をバイパス配管7よりも小さくすることで調整し、暖房運転安定時において冷媒量調整用タンク8に一定量の余剰冷媒を確保できるように設定する。
【0018】
次に、アキュムレータ6内に液冷媒が溜まってない状態で運転を停止しているものと想定する。このとき、冷媒回路内の冷媒は標準組成である。
この状態で暖房運転を開始すると、始動時の過渡的状態においては、水側熱交換器5において、凝縮し易いHFC134aが他の成分であるHFC32及びHFC125よりも先に液化するので、冷媒量調整用タンク8に流れ込む余剰冷媒液はHFC134aが多い傾向となる。
ここで、冷媒回路の主配管におけるバイパス配管7とバイパス配管9の取付位置の圧力差を利用して、冷媒量調整用タンク8の上部に設けられた逆止弁10を有するバイパス配管9を通じ、冷媒量調整用タンク8に溜まった冷媒の一部は、膨張弁4の直前で冷媒回路に戻されるので、HFC134aが多い組成の冷媒液の一部は冷媒回路に戻り、HFC32、HFC125が多い組成の冷媒と混じり合い、運転安定時には冷媒回路内の冷媒は標準組成に戻る。
【0019】
また、バイパス配管9は冷媒量調整用タンク8のガス抜きの役目を果たすので、暖房運転時に余剰冷媒液を冷媒量調整用タンク8に溜める際に、バイパス配管7を介して円滑に流し込むことができる。なお、この効果については、非共沸の混合冷媒に限らず、単一冷媒及び共沸冷媒であっても同様に得られる。
【0020】
また、この実施の形態では、暖房運転時と冷房運転時に必要とする冷媒量の差が顕著なヒートポンプチラーに関して述べているが、四方弁で冷媒の流れを変えることができる他の空調機器にもこの発明を適用できることは、言うまでもない。
【0021】
【発明の効果】
この発明は、凝縮器と蒸発器の役割を兼ねる第1の熱交換器と、膨張弁と、凝縮器と蒸発器の役割を兼ねる第2の熱交換器と、アキュムレータとを冷媒配管により接続した冷媒回路において、前記膨張弁と前記第2の熱交換器との間の冷媒配管に、第1のバイパス用配管を取り付け、この第1のバイパス用配管に冷媒量調整用タンクを接続し、前記膨張弁と前記第2の熱交換器との間の冷媒配管のうち、前記第1のバイパス用配管の取り付け位置よりも膨張弁側に第2のバイパス用配管を取り付け、この第2のバイパス用配管に逆止弁を設け、さらに前記冷媒量調整タンクに接続させたので、この第2のバイパス用配管が冷媒量調整用タンクのガス抜きの役目を果たし、暖房運転時に余剰冷媒液を冷媒量調整用タンクに溜める際に、円滑に冷媒を流し込むことができる。
【0022】
また、使用する冷媒が混合冷媒である時、第2のバイパス用配管を通じて暖房運転時に流れ込んだ液の一部を常時循環させることにより、一時的に標準組成と成分比率が異なる冷媒が冷媒量調整用タンクに溜まり込むことにより、冷媒回路中の冷媒組成が変化しても、定常運転時には標準組成に戻すことができる。
【0023】
また、第2のバイパス用配管の径が第1のバイパス用配管の径よりも小径であることにより、暖房運転時に冷媒量調整用タンクから第2のバイパス用配管を通じて冷媒回路へ戻す冷媒量を調整し、定常運転時には冷媒量調整用タンク内の冷媒量を一定に保つことができる。
【図面の簡単な説明】
【図1】 実施の形態1を示す、空冷ヒートポンプチラーにおける基本的な冷媒回路の一例である。
【図2】 従来の技術を示す、特開平7−120119号公報記載の基本的な冷媒回路の一例である。
【図3】 特開平7−120119号公報記載の冷媒回路を説明するp−h線図である。
【図4】 別の従来の技術を示す、空冷ヒートポンプチラーにおける基本的な冷媒回路の一例である。
【符号の説明】
1 圧縮機、 2 四方弁、 3 空気側熱交換器、 4 膨張弁、 5 水側熱交換器、 6 アキュムレータ、 7 バイパス配管、 8 冷媒量調整用タンク、 9 バイパス配管、 10 逆止弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of the amount of refrigerant in a refrigeration cycle using a mixed refrigerant.
[0002]
[Prior art]
FIG. 2 shows a conventional refrigeration cycle used in a heat pump, which is composed of a compressor, a four-way valve, a heat exchanger, an expansion valve, and an accumulator, described in JP-A-7-120119. In FIG. 2, 101 is a compressor, 102 is a four-way valve that changes the flow of refrigerant during cooling operation and heating operation, 103 is an indoor heat exchanger, 104 to 107 are check valves, 108 is a receiver, 109 is An expansion valve, 110 is an outdoor heat exchanger, 111 is an indoor fan, and 112 is an outdoor fan.
Next, the operation will be described.
During the cooling operation, the refrigerant compressed by the compressor 101 flows to the outdoor heat exchanger 110 through the four-way valve 102, and the check valve 104, the liquid receiver 108, the expansion valve 109, the check valve 107, and the indoor heat exchange. It flows through the vessel 103 in sequence and returns to the compressor 101 through the four-way valve 102.
Further, during the heating operation, the compressed refrigerant flows from the compressor 101 through the four-way valve 102 to the indoor heat exchanger 103, and the check valve 105, the liquid receiver 108, the expansion valve 109, the check valve 106, It flows through the outdoor heat exchanger 110 sequentially, and returns to the compressor 101 via the four-way valve 102.
Here, when comparing the refrigerant required for the refrigerant circuit during operation, the outdoor heat exchanger 110 is generally more efficient in condensing the refrigerant than the indoor heat exchanger 103, so the internal volume of the portion through which the refrigerant passes is reduced. It can be made smaller and requires less refrigerant during heating operation than during cooling operation.
And the liquid receiver 108 provided in front of the expansion valve 109 adjusts the difference of the refrigerant | coolant amount required at the time of air_conditionaing | cooling operation and heating operation by accumulating refrigerant | coolant liquid.
[0003]
Here, the refrigeration cycle of the refrigerant circuit of FIG. 2 is represented by a ph diagram as shown in FIG. In this figure, between a and b, the compression stroke by the compressor 101, between b and c, the condensation stroke by the heat exchanger 103 or 110, between cd and the expansion stroke by the expansion valve 109, and between d and the heat exchange. The evaporation process by the vessel 110 or 103 is shown.
At this time, since liquid refrigerant and refrigerant gas are mixed in the liquid receiver 108 of this refrigerant circuit, the refrigerant inside the liquid receiver is in a saturated liquid state as indicated by a point c in FIG. After this saturated liquid refrigerant exits the liquid receiver 108, it passes through a liquid pipe and strainer (not shown), a liquid line solenoid valve, and an expansion valve 109 and flows into the evaporator, but is not supercooled. When there is resistance, the flash gas state in which the refrigerant liquid and the refrigerant gas are mixed is likely to occur. When the refrigerant is in a flash gas state, the amount of refrigerant flowing through the expansion valve 109 is significantly reduced, so that a predetermined refrigeration capacity cannot be obtained.
[0004]
As a solution, there is a method in which a refrigerant amount adjusting tank is provided in the refrigerant pipe on the liquid outlet side of the heat exchanger via a bypass pipe to temporarily store excess refrigerant liquid.
FIG. 4 is an example of a basic refrigerant circuit in another conventional air-cooled heat pump chiller.
In this figure, 201 is a compressor, 202 is a four-way valve that switches the flow of refrigerant during air conditioning operation, 203 is an air side heat exchanger, 204 is an expansion valve, 205 is a water side heat exchanger, 206 is an accumulator, and 208 is water. This is a refrigerant amount adjusting tank provided via a bypass pipe 207 in the refrigerant pipe on the liquid outlet side of the side heat exchanger 205.
[0005]
Next, the operation of this refrigerant circuit will be described.
During the cooling operation, the refrigerant compressed by the compressor 201 passes through the four-way valve 202, passes through the air-side heat exchanger 203, the expansion valve 204, and the water-side heat exchanger 205, passes through the four-way valve 202, and passes through the accumulator 206. To the compressor 201.
During heating operation, the refrigerant compressed by the compressor 201 passes through the four-way valve 202, passes through the water-side heat exchanger 205, the expansion valve 204, and the air-side heat exchanger 203, and passes through the four-way valve 202. And returns to the compressor 201 via the accumulator 206.
Here, when the amount of refrigerant necessary for the refrigerant circuit is compared between the cooling operation and the heating operation, the water-side heat exchanger 205 is more efficient in condensing the refrigerant than the air-side heat exchanger 203. The refrigerant volume on the refrigerant side can be reduced, and the amount of refrigerant required for the refrigerant circuit is smaller during the heating operation than during the cooling operation. It flows into the amount adjustment tank 208 and is stored. At this time, the refrigerant amount adjusting tank 208 is filled with the refrigerant liquid.
Further, when switching to the cooling operation after the heating operation, the refrigerant amount necessary for the refrigerant circuit is insufficient, and the refrigerant liquid stored in the refrigerant amount adjustment tank 208 flows into the refrigerant circuit to compensate for the shortage. It will be. At this time, the refrigerant amount adjustment tank 208 contains only the refrigerant gas.
[0006]
That is, in this refrigerant circuit, the amount of refrigerant required during the heating operation is smaller than the amount required during the cooling operation, so the surplus flows into the refrigerant amount adjustment tank 208. Conversely, the amount of refrigerant is insufficient during the cooling operation, and the refrigerant flowing out of the refrigerant amount adjustment tank 208 compensates for the shortage.
[0007]
The capacity of the refrigerant amount adjusting tank 208 is determined by the surplus refrigerant liquid amount during the heating operation.
[0008]
[Problems to be solved by the invention]
However, in the above-described method, for example, the following problem occurs when a mixed refrigerant: HFC407C in which HFC134a, HFC32, and HFC125 are mixed at a fixed ratio is used as the refrigerant.
First, the case where heating is started in a state where the refrigerant liquid has accumulated in the accumulator 206 will be described.
During the stop, the refrigerant liquid accumulated in the accumulator 206 has a composition in which the HFC 134a is most easily condensed among the components, and the refrigerant in the refrigerant circuit excluding the accumulator 206 is the remaining component HFC32. In addition, when the heating operation is started, the surplus refrigerant liquid flowing into the refrigerant amount adjusting tank 208 also has a composition with a large amount of HFC32 and HFC125.
As a result, in the refrigerant circuit excluding the refrigerant quantity adjustment tank 208, the HFC 32 and the HFC 125 decrease, while the liquid refrigerant in the accumulator 206 containing a large amount of HFC 134a evaporates and flows in the refrigerant circuit. The refrigerant in the refrigerant circuit excluding the adjustment tank 208 has a composition with a large amount of HFC134a, and the refrigerating capacity tends to decrease due to the characteristics of the refrigerant.
[0009]
Next, a case where the heating operation is started in a state where the refrigerant liquid does not accumulate in the accumulator 206 will be described.
During the stop, the refrigerant in the refrigerant circuit has a standard composition. However, when the heating operation is started, in the transient state at the start, the HFC 134a that is easily condensed in the water-side heat exchanger 205 is the other component HFC32. In addition, since the liquid is liquefied before the HFC 125, the surplus refrigerant liquid flowing into the refrigerant amount adjusting tank 208 tends to have a large amount of the HFC 134a.
As a result, the refrigerant in the refrigerant circuit excluding the refrigerant quantity adjustment tank 208 has a composition with a large amount of the remaining components HFC32 and HFC125, and the refrigerating capacity tends to increase due to the characteristics of the refrigerant.
However, since the high-pressure pressure also tends to increase, a high-pressure switch (not shown) that is a protection device provided in the refrigerant pipe between the discharge port of the compressor 201 and the four-way valve 202 in order to avoid an increase in the high-pressure pressure. It is easy to issue an alarm and stop operation due to the operation of.
[0010]
Further, depending on the operating condition, the refrigerant gas and the refrigerant liquid are stored in the refrigerant amount adjusting tank 208 at the same time. At this time, HFC32 and HFC125 in which the refrigerant gas in the refrigerant quantity adjustment tank 208 easily evaporates is larger than the standard composition, and HFC32 and HFC125 decrease in the refrigerant in the refrigerant circuit excluding the refrigerant quantity adjustment tank 208. That is, since the refrigerant composition in the refrigerant circuit excluding the refrigerant quantity adjustment tank 208 changes depending on the refrigerant gas quantity in the refrigerant quantity adjustment tank 208, there arises a problem that the refrigeration capacity changes accordingly.
[0011]
The present invention has been made to solve the above-described problems, and aims to keep the composition of the mixed refrigerant flowing in the refrigerant circuit at the standard composition.
[0012]
[Means for Solving the Problems]
A compressor, a four-way valve for switching between cooling operation and heating operation, a first heat exchanger that operates as an evaporator during heating operation, an expansion valve, and a second heat exchanger that operates as a condenser during heating operation And a first bypass pipe branched from the refrigerant pipe between the expansion valve and the second heat exchanger in a refrigerant circuit in which the accumulator is connected by a refrigerant pipe and the refrigerant to be used is a mixed refrigerant. , Connected to the second bypass pipe branching from the refrigerant pipe between the expansion valve and the branching point of the brother 1 bypass pipe, and to the first bypass pipe and the second bypass pipe And a check valve that is provided in the second bypass pipe and blocks the flow of the refrigerant to the refrigerant amount adjusting tank.
[0013]
[0014]
Further, the diameter of the second bypass pipe is smaller than the diameter of the first bypass pipe.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is an example of a basic refrigerant circuit in the air-cooled heat pump chiller showing the first embodiment.
In the figure, 1 is a compressor, 2 is a four-way valve that switches the flow of refrigerant during air conditioning operation, 3 is an air side heat exchanger, 4 is an expansion valve, 5 is a water side heat exchanger, 6 is an accumulator, and 8 is a bypass pipe. Reference numeral 7 denotes a refrigerant quantity adjusting tank, and 9 is a bypass pipe having a check valve 10 for returning the refrigerant liquid accumulated in the refrigerant quantity adjusting tank 8 to the refrigerant circuit. A pipe having a smaller diameter than the bypass pipe 7 is used for the bypass pipe 9. For example, when a pipe having an outer diameter of 9.52 mm is used for the bypass pipe 7, a pipe having an outer diameter of 6.4 mm is used for the bypass pipe 9. .
In this refrigerant circuit, a non-azeotropic mixed refrigerant HFC407C is used as the refrigerant.
[0016]
Next, the operation of this refrigerant circuit will be described.
In the refrigerant circuit of FIG. 1, the surplus amount flows into the refrigerant amount adjusting tank 8 through the bypass pipe 7 during the heating operation, and the refrigerant flowing out from the refrigerant amount adjusting tank 8 during the cooling operation compensates for the shortage. This is the same as the refrigerant circuit of FIG.
The difference is that the reverse of the refrigerant amount adjusting tank 8 is provided on the basis of the fact that the pressure at the bypass pipe 9 attachment position in the main pipe of the refrigerant circuit is lower than the pressure at the bypass pipe 7 attachment position during the heating operation. A part of the refrigerant accumulated in the refrigerant amount adjusting tank 8 is always returned to the refrigerant circuit through the bypass pipe 9 having the stop valve 10.
[0017]
Here, it is assumed that the operation is stopped with the liquid refrigerant accumulated in the accumulator 6. At this time, the refrigerant liquid accumulated in the accumulator 6 has a composition with a large amount of HFC134a that is most easily condensed among the components. Therefore, the refrigerant in the refrigerant circuit excluding the accumulator 6 has a composition with a large amount of the remaining components, HFC32 and HFC125.
Therefore, when the heating operation is started in this state, the surplus refrigerant liquid flowing into the refrigerant amount adjusting tank 8 has a composition with a large amount of HFC32 and HFC125.
On the other hand, since the liquid refrigerant in the accumulator 6 containing a large amount of HFC 134a evaporates and flows in the refrigerant circuit, the refrigerant in the refrigerant circuit excluding the refrigerant quantity adjusting tank 8 has a composition containing a large amount of HFC 134a.
Here, by utilizing the pressure difference between the attachment positions of the bypass pipe 7 and the bypass pipe 9 in the main pipe of the refrigerant circuit, a part of the refrigerant liquid having a large amount of HFC 32 and HFC 125 accumulated in the refrigerant amount adjusting tank 8 is Since the refrigerant is returned to the refrigerant circuit through the bypass pipe 9 having the check valve 10 provided in the upper part of the refrigerant amount adjusting tank 8, the refrigerant mixes with the refrigerant having a large amount of HFC 134a with time, and the refrigerant in the refrigerant circuit is stable when the operation is stable. Returns to the standard composition.
At this time, the amount of refrigerant returned to the refrigerant circuit through the bypass pipe 9 is adjusted by making the diameter of the bypass pipe 9 smaller than the bypass pipe 7, and a certain amount of surplus is stored in the refrigerant amount adjustment tank 8 when the heating operation is stable. Set so that refrigerant can be secured.
[0018]
Next, it is assumed that the operation is stopped in a state where the liquid refrigerant is not accumulated in the accumulator 6. At this time, the refrigerant in the refrigerant circuit has a standard composition.
When the heating operation is started in this state, in the transient state at the time of starting, the HFC 134a that is easily condensed in the water-side heat exchanger 5 is liquefied before the other components HFC32 and HFC125. The surplus refrigerant liquid flowing into the use tank 8 tends to have a large amount of HFC134a.
Here, using the pressure difference between the attachment positions of the bypass pipe 7 and the bypass pipe 9 in the main pipe of the refrigerant circuit, through the bypass pipe 9 having a check valve 10 provided on the upper part of the refrigerant amount adjusting tank 8, Since a part of the refrigerant accumulated in the refrigerant quantity adjusting tank 8 is returned to the refrigerant circuit immediately before the expansion valve 4, a part of the refrigerant liquid having a composition with a large amount of HFC 134a returns to the refrigerant circuit, and a composition with a large amount of HFC32 and HFC125. When the operation is stable, the refrigerant in the refrigerant circuit returns to the standard composition.
[0019]
Further, since the bypass pipe 9 serves to degas the refrigerant amount adjusting tank 8, when the surplus refrigerant liquid is stored in the refrigerant amount adjusting tank 8 during the heating operation, the bypass pipe 9 can smoothly flow through the bypass pipe 7. it can. Note that this effect is not limited to non-azeotropic mixed refrigerants, and can be obtained in the same manner even with a single refrigerant and an azeotropic refrigerant.
[0020]
In this embodiment, a heat pump chiller is described in which the difference in the amount of refrigerant required during heating operation and cooling operation is significant, but other air conditioners that can change the refrigerant flow with a four-way valve are also described. Needless to say, the present invention can be applied.
[0021]
【The invention's effect】
In the present invention, a first heat exchanger serving as a condenser and an evaporator, an expansion valve, a second heat exchanger serving as a condenser and an evaporator, and an accumulator are connected by a refrigerant pipe. In the refrigerant circuit, a first bypass pipe is attached to the refrigerant pipe between the expansion valve and the second heat exchanger, a refrigerant amount adjusting tank is connected to the first bypass pipe, Of the refrigerant pipe between the expansion valve and the second heat exchanger, a second bypass pipe is attached to the expansion valve side of the first bypass pipe attachment position, and the second bypass pipe is installed. Since the check valve is provided in the pipe and further connected to the refrigerant amount adjustment tank, the second bypass pipe serves to degas the refrigerant quantity adjustment tank, and the excess refrigerant liquid is supplied to the refrigerant amount during the heating operation. When storing in the adjustment tank, cool it down smoothly. It is possible to pour.
[0022]
In addition, when the refrigerant to be used is a mixed refrigerant, a part of the liquid flowing in the heating operation through the second bypass pipe is always circulated, so that the refrigerant whose composition ratio is temporarily different from that of the standard composition is adjusted. By accumulating in the tank, even if the refrigerant composition in the refrigerant circuit changes, it can be returned to the standard composition during steady operation.
[0023]
Further, since the diameter of the second bypass pipe is smaller than the diameter of the first bypass pipe, the amount of refrigerant returned from the refrigerant amount adjustment tank to the refrigerant circuit through the second bypass pipe during heating operation is reduced. Thus, the refrigerant amount in the refrigerant amount adjusting tank can be kept constant during steady operation.
[Brief description of the drawings]
FIG. 1 is an example of a basic refrigerant circuit in an air-cooled heat pump chiller according to a first embodiment.
FIG. 2 is an example of a basic refrigerant circuit described in Japanese Patent Application Laid-Open No. 7-120119 showing a conventional technique.
FIG. 3 is a ph diagram illustrating a refrigerant circuit described in JP-A-7-120119.
FIG. 4 is an example of a basic refrigerant circuit in an air-cooled heat pump chiller showing another conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Air side heat exchanger, 4 Expansion valve, 5 Water side heat exchanger, 6 Accumulator, 7 Bypass piping, 8 Refrigerant amount adjustment tank, 9 Bypass piping, 10 Check valve

Claims (2)

圧縮機と、冷房運転と暖房運転とを切替える四方弁と、暖房運転時に蒸発器として動作する第1の熱交換器と、膨張弁と、暖房運転時に凝縮器として動作する第2の熱交換器と、アキュムレータとを冷媒配管により接続し、使用する冷媒が混合冷媒である冷媒回路において、
前記膨張弁と前記第2の熱交換器との間の冷媒配管から分岐する第1のバイパス用配管と、
前記膨張弁と前記弟1のバイパス用配管の分岐点との間の冷媒配管から分岐する第2のバイパス用配管と、
前記第1のバイパス用配管と前記第2のバイパス用配管とに接続された冷媒量調整用タンクと、
前記第2のバイパス用配管に設けられ、前記冷媒量調整用タンクへの冷媒の流れを阻止する逆止弁と、
を備えた冷媒回路。
A compressor, a four-way valve for switching between cooling operation and heating operation, a first heat exchanger that operates as an evaporator during heating operation, an expansion valve, and a second heat exchanger that operates as a condenser during heating operation And a refrigerant circuit in which the accumulator is connected by a refrigerant pipe and the refrigerant to be used is a mixed refrigerant ,
A first bypass pipe branched from a refrigerant pipe between the expansion valve and the second heat exchanger;
A second bypass pipe branched from the refrigerant pipe between the expansion valve and the branch pipe branch of the brother 1;
A refrigerant amount adjusting tank connected to the first bypass pipe and the second bypass pipe;
A check valve provided in the second bypass pipe for blocking the flow of the refrigerant to the refrigerant amount adjusting tank;
Refrigerant circuit with
第2のバイパス用配管の径が第1のバイパス用配管の径よりも小径であることを特徴とする請求項1に記載の冷媒回路。The refrigerant circuit according to claim 1, wherein the diameter of the second bypass pipe is smaller than the diameter of the first bypass pipe.
JP2001276040A 2001-09-12 2001-09-12 Refrigerant circuit Expired - Lifetime JP4848608B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001276040A JP4848608B2 (en) 2001-09-12 2001-09-12 Refrigerant circuit
ES02020405T ES2284756T3 (en) 2001-09-12 2002-09-10 REFRIGERANT CIRCUIT.
AT02020405T ATE356962T1 (en) 2001-09-12 2002-09-10 REFRIGERANT CIRCULATION
DE60218793T DE60218793T2 (en) 2001-09-12 2002-09-10 Refrigerant circulation
EP02020405A EP1293735B1 (en) 2001-09-12 2002-09-10 Refrigerant circuit
PT02020405T PT1293735E (en) 2001-09-12 2002-09-10 Refrigerant circuit
CNB021315442A CN1173139C (en) 2001-09-12 2002-09-11 Refrigerant loop tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276040A JP4848608B2 (en) 2001-09-12 2001-09-12 Refrigerant circuit

Publications (2)

Publication Number Publication Date
JP2003083644A JP2003083644A (en) 2003-03-19
JP4848608B2 true JP4848608B2 (en) 2011-12-28

Family

ID=19100808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276040A Expired - Lifetime JP4848608B2 (en) 2001-09-12 2001-09-12 Refrigerant circuit

Country Status (7)

Country Link
EP (1) EP1293735B1 (en)
JP (1) JP4848608B2 (en)
CN (1) CN1173139C (en)
AT (1) ATE356962T1 (en)
DE (1) DE60218793T2 (en)
ES (1) ES2284756T3 (en)
PT (1) PT1293735E (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157580B2 (en) * 2008-03-28 2013-03-06 ダイキン工業株式会社 Refrigeration equipment
JP2012077983A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit
CN101949621A (en) * 2010-09-30 2011-01-19 广东志高空调有限公司 Energy-saving air conditioner with refrigerant adjusting function
JP5765211B2 (en) * 2011-12-13 2015-08-19 ダイキン工業株式会社 Refrigeration equipment
AT513637B1 (en) * 2012-12-13 2016-05-15 Herz Energietechnik Gmbh Heat pump method and apparatus for optimizing subcooling during the condensation process in the cold vapor compression process
DE112013007326T5 (en) * 2013-08-09 2016-07-28 Trane Air Conditioning Systems (China) Co., Ltd. Control of temporary refrigerant migration in refrigeration systems
KR101669971B1 (en) * 2014-11-17 2016-10-27 엘지전자 주식회사 Air conditioner
CN105674640B (en) * 2014-11-18 2018-04-17 上海海立电器有限公司 The flux matched regulating device of air-conditioning system refrigerant charging and method
JP6479203B2 (en) * 2015-10-20 2019-03-06 三菱電機株式会社 Refrigeration cycle equipment
US11105544B2 (en) 2016-11-07 2021-08-31 Trane International Inc. Variable orifice for a chiller
CN106482303B (en) * 2016-11-25 2022-05-17 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method thereof
JP7105903B2 (en) * 2018-09-28 2022-07-25 三菱電機株式会社 refrigeration cycle equipment
CN109974169B (en) * 2019-02-28 2021-02-19 浙江高翔工贸有限公司 Double-working-medium air conditioner
JP2022045699A (en) * 2020-09-09 2022-03-22 富士通株式会社 Cooling device, electronic apparatus, and cooling method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627589B2 (en) * 1985-11-19 1994-04-13 三洋電機株式会社 Heat pump refrigeration system
KR930000852B1 (en) * 1987-07-31 1993-02-06 마쓰시다덴기산교 가부시기가이샤 Heat pump system
JPH01273959A (en) * 1988-04-25 1989-11-01 Nippon Denso Co Ltd Air conditioner for vehicle
JPH0745982B2 (en) * 1988-08-31 1995-05-17 松下電器産業株式会社 Heat pump device
JPH0414975A (en) * 1990-05-08 1992-01-20 Sharp Corp Picture reproducing device
US5186012A (en) * 1991-09-24 1993-02-16 Institute Of Gas Technology Refrigerant composition control system for use in heat pumps using non-azeotropic refrigerant mixtures
JPH06341741A (en) * 1993-06-01 1994-12-13 Daikin Ind Ltd Defrosting controller for refrigerating device
JPH0712411A (en) * 1993-06-24 1995-01-17 Hitachi Ltd Refrigerating cycle and control method of ratio of composition of refrigerant for same
JP3168496B2 (en) * 1993-10-28 2001-05-21 株式会社日立製作所 Air conditioner
JPH10119561A (en) * 1996-10-14 1998-05-12 Calsonic Corp Air conditioner for automobile
JP2000179957A (en) * 1998-12-17 2000-06-30 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
EP1293735A2 (en) 2003-03-19
PT1293735E (en) 2007-05-31
CN1173139C (en) 2004-10-27
DE60218793D1 (en) 2007-04-26
EP1293735B1 (en) 2007-03-14
DE60218793T2 (en) 2007-12-06
CN1405515A (en) 2003-03-26
JP2003083644A (en) 2003-03-19
ES2284756T3 (en) 2007-11-16
EP1293735A3 (en) 2003-05-28
ATE356962T1 (en) 2007-04-15

Similar Documents

Publication Publication Date Title
JP4848608B2 (en) Refrigerant circuit
JP6177424B2 (en) Refrigeration cycle equipment
KR101096851B1 (en) Heat source unit and refrigeration device
JP6279069B2 (en) Refrigeration cycle equipment
JPH0718602B2 (en) Operation method and apparatus for supercritical vapor compression cycle
JPH11248264A (en) Refrigerating machine
JP3352469B2 (en) Air conditioner
JP2000249413A (en) Refrigeration unit
JP3152187B2 (en) Refrigeration apparatus and refrigerant charging method
JP3731174B2 (en) Refrigeration cycle
JP2000179957A (en) Air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP2009036508A (en) Supercooling system
JP2008082674A (en) Supercooling device
JP3783153B2 (en) Air conditioner
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP3804601B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
CN214039017U (en) Air conditioner and outdoor unit
JP2008082676A (en) Supercooling device
JP2000320916A (en) Refrigerating cycle
JP4042064B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JPH09126567A (en) Air conditioner
JPS63123961A (en) Heat pump device
JP2009024997A (en) Supercooling device
JP2008309486A (en) Supercooling device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R151 Written notification of patent or utility model registration

Ref document number: 4848608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term