JP4847815B2 - Composite sensor element - Google Patents

Composite sensor element Download PDF

Info

Publication number
JP4847815B2
JP4847815B2 JP2006205975A JP2006205975A JP4847815B2 JP 4847815 B2 JP4847815 B2 JP 4847815B2 JP 2006205975 A JP2006205975 A JP 2006205975A JP 2006205975 A JP2006205975 A JP 2006205975A JP 4847815 B2 JP4847815 B2 JP 4847815B2
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
sensor element
detection
composite sensor
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006205975A
Other languages
Japanese (ja)
Other versions
JP2008032523A (en
Inventor
浩章 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006205975A priority Critical patent/JP4847815B2/en
Publication of JP2008032523A publication Critical patent/JP2008032523A/en
Application granted granted Critical
Publication of JP4847815B2 publication Critical patent/JP4847815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、QCMセンサに用いられる溝部を有するマイクロ流路部に直接接触する圧電基板上に配置する電極と、マイクロ流路部に加わる圧力変化を検知する圧電基板とで構成される複合センサ素子に関するものである。   The present invention relates to a composite sensor element comprising an electrode disposed on a piezoelectric substrate that directly contacts a microchannel portion having a groove portion used in a QCM sensor, and a piezoelectric substrate that detects a pressure change applied to the microchannel portion. It is about.

まず始めにQCMセンサについて簡単に説明する。近年、ヒトの遺伝子構造がほぼ解明され、テーラメイド医療、癌特異細胞の解明、予防医療などへの応用のため、多くの遺伝子機能究明に関する研究がなされている。ヒトの遺伝形態を司るとされる核酸は、ヌクレオチドをつなげて出来た紐状の分子で、そのヌクレオチドは糖を中心にしてリン酸(PO)と、4種類の塩基がそれぞれ結合した分子である。糖の形態には、デオキシリボースとリボースの2種類があり、この違いにより「DNA(デオキシリボ核酸)」と、「RNA(リボ核酸)」に分けられる。 First, the QCM sensor will be briefly described. In recent years, the structure of human genes has been almost elucidated, and many studies on gene functions have been conducted for application to tailor-made medicine, elucidation of cancer-specific cells, preventive medicine, and the like. Nucleic acid, which is said to be responsible for human inheritance, is a string-like molecule formed by linking nucleotides, and the nucleotide is a molecule in which phosphate (PO 4 ) and four types of bases are bound to each other with a sugar at the center. is there. There are two types of sugars, deoxyribose and ribose, and it is divided into “DNA (deoxyribonucleic acid)” and “RNA (ribonucleic acid)” due to this difference.

塩基の種類は、ATUCGの5つの種類であり、DNAはATCGの4塩基組合せ、RNAは、AUCGの4塩基組合せであり、2者間における塩基の違いは、TとUが置換された構造となっている。ここに、A(アデニン)、T(チミン)、C(シトシン)、G(グアニン)、U(ウラシル)である。4種類の塩基は、それぞれ一定の法則をもって結合し2重螺旋を形成するが、相互的に結合するのは、A-T(U)、G-C であり、けっしてA-G、A-C、T(U)-C、T(U)-Gとの結合はない。   There are five types of bases, ATUCG, DNA is a 4-base combination of ATCG, RNA is a 4-base combination of AUCG, and the difference in base between the two is the structure in which T and U are substituted. It has become. Here, A (adenine), T (thymine), C (cytosine), G (guanine), and U (uracil). Each of the four types of bases binds with a certain rule to form a double helix, but they are mutually bound by AT (U) and GC, and never by AG and AC. , T (U) -C, and T (U) -G are not bonded.

従来のDNAチップによる核酸の配列検出原理は、この結合の基本的約束のもとに、ガラス基板、或いは、シリコーン基板上に塩基配列の判明している1本鎖のDNA断片を複数種配列し、これに蛍光処理された検体1本鎖DNAを溶液中で接触させた後、結合部位にレーザ光を照射して結合の状態を蛍光量の様子として比較測定(定性的測定)することで認知するものである。   The conventional principle of nucleic acid sequence detection using a DNA chip is based on the basic promise of binding, by arranging multiple types of single-stranded DNA fragments with known base sequences on a glass substrate or silicone substrate. Fluorescently treated specimen single-stranded DNA is brought into contact with the solution, and then the binding site is irradiated with laser light to recognize the binding state as a state of fluorescence (qualitative measurement). To do.

すなわち、従来のDNAチップを用いた検出方式では、レーザを照射して蛍光の様子を比較測定する蛍光検出方式である。この方式では、検体となるDNAに予め蛍光色素で標識をつけ、DNAチップ上のDNA断片に結合した検体DNAの有無を、レーザ光照射による蛍光色素の発光により検出する方法で、判定までには多くの時間を必要とし、医療現場など緊急判断には問題である。(非特許文献1参照)。   That is, the conventional detection method using a DNA chip is a fluorescence detection method in which the state of fluorescence is compared and measured by irradiating a laser. In this method, the sample DNA is labeled with a fluorescent dye in advance, and the presence or absence of the sample DNA bound to the DNA fragment on the DNA chip is detected by the emission of the fluorescent dye by laser light irradiation. It takes a lot of time and is a problem for emergency judgments such as in the medical field. (Refer nonpatent literature 1).

これに対して本願出願人は、リアルタイム計測を目的として既に出願している特許文献1に示す様な水晶基板を用いたDNAチップを提案している。
このDNAチップは水晶基板に形成された各々分離した複数の例えば凸部、凹部ら成る島部(セル)と、その上に構成された電極膜に構築された特有の塩基配列を持つDNA群から構成され、このDNAチップを溶液中で交流電圧を印加して励振させ、その励振周波数を確認しながら、検体から検出されたDNAを含む溶液を注入するとDNA相互間の結合の状態により、電極上の質量が微小変化するため、励振周波数が変化する。また、この結合の様子は周波数を繰り返し計測することでリアルタイムに観測することが可能となる。
On the other hand, the applicant of the present application has proposed a DNA chip using a quartz substrate as shown in Patent Document 1 already applied for the purpose of real-time measurement.
This DNA chip is composed of a plurality of separated islands (cells) formed on a quartz substrate, for example, convex portions and concave portions, and a DNA group having a unique base sequence constructed on an electrode film formed thereon. This DNA chip is excited by applying an alternating voltage in the solution, and when a solution containing DNA detected from the specimen is injected while checking the excitation frequency, Since the mass of the material changes minutely, the excitation frequency changes. In addition, the state of this coupling can be observed in real time by repeatedly measuring the frequency.

このとき、各セルの励振電極はそれぞれ独立した引き出し電極により外部接続端子に接続されており、各セルが独立して励振できるような配線構造をとっている。以上のように、圧電式微小質量計測センサは、例えば水晶振動子表面に電極を形成し、この膜表面上で物質を脱着することにより質量変化を周波数変化として捉える手法であり、この関係をサブレーの式から算出するものである。   At this time, the excitation electrode of each cell is connected to the external connection terminal by an independent extraction electrode, and has a wiring structure in which each cell can be excited independently. As described above, the piezoelectric micromass measuring sensor is a method of capturing a mass change as a frequency change by, for example, forming an electrode on the surface of a crystal resonator and desorbing a substance on the film surface. It is calculated from the formula.

また、微少質量検出チップを含めたQCMセンサーシステムではセンサー部の前段にマイクロ流路を設け、検体はこの流路に例えばマイクロポンプなどにより圧送され、流路内を流れることで温度の均一化、流量の制御、検出センサーの選択がされ所定のDNAなどの検出センサー部に送り込まれる仕組みが取られている。マイクロ流路と呼ばれるものは、※図7に示すように一般的には石英硝子などに微細な溝を彫り込み、それを平らな石英硝子でフタをすることで微小な流路が構成されることが多い。
原田 学,佐藤 高遠,米田 英克、「DNAチップの現状と展望」、応用物理、第69巻、第12号(2000) 特開2003−287538号公報 なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。
In addition, in the QCM sensor system including the micro mass detection chip, a micro flow path is provided in front of the sensor unit, and the sample is pumped to the flow path by, for example, a micro pump, and the temperature is made uniform by flowing in the flow path. A mechanism is adopted in which the flow rate is controlled and the detection sensor is selected and sent to a detection sensor unit such as a predetermined DNA. What is called a micro-channel is that, as shown in Fig. 7, a micro-channel is generally formed by engraving a minute groove in quartz glass and then covering it with flat quartz glass. There are many.
Manabu Harada, Takato Sato, Hidekatsu Yoneda, “Current Status and Prospects of DNA Chips”, Applied Physics, Vol. 69, No. 12 (2000) JP, 2003-287538, A In addition to the prior art documents specified by the prior art document information described above, the applicant did not find prior art documents related to the present invention by the time of filing of the present application. .

上述する従来法では、DNAへの蛍光処理作業、大掛かりなレーザ光装置が必要で測定には多くの時間と費用が掛かることから、治療現場などで早急に判断を必要とする場合や、更には、蛍光状態を相互比較する定性測定であり、定量的な測定が出来ないという問題があった。   In the conventional method described above, fluorescent treatment work on DNA and a large-scale laser beam apparatus are required, and the measurement takes a lot of time and cost. This is a qualitative measurement in which the fluorescence states are compared with each other, and there is a problem that quantitative measurement cannot be performed.

例えば、マトリックス状のセルで構成したマイクロ流路部を兼用した集積型反応解析では、一面に配置する検出電極の面積が小さかったりなどで、マイクロ流路部を通過する際の検体液の検知が難しいという課題がある。   For example, in an integrated reaction analysis that also uses a micro-channel unit composed of matrix-like cells, the detection of the sample liquid when passing through the micro-channel unit is possible because the area of the detection electrode arranged on one surface is small. There is a problem that it is difficult.

またその一方では、例えばマイクロ流路内を血液を搬送する場合には、輸血中に管が外れたり、その逆に管がつまるなど、マイクロ流路を通過する液体に異常が発生した場合には、その異常検知は別途検出手段を講じる必要があり、センサシステムを統合することができないと言う現状にもある。   On the other hand, for example, when blood is transported through the microchannel, if an abnormality occurs in the liquid that passes through the microchannel, such as when the tube is disconnected during transfusion or vice versa, The abnormality detection requires a separate detection means, and there is a current situation that the sensor system cannot be integrated.

上述する課題を解決するために本発明は、溝部によりマイクロ流路部を構成した圧電基板と、少なくとも前記圧電基板下面に特性(状態)検査用の検出電極を形成した圧電基板を搭載し、更に前記マイクロ流路部を構成した圧電基板の上面に圧力検出用の圧電基板を搭載した複合センサ素子であり、前記複合センサ素子を被う容器に収納されていることを特徴とする複合センサ素子である。   In order to solve the above-described problems, the present invention includes a piezoelectric substrate having a micro-channel portion formed by a groove portion and a piezoelectric substrate having at least a detection electrode for characteristic (state) inspection formed on the lower surface of the piezoelectric substrate, A composite sensor element comprising a piezoelectric substrate for pressure detection mounted on an upper surface of a piezoelectric substrate constituting the microchannel portion, wherein the composite sensor element is housed in a container covering the composite sensor element. is there.

要するに本発明は、従来の技術に記載する集積型反応解析における検出電極の面積が小さかったことによる検体液の検知の難しいさを解消するためと、マイクロ流路内を搬送する液体の流通性の状態は換言すれば、マイクロ流路内の圧力変動に起因することから、マイクロ流路内の圧力変化量を検知することにより、安定した流れを確保することを実現したものである。その結果従来に挙げる課題を解決することができる。   In short, the present invention eliminates the difficulty of detecting the sample liquid due to the small area of the detection electrode in the integrated reaction analysis described in the prior art, and improves the flowability of the liquid transported in the microchannel. In other words, since the state is caused by pressure fluctuation in the microchannel, it is possible to secure a stable flow by detecting the amount of pressure change in the microchannel. As a result, the conventional problems can be solved.

以上説明したように本発明によれば、マイクロ流路を中心とした複合的な検出を実現する複合センサ素子により、マイクロ流路における検体液の検知を可能にし、更には、マイクロ流路内に加わる圧力を検知することで、マイクロ流路を介して供給する流体、気体の圧力変化をも感知する複合センサとして機能させることで、検知素子を部品点数を削減することができる。   As described above, according to the present invention, it is possible to detect the sample liquid in the micro flow channel by the composite sensor element that realizes complex detection centering on the micro flow channel, and further, in the micro flow channel. By detecting the applied pressure, it is possible to reduce the number of components of the detection element by functioning as a composite sensor that also detects pressure changes in the fluid and gas supplied through the microchannel.

以下、本発明の実施の形態について図を参照して説明する。図1は本発明を構成する複合センサ素子の概念図である。構成する圧電基板は水晶材料をはじめとし、セラミック、ランガサイト、四ほう酸リチウムなど圧電効果を有する材料であれば適応できる。図1に示すように、溝部1によりマイクロ流路部を構成する圧電基板2を挟む形態で、少なくとも圧電基板下面に特性検査用の検出電極(特に図示せず)を形成した圧電基板3を搭載し、更にマイクロ流路部を構成した圧電基板2の上面に圧力検出用の圧電基板4を搭載した構造を有する複合センサ素子5である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a composite sensor element constituting the present invention. The piezoelectric substrate to be constructed is applicable to any material having a piezoelectric effect such as a quartz material, ceramic, langasite, lithium tetraborate and the like. As shown in FIG. 1, a piezoelectric substrate 3 having a detection electrode (not shown) for characteristic inspection formed at least on the lower surface of the piezoelectric substrate is mounted in such a form that a piezoelectric substrate 2 constituting a micro flow path portion is sandwiched between grooves 1. In addition, the composite sensor element 5 has a structure in which the piezoelectric substrate 4 for pressure detection is mounted on the upper surface of the piezoelectric substrate 2 constituting the microchannel portion.

図2は図1を詳細に描画したものであるが、例えば水晶材料を用いて溝部1を有するマイクロ流路部の構成としては、図2(b)に描画するように圧電基板に溝部1を形成し、この溝部1に沿って検体液を流すもので検体液の種類については、生体液(血液、髄液等)、抗体液など医療に関係する検体をはじめ、粘性を持つオイルなどを流路部に流すものである。このように図2(b)には溝内検体液の流通を促すよう伝搬波を発生させる励振電極が形成されている。   FIG. 2 is a detailed drawing of FIG. 1. For example, as a configuration of the micro flow path portion having the groove portion 1 using a crystal material, the groove portion 1 is formed on the piezoelectric substrate as shown in FIG. The sample liquid is made to flow along the groove portion 1 and the type of the sample liquid is such that a fluid related to medical treatment such as biological fluid (blood, spinal fluid, etc.), antibody solution, viscous oil, etc. is flowed. It flows on the road. Thus, in FIG. 2B, the excitation electrode for generating the propagation wave is formed so as to promote the flow of the sample liquid in the groove.

一方、図2(a)は図2(b)に示すマイクロ流路部を構成した圧電基板2の下面に配置する特性検査用の検出電極を両主面に形成した圧電基板3である。圧電基板としては例えば水晶材料であれば、ATカットの振動モードで予め発振させた状態から周波数特性の変化により特性を検出するものである。   On the other hand, FIG. 2A shows a piezoelectric substrate 3 in which detection electrodes for characteristic inspection disposed on the lower surface of the piezoelectric substrate 2 constituting the microchannel portion shown in FIG. 2B are formed on both main surfaces. For example, if the piezoelectric substrate is a quartz material, the characteristic is detected by the change of the frequency characteristic from the state of being previously oscillated in the AT cut vibration mode.

上述するように溝部1を流通する検体液の種類については、生体液(血液、髄液等)、抗体液など医療に関係する検体をはじめ、粘性を持つオイルなどを流すことで、事前に各種状態の平均的な周波数の数値を確認しておき、平均値(周波数)との絶対変化量(差)がすなわち、この流路部を流す検体液が通過するときに異常値か否かを、圧電基板上に形成する検出電極により周波数の変化量として検知するものである。   As described above, the types of specimen fluids that circulate in the groove portion 1 can be variously determined in advance by flowing a viscous fluid or the like including biological fluids (blood, spinal fluid, etc.), antibody-related specimens related to medical treatment, and the like. Confirm the numerical value of the average frequency of the state, whether the absolute change amount (difference) from the average value (frequency), that is, whether the sample liquid flowing through this flow path is an abnormal value, This is detected as a change in frequency by a detection electrode formed on the piezoelectric substrate.

検出電極の形状としては圧電基板の表裏主面に一般振動子と同様に形成するものである。代表的には上述するATカットの水晶材料が最も周波数変化量を顕著に示すものであるが、ATカットにこだわるものでは無い。なお、図2(a)に示す圧電基板はマイクロ流路部を構成する圧電基板2上面に配置しても構わない。   The detection electrode is formed on the front and back main surfaces of the piezoelectric substrate in the same manner as a general vibrator. Typically, the above-described AT-cut quartz material exhibits the most significant amount of frequency change, but is not particular about AT-cut. Note that the piezoelectric substrate shown in FIG. 2A may be disposed on the upper surface of the piezoelectric substrate 2 constituting the microchannel portion.

さて、図2(c)については、前述するマイクロ流路部を構成した圧電基板2上に圧力検出用の圧電基板4を配置したものである。ここで用いる圧電基板としても、水晶材料を例に取るとXカットが最も適したものである。Xカットの水晶材料は圧電基板の厚み方向、すなわち圧電基板4の両主面に形成する電極方向に加わる圧力や歪み成分から周波数の変化量に置き換えて、圧電基板4に加わる圧力値を知ることができ、この圧電基板4に加わるマイクロ流路部からの圧力を検知することで、マイクロ流路部を流れる検体液の異常を検知することができる。   In FIG. 2C, the piezoelectric substrate 4 for pressure detection is disposed on the piezoelectric substrate 2 that constitutes the above-described microchannel portion. As the piezoelectric substrate used here, X-cut is most suitable when a quartz material is taken as an example. The X-cut quartz material knows the pressure value applied to the piezoelectric substrate 4 by replacing the pressure and strain components applied in the thickness direction of the piezoelectric substrate, that is, the direction of the electrodes formed on both principal surfaces of the piezoelectric substrate 4, with the amount of change in frequency. By detecting the pressure from the microchannel portion applied to the piezoelectric substrate 4, it is possible to detect an abnormality in the sample liquid flowing through the microchannel portion.

一例として、例えばマイクロ流路内を血液を搬送する場合に、輸血中に管が外れたり、その逆に管がつまるなど、マイクロ流路を通過する液体に異常が発生したときに、その異常を圧力変化として検知するものである。そのためには、通常時の圧力分布を統計的にまとめておき、この統計数値とは異なる周波数の変化量から換算した圧力値を検知したときに、マイクロ流路部を流れる検体液の異常を知ることができる。   As an example, for example, when blood is transported in a micro flow channel, if an abnormality occurs in the liquid that passes through the micro flow channel, such as when the tube comes off during transfusion or vice versa, the abnormality is detected. It is detected as a pressure change. For this purpose, the normal pressure distribution is statistically summarized, and when the pressure value converted from the change in frequency different from this statistical value is detected, the abnormality of the sample liquid flowing through the microchannel section is known. be able to.

上述を図2(d)の側面図で描画すると、検体液が紙面右から左に流通したときに、圧電基板3では検体液の粘度や比重の異常を圧電基板3に形成する検出電極により周波数の変化として認識するもので、圧電基板4では検体液の流通時の停滞異常を圧力として検出するものである。なお、上述の測定系については、特に記載しないが、図2(d)の圧電基板3と圧電基板4に形成する電極から測定器に信号が出力される。   When the above is drawn in the side view of FIG. 2D, when the sample liquid flows from the right to the left of the page, the piezoelectric substrate 3 detects an abnormality in the viscosity or specific gravity of the sample liquid by the detection electrode that forms on the piezoelectric substrate 3. The piezoelectric substrate 4 detects a stagnation abnormality during the flow of the sample liquid as a pressure. In addition, although it does not describe in particular about the above-mentioned measuring system, a signal is output to a measuring device from the electrode formed in the piezoelectric substrate 3 and the piezoelectric substrate 4 of FIG.2 (d).

なお、上述する複合センサ素子5は上記で説明する図2(a)〜(c)の構成を基本として、上記複合センサ5全体を被うような容器6に収納することもできる。なお、容器6には流路部1に検体液を供給するために図示していないが一部分に孔がある。   The above-described composite sensor element 5 can be housed in a container 6 that covers the entire composite sensor 5 on the basis of the configuration shown in FIGS. 2A to 2C described above. The container 6 has a hole in a part thereof (not shown) for supplying the sample liquid to the flow path unit 1.

本発明の概念を示す斜視図である。It is a perspective view which shows the concept of this invention. 本発明の各部圧電基板を説明する斜視図である。It is a perspective view explaining each part piezoelectric substrate of the present invention.

符号の説明Explanation of symbols

1 溝部(流路部)
2 圧電基板(マイクロ流路部のある)
3 圧電基板(特性(状態)検査用の検出電極を形成した)
4 圧電基板(圧力検出用)
5 複合センサ素子
6 容器
1 Groove (flow channel)
2 Piezoelectric substrate (with microchannel)
3 Piezoelectric substrate (detection electrode for characteristic (state) inspection formed)
4 Piezoelectric substrate (for pressure detection)
5 Compound sensor element 6 Container

Claims (2)

溝部によりマイクロ流路部を構成した圧電基板と、少なくとも前記圧電基板下面に特性検査用の検出電極を形成した圧電基板を搭載し、更に前記マイクロ流路部を構成した圧電基板の上面に圧力検出用の圧電基板を搭載したことを特徴とする複合センサ素子。 A piezoelectric substrate having a micro-channel portion formed by a groove portion and a piezoelectric substrate having at least a detection electrode for characteristic inspection formed on the lower surface of the piezoelectric substrate are mounted, and pressure detection is performed on the upper surface of the piezoelectric substrate that further configures the micro-channel portion. A composite sensor element having a piezoelectric substrate mounted thereon. 請求項1記載の複合センサ素子を被うような容器に収納されている複合センサ素子。
A composite sensor element housed in a container covering the composite sensor element according to claim 1.
JP2006205975A 2006-07-28 2006-07-28 Composite sensor element Expired - Fee Related JP4847815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205975A JP4847815B2 (en) 2006-07-28 2006-07-28 Composite sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205975A JP4847815B2 (en) 2006-07-28 2006-07-28 Composite sensor element

Publications (2)

Publication Number Publication Date
JP2008032523A JP2008032523A (en) 2008-02-14
JP4847815B2 true JP4847815B2 (en) 2011-12-28

Family

ID=39122108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205975A Expired - Fee Related JP4847815B2 (en) 2006-07-28 2006-07-28 Composite sensor element

Country Status (1)

Country Link
JP (1) JP4847815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273358B2 (en) * 2013-07-26 2018-01-31 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Pressure determination for HPLC applications
CN105486622B (en) * 2016-01-13 2018-04-06 中国石油天然气股份有限公司 A kind of experimental facilities for being used to analyze capillarity in porous media
JP2017203776A (en) * 2017-06-21 2017-11-16 ソニー株式会社 Microchip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094922B2 (en) * 2002-01-28 2008-06-04 京セラキンセキ株式会社 DNA chip and DNA testing method
JP4602162B2 (en) * 2004-06-15 2010-12-22 セイコーインスツル株式会社 Microchip system
JP2006170742A (en) * 2004-12-15 2006-06-29 Meidensha Corp Flow-cell type qcm sensor

Also Published As

Publication number Publication date
JP2008032523A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4538148B2 (en) Microfabricated capillary array electrophoresis apparatus and method
Driehorst et al. Distinct conformations of DNA-stabilized fluorescent silver nanoclusters revealed by electrophoretic mobility and diffusivity measurements
Waters et al. Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing
Toriello et al. Multichannel reverse transcription-polymerase chain reaction microdevice for rapid gene expression and biomarker analysis
US8338166B2 (en) Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
Ahrberg et al. Palm-sized device for point-of-care Ebola detection
US20040011650A1 (en) Method and apparatus for manipulating polarizable analytes via dielectrophoresis
Ertl et al. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system
JP2005507656A (en) Nucleic acid sequencing by Raman monitoring of precursor uptake during molecular replication
EP2435185B1 (en) Devices and methods for determining the length of biopolymers and distances between probes bound thereto
JP2017519485A (en) Portable nucleic acid analysis system and high performance microfluidic electroactive polymer actuator
WO2005049196A1 (en) Microchip device using liquid
JP2002542461A (en) Use of microfluidic systems in electrochemical detection of target analytes
JP4847815B2 (en) Composite sensor element
US9399793B2 (en) Device for detecting nucleic acids
Toriello et al. Integrated affinity capture, purification, and capillary electrophoresis microdevice for quantitative double-stranded DNA analysis
JP2004069498A (en) Liquid conveying device and method
WO2020161674A1 (en) Methods and devices for mixing in a microfluidic system
Yobas et al. Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms
JP2007121246A (en) Micro channel
JP4597711B2 (en) Micro mass detection chip
Holland et al. Gels in microscale electrophoresis
JP4366523B2 (en) Electrophoresis chip and sample analysis method using the same
Fan et al. Graphene-Enabled High-Performance Electrokinetic Focusing and Sensing
US20210362151A1 (en) Methods and devices for mixing in a microfluidic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees