JP4842728B2 - Ultrasonic sound velocity measuring device - Google Patents

Ultrasonic sound velocity measuring device Download PDF

Info

Publication number
JP4842728B2
JP4842728B2 JP2006197042A JP2006197042A JP4842728B2 JP 4842728 B2 JP4842728 B2 JP 4842728B2 JP 2006197042 A JP2006197042 A JP 2006197042A JP 2006197042 A JP2006197042 A JP 2006197042A JP 4842728 B2 JP4842728 B2 JP 4842728B2
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
ultrasonic wave
measured
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006197042A
Other languages
Japanese (ja)
Other versions
JP2008026067A (en
Inventor
智行 鈴木
典嗣 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Industrial Co Ltd
Original Assignee
Fuji Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Industrial Co Ltd filed Critical Fuji Industrial Co Ltd
Priority to JP2006197042A priority Critical patent/JP4842728B2/en
Publication of JP2008026067A publication Critical patent/JP2008026067A/en
Application granted granted Critical
Publication of JP4842728B2 publication Critical patent/JP4842728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は超音波濃度測定装置等に用いて好適な超音波音速測定装置に関する。   The present invention relates to an ultrasonic sound velocity measuring device suitable for use in an ultrasonic concentration measuring device or the like.

超音波音速測定装置として、特許文献1に記載の如く、所定の方向に流れる試料中を伝播する超音波の音速を求める超音波音速測定装置において、超音波伝播領域の流れの上流側に、超音波伝播領域に試料が直接流入するのを妨げる妨害手段を備え、妨害手段の上記流れの下流側に、試料中から気泡を分離する通水材を備えてなるものがある。超音波伝播領域への気泡の侵入を減少させ、試料中の音速を精度良く求めようとするものである。   As an ultrasonic sound velocity measuring device, as described in Patent Document 1, in an ultrasonic sound velocity measuring device that obtains the sound velocity of an ultrasonic wave propagating through a sample flowing in a predetermined direction, There is an interference means that prevents the sample from directly flowing into the sound wave propagation region, and a water passage material that separates bubbles from the sample is provided downstream of the flow of the interference means. It is intended to reduce the invasion of bubbles into the ultrasonic wave propagation region and obtain the sound speed in the sample with high accuracy.

超音波伝播領域にある試料中に気泡が含まれていると、伝播する超音波がこの気泡により反射されて伝播距離が短くなり、或いは気泡に吸収されて減衰する等により、音速を精度良く測定できない。
特開2004-317288
If bubbles are contained in the sample in the ultrasonic wave propagation area, the ultrasonic wave propagating is reflected by the bubbles and the propagation distance is shortened, or the sound velocity is accurately measured by being absorbed and attenuated by the bubbles. Can not.
JP2004-317288

特許文献1に記載の超音波音速測定装置には以下の問題点がある。
(1)超音波伝播領域の上流側に配置された妨害手段が、超音波伝播領域における試料の連続的な流れを阻止し、試料は超音波伝播領域で滞留する。従って、例えば試料の濃度が流れと共に変化しても、この濃度変化に起因する音速の変化を速やかに測定できない等、音速測定の応答性が悪い。
The ultrasonic sound velocity measuring device described in Patent Document 1 has the following problems.
(1) Interfering means arranged on the upstream side of the ultrasonic propagation region prevents the continuous flow of the sample in the ultrasonic propagation region, and the sample stays in the ultrasonic propagation region. Therefore, for example, even if the concentration of the sample changes with the flow, the responsiveness of the sound velocity measurement is poor such that the change in the sound velocity due to the concentration change cannot be measured quickly.

(2)超音波伝播領域における試料の連続的な流れが阻止されるから、超音波伝播領域に一旦侵入した気泡が超音波伝播領域に旋回又は滞留して抜けがたく、音速の高精度な測定に困難がある。   (2) Since the continuous flow of the sample in the ultrasonic wave propagation area is prevented, bubbles that have once entered the ultrasonic wave propagation area are swirled or retained in the ultrasonic wave propagation area, making it difficult for them to fall out and measuring the sound speed with high accuracy. There are difficulties.

(3)超音波伝播領域の流れの下流側に配置された通水材を通って超音波伝播領域に流入する試料の流れが、超音波伝播領域への気泡の巻き込みによる侵入を招き、音速の高精度な測定に困難がある。   (3) The flow of the sample flowing into the ultrasonic propagation region through the water-permeable material arranged on the downstream side of the flow of the ultrasonic propagation region causes intrusion due to the entrainment of bubbles in the ultrasonic propagation region. Difficult to measure with high accuracy.

本発明の課題を、超音波音速測定装置において、音速の高精度な測定と、音速測定の応答性を向上することにある。   SUMMARY OF THE INVENTION An object of the present invention is to improve measurement accuracy of sound velocity and responsiveness of sound velocity measurement in an ultrasonic sound velocity measuring device.

本発明の他の課題は、超音波濃度測定装置において、濃度の高精度な測定と、濃度測定の応答性を向上することにある。   Another object of the present invention is to improve the measurement of concentration with high accuracy and the responsiveness of concentration measurement in an ultrasonic concentration measurement apparatus.

請求項1の発明は、所定の方向に流れる被測定液中に定めた超音波伝播領域を伝播する超音波の音速を測定する超音波音速測定装置において、分気筒の壁状体により超音波伝播領域を囲み、分気筒の壁状体の前記流れ方向の上流側に臨む正面に、超音波伝播領域への被測定液の流入を許容し、被測定液中に含まれる気泡の超音波伝播領域への侵入を抑制する、複数個の液流入口を開口し、分気筒の壁状体の前記流れ方向の下流側に臨む背面に、超音波伝播領域からの被測定液の流出を許容し、被測定液中に含まれる気泡の超音波伝播領域への侵入を抑制する、複数個の液流出口を開口するとともに、分気筒の壁状体のうち、上流側に臨む正面と下流側に臨む背面を除く両側面を閉塞し、被測定液を分気筒の上流側から上記液流入口、超音波伝播領域、上記液流出口を経て下流側に貫通するように連続的に流通可能にしたものである。
請求項2の発明は、請求項1の発明において更に、前記分気筒の液流入口と液流出口が、分気筒の一定の壁厚を有する壁状体に穿設される孔又はスリットからなり、それらの孔又はスリットの穿設方向は被測定液の流れ方向に平行をなすように延在され、壁状体の穿設長さに等しい通路長を有するようにしたものである。
According the invention of claim 1, there is provided an ultrasonic sound velocity measuring apparatus for measuring the ultrasonic speed of sound propagating ultrasonic wave propagation region defined test liquid in flowing in a predetermined direction, the ultrasonic wave propagation by the wall-like member of minute cylinders An ultrasonic wave propagation region of bubbles contained in the liquid to be measured, allowing the liquid to be measured to flow into the ultrasonic wave propagation region on the front surface facing the upstream side of the flow direction of the wall of the split cylinder Opening a plurality of liquid inlets that suppress intrusion to the rear surface, allowing the liquid to be measured to flow out of the ultrasonic wave propagation region on the back surface facing the downstream side of the flow direction of the wall of the minute cylinder, Opening a plurality of liquid outlets that suppress the invasion of bubbles contained in the liquid to be measured into the ultrasonic wave propagation region, and face the upstream side and the downstream side of the wall of the split cylinder Both sides except for the back are closed, and the liquid to be measured is sent from the upstream side of the split cylinder to the liquid inlet and ultrasonic wave transmission. Region, is obtained by allowing continuous flow so as to penetrate to the downstream side through the liquid outlet.
According to a second aspect of the present invention, in the first aspect of the present invention, the liquid inlet and the liquid outlet of the minute cylinder further comprise holes or slits formed in a wall-like body having a constant wall thickness of the minute cylinder. The holes or slits are drilled in a direction that is parallel to the flow direction of the liquid to be measured, and has a passage length equal to the length of the wall-shaped body.

請求項の発明は、請求項1又は2の発明において更に、前記分気筒が円筒壁状体の筒軸を前記流れ方向に直交配置するとき、該壁状体に開口される液流入口の位置が分気筒の前記流れ方向の上流側に臨む真正面の位置を避けて配置されるようにしたものである。 According to a third aspect of the present invention, in the first or second aspect of the present invention, when the split cylinder has a cylindrical axis of the cylindrical wall-like body arranged orthogonally to the flow direction, a liquid inlet opening to the wall-like body is provided. The position is arranged so as to avoid the position in front of the minute cylinder facing the upstream side in the flow direction.

請求項の発明は、請求項1〜3のいずれかに記載の超音波音速測定装置を用いた超音波濃度測定装置である。 The invention of claim 4 is an ultrasonic concentration measuring device using the ultrasonic sound velocity measuring device according to any one of claims 1 to 3 .

(請求項1、2
(a)超音波伝播領域を囲む分気筒の上流側と下流側のそれぞれに、液流入口と液流出口を開口した。被測定液は、分気筒の上流側から分気筒の内部の超音波伝播領域を通って分気筒の下流側に貫通するように連続的に流れ、超音波伝播領域で滞留しない。従って、例えば被測定液の濃度が流れとともに変化するとき、この濃度変化に起因する音速の変化を速やかに測定できる等、音速測定の応答性が良い。
(Claims 1 and 2 )
(a) A liquid inlet and a liquid outlet are opened on the upstream side and the downstream side of the minute cylinder surrounding the ultrasonic wave propagation region. The liquid to be measured continuously flows from the upstream side of the minute cylinder through the ultrasonic wave propagation region inside the minute cylinder so as to penetrate the downstream side of the minute cylinder, and does not stay in the ultrasonic wave propagation region. Therefore, for example, when the concentration of the liquid to be measured changes with the flow, the responsiveness of the sound velocity measurement is good, such that the change in the sound velocity due to the concentration change can be measured quickly.

(b)分気筒の液流入口と液流出口が一定の壁厚を有する壁状体に開口されて一定の通路長(壁厚に等しい)を有し、超音波伝播領域に侵入しようとする気泡に一定の通路抵抗を容易に付与できる。従って、音速の必要測定精度に影響を及ぼす気泡の超音波伝播領域への侵入を妨げる通路抵抗を、それらの液流入口と液流出口に容易に付与し、超音波伝播領域への気泡の侵入を回避でき、音速の高精度な測定を可能にする。   (b) The liquid inlet and the liquid outlet of the minute cylinder are opened by a wall-like body having a constant wall thickness, have a constant passage length (equal to the wall thickness), and attempt to enter the ultrasonic wave propagation region. A certain passage resistance can be easily imparted to the bubbles. Therefore, the passage resistance that prevents the bubble from entering the ultrasonic wave propagation area, which affects the required measurement accuracy of the sound velocity, is easily given to the liquid inlet and the liquid outlet, and the bubble penetrates into the ultrasonic wave propagation area. This makes it possible to measure the speed of sound with high accuracy.

(c)分気筒の超音波伝播領域を囲む壁状体のうち、上流側に臨む正面と下流側に臨む背面を除く両側面は閉塞されており、この壁状体の両側面は超音波伝播領域への気泡の侵入を完全に阻止し、音速の高精度な測定を可能にする。   (c) Of the wall-like body surrounding the ultrasonic wave propagation region of the split cylinder, both side surfaces except the front face facing the upstream side and the back face facing the downstream side are closed, and both side faces of the wall-like body are ultrasonic propagation It completely prevents air bubbles from entering the area and enables high-accuracy measurement of sound speed.

(d)超音波伝播領域における被測定液の連続的な流れが生成されるから、超音波伝播領域に一旦侵入した微細な気泡も、被測定液の流れに乗って分気筒の液流出口から容易に排出され、超音波伝播領域に旋回又は滞留することがない。   (d) Since a continuous flow of the liquid to be measured is generated in the ultrasonic wave propagation region, fine bubbles once entering the ultrasonic wave propagation region ride on the flow of the liquid to be measured from the liquid outlet of the minute cylinder. It is easily discharged and does not swirl or stay in the ultrasonic wave propagation area.

(e)超音波伝播領域における被測定液の連続的な流れが生成されるから、分気筒の背面側で超音波伝播領域への気泡の巻き込みによる侵入を生ずることがない。   (e) Since a continuous flow of the liquid to be measured in the ultrasonic wave propagation region is generated, there is no invasion of bubbles into the ultrasonic wave propagation region on the back side of the minute cylinder.

(請求項
(f)分気筒が円筒壁状体の筒軸を前記流れ方向に直交配置するとき、該壁状体に開口される液流入口の位置が分気筒の前記流れ方向の上流側に臨む真正面の位置を避けて配置される。分気筒において液流入口が開いている正面の外周面は、分気筒の真正面から周方向の外側へ下り勾配をなす円弧面をなし、分気筒の真正面に衝突した被測定液の流れはこの円弧面に沿って分気筒の側面の側へ移動し、液流入口の前面はこれを横切ろうとする被測定液の流れAにより覆われる。この流れAの一部Bだけがその液流入口から超音波伝播領域に流入するものになる。これにより、この流れAの全てがその液流入口(分気筒の真正面に配置された液流入口)から超音波伝播領域に流入する場合に比して、流れBに随伴して超音波伝播領域に侵入する気泡の量を低減できる。
(Claim 3 )
(f) When the minute cylinder has the cylindrical axis of the cylindrical wall-like body arranged orthogonally to the flow direction, the position of the liquid inlet opening to the wall-like body is located in front of the minute cylinder facing the upstream side in the flow direction. Arranged to avoid the position. The front outer peripheral surface of the minute cylinder where the liquid inlet is open forms an arc surface that forms a downward gradient from the front of the minute cylinder to the outer side in the circumferential direction, and the flow of the liquid to be measured that collides with the front of the minute cylinder is the arc. It moves to the side of the side of the minute cylinder along the surface, and the front surface of the liquid inlet is covered with the flow A of the liquid to be measured that attempts to cross it. Only a part B of the flow A flows from the liquid inlet to the ultrasonic wave propagation region. Thereby, compared with the case where all of this flow A flows into the ultrasonic wave propagation region from the liquid flow inlet (the liquid flow port arranged in front of the minute cylinder), the ultrasonic wave propagation region is accompanied by the flow B. It is possible to reduce the amount of air bubbles that enter the surface.

(請求項
(g)超音波濃度測定装置に用いる音速の測定において上述(a)〜(f)を実現し、濃度の高精度な測定と、濃度測定の応答性を向上することができる。
(Claim 4 )
(g) The above-described (a) to (f) can be realized in the measurement of the sound velocity used in the ultrasonic concentration measuring apparatus, and the highly accurate concentration measurement and the responsiveness of the concentration measurement can be improved.

図1は超音波濃度測定装置を示す模式図、図2は分気筒と被測定液の流れを示す模式図である。   FIG. 1 is a schematic diagram showing an ultrasonic concentration measuring apparatus, and FIG. 2 is a schematic diagram showing a flow of a minute cylinder and a liquid to be measured.

超音波濃度測定装置10は、図1に示す如く、被測定液Lを所定の方向に流す管路11の内部に超音波濃度測定装置20を設置する。   As shown in FIG. 1, the ultrasonic concentration measuring device 10 is provided with an ultrasonic concentration measuring device 20 in a pipe 11 through which the liquid L to be measured flows in a predetermined direction.

超音波濃度測定装置20は、管路11にねじ止めされ、超音波送受信部21と反射板22を管路11の内部に挿入する。超音波送受信部21と反射板22は支柱23により連結されかつ対向配置され、超音波送受信部21と反射板22の間の一定間隔(距離L0)の範囲を超音波伝播領域24とする。超音波送受信部21は、例えば圧電振動子(圧電セラミック、水晶等)、電歪振動子(チタン酸バリウム等)、磁歪振動子(ニッケル、フェライト等)等の振動子21Aを備える。超音波送受信部21の振動子21Aが発生する超音波Uが反射板22で反射され、超音波送受信部21の振動子21Aに伝えられ、超音波伝播領域24におけるこの間の超音波の伝播時間tが測定される。   The ultrasonic concentration measuring device 20 is screwed to the pipe line 11, and the ultrasonic transmission / reception unit 21 and the reflection plate 22 are inserted into the pipe line 11. The ultrasonic transmission / reception unit 21 and the reflection plate 22 are connected to each other by a support column 23 and arranged to face each other, and a range of a constant interval (distance L0) between the ultrasonic transmission / reception unit 21 and the reflection plate 22 is an ultrasonic propagation region 24. The ultrasonic transmission / reception unit 21 includes a vibrator 21A such as a piezoelectric vibrator (piezoelectric ceramic, quartz, etc.), an electrostrictive vibrator (barium titanate, etc.), and a magnetostrictive vibrator (nickel, ferrite, etc.). The ultrasonic wave U generated by the transducer 21 </ b> A of the ultrasonic transmission / reception unit 21 is reflected by the reflector 22, transmitted to the transducer 21 </ b> A of the ultrasonic transmission / reception unit 21, and the ultrasonic wave propagation time t in the ultrasonic propagation region 24. Is measured.

超音波音速測定装置20は、管路11の内部に挿入され、被測定液Lの温度を測定する温度センサ25を備える。   The ultrasonic sound velocity measuring device 20 includes a temperature sensor 25 that is inserted into the pipe 11 and measures the temperature of the liquid L to be measured.

超音波音速測定装置20では、超音波送受信部21と温度センサ25の検出信号がマイクロプロセッサに転送される。つまりマイクロプロセッサは、超音波送受信部21が検出した超音波伝播領域24における超音波の伝播時間tから音速Vを算出し、この音速Vと、温度センサ25が検出した超音波伝播領域24の液温Tに基づき、音速Vと温度Tと濃度Dの相関データを用いて、超音波伝播領域24に存在する被測定液の濃度Dを演算する。   In the ultrasonic sound velocity measuring device 20, detection signals from the ultrasonic transmitting / receiving unit 21 and the temperature sensor 25 are transferred to the microprocessor. That is, the microprocessor calculates the sound velocity V from the ultrasonic wave propagation time t in the ultrasonic wave propagation region 24 detected by the ultrasonic wave transmission / reception unit 21, and the sound velocity V and the liquid in the ultrasonic wave propagation region 24 detected by the temperature sensor 25. Based on the temperature T, the correlation data of the sound velocity V, the temperature T, and the concentration D is used to calculate the concentration D of the liquid to be measured existing in the ultrasonic wave propagation region 24.

しかるに、超音波音速測定装置20は、管路11の内部に分気筒30を挿入する。分気筒30は、管路11にねじ止めされ、超音波音速測定装置20の超音波伝播領域24を囲む。   However, the ultrasonic sound velocity measuring device 20 inserts the minute cylinder 30 into the pipe 11. The minute cylinder 30 is screwed to the pipe line 11 and surrounds the ultrasonic propagation region 24 of the ultrasonic sound velocity measuring device 20.

分気筒30は、図1に示す如く、円筒壁状体31の筒軸(中心軸)を被測定液の流れ方向に直交配置するように、管路11の内部に挿入し、壁状体31の一端開口から超音波音速測定装置20の超音波送受信部21、反射板22、支柱23、超音波伝播領域24、温度センサ25等を壁状体31の内部に納め、他端フランジ32を管路11にねじ止めする。分気筒30の概ね閉塞した壁状体31により超音波伝播領域24を囲む。   As shown in FIG. 1, the split cylinder 30 is inserted into the pipe 11 so that the cylinder axis (center axis) of the cylindrical wall body 31 is arranged orthogonal to the flow direction of the liquid to be measured. The ultrasonic transmission / reception unit 21, the reflector 22, the support 23, the ultrasonic wave propagation region 24, the temperature sensor 25, and the like of the ultrasonic sound velocity measuring device 20 are placed inside the wall-like body 31 from one end opening of the tube, and the other end flange 32 is connected to the tube. Screw on the path 11. The ultrasonic wave propagation region 24 is surrounded by a substantially closed wall 31 of the minute cylinder 30.

分気筒30は、図1、図2に示す如く、壁状体31における被測定液の流れ方向の上流側に臨む正面に、超音波伝播領域24への被測定液の流入を許容し、被測定液中に含まれる気泡の超音波伝播領域24への侵入を抑制する、複数個の孔(スリットでも可)状の液流入口33を開口してある。壁状体31の正面において、各液流入口33を開口する範囲aは、分気筒30の前記流れ方向の上流側に臨む真正面の両側のそれぞれにおいて、壁状体31の筒軸cまわりで片側a/2=60度以内とする(図2(B))。また、各液流入口33の孔の穿設方向は、被測定液の流れ方向に平行をなすように延在され、壁状体31の筒軸cを指向する半径方向には延在されない(図2(B))。   As shown in FIGS. 1 and 2, the minute cylinder 30 allows the liquid to be measured to flow into the ultrasonic wave propagation region 24 on the front surface facing the upstream side of the flow direction of the liquid to be measured in the wall 31. A plurality of holes (or slits) in the form of liquid inflow ports 33 are opened to prevent bubbles contained in the measurement liquid from entering the ultrasonic wave propagation region 24. On the front side of the wall-like body 31, the range a in which each liquid inlet 33 is opened is on one side around the cylinder axis c of the wall-like body 31 on both sides of the front side facing the upstream side in the flow direction of the split cylinder 30. a / 2 = within 60 degrees (FIG. 2B). Further, the direction of drilling the holes of the liquid inlets 33 extends so as to be parallel to the flow direction of the liquid to be measured, and does not extend in the radial direction toward the cylindrical axis c of the wall-shaped body 31 ( FIG. 2 (B)).

本実施例では、分気筒30の壁状体31に開口される液流入口33の位置を、分気筒30の前記流れ方向の上流側に臨む真正面の位置を避けて、真正面の両側部に配置される。   In the present embodiment, the position of the liquid inlet 33 opened in the wall 31 of the split cylinder 30 is arranged on both sides of the front of the split cylinder 30 while avoiding the position of the front facing the upstream side in the flow direction of the split cylinder 30. Is done.

分気筒30は、図1、図2に示す如く、壁状体31における被測定液の流れ方向の下流側に臨む背面に、超音波伝播領域24からの被測定液の流出を許容し、被測定液中に含まれる気泡の超音波伝播領域24への侵入を抑制する、複数個のスリット(孔でも可)状の液流出口34を開口している。壁状体31の背面において、各液流出口34を開口する範囲bは、分気筒30の前記流れ方向の下流側に臨む真背面の両側のそれぞれにおいて、壁状体31の筒軸cまわりで片側b/2=60度以内とする(図2(B))。また、各液流出口34のスリットの穿設方向は、被測定液の流れ方向に平行をなす方向に延在され、壁状体31の筒軸cを指向する半径方向には延在されない(図2(B))。   As shown in FIG. 1 and FIG. 2, the minute cylinder 30 allows the liquid to be measured to flow out from the ultrasonic wave propagation region 24 on the rear surface of the wall-like body 31 facing the downstream side in the flow direction of the liquid to be measured. A plurality of slit (or holes) -like liquid outlets 34 are opened to prevent bubbles contained in the measurement liquid from entering the ultrasonic wave propagation region 24. On the back surface of the wall-shaped body 31, the range b where each liquid outlet 34 is opened is around the cylinder axis c of the wall-shaped body 31 on both sides of the right back surface facing the downstream side in the flow direction of the split cylinder 30. One side b / 2 = within 60 degrees (FIG. 2B). In addition, the direction of the slit of each liquid outlet 34 extends in a direction parallel to the direction of flow of the liquid to be measured, and does not extend in the radial direction of the wall-like body 31 toward the cylinder axis c ( FIG. 2 (B)).

超音波音速測定装置20は、分気筒30を設置したことにより、管路11を流れてくる被測定液が液流入口33から超音波伝播領域24へ流入し、超音波伝播領域24から液流出口34を経て流出する。本実施例では、壁状体31の真正面の円周方向両側部のそれぞれに各1列に各8個(全2列全16個)の液流入口33を設け、各液流入口の口径をφ0.5mmとしたが、各液流入口33の口径は超音波Uの音速の必要測定精度に影響を及ぼす気泡の超音波伝播領域24への侵入を妨げる口径であれば良い。また、壁状体31の真背面の円周方向両側部のそれぞれに各1列各1個(全2列全2個)の液流出口34を設け、各流出口34の口径を2mm×22mm(全角R)としたが、各液流出口34の口径は超音波Uの音速の必要測定精度に影響を及ぼす気泡の超音波伝播領域24への巻き込みによる侵入を妨げる口径であれば良い。また、壁状体31の壁厚(液流入口33、液流出口34の通路長)を3mmとしたが、この壁厚は超音波Uの音速の必要測定精度に影響を及ぼす気泡の超音波伝播領域24への侵入を妨げる壁厚であれば良い。   In the ultrasonic sound velocity measuring device 20, since the minute cylinder 30 is installed, the liquid to be measured flowing through the pipe line 11 flows into the ultrasonic propagation region 24 from the liquid inlet 33, and the liquid flow from the ultrasonic propagation region 24. It flows out through the outlet 34. In the present embodiment, eight liquid inlets 33 are provided in each row (16 in total in two rows in total) on each of both sides in the circumferential direction directly in front of the wall-shaped body 31, and the diameter of each liquid inlet is set. Although the diameter is 0.5 mm, the diameter of each liquid inlet 33 may be any diameter that prevents the bubble from entering the ultrasonic wave propagation region 24 which affects the required measurement accuracy of the ultrasonic velocity of the ultrasonic wave U. Further, one liquid outlet 34 in each row (2 in total, 2 in all 2 rows) is provided on each of both sides in the circumferential direction directly behind the wall-shaped body 31, and the diameter of each outlet 34 is 2 mm × 22 mm. However, the diameter of each liquid outlet 34 only needs to be a diameter that prevents intrusion due to entrainment of bubbles in the ultrasonic propagation region 24 that affects the required measurement accuracy of the ultrasonic velocity of the ultrasonic wave U. The wall thickness of the wall-shaped body 31 (the passage length of the liquid inlet 33 and the liquid outlet 34) is 3 mm. This wall thickness affects the required ultrasonic wave U sound velocity measurement accuracy. Any wall thickness that prevents entry into the propagation region 24 may be used.

分気筒30は、被測定液に適合する各種材質からなるものとすることができるが、本実施例ではフッ素樹脂からなるものにした。   The minute cylinder 30 can be made of various materials suitable for the liquid to be measured, but in the present embodiment, it is made of a fluororesin.

分気筒30の筒断面径状は、円形に限らず、被測定液の流れ方向の上流側に臨む真正面に焦点をおく三角筒、ひし形筒等をなすものでも良い。このとき、分気筒30において液流入口33が開いている正面の外周面は、分気筒30の真正面から周方向の外側へ下り勾配をなすことが好ましく、分気筒30の真正面に衝突した被測定液の流れは、図2に示したと同様に、この外周面に沿って分気筒30の側面の側へ移動し、液流入口33の前面はこれを横切ろうとする被測定液の流れAにより覆われ、この流れAの一部Bだけがその液流入口33から超音波伝播領域24に流入するものとすることが好ましい。   The cylinder cross-sectional diameter of the split cylinder 30 is not limited to a circle, and may be a triangle cylinder, a rhombus cylinder, or the like that focuses on the front face facing the upstream side in the flow direction of the liquid to be measured. At this time, the front outer peripheral surface of the minute cylinder 30 where the liquid inlet 33 is open preferably has a downward slope from the front in front of the minute cylinder 30 to the outer side in the circumferential direction. As shown in FIG. 2, the flow of the liquid moves to the side of the side of the split cylinder 30 along this outer peripheral surface, and the front surface of the liquid inlet 33 is caused by the flow A of the liquid to be measured that attempts to cross it. It is preferable that only a part B of the flow A is covered and flows into the ultrasonic propagation region 24 from the liquid inflow port 33.

超音波濃度測定装置10を用いて、半導体研磨液中の砥流粉末の濃度を測定した実施結果について説明する。   The results of measuring the concentration of the abrasive powder in the semiconductor polishing liquid using the ultrasonic concentration measuring apparatus 10 will be described.

管路11内を流れる被測定液Lに対し、超音波送受信部21から超音波Uを送信させ、反射板22で反射した超音波Uを超音波送受信部21で受信する。超音波送受信部21による送信から受信までに要した被測定液Lの伝播時間tを計測するとともに、温度センサ25で半導体研磨液の温度Tを測定し、以下によりその濃度Dを測定する。   The ultrasonic wave U is transmitted from the ultrasonic transmission / reception unit 21 to the liquid L to be measured flowing in the pipeline 11, and the ultrasonic wave U reflected by the reflecting plate 22 is received by the ultrasonic transmission / reception unit 21. The propagation time t of the liquid L to be measured required from transmission to reception by the ultrasonic transmission / reception unit 21 is measured, the temperature T of the semiconductor polishing liquid is measured by the temperature sensor 25, and the concentration D is measured as follows.

溶液中を伝わる超音波の音速(伝播速度)は、溶液の成分、濃度及び温度等により複雑に変化するが、以下の関係式から、溶液の濃度計測が可能となる。   The speed of sound (propagation speed) of ultrasonic waves transmitted through the solution changes in a complex manner depending on the solution components, concentration, temperature, and the like, but the concentration of the solution can be measured from the following relational expression.

溶液中の超音波伝播速度V、溶液の密度ρ、及び溶液の体積弾性率Eの基本的関係は、式(1)の通りである。
2=E/ρ …(1)
The basic relationship among the ultrasonic wave propagation velocity V in the solution, the density ρ of the solution, and the bulk modulus E of the solution is expressed by equation (1).
V 2 = E / ρ (1)

体積弾性率Eと密度ρは、溶液の濃度D及び温度Tにより変化するから、式(1)から超音波伝播速度Vも溶液の濃度D及び温度Tにより変化する。ここで超音波伝播速度Vは、(2)式の通りである。
V=2L0/ti …(2)
Since the bulk modulus E and the density ρ vary with the solution concentration D and the temperature T, the ultrasonic propagation velocity V also varies with the solution concentration D and the temperature T from the equation (1). Here, the ultrasonic wave propagation velocity V is as shown in equation (2).
V = 2L0 / ti (2)

ただし、L0:超音波送受信部21から反射板22までの距離、ti:2L0間の超音波伝播時間である。即ち、超音波伝播時間を測定することにより超音波伝播速度が定まり、更に温度測定することによって溶液濃度が定まる。この関係は、(3)式の通りである。
D=F(Tc,V) …(3)
However, L0: distance from the ultrasonic transmission / reception unit 21 to the reflection plate 22, and ti: ultrasonic propagation time between 2L0. That is, the ultrasonic propagation speed is determined by measuring the ultrasonic propagation time, and the solution concentration is determined by further measuring the temperature. This relationship is as shown in equation (3).
D = F (Tc, V) (3)

但し、D:溶液濃度、F(Tc,V):温度・超音波伝播速度の2変数関数、Tc:溶液温度、となり、濃度計測が可能になる。ここで、上記2変数関数は溶液毎に定められる。   However, D: solution concentration, F (Tc, V): temperature / ultrasonic propagation velocity, two variable function, Tc: solution temperature, and concentration measurement is possible. Here, the two-variable function is determined for each solution.

本実施例によれば以下の作用効果を奏する。
(a)超音波伝播領域24を囲む分気筒30の上流側と下流側のそれぞれに、液流入口33と液流出口34を開口した。被測定液Lは、分気筒30の上流側から分気筒30の内部の超音波伝播領域24を通って分気筒30の下流側に貫通するように連続的に流れ、超音波伝播領域24で滞留しない。従って、例えば被測定液Lの濃度が流れとともに変化するとき、この濃度変化に起因する音速の変化を速やかに測定できる等、音速測定の応答性が良い。
According to the present embodiment, the following operational effects can be obtained.
(a) A liquid inlet 33 and a liquid outlet 34 are opened on the upstream side and the downstream side of the minute cylinder 30 surrounding the ultrasonic wave propagation region 24, respectively. The liquid L to be measured flows continuously from the upstream side of the minute cylinder 30 through the ultrasonic wave propagation region 24 inside the minute cylinder 30 so as to penetrate the downstream side of the minute cylinder 30 and stays in the ultrasonic wave propagation region 24. do not do. Therefore, for example, when the concentration of the liquid L to be measured changes with the flow, the responsiveness of the sound velocity measurement is good, such that the change in the sound velocity due to the concentration change can be measured quickly.

(b)分気筒30の液流入口33と液流出口34が一定の壁厚を有する壁状体31に開口されて一定の通路長(壁厚に等しい)を有し、超音波伝播領域24に侵入しようとする気泡に一定の通路抵抗を容易に付与できる。従って、音速の必要測定精度に影響を及ぼす気泡の超音波伝播領域24への侵入を妨げる通路抵抗を、それらの液流入口33と液流出口34に容易に付与し、超音波伝播領域24への気泡の侵入を回避でき、音速の高精度な測定を可能にする。   (b) The liquid inlet 33 and the liquid outlet 34 of the minute cylinder 30 are opened to the wall-like body 31 having a constant wall thickness, have a constant passage length (equal to the wall thickness), and the ultrasonic wave propagation region 24. It is possible to easily give a certain passage resistance to the bubbles that try to enter. Therefore, a passage resistance that prevents the bubble from entering the ultrasonic wave propagation region 24 that affects the required measurement accuracy of the sound velocity is easily given to the liquid inlet port 33 and the liquid outlet port 34, and the ultrasonic wave is transferred to the ultrasonic wave propagation region 24. Intrusion of bubbles can be avoided, and high-accuracy measurement of sound speed is possible.

(c)分気筒30の超音波伝播領域24を囲む壁状体31のうち、上流側に臨む正面と下流側に臨む背面を除く両側面は閉塞されており、この壁状体31の両側面は超音波伝播領域24への気泡の侵入を完全に阻止し、音速の高精度な測定を可能にする。   (c) Of the wall-like body 31 surrounding the ultrasonic wave propagation region 24 of the split cylinder 30, both side faces except the front face facing the upstream side and the back face facing the downstream side are closed, and both side faces of the wall-like body 31 are closed. Completely prevents bubbles from entering the ultrasonic wave propagation region 24 and enables high-accuracy measurement of sound velocity.

(d)超音波伝播領域24における被測定液Lの連続的な流れが生成されるから、超音波伝播領域24に一旦侵入した微細な気泡も、被測定液Lの流れに乗って分気筒30の液流出口34から容易に排出され、超音波伝播領域24に旋回又は滞留することがない。   (d) Since a continuous flow of the liquid to be measured L in the ultrasonic wave propagation region 24 is generated, minute bubbles that have once entered the ultrasonic wave propagation region 24 ride on the flow of the liquid to be measured L and the separation cylinder 30. The liquid is easily discharged from the liquid outlet 34 and does not swirl or stay in the ultrasonic wave propagation region 24.

(e)超音波伝播領域24における被測定液Lの連続的な流れが生成されるから、分気筒30の背面側で超音波伝播領域24への気泡の巻き込みによる侵入を生ずることがない。   (e) Since a continuous flow of the liquid L to be measured in the ultrasonic propagation region 24 is generated, no intrusion occurs due to entrainment of bubbles in the ultrasonic propagation region 24 on the back side of the minute cylinder 30.

(f)分気筒30が円筒壁状体31の筒軸を前記流れ方向に直交配置するとき、該壁状体31に開口される液流入口33の位置が分気筒30の前記流れ方向の上流側に臨む真正面の位置を避けて配置される。分気筒30において液流入口33が開いている正面の外周面は、分気筒30の真正面から周方向の外側へ下り勾配をなす円弧面をなし、分気筒30の真正面に衝突した被測定液Lの流れはこの円弧面に沿って分気筒30の側面の側へ移動し、液流入口33の前面はこれを横切ろうとする被測定液Lの流れAにより覆われる。この流れAの一部Bだけがその液流入口33から超音波伝播領域24に流入するものになる。これにより、この流れAの全てがその液流入口33(分気筒30の真正面に配置された液流入口33)から超音波伝播領域24に流入する場合に比して、流れBに随伴して超音波伝播領域24に侵入する気泡の量を低減できる。   (f) When the minute cylinder 30 has the cylindrical axis of the cylindrical wall body 31 arranged perpendicular to the flow direction, the position of the liquid inlet 33 opened to the wall body 31 is the upstream of the flow direction of the minute cylinder 30. It is arranged avoiding the position of the front facing the side. The front outer peripheral surface of the minute cylinder 30 where the liquid inlet 33 is open forms an arc surface that forms a downward gradient from the front of the minute cylinder 30 to the outer side in the circumferential direction, and the measured liquid L that collides with the front of the minute cylinder 30. This flow moves along the circular arc surface to the side surface of the minute cylinder 30, and the front surface of the liquid inlet 33 is covered with the flow A of the liquid L to be measured trying to cross it. Only a part B of the flow A flows into the ultrasonic propagation region 24 from the liquid inlet 33. Thereby, all of this flow A is accompanied by the flow B compared with the case where all of this flow A flows in into the ultrasonic propagation area | region 24 from the liquid inlet 33 (liquid inlet 33 arrange | positioned in front of the dividing cylinder 30). The amount of bubbles that enter the ultrasonic wave propagation region 24 can be reduced.

(g)超音波濃度測定装置10に用いる音速の測定において上述(a)〜(f)を実現し、濃度の高精度な測定と、濃度測定の応答性を向上することができる。   (g) The above-described (a) to (f) can be realized in the measurement of the sound velocity used in the ultrasonic concentration measuring apparatus 10, and the highly accurate measurement of the concentration and the responsiveness of the concentration measurement can be improved.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

図1は超音波濃度測定装置を示す模式図である。FIG. 1 is a schematic diagram showing an ultrasonic concentration measuring apparatus. 図2は分気筒と被測定液の流れを示す模式図である。FIG. 2 is a schematic diagram showing the flow of the minute cylinder and the liquid to be measured.

符号の説明Explanation of symbols

10 超音波濃度測定装置
20 超音波音速測定装置
21 超音波送受信部
22 反射板
24 超音波伝播領域
25 温度センサ
30 分気筒
31 壁状体
33 液流入口
34 液流出口
L 被測定液
DESCRIPTION OF SYMBOLS 10 Ultrasonic concentration measuring apparatus 20 Ultrasonic sound speed measuring apparatus 21 Ultrasonic transmission / reception part 22 Reflector 24 Ultrasonic propagation area 25 Temperature sensor 30 Minute cylinder 31 Wall-shaped body 33 Liquid inlet 34 Liquid outlet L Liquid to be measured

Claims (4)

所定の方向に流れる被測定液中に定めた超音波伝播領域を伝播する超音波の音速を測定する超音波音速測定装置において、
分気筒の壁状体により超音波伝播領域を囲み、
分気筒の壁状体の前記流れ方向の上流側に臨む正面に、超音波伝播領域への被測定液の流入を許容し、被測定液中に含まれる気泡の超音波伝播領域への侵入を抑制する、複数個の液流入口を開口し、
分気筒の壁状体の前記流れ方向の下流側に臨む背面に、超音波伝播領域からの被測定液の流出を許容し、被測定液中に含まれる気泡の超音波伝播領域への侵入を抑制する、複数個の液流出口を開口するとともに、
分気筒の壁状体のうち、上流側に臨む正面と下流側に臨む背面を除く両側面を閉塞し、
被測定液を分気筒の上流側から上記液流入口、超音波伝播領域、上記液流出口を経て下流側に貫通するように連続的に流通可能にしたことを特徴とする超音波音速測定装置。
In an ultrasonic sound velocity measuring apparatus that measures the sound velocity of an ultrasonic wave propagating through an ultrasonic wave propagation region defined in a liquid to be measured flowing in a predetermined direction,
Surround the ultrasonic wave propagation area with the wall of the minute cylinder ,
Allow the liquid to be measured to flow into the ultrasonic wave propagation area on the front side facing the upstream side of the flow direction of the wall of the split cylinder, and allow bubbles contained in the liquid to be measured to enter the ultrasonic wave propagation area. Open multiple liquid inlets to suppress,
Allow the liquid to be measured to flow out of the ultrasonic wave propagation area on the back of the wall of the split cylinder facing the downstream side in the flow direction, and allow bubbles contained in the liquid to be measured to enter the ultrasonic wave propagation area. While opening a plurality of liquid outlets to suppress ,
Of the wall of the split cylinder, both sides are closed except the front facing the upstream side and the back facing the downstream side,
An ultrasonic sonic velocity measuring apparatus capable of continuously flowing a liquid to be measured from the upstream side of a minute cylinder so as to penetrate the downstream side through the liquid inlet, the ultrasonic wave propagation region, and the liquid outlet. .
前記分気筒の液流入口と液流出口が、分気筒の一定の壁厚を有する壁状体に穿設される孔又はスリットからなり、それらの孔又はスリットの穿設方向は被測定液の流れ方向に平行をなすように延在され、壁状体の穿設長さに等しい通路長を有する請求項1に記載の超音波音速測定装置。The liquid inlet and the liquid outlet of the split cylinder comprise holes or slits drilled in a wall-like body having a constant wall thickness of the split cylinder, and the drilling direction of these holes or slits is the direction of the liquid to be measured. The ultrasonic sound velocity measuring device according to claim 1, wherein the ultrasonic sound velocity measuring device extends in parallel with the flow direction and has a passage length equal to a perforation length of the wall-like body. 前記分気筒が円筒壁状体の筒軸を前記流れ方向に直交配置するとき、該壁状体に開口される液流入口の位置が分気筒の前記流れ方向の上流側に臨む真正面の位置を避けて配置される請求項1又は2に記載の超音波音速測定装置。 When the split cylinder has the cylinder axis of the cylindrical wall-like body arranged perpendicular to the flow direction, the position of the liquid inlet opening in the wall-like body is a position directly in front facing the upstream side of the flow direction of the split cylinder. The ultrasonic sound velocity measuring device according to claim 1 or 2 , which is disposed so as to be avoided. 請求項1〜3のいずれかに記載の超音波音速測定装置を用いた超音波濃度測定装置。 An ultrasonic concentration measuring device using the ultrasonic sound velocity measuring device according to any one of claims 1 to 3 .
JP2006197042A 2006-07-19 2006-07-19 Ultrasonic sound velocity measuring device Active JP4842728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197042A JP4842728B2 (en) 2006-07-19 2006-07-19 Ultrasonic sound velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197042A JP4842728B2 (en) 2006-07-19 2006-07-19 Ultrasonic sound velocity measuring device

Publications (2)

Publication Number Publication Date
JP2008026067A JP2008026067A (en) 2008-02-07
JP4842728B2 true JP4842728B2 (en) 2011-12-21

Family

ID=39116852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197042A Active JP4842728B2 (en) 2006-07-19 2006-07-19 Ultrasonic sound velocity measuring device

Country Status (1)

Country Link
JP (1) JP4842728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232037B2 (en) * 2018-12-26 2023-03-02 上田日本無線株式会社 gas sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958446A (en) * 1975-08-20 1976-05-25 International Telephone And Telegraph Corporation Discontinuity suppression apparatus for vibration densitometers
JPS5247795A (en) * 1975-10-13 1977-04-15 Takenaka Komuten Co Ltd Device for measuring concentration of suspended matter in aeration tan ks
JPH08201357A (en) * 1995-01-27 1996-08-09 Nippon Seiki Co Ltd Ultrasonic concentration meter
JP2004317288A (en) * 2003-04-16 2004-11-11 Kyoto Electron Mfg Co Ltd Ultrasonic acoustic velocity measuring device

Also Published As

Publication number Publication date
JP2008026067A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US7360448B2 (en) Ultrasonic flow sensor having reflecting interface
US7624651B2 (en) Apparatus and method for attenuating acoustic waves in pipe walls for clamp-on ultrasonic flow meter
US8694270B2 (en) Ultrasonic clamp-on multiphase flowmeter
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
US10408649B2 (en) Ultrasonic fluid flow measuring using an oscillating body and a coupling piece having a reduced cross section than the oscillating body
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
CN109813381B (en) Measuring device for determining pressure in a measurement volume
CN105209865B (en) Ultrasonic flowmeter and fluid velocity measuring method
US7614309B2 (en) Cup-shaped ultrasonic transducer for a flowmeter
JP4842728B2 (en) Ultrasonic sound velocity measuring device
KR102167810B1 (en) Ultrasonic flow meter
WO2013157990A1 (en) Ultrasonic flow meter
CN108240846A (en) Ultrasonic flowmeter and the method for measuring flow
US6820500B2 (en) Small pipe bore ultrasonic flowmeter detector
JP4459828B2 (en) Ultrasonic flow meter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP2004317288A (en) Ultrasonic acoustic velocity measuring device
US11221244B2 (en) Clamp-on circumferential resonance ultrasonic flowmeter for collectively exciting and receiving circumferential modes of a pipe
Hoffmann et al. Effect of transducer port cavities in invasive ultrasonic transit-time gas flowmeters
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JPH10274551A (en) Ultrasonic flow meter
JP2009216496A (en) Ultrasonic flowmeter
KR102687758B1 (en) ultrasonic flow meter
JP2010256315A (en) Ultrasonic multiple reflection inhibition mechanism of ultrasonic wave gas/flow rate/gas concentration measuring apparatus
JP3841599B2 (en) Ultrasonic liquid flow detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250