JP4842861B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP4842861B2
JP4842861B2 JP2007062037A JP2007062037A JP4842861B2 JP 4842861 B2 JP4842861 B2 JP 4842861B2 JP 2007062037 A JP2007062037 A JP 2007062037A JP 2007062037 A JP2007062037 A JP 2007062037A JP 4842861 B2 JP4842861 B2 JP 4842861B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal
silicon
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007062037A
Other languages
Japanese (ja)
Other versions
JP2008222483A (en
Inventor
俊郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2007062037A priority Critical patent/JP4842861B2/en
Publication of JP2008222483A publication Critical patent/JP2008222483A/en
Application granted granted Critical
Publication of JP4842861B2 publication Critical patent/JP4842861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明はシリコン単結晶の製造方法に係り、特に半導体デバイス製造工程で用いられるパーティクルモニター用シリコンウェーハを製造するのに適するシリコン単結晶の製造方法に関する。   The present invention relates to a method for manufacturing a silicon single crystal, and more particularly to a method for manufacturing a silicon single crystal suitable for manufacturing a silicon wafer for particle monitoring used in a semiconductor device manufacturing process.

一般にシリコン単結晶の引上には、チョクラルスキー(CZ)法が用いられる。   In general, the Czochralski (CZ) method is used for pulling a silicon single crystal.

このCZ法は、炉体内のルツボに充填された原料を加熱して融液にし、引上領域を囲むように、ルツボの上方に輻射シールドを設け、融液にシードを浸漬して単結晶を引上げる。   In this CZ method, the raw material filled in the crucible in the furnace is heated to form a melt, and a radiation shield is provided above the crucible so as to surround the pulling region, and a seed is immersed in the melt to form a single crystal. Pull up.

一方、半導体デバイスの集積高密度化に伴い、シリコンウェーハの品質への要求が厳しくなり、そして、デザインルールの一層の微細化に伴い、製造ラインでのパーティクルに対する厳しい管理が要求される。   On the other hand, as the integration density of semiconductor devices increases, the demands on the quality of silicon wafers become stricter, and as the design rules become finer, strict control of particles on the production line is required.

シリコンウェーハへのパターン形成時、0.1μmのパーティクルが存在すると、パターン切れ等の異常を引き起こす要因となるので、製造ラインにおけるパーティクル管理を徹底するために、ラインには製品用のウェーハだけでなく、パーティクルのモニター用として使われるダミーウェーハも投入される。   When a pattern is formed on a silicon wafer, the presence of 0.1 μm particles can cause abnormalities such as pattern breakage. Therefore, in order to thoroughly manage particles in the production line, the line is not limited to a product wafer. Dummy wafers used for particle monitoring will also be introduced.

このパーティクルモニター用ウェーハには、表面検査機器によってパーティクルとして検出される結晶欠陥が低密度であることが要求される。   The particle monitor wafer is required to have a low density of crystal defects detected as particles by a surface inspection device.

しかし、CZ法による単結晶の従来の引上条件では、結晶欠陥が低密度のパーティクルモニター用ウェーハを製造するのに適する単結晶を生産性よく安価に引上げることができない。   However, under the conventional pulling conditions of a single crystal by the CZ method, a single crystal suitable for manufacturing a particle monitor wafer having a low density of crystal defects cannot be pulled with high productivity and low cost.

例えば、特許文献1には、CZ法により窒素ドープのシリコン融液からシリコン単結晶を1.0mm/分より大きい速度で引上げ、ウェーハ表面のピットの少ないパーティクルモニター用シリコンウェーハを高生産性で製造できる製造方法が提案されている。   For example, in Patent Document 1, a silicon wafer for particle monitoring with few pits on the wafer surface is manufactured with high productivity by pulling up a silicon single crystal from a nitrogen-doped silicon melt at a speed higher than 1.0 mm / min by the CZ method. Possible manufacturing methods have been proposed.

しかしながら、特許文献1の方法では、φ300mmを超える大口径単結晶の引上速度を1mm/分以上とした場合、結晶曲りや、結晶の晶癖線の異常成長による変形などが発生しやすくなり、その結果有転位化したり、さらに変形程度が大きい場合には、輻射シールドに接触し、結晶落下や炉内部材の破損の原因となり、大口径単結晶を引上げることができない。   However, in the method of Patent Document 1, when the pulling speed of a large-diameter single crystal exceeding φ300 mm is set to 1 mm / min or more, crystal bending or deformation due to abnormal growth of crystal habit lines tends to occur. As a result, when dislocation occurs or the degree of deformation is further large, it comes into contact with the radiation shield, causing crystal fall or damage to the in-furnace member, and the large-diameter single crystal cannot be pulled up.

これらを改善する方法として、輻射シールドに内装された水冷体を結晶の近くに配するとともに、融液の表面と輻射シールド(整流用筒体)の下端とのギャップを30〜70mmに拡げ、結晶からの抜熱効果を高め、引上速度を上げる方法が提案されている(特許文献2)。   As a method for improving these, a water-cooled body built in the radiation shield is arranged near the crystal, and the gap between the surface of the melt and the lower end of the radiation shield (rectifying cylinder) is expanded to 30 to 70 mm. A method has been proposed in which the effect of removing heat from the steel is increased and the pulling speed is increased (Patent Document 2).

しかしながら、冷却体の効果は固液界面から離れた位置では、不十分でその効果は限定的であり、特にφ300mm以上の大口径結晶では、冷却体の効果は結晶外周にしか及ばず、ギャップを30mm以上拡げて引上速度を1mm/分以上に上げることはできない。また、ギャップを拡げると結晶軸方向の温度勾配が小さくなるため、引上速度を高く維持することが困難であり、引上速度を上げると凝固潜熱が増大するため、大口径結晶になるほど結晶中心部の熱が逃げにくくなる結果、固液界面が上凸形状となり、結晶内の熱応力が大きくなることで有転位化やクラックが発生する。   However, the effect of the cooling body is insufficient at a position away from the solid-liquid interface, and the effect is limited. Particularly, in the case of a large-diameter crystal having a diameter of 300 mm or more, the effect of the cooling body only affects the outer periphery of the crystal, and the gap The pulling speed cannot be increased to 1 mm / min or more by expanding 30 mm or more. In addition, if the gap is widened, the temperature gradient in the crystal axis direction becomes small, so it is difficult to maintain a high pulling speed. If the pulling speed is increased, the solidification latent heat increases. As a result, it becomes difficult for the heat of the part to escape, so that the solid-liquid interface has an upwardly convex shape, and the thermal stress in the crystal increases, causing dislocations and cracks.

また、酸素ドーピング密度が少なくとも4E17atoms/cm、窒素ドーピング密度が少なくとも1E14atoms/cm、1000℃の温度で少なくとも1時間アニールする低欠陥密度を有するシリコンウェーハの製造方法が提案されている(特許文献3)。 In addition, a method for manufacturing a silicon wafer having a low defect density in which oxygen doping density is at least 4E17 atoms / cm 3 , nitrogen doping density is at least 1E14 atoms / cm 3 , and annealing is performed at a temperature of 1000 ° C. for at least 1 hour (Patent Document). 3).

しかしながら、窒素ドープの場合には、固化後の温度帯幅と引上速度を特定しないと、パーティクルモニターに適するウェーハを製造することができない。
特許第3621290号公報 特開2003−277185号公報 特開平10−98047号公報
However, in the case of nitrogen doping, a wafer suitable for particle monitoring cannot be manufactured unless the temperature band width and pulling speed after solidification are specified.
Japanese Patent No. 3612290 JP 2003-277185 A JP-A-10-98047

本発明は上述した事情を考慮してなされたもので、パーティクルとして検出される結晶欠陥が低密度であり、パーティクルモニター用シリコンウェーハを製造するのに適するシリコン単結晶を生産性よく安価に引上げることができるシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and has a low density of crystal defects detected as particles, and is suitable for manufacturing a silicon wafer for particle monitoring, and it is possible to pull down a silicon single crystal suitable for manufacturing a silicon wafer with high productivity. An object of the present invention is to provide a method for producing a silicon single crystal.

本発明者らは、上記目的実現のために、鋭意研究した結果、パーティクルモニター用シリコンウェーハを製造するのに適するシリコン単結晶の製造において、従来検討されていなかった固液界面高さに着目し、この固液界面高さを所定の高さ以下にすることで、有転位化やクラック発生を抑えることができることを突き止め、本発明に想到した。   As a result of diligent research to realize the above object, the present inventors have focused on the solid-liquid interface height that has not been studied in the past in the production of a silicon single crystal suitable for producing a silicon wafer for particle monitoring. As a result, the inventors have found that dislocations and cracks can be suppressed by setting the solid-liquid interface height to a predetermined height or less, and have arrived at the present invention.

すなわち、本発明に係るシリコン単結晶の製造方法は、輻射シールドを備え融液に磁場を印加する単結晶引上装置を用いてチョクラルスキー法によりパーティクルモニター用シリコンウェーハを製造するシリコン単結晶を引上げるシリコン単結晶の製造方法において、輻射シールドと融液表面のギャップを15〜30mm、固化後1100〜1000℃の温度を経験する時間が20分以上、200分以下になるように温度帯幅と引上速度を設定するとともに、固液界面高さが11mm以上20mm以下となるよう結晶回転、ルツボ回転及び磁場強度を調整し、窒素濃度が5E13〜5E15atoms/cmとなるよう窒素ドープし、引上げられたシリコン単結晶の結晶径が300mm以上であることを特徴とする。 That is, the silicon single crystal manufacturing method according to the present invention includes a silicon single crystal that manufactures a silicon wafer for particle monitoring by the Czochralski method using a single crystal pulling apparatus that includes a radiation shield and applies a magnetic field to the melt. In the method for producing a silicon single crystal to be pulled up, the temperature band width is set so that the gap between the radiation shield and the melt surface is 15 to 30 mm and the time to experience a temperature of 1100 to 1000 ° C. after solidification is 20 minutes or more and 200 minutes or less. and sets the pulling speed, the solid-liquid interface height crystal rotation so as to be more than 11 mm 20 mm or less, by adjusting the crucible rotation and field strength, and nitrogen-doped so that the nitrogen concentration of 5E13~5E15atoms / cm 3 The crystal diameter of the pulled silicon single crystal is 300 mm or more .

本発明に係るシリコン単結晶の製造方法によれば、パーティクルとして検出される結晶欠陥が低密度であり、パーティクルモニター用シリコンウェーハを製造するのに適するシリコン単結晶を生産性よく引上げることができるシリコン単結晶の製造方法を提供することができる。   According to the method for producing a silicon single crystal according to the present invention, crystal defects detected as particles have a low density, and a silicon single crystal suitable for producing a silicon wafer for particle monitoring can be pulled up with high productivity. A method for producing a silicon single crystal can be provided.

本発明の一実施形態に係るシリコン単結晶の製造方法について添付図面を参照して説明する。   A method for producing a silicon single crystal according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係るシリコン単結晶の製造方法に用いるシリコン単結晶引上装置の概念図である。   FIG. 1 is a conceptual diagram of a silicon single crystal pulling apparatus used in a method for producing a silicon single crystal according to an embodiment of the present invention.

図1に示すように、本発明の一実施形態に係るシリコン単結晶の製造方法に用いるシリコン単結晶引上装置1は、融液に磁場を印加するMCZ法を用い、密閉容器を構成する炉本体2の内部には石英ルツボ3と、この石英ルツボ3を加熱し、石英ルツボ3に供給されたポリシリコンを溶融しシリコン融液4にするためのヒータ5を備える。   As shown in FIG. 1, a silicon single crystal pulling apparatus 1 used in a method for producing a silicon single crystal according to an embodiment of the present invention uses an MCZ method in which a magnetic field is applied to a melt, and a furnace that constitutes a sealed container Inside the main body 2, there are provided a quartz crucible 3 and a heater 5 for heating the quartz crucible 3 to melt the polysilicon supplied to the quartz crucible 3 into a silicon melt 4.

また、石英ルツボ3およびシリコン融液4の上方にはこのシリコン融液4からの熱輻射を防止しかつ炉本体2内を流れる不活性ガス、例えばアルゴンガス(以下Arという。)の流路を制御する耐熱部材製の輻射シールド6を配する。   Above the quartz crucible 3 and the silicon melt 4, a flow path of an inert gas, for example, argon gas (hereinafter referred to as Ar), which prevents heat radiation from the silicon melt 4 and flows in the furnace body 2. A radiation shield 6 made of a heat-resistant member to be controlled is arranged.

一方、炉本体2の外部には、2個の超伝導磁石7が炉本体2を挟むように直径方向に対向して配され、各超伝導磁石7は各々コイル7aから構成される。   On the other hand, two superconducting magnets 7 are arranged on the outside of the furnace body 2 so as to face each other in the diametrical direction so as to sandwich the furnace body 2, and each superconducting magnet 7 is composed of a coil 7a.

超伝導磁石7はコイル7aの中心を結ぶ直線Lがシリコン融液4の液面近傍になるように配される。   The superconducting magnet 7 is arranged so that a straight line L connecting the centers of the coils 7 a is near the liquid surface of the silicon melt 4.

さらに、炉本体2の上方から導入されたArが、輻射シールド6に設けられ種結晶8aから成長したシリコン単結晶8が貫通する開口部9および石英ルツボ3とヒータ5の間に形成された通気路10を介し炉本体2外に排出されるように、炉本体2の底部11に複数個例えば2個の排気口12が設けられる。   Further, Ar introduced from above the furnace body 2 is provided in the radiation shield 6 and has an opening 9 through which the silicon single crystal 8 grown from the seed crystal 8 a penetrates and the quartz crucible 3 and the heater 5. A plurality of, for example, two exhaust ports 12 are provided in the bottom 11 of the furnace body 2 so as to be discharged out of the furnace body 2 through the passage 10.

また、石英ルツボ3はルツボ回転用モータ(図示せず)に結合される回転軸13により、支持、回転され、また、成長するシリコン単結晶8は、回転引上機構(図示せず)に接続され、回転、昇降される引上げワイヤー14により、石英ルツボ3と反対方向の所定回転数の回転及び所定速度で引上げられる。ルツボ回転用モータ及び回転引上機構は制御装置(図示せず)によって回転及び引上げ速度が制御される。   The quartz crucible 3 is supported and rotated by a rotating shaft 13 coupled to a crucible rotating motor (not shown), and the growing silicon single crystal 8 is connected to a rotating pulling mechanism (not shown). Then, it is pulled up at a predetermined rotation speed and a predetermined speed in a direction opposite to the quartz crucible 3 by the pulling wire 14 that is rotated and moved up and down. The rotation and pulling speeds of the crucible rotating motor and the rotating pulling mechanism are controlled by a control device (not shown).

次に、シリコン単結晶引上装置1を用いた本発明のシリコン単結晶の製造方法について説明する。   Next, the manufacturing method of the silicon single crystal of the present invention using the silicon single crystal pulling apparatus 1 will be described.

原料のナゲット状ポリシリコン及びドープ剤例えばSiを石英ルツボ3に入れ、Arを炉本体2の上方より炉本体2内に流入させ、ヒータ5を付勢して石英ルツボ3を加熱し、モータを付勢してこのモータに結合された回転軸13を回転させて石英ルツボ3を回転させる。 Raw material nugget-like polysilicon and a dopant, such as Si 3 N 4 , are placed in the quartz crucible 3, Ar flows into the furnace body 2 from above the furnace body 2, and the heater 5 is energized to heat the quartz crucible 3. The quartz crucible 3 is rotated by energizing the motor and rotating the rotary shaft 13 coupled to the motor.

一定時間が経過した後、ワイヤー14を下ろし、種結晶8aをシリコン融液4の液面に接触させる。しかるのち、超伝導磁石7のコイル7aを付勢し、磁界をシリコン融液4の液面近傍に集中させる。   After a certain time has passed, the wire 14 is lowered and the seed crystal 8a is brought into contact with the liquid surface of the silicon melt 4. Thereafter, the coil 7 a of the superconducting magnet 7 is energized to concentrate the magnetic field near the liquid surface of the silicon melt 4.

このシリコン融液4の溶融状態で、シリコン融液4は石英ルツボ3内で対流を起こすが、シリコン融液4の対流が磁界の方向に対して直角の場合には、起電力が有効動粘性係数を増加させるため対流は抑制される。   In the molten state of the silicon melt 4, the silicon melt 4 causes convection in the quartz crucible 3, but when the convection of the silicon melt 4 is perpendicular to the direction of the magnetic field, the electromotive force is effective kinematic viscosity. Convection is suppressed to increase the coefficient.

このシリコン融液4の対流の抑制により、石英ルツボ3からシリコン融液4に溶出する酸素を抑制し、従ってシリコン単結晶8に取り込まれる酸素を相当減少させることができるが、石英ルツボ3近傍に存在して酸素濃度が比較的高いシリコン融液4は磁界の方向に平行な流れに沿ってシリコン単結晶8の成長界面に輸送され、酸素が成長界面からシリコン単結晶8内に取り込まれる。   By suppressing the convection of the silicon melt 4, the oxygen eluted from the quartz crucible 3 into the silicon melt 4 can be suppressed, so that the oxygen taken into the silicon single crystal 8 can be considerably reduced, but in the vicinity of the quartz crucible 3. The silicon melt 4 that exists and has a relatively high oxygen concentration is transported to the growth interface of the silicon single crystal 8 along a flow parallel to the direction of the magnetic field, and oxygen is taken into the silicon single crystal 8 from the growth interface.

一方、炉本体2上部から導入されたArはワイヤー14、シリコン単結晶8に沿って降下し、輻射シールド6に設けられた開口部9を通過し、通気路10、炉本体2の底部11に設けられた排気口12を介して炉本体2外に排出される。   On the other hand, Ar introduced from the top of the furnace body 2 descends along the wire 14 and the silicon single crystal 8, passes through the opening 9 provided in the radiation shield 6, and enters the air passage 10 and the bottom 11 of the furnace body 2. It is discharged out of the furnace body 2 through the provided exhaust port 12.

ネック育成、拡径部時、直胴部及びテール部を育成して、直径200mm以上例えば300mmのシリコン単結晶の引上げが行われる。   During neck growth and diameter expansion, the straight body portion and tail portion are grown, and a silicon single crystal having a diameter of 200 mm or more, for example, 300 mm, is pulled up.

上記シリコン単結晶引上げ工程において、図2に示すように、輻射シールドと融液表面のギャップGを15〜30mmに保つ。これにより、輻射シールドが融液の振動で接触融液表面に接触することがなく、結晶の有転位化が防止される。   In the silicon single crystal pulling step, as shown in FIG. 2, the gap G between the radiation shield and the melt surface is kept at 15 to 30 mm. This prevents the radiation shield from coming into contact with the surface of the contact melt due to the vibration of the melt, thereby preventing dislocation of crystals.

輻射シールドと融液表面のギャップGは、小さいほど結晶の軸方向の温度勾配が大きくなることから引上速度を上げ易くなるが、ギャップが15mmより小さいと輻射シールドが融液の振動で接触しやすくなり、結晶が有転位化する原因となる。また同じガス流量を流した場合、融液表面のガス流速が増大することから融液表面の流れを乱し有転位化しやすくなる。ギャップが30mmを超えると、融液からの輻射熱が結晶外周を暖める効果が増大し、1100〜1000℃の温度帯幅が広がるとともに、引上速度を高く維持することができず、1100〜1000℃の体験時間を200分以下に維持できない。   The smaller the gap G between the radiation shield and the melt surface, the higher the temperature gradient in the axial direction of the crystal, making it easier to increase the pulling speed. However, if the gap is smaller than 15 mm, the radiation shield comes into contact with the vibration of the melt. It becomes easy to cause dislocation of the crystal. In addition, when the same gas flow rate is flowed, the gas flow velocity on the surface of the melt increases, so that the flow on the surface of the melt is disturbed, and dislocations are easily formed. If the gap exceeds 30 mm, the effect of radiant heat from the melt warming the outer periphery of the crystal increases, the temperature range of 1100 to 1000 ° C. widens, and the pulling speed cannot be maintained high, and 1100 to 1000 ° C. The experience time cannot be maintained below 200 minutes.

固化後1100〜1000℃の温度を経験する時間が20分以上、200分以下になるように温度帯幅と引上速度を設定する。これにより、ボイド欠陥が抑制され、また、結晶変形がなく、パーティクルモニター用ウェーハを製造できる。   The temperature zone width and pulling speed are set so that the time to experience a temperature of 1100 to 1000 ° C. after solidification is 20 minutes or more and 200 minutes or less. As a result, void defects are suppressed and there is no crystal deformation, and a particle monitor wafer can be manufactured.

1100〜1000℃の体験時間が200分を超えると、窒素濃度を高くしても、ボイド欠陥が成長してサイズが大きくなり、パーティクル評価装置に検出される欠陥数が増加し、その結果パーティクルモニター用ウェーハとしては使用できない。また、1100〜1000℃の体験時間を20分より小さくするような結晶育成条件は、φ200mm以上の結晶径では、結晶変形などを引き起こしCZ法による単結晶の育成ができない。   When the experience time at 1100 to 1000 ° C. exceeds 200 minutes, even if the nitrogen concentration is increased, void defects grow and the size increases, and the number of defects detected by the particle evaluation apparatus increases. As a result, the particle monitor Cannot be used as an industrial wafer. Moreover, crystal growth conditions that make the experience time at 1100 to 1000 ° C. shorter than 20 minutes cause crystal deformation and the like, and single crystals cannot be grown by the CZ method at a crystal diameter of φ200 mm or more.

また、図2に示すように、固液界面高さHが30mm以下となるよう結晶回転、ルツボ回転及び磁場強度を調整する。これにより、有転位化やクラック発生を抑えることができる。   Further, as shown in FIG. 2, the crystal rotation, the crucible rotation, and the magnetic field strength are adjusted so that the solid-liquid interface height H is 30 mm or less. Thereby, dislocation formation and crack generation can be suppressed.

固液界面高さを30mm以内に抑えるのは、下記の理由による。   The solid-liquid interface height is suppressed to within 30 mm for the following reason.

体験時間を200分以下にする条件として、引上速度を上げることが必要であるが、引上速度を上げると上述のように固液界面形状が上凸方向に変化するため、熱応力の増大を引き起こし、有転位化やクラックの原因となる。各種引上試験を行い、引上げ速度を高くしても、固液界面形状の上凸度を固液界面高さ(結晶中心での固液界面高さと結晶最外周の固液界面高さの差)30mm以内好ましくは11〜20mmに抑えることで、有転位化やクラック発生を抑えることが可能であることを確認した。固液界面高さの制御は、ルツボ回転と結晶回転を変化、磁場強度の変化によって可能である。例えば、ルツボ回転を下げ、結晶回転を上げると固液界面形状は上凸側に変化させることができる。上記のように、有転位化やクラックが発生することなく、引上げ速度を上げることで、生産性を高めることができる。   As a condition for setting the experience time to 200 minutes or less, it is necessary to increase the pulling speed. However, if the pulling speed is increased, the solid-liquid interface shape changes in the upward convex direction as described above, so that the thermal stress increases. Cause dislocations and cracks. Even when various pulling tests are performed and the pulling speed is increased, the upward convexity of the solid-liquid interface shape is the solid-liquid interface height (the difference between the solid-liquid interface height at the crystal center and the solid-liquid interface height at the outermost periphery of the crystal) ) It was confirmed that it is possible to suppress dislocations and occurrence of cracks by restraining within 30 mm, preferably 11 to 20 mm. The solid-liquid interface height can be controlled by changing the crucible rotation and crystal rotation, and changing the magnetic field strength. For example, when the crucible rotation is lowered and the crystal rotation is raised, the solid-liquid interface shape can be changed to the upward convex side. As described above, productivity can be increased by increasing the pulling speed without causing dislocations or cracks.

窒素濃度が5E13〜5E15atoms/cmとなるようドープ剤をドープする。 The dopant is doped so that the nitrogen concentration is 5E13 to 5E15 atoms / cm 3 .

窒素濃度は、1100〜1000℃の体験時間が200〜20分であるCZ法による結晶の場合、窒素を5E13〜5E15atoms/cmの濃度になるようドープすることで、シリコンウェーハに加工した際の表面のボイド欠陥サイズを小さくすることができるため、所定サイズ以上のパーティクルとして検出される欠陥密度を減少させることができ、その結果パーティクルモニターとして使用することが可能となる。 In the case of a crystal by the CZ method in which the experience time at 1100 to 1000 ° C. is 200 to 20 minutes, the nitrogen concentration is that when processing into a silicon wafer by doping nitrogen to a concentration of 5E13 to 5E15 atoms / cm 3 . Since the void defect size on the surface can be reduced, the defect density detected as particles of a predetermined size or more can be reduced, and as a result, it can be used as a particle monitor.

窒素濃度が5E13atoms/cmより小さいと、欠陥サイズの抑制効果がない。5E15atoms/cmを超えると、シリコン融液の固溶限界を超え、窒化珪素が融液に析出し有転位化の原因となる。 When the nitrogen concentration is smaller than 5E13 atoms / cm 3 , there is no effect of suppressing the defect size. If it exceeds 5E15 atoms / cm 3 , the solid solution limit of the silicon melt is exceeded, and silicon nitride precipitates in the melt and causes dislocation.

上記のようにして引上げられたシリコン単結晶からシリコンウェーハを切り出し、加工
することで所定サイズ以上の欠陥が少ないシリコンウェーハが製造できる。またこのウェーハをアルゴンガスあるいは水素ガスまたはこれらの混合ガス雰囲気で1000〜1200℃の温度でアニールすることで、シリコンウェーハ表面の欠陥密度はさらに減少させることが可能である。
A silicon wafer with few defects of a predetermined size or more can be manufactured by cutting and processing a silicon wafer from the silicon single crystal pulled as described above. Further, the defect density on the surface of the silicon wafer can be further reduced by annealing the wafer in an atmosphere of argon gas, hydrogen gas, or a mixed gas thereof at a temperature of 1000 to 1200 ° C.

本実施形態のシリコン単結晶の製造方法によれば、パーティクルとして検出される結晶欠陥が低密度であり、パーティクルモニター用シリコンウェーハを製造するのに適するシリコン単結晶を生産性よく引上げることができるシリコン単結晶の製造方法が実現する。   According to the method for producing a silicon single crystal of this embodiment, crystal defects detected as particles have a low density, and a silicon single crystal suitable for producing a silicon wafer for particle monitoring can be raised with high productivity. A method for producing a silicon single crystal is realized.

なお、本発明に係るシリコン単結晶の製造方法は、パーティクルモニターに用いるシリコンウェーハを製造するのに適する製造方法であるが、パーティクルモニター用ウェーハと同等の特性を備えた他の用途のシリコンウェーハの製造にも使用可能であり、また、200mmに限らず、300mm以上のシリコンウェーハの製造にも用いることができる。   The method for producing a silicon single crystal according to the present invention is a production method suitable for producing a silicon wafer used for particle monitoring. However, the silicon wafer for other uses having the same characteristics as the particle monitoring wafer can be used. The present invention can be used for manufacturing, and is not limited to 200 mm, but can also be used for manufacturing a silicon wafer of 300 mm or more.

試験1:窒素濃度、体験時間を変えたCZ法により引上げた結晶径φ300mmシリコン単結晶をウェーハに加工し、ウェーハ表面のパーティクルをパーティクルカウンターで測定し、0.1μm以上の大きさのパーティクルがウェーバ全面で10ケ未満のウェーハが95%以上の歩留で生産できる部位を合格、歩留が95%未満の部位を不合格と判定する。   Test 1: A silicon single crystal with a crystal diameter of φ300mm pulled by the CZ method with varying nitrogen concentration and experience time was processed into a wafer, and the particle on the wafer surface was measured with a particle counter. A part where less than 10 wafers can be produced with a yield of 95% or more is determined to pass, and a part with a yield of less than 95% is determined to be rejected.

結果1:(1)判定結果を図3(合格部位)及び図4(不合格部位)に示す。   Result 1: (1) Judgment results are shown in FIG. 3 (passing part) and FIG. 4 (failing part).

図3からもわかるように、合格部位はパーティクル数/Waferが0ケ、3ケのものが多く、ほぼ5ケ以下に集中して分布している。これに対して、図3からもわかるように、不合格部位は4ケ、5ケのものが多く、17ケまで分散分布している。   As can be seen from FIG. 3, the number of acceptable parts is mostly 0 or 3 particles / Wafer, and is concentrated and distributed almost to 5 or less. On the other hand, as can be seen from FIG. 3, the number of rejected parts is mostly 4 and 5, and 17 are distributed and distributed.

(2)図5に示すように、合格部位及び不合格部位を、横軸1100〜1000℃の体験時間、縦軸窒素密度の座標にプロットし、合格部位の分布から体験時間、縦軸窒素密度の限界値を求め、体験時間20分以上、200分以下、及び窒素濃度5E13〜5E15atoms/cmとを得た。 (2) As shown in FIG. 5, the accepted part and the rejected part are plotted on the coordinate of the experience time of the horizontal axis 1100 to 1000 ° C. and the vertical axis nitrogen density, and the experience time and the vertical axis nitrogen density are determined from the distribution of the accepted part. Was obtained, and the experience time was 20 minutes or more and 200 minutes or less, and the nitrogen concentration was 5E13 to 5E15 atoms / cm 3 .

試験2:ルツボ回転数と単結晶回転数を変化させ、結晶径φ300mmシリコン単結晶を引上げ、目視により転位発生状態を調べ、さらに、引き上げた結晶を中心軸を含む面で縦にスライスし、熱処理後X線トポグラフで固液界面を撮影後、結晶外周部高さと結晶中心部高さの差(固液界面高さ)を調べ、固液界面高さと有転移発生率の相関を求めた。   Test 2: Varying the crucible rotation speed and the single crystal rotation speed, pulling up a silicon single crystal with a crystal diameter of φ300 mm, examining the dislocation occurrence state by visual inspection, further slicing the pulled crystal vertically along the plane including the central axis, and heat treatment After imaging the solid-liquid interface with a post X-ray topograph, the difference between the height of the crystal periphery and the height of the crystal center (solid-liquid interface height) was examined, and the correlation between the solid-liquid interface height and the incidence of transition was obtained.

結果2:表1に示す。

Figure 0004842861
Result 2: as shown in Table 1.
Figure 0004842861

表1からもわかるように、固液界面高さが30mm以下では、転位発生率が20%以上であり、特に11〜20mmでは、転位発生率が0%であり、無転位割合が100%となった。これに対して、固液界面高さが30mmを超えると、転位発生率が100となり、無転位割合が0となった。   As can be seen from Table 1, when the solid-liquid interface height is 30 mm or less, the dislocation generation rate is 20% or more. became. In contrast, when the solid-liquid interface height exceeded 30 mm, the dislocation generation rate was 100, and the dislocation-free ratio was 0.

本発明に係るシリコンウェーハの製造方法に用いるシリコン単結晶引上装置の概念図。The conceptual diagram of the silicon single crystal pulling apparatus used for the manufacturing method of the silicon wafer which concerns on this invention. 本発明に係るシリコンウェーハの製造方法に用いるシリコン単結晶引上装置の融液近傍の拡大図。The enlarged view of the melt vicinity of the silicon single crystal pulling-up apparatus used for the manufacturing method of the silicon wafer which concerns on this invention. 本発明に係るシリコンウェーハの製造方法の条件内で製造されたシリコンウェーハ(合格部位)のパーティクル測定結果図。The particle | grain measurement result figure of the silicon wafer (acceptable site | part) manufactured within the conditions of the manufacturing method of the silicon wafer which concerns on this invention. 本発明に係るシリコンウェーハの製造方法の条件外で製造されたシリコンウェーハ(不合格部位)のパーティクル測定結果図。The particle | grain measurement result figure of the silicon wafer (failed site | part) manufactured outside the conditions of the manufacturing method of the silicon wafer which concerns on this invention. 本発明に係るシリコンウェーハの製造方法により製造されたシリコンウェーハの1100〜1000℃の体験時間と窒素密度の相関線図。The correlation diagram of the experience time of 1100-1000 degreeC of a silicon wafer manufactured with the manufacturing method of the silicon wafer which concerns on this invention, and nitrogen density.

符号の説明Explanation of symbols

1 シリコン単結晶引上装置
2 炉本体
3 石英ルツボ
4 シリコン融液
5 ヒータ
6 輻射シールド
7 超伝導磁石
7a コイル
8a 種結晶
8 シリコン単結晶
9 開口部
10 通気路
11 底部
12 排気口
13 回転軸
14 引上げワイヤー
DESCRIPTION OF SYMBOLS 1 Silicon single crystal pulling apparatus 2 Furnace main body 3 Quartz crucible 4 Silicon melt 5 Heater 6 Radiation shield 7 Superconducting magnet 7a Coil 8a Seed crystal 8 Silicon single crystal 9 Opening part 10 Ventilation path 11 Bottom part 12 Exhaust port 13 Rotating shaft 14 Pulling wire

Claims (2)

輻射シールドを備え融液に磁場を印加するシリコン単結晶引上装置を用いてチョクラルスキー法によりパーティクルモニター用シリコンウェーハを製造するシリコン単結晶を引上げるシリコン単結晶の製造方法において、
輻射シールドと融液表面のギャップを15〜30mm、
固化後1100〜1000℃の温度を経験する時間が20分以上、200分以下になるように温度帯幅と引上速度を設定するとともに、
固液界面高さが11mm以上20mm以下となるよう結晶回転、ルツボ回転及び磁場強度を調整し、
窒素濃度が5E13〜5E15atoms/cmとなるよう窒素ドープし、
引上げられたシリコン単結晶の結晶径が300mm以上であることを特徴とするシリコン単結晶の製造方法。
In a silicon single crystal manufacturing method for pulling up a silicon single crystal for manufacturing a silicon wafer for particle monitoring by a Czochralski method using a silicon single crystal pulling apparatus that includes a radiation shield and applies a magnetic field to a melt,
15-30mm gap between radiation shield and melt surface,
While setting the temperature zone width and pulling speed so that the time to experience a temperature of 1100 to 1000 ° C. after solidification is 20 minutes or more and 200 minutes or less,
Adjust the crystal rotation, crucible rotation and magnetic field strength so that the solid-liquid interface height is 11 mm or more and 20 mm or less,
Nitrogen doping so that the nitrogen concentration is 5E13 to 5E15 atoms / cm 3 ,
A method for producing a silicon single crystal, wherein the pulled silicon single crystal has a crystal diameter of 300 mm or more .
引上げられたシリコン単結晶から切り出され加工されたシリコンウェーハを、アルゴンガスあるいは水素ガスまたはこれらの混合ガス雰囲気で1000〜1200℃の温度でアニールすることを特徴とする請求項1に記載のシリコン単結晶の製造方法。 The silicon wafer cut and processed from the pulled silicon single crystal is annealed at a temperature of 1000 to 1200 ° C. in an atmosphere of argon gas, hydrogen gas, or a mixed gas thereof. Crystal production method.
JP2007062037A 2007-03-12 2007-03-12 Method for producing silicon single crystal Active JP4842861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062037A JP4842861B2 (en) 2007-03-12 2007-03-12 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062037A JP4842861B2 (en) 2007-03-12 2007-03-12 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2008222483A JP2008222483A (en) 2008-09-25
JP4842861B2 true JP4842861B2 (en) 2011-12-21

Family

ID=39841528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062037A Active JP4842861B2 (en) 2007-03-12 2007-03-12 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4842861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395392B1 (en) * 2012-03-14 2014-05-14 주식회사 엘지실트론 Growing Method for Silicon Single Crystal Ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574645B2 (en) * 2009-09-07 2014-08-20 Sumco Techxiv株式会社 Method for producing single crystal silicon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705809B2 (en) * 1988-10-05 1998-01-28 三菱マテリアル株式会社 Single crystal pulling device
JP3621290B2 (en) * 1998-06-02 2005-02-16 信越半導体株式会社 Manufacturing method of silicon single crystal wafer for particle monitor and silicon single crystal wafer for particle monitor
JP3783495B2 (en) * 1999-11-30 2006-06-07 株式会社Sumco Manufacturing method of high quality silicon single crystal
JP2001278692A (en) * 2000-03-29 2001-10-10 Shin Etsu Handotai Co Ltd Manufacturing method of silicon wafer and single crystal silicon
WO2002016678A1 (en) * 2000-08-18 2002-02-28 Shin-Etsu Handotai Co.,Ltd. Method for producing silicon single crystal
JP4182640B2 (en) * 2000-12-11 2008-11-19 株式会社Sumco Method for growing silicon single crystal
JP2002226296A (en) * 2001-01-31 2002-08-14 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal
JP4231275B2 (en) * 2002-11-14 2009-02-25 Sumco Techxiv株式会社 Silicon wafer manufacturing method, manufacturing apparatus thereof, and silicon wafer
JP4569103B2 (en) * 2003-12-25 2010-10-27 信越半導体株式会社 Single crystal manufacturing method
JP2006005088A (en) * 2004-06-16 2006-01-05 Siltronic Japan Corp Silicon semiconductor substrate and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395392B1 (en) * 2012-03-14 2014-05-14 주식회사 엘지실트론 Growing Method for Silicon Single Crystal Ingot

Also Published As

Publication number Publication date
JP2008222483A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4814207B2 (en) Method and apparatus for manufacturing a silicon semiconductor wafer
JP3573045B2 (en) Manufacturing method of high quality silicon single crystal
JP5515406B2 (en) Silicon wafer and manufacturing method thereof
US20090301385A1 (en) Method for producing silicon wafer
JP5163459B2 (en) Silicon single crystal growth method and silicon wafer inspection method
WO2002002852A1 (en) Silicon single crystal wafer and method for manufacturing the same
KR102095597B1 (en) Manufacturing method of silicon single crystal
JP2001158690A (en) Method for producing high-quality silicon single crystal
WO2014129123A1 (en) Method for manufacturing silicon monocrystal rod
KR100374703B1 (en) A Single Crystal Silicon Wafer, Ingot and Methods thereof
WO1999010570A1 (en) High-quality silicon single crystal and method of producing the same
JP5145721B2 (en) Method and apparatus for producing silicon single crystal
KR20060028425A (en) Method for producing single crystal and single crystal
WO2015083327A1 (en) Method for growing silicon single crystal
JP4151474B2 (en) Method for producing single crystal and single crystal
JP4842861B2 (en) Method for producing silicon single crystal
JP2005015313A (en) Method for manufacturing single crystal, and single crystal
JP6263999B2 (en) Method for growing silicon single crystal
JP4158237B2 (en) Method for growing high-quality silicon single crystals
JP3719088B2 (en) Single crystal growth method
EP1679392A1 (en) Process for producing single crystal
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP2004250263A (en) High-quality wafer and its manufacture method
JP5428608B2 (en) Method for growing silicon single crystal
JP4048660B2 (en) CZ silicon single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250