JP4842177B2 - Circuit board and power module - Google Patents

Circuit board and power module Download PDF

Info

Publication number
JP4842177B2
JP4842177B2 JP2007057548A JP2007057548A JP4842177B2 JP 4842177 B2 JP4842177 B2 JP 4842177B2 JP 2007057548 A JP2007057548 A JP 2007057548A JP 2007057548 A JP2007057548 A JP 2007057548A JP 4842177 B2 JP4842177 B2 JP 4842177B2
Authority
JP
Japan
Prior art keywords
circuit board
conductive sheet
heat conductive
insulating spacer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007057548A
Other languages
Japanese (ja)
Other versions
JP2008218907A (en
Inventor
敦子 藤野
圭 山本
星紀 平松
隆 西村
利之 豊島
進吾 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007057548A priority Critical patent/JP4842177B2/en
Publication of JP2008218907A publication Critical patent/JP2008218907A/en
Application granted granted Critical
Publication of JP4842177B2 publication Critical patent/JP4842177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a circuit substrate which is excellent in withstand voltage and humidity resistance. <P>SOLUTION: The circuit substrate 1 has a heat conductive sheet 2, an electrode 3 provided to one surface of the heat conductive sheet 2 and a base board 4 provided to the other surface of the heat conductive sheet 2. In a circuit substrate 1 which is sealed with thermoplastic resin such as a PPS resin, PBT or the like, for example, an insulating spacer 5 constituted of a glass epoxy substrate, for example, which joins with a thermoplastic resin is provided to a region except the electrode 3 in the one surface of the heat conductive sheet 2. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、熱伝導シートと、この熱伝導シートの一面に設けられた電極と、前記熱伝導シートの他面に設けられたベース板とを備え、樹脂で封止される回路基板に関する。
また、この発明は、回路基板及びパワー半導体素子を樹脂で封止したパワーモジュールに関する。
The present invention relates to a circuit board that includes a heat conductive sheet, an electrode provided on one surface of the heat conductive sheet, and a base plate provided on the other surface of the heat conductive sheet and is sealed with a resin.
The present invention also relates to a power module in which a circuit board and a power semiconductor element are sealed with resin.

パワー半導体素子を内部に有するパワーモジュールは、大電流が流れるパワー半導体素子の発熱の影響で温度が上昇しパワー半導体素子の動作が不安定になる。
そこで、これを防ぐために放熱を容易にする構造を採用し、パワーモジュールの温度上昇を抑制している。
In a power module having a power semiconductor element inside, the temperature rises due to the heat generated by the power semiconductor element through which a large current flows, and the operation of the power semiconductor element becomes unstable.
Therefore, in order to prevent this, a structure that facilitates heat dissipation is employed to suppress the temperature rise of the power module.

一般にパワーモジュールとして採用される封止方法は、主に2種類あげられる。パワー半導体素子等の回路素子が実装された回路基板の上に蓋を被せるケース型と、樹脂封止型の2種類である。ケース型には中空構造や蓋の中に樹脂が注入されているものがある。
樹脂封止の中には2種類あり、トランスファーモールド法とインジェクションモールド法である。トランスファーモールド法は一般に熱硬化性樹脂が用いられ、金型温度を約180℃まで上昇させて、温度を維持し硬化させるものである。この方法は熱硬化であるために成形時間が長く、製造に時間を要する。
熱硬化性樹脂の場合、エポキシ樹脂が用いられることが多く、回路基板との接着性は良い場合が多いが、エポキシ樹脂中のフィラー充填量が高い場合や、基板や電極の厚みなどの構成によっては熱硬化性樹脂でも接着性が悪い場合がある。具体的には、樹脂応力の差が発生し、その応力が密着力を上回った場合、樹脂と基板の界面で接着性が悪くなり剥離する場合があり、ヒートサイクル性に問題が発生し、接着性向上の改善策が必要になる。
There are mainly two types of sealing methods generally employed as power modules. There are two types: a case type that covers a circuit board on which a circuit element such as a power semiconductor element is mounted, and a resin-sealed type. Some case molds have a hollow structure or a lid in which resin is injected.
There are two types of resin sealing, transfer molding and injection molding. In the transfer molding method, a thermosetting resin is generally used, and the mold temperature is raised to about 180 ° C., and the temperature is maintained and cured. Since this method is thermosetting, the molding time is long and time is required for production.
In the case of a thermosetting resin, an epoxy resin is often used, and adhesion to a circuit board is often good, but depending on the configuration such as the thickness of the board or electrode when the filler filling amount in the epoxy resin is high May have poor adhesion even with a thermosetting resin. Specifically, if a difference in resin stress occurs and the stress exceeds the adhesive strength, adhesion may deteriorate at the interface between the resin and the substrate, causing a problem in heat cycle performance and adhesion. Improvement measures are needed to improve productivity.

一方、インジェクションモールド法は、成形時間が短縮される熱可塑性樹脂を用いている。熱可塑性樹脂の場合硬化反応はせずに熱を加えることによって溶融し、冷やすと固化するものである。そのため、短時間で封止を完了することができる。
しかし、熱可塑性樹脂は、一般的に回路基板との接着性が悪く、特に官能基を有しない熱可塑性樹脂の場合、回路基板の表面部材との間で化学結合することができないので、回路基板に対して接着性が悪い。そのため、回路基板の耐電圧性、耐湿性が劣る。
この問題に対しては、回路基板の裏面をダレ面とすることにより熱可塑性樹脂でモールド成形したときに、ダレ面の周辺部にモールド樹脂を回り込ませることで、回路基板とモールド樹脂との接着が強固になり、回路基板がモールド樹脂から離脱するのを防止する方法が提案されている(例えば、特許文献1参照)。
On the other hand, the injection molding method uses a thermoplastic resin whose molding time is shortened. In the case of a thermoplastic resin, it does not undergo a curing reaction, melts by applying heat, and solidifies when cooled. Therefore, sealing can be completed in a short time.
However, the thermoplastic resin generally has poor adhesion to the circuit board, and in particular in the case of a thermoplastic resin having no functional group, it cannot chemically bond with the surface member of the circuit board. Adhesiveness is poor. Therefore, the voltage resistance and moisture resistance of the circuit board are inferior.
To solve this problem, when molding with thermoplastic resin by making the back side of the circuit board into a sag surface, the circuit board and the mold resin are bonded by making the mold resin wrap around the periphery of the sag surface. Has been proposed, and a method for preventing the circuit board from being detached from the mold resin has been proposed (see, for example, Patent Document 1).

特開2003−318333号公報(第2頁〜第3頁)JP 2003-318333 A (pages 2 to 3)

しかしながら、このパワーモジュールの場合、回路基板とモールド樹脂との間の接着力が向上し、モールド樹脂が回路基板から離脱するのを防止できるものの、例えば回路基板とモールド樹脂との間で隙間が生じ、その隙間に水分が浸入してしまうことがあった。
また、ダレ面の周辺部にモールド樹脂を回り込ませなければならず、パワーモジュール自体が大型化してしまうという問題点もあった。
However, in the case of this power module, although the adhesive force between the circuit board and the mold resin is improved and the mold resin can be prevented from being detached from the circuit board, for example, a gap is generated between the circuit board and the mold resin. In some cases, moisture may enter the gap.
In addition, there is a problem that the mold resin has to go around the sag surface and the power module itself becomes large.

この発明は、上記のような問題点を解決することを課題とするものであって、耐電圧特性、耐湿性に優れた回路基板、及び耐電圧特性、耐湿性に優れているとともに小型化されたパワーモジュールを提供することを目的とする。   An object of the present invention is to solve the above-described problems, and is a circuit board excellent in withstand voltage characteristics and moisture resistance, and excellent in withstand voltage characteristics and moisture resistance, and is downsized. An object is to provide a power module.

この発明に係る回路基板は、熱伝導シートと、この熱伝導シートの一面に設けられた電極と、前記熱伝導シートの他面に設けられたベース板とを備え、樹脂で封止される回路基板において、前記熱伝導シートの前記一面の前記電極を除く領域には、前記樹脂と接着する絶縁スペーサーが設けられており、前記絶縁スペーサーは、ガラスエポキシ基板で構成されている。 A circuit board according to the present invention includes a heat conductive sheet, an electrode provided on one surface of the heat conductive sheet, and a base plate provided on the other surface of the heat conductive sheet, and is sealed with a resin. In the substrate, an insulating spacer that adheres to the resin is provided in a region excluding the electrode on the one surface of the thermal conductive sheet, and the insulating spacer is formed of a glass epoxy substrate.

この発明に係るパワーモジュールは、ガラスエポキシ基板で構成されたスペーサーを有する回路基板と、この回路基板の電極上に設けられたパワー半導体素子と、前記回路基板及び前記パワー半導体素子を封止した樹脂とを備えている。
A power module according to the present invention includes a circuit board having a spacer formed of a glass epoxy substrate, a power semiconductor element provided on an electrode of the circuit board, and a resin in which the circuit board and the power semiconductor element are sealed And.

この発明に係る回路基板によれば、樹脂との密着性に優れ、優れた耐電圧特性、耐湿性を得ることができる。
また、この発明に係るパワーモジュールによれば、樹脂に対する回路基板の密着性が優れ、耐電圧特性、耐湿性が向上するとともに、小型化される。
According to the circuit board according to the present invention, the adhesiveness with the resin is excellent, and excellent withstand voltage characteristics and moisture resistance can be obtained.
Further, according to the power module of the present invention, the adhesion of the circuit board to the resin is excellent, the withstand voltage characteristics and the moisture resistance are improved, and the size is reduced.

以下、この発明の各実施の形態について説明するが、各図において、同一または相当部材、部位については、同一符号を付して説明する。
実施の形態1.
図1はこの発明の実施の形態1における回路基板1の平面図、図2は図1のII−II線に沿った矢視断面図である。
Hereinafter, embodiments of the present invention will be described. In the drawings, the same or corresponding members and portions will be described with the same reference numerals.
Embodiment 1 FIG.
1 is a plan view of a circuit board 1 according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

この回路基板1は、熱伝導シート2と、この熱伝導シート2の一面に設けられた電極3と、熱伝導シート2の他面に設けられたベース板4と、熱伝導シート2の前記一面の電極3を除く領域に設けられ熱可塑性樹脂からなるモールド樹脂と接着する絶縁スペーサー5とを備えている。
絶縁スペーサー5の厚さと電極3の厚さとは同じ厚さである。
The circuit board 1 includes a heat conductive sheet 2, an electrode 3 provided on one surface of the heat conductive sheet 2, a base plate 4 provided on the other surface of the heat conductive sheet 2, and the one surface of the heat conductive sheet 2. And an insulating spacer 5 which is provided in a region excluding the electrode 3 and is bonded to a mold resin made of a thermoplastic resin.
The thickness of the insulating spacer 5 and the thickness of the electrode 3 are the same.

熱伝導シート2は、主に樹脂組成物と無機フィラーで構成されている。樹脂組成物としては、例えばエポキシ樹脂、フェノール樹脂、シリコーンゴム等の熱硬化性樹脂が用いられる。また、ポリエチレン、ポリイミド、アクリル系の熱可塑性樹脂等を用いてもよい。
また、無機フィラーとしては、良熱伝導性のアルミナ、窒化ホウ素、窒化アルミニウム等が用いられる。また、無機フィラーは、一種類でも2種類以上充填してもよい。
電極3及びベース板4は、例えば銅等の導電性金属で構成されている。
また、絶縁スペーサー5は、例えば熱可塑性樹脂であるPPS(ポリフェニレンサルファンド)で構成されたモールド樹脂に対して優れた密着性を有するガラスエポキシ基板で構成されている。
なお、絶縁スペーサー5の材料として、絶縁性、及びモールド樹脂に対して優れた密着性を有する例えばポリイミド樹脂等を用いてもよい。
The heat conductive sheet 2 is mainly composed of a resin composition and an inorganic filler. As the resin composition, for example, a thermosetting resin such as an epoxy resin, a phenol resin, or silicone rubber is used. Further, polyethylene, polyimide, acrylic thermoplastic resin, or the like may be used.
As the inorganic filler, good thermal conductivity alumina, boron nitride, aluminum nitride or the like is used. Further, one kind or two or more kinds of inorganic fillers may be filled.
The electrode 3 and the base plate 4 are made of a conductive metal such as copper, for example.
Moreover, the insulating spacer 5 is comprised with the glass epoxy board | substrate which has the outstanding adhesiveness with respect to the mold resin comprised, for example with PPS (polyphenylene sulfide) which is a thermoplastic resin.
In addition, as a material of the insulating spacer 5, for example, a polyimide resin or the like having an insulating property and excellent adhesion to the mold resin may be used.

次に、この実施の形態の回路基板1の製造手順について図3を用いて説明する。
先ず、図3(A)に示すように、ベース板4に熱伝導シート2を配置し、圧力を加えながら接着させる。
次に、熱伝導シート2の上に、絶縁スペーサー5を配置し(図3(B))、引き続き電極3を配置する。
最後に、電極3及び絶縁スペーサー5に圧力をかけながら熱伝導シート2を高温で硬化させることで回路基板1を得ることができる(図3(C))。
なお、絶縁スペーサー5は、予め電極3が嵌入できる孔6が形成されている。この孔6は、均一な孔寸法が得やすい機械加工や金型打ち抜き加工が望ましい。
Next, the manufacturing procedure of the circuit board 1 of this embodiment will be described with reference to FIG.
First, as shown in FIG. 3A, the heat conductive sheet 2 is disposed on the base plate 4 and bonded while applying pressure.
Next, the insulating spacer 5 is disposed on the heat conductive sheet 2 (FIG. 3B), and the electrode 3 is subsequently disposed.
Finally, the circuit board 1 can be obtained by curing the heat conductive sheet 2 at a high temperature while applying pressure to the electrode 3 and the insulating spacer 5 (FIG. 3C).
The insulating spacer 5 has a hole 6 into which the electrode 3 can be inserted in advance. The hole 6 is preferably machined or die punched so that a uniform hole size can be easily obtained.

この実施の形態の回路基板1によれば、絶縁スペーサー5は、例えば熱可塑性樹脂であるPPS(ポリフェニレンサルファンド)に対して優れた接着性を有するガラスエポキシ基板で構成されている。PPSは、官能基を有していないので、他の化合物と化学結合ができず、他の化合物からなる熱伝導シートと強固に接着できないが、ガラスエポキシ基板との間で物理的な結合(アンカー効果)がなされ、絶縁スペーサー5に対する接着性が確保され、回路基板1は優れた耐電圧特性、耐湿性を得ることができる。   According to the circuit board 1 of this embodiment, the insulating spacer 5 is made of a glass epoxy board having excellent adhesion to, for example, PPS (polyphenylene sulfide) which is a thermoplastic resin. Since PPS does not have a functional group, it cannot be chemically bonded to other compounds and cannot be firmly bonded to a heat conductive sheet made of other compounds, but is physically bonded (anchored) to a glass epoxy substrate. Effect), adhesion to the insulating spacer 5 is ensured, and the circuit board 1 can obtain excellent withstand voltage characteristics and moisture resistance.

実施の形態2.
図4はこの発明の実施の形態2における回路基板60を示す断面図である。
この実施の形態の回路基板60では、絶縁スペーサー61bは、予め電極3が嵌入できる孔6が形成されたガラスエポキシ基板12の最表面に半硬化プリプレグ層13c(半硬化のガラスエポキシ基板)が形成されている。
他の構成は、実施の形態1と同じである。
Embodiment 2. FIG.
4 is a cross-sectional view showing a circuit board 60 according to Embodiment 2 of the present invention.
In the circuit board 60 of this embodiment, the insulating spacer 61b is formed with a semi-cured prepreg layer 13c (semi-cured glass epoxy board) on the outermost surface of the glass epoxy board 12 in which the holes 6 into which the electrodes 3 can be inserted are formed in advance. Has been.
Other configurations are the same as those of the first embodiment.

次に、この実施の形態の回路基板60の製造手順について図5を用いて説明する。
先ず、図5(A)に示すように、ベース板4に熱伝導シート2を配置し、圧力を加えながら接着させる。
次に、熱伝導シート2に、ガラスエポキシ基板12を配置し(図5(B))、引き続き孔6に電極3をはめ込んで配置する。
その後、電極3及びガラスエポキシ基板12に圧力をかけながら熱伝導シート2を高温で硬化させる(図5(C))。
さらに、ガラスエポキシ基板12上にプリプレグ層13aを配置し、ガラスエポキシ基板12とプリプレグ層13aとから構成された未硬化絶縁スペーサー61aを形成する(図5(D))。
最後に、未硬化絶縁スペーサー61aに低温度、低圧力をかけて、プリプレグ層13aを半硬化プリプレグ層13cにすることで、図4に示す、表面に半硬化プリプレグ層13cを有する絶縁スペーサー61bが形成される。
Next, the manufacturing procedure of the circuit board 60 of this embodiment will be described with reference to FIG.
First, as shown in FIG. 5A, the heat conductive sheet 2 is arranged on the base plate 4 and bonded while applying pressure.
Next, the glass epoxy board | substrate 12 is arrange | positioned to the heat conductive sheet 2 (FIG. 5 (B)), and the electrode 3 is inserted and arrange | positioned in the hole 6 continuously.
Then, the heat conductive sheet 2 is hardened at high temperature, applying a pressure to the electrode 3 and the glass epoxy board | substrate 12 (FIG.5 (C)).
Further, a prepreg layer 13a is disposed on the glass epoxy substrate 12, and an uncured insulating spacer 61a composed of the glass epoxy substrate 12 and the prepreg layer 13a is formed (FIG. 5D).
Finally, by applying low temperature and low pressure to the uncured insulating spacer 61a to make the prepreg layer 13a a semi-cured prepreg layer 13c, the insulating spacer 61b having the semi-cured prepreg layer 13c on the surface shown in FIG. It is formed.

具体的には、ガラスエポキシ基板12と同形状に加工した(または、電極形状を打ち抜きした)プレス後の仕上がり層厚さ0.1mmのプリプレグ層13aをガラスエポキシ基板12の最表面に配置し、20kg/cm2(100℃,15分)で接着させることで、プリプレグ層13aは半硬化プリプレグ層13cとなり、回路基板60を得ることができる。
この実施の形態の回路基板60によれば、モールド樹脂で封止される前の段階では、最表面の半硬化プリプレグ層13cは半硬化の状態で形成されており、封止樹脂との接着界面に半硬化プリプレグ層13cを構成させることができる。その結果、モールド樹脂と絶縁スペーサー60との接着性が向上し、回路基板60の耐電圧特性、耐湿性が向上する。
なお、未硬化絶縁スペーサー61aは、熱硬化処理されることで、プリプレグ層13aが完全に硬化される前の半硬化プリプレグ層13cを有する絶縁スペーサー61bとなり、その後モールド樹脂で封止された後では、半硬化プリプレグ層13cは、ガラスエポキシ基板12と一体化された硬化層となる。
Specifically, a prepreg layer 13a having a finished layer thickness of 0.1 mm after pressing that is processed into the same shape as the glass epoxy substrate 12 (or the electrode shape is punched) is disposed on the outermost surface of the glass epoxy substrate 12, By bonding at 20 kg / cm 2 (100 ° C., 15 minutes), the prepreg layer 13a becomes a semi-cured prepreg layer 13c, and the circuit board 60 can be obtained.
According to the circuit board 60 of this embodiment, before the sealing with the mold resin, the semi-cured prepreg layer 13c on the outermost surface is formed in a semi-cured state and has an adhesive interface with the sealing resin. A semi-cured prepreg layer 13c can be formed. As a result, the adhesion between the mold resin and the insulating spacer 60 is improved, and the withstand voltage characteristics and moisture resistance of the circuit board 60 are improved.
The uncured insulating spacer 61a is heat-cured to become an insulating spacer 61b having a semi-cured prepreg layer 13c before the prepreg layer 13a is completely cured, and after being sealed with a mold resin after that. The semi-cured prepreg layer 13 c is a cured layer integrated with the glass epoxy substrate 12.

実施の形態3.
図6はこの発明の実施の形態3における回路基板70を示す断面図である。
この実施の形態の回路基板70の絶縁スペーサー101では、ガラスエポキシ基板12の表面にシランカップリング剤71の処理など、密着性向上効果のある処理が施されている。他の構成は、実施の形態1と同じである。
ガラスエポキシ基板12の表面に化学的な密着性向上の効果のあるシランカップリング剤71の処理を施すことにより、封止樹脂との接着性を向上させることができる。
シランカップリング剤71は、例えばKBM603(信越化学工業株式会社製)等を使用することができる。
Embodiment 3 FIG.
6 is a cross-sectional view showing a circuit board 70 according to Embodiment 3 of the present invention.
In the insulating spacer 101 of the circuit board 70 according to this embodiment, the surface of the glass epoxy substrate 12 is subjected to a treatment having an effect of improving adhesion, such as a treatment with a silane coupling agent 71. Other configurations are the same as those of the first embodiment.
By subjecting the surface of the glass epoxy substrate 12 to the treatment with the silane coupling agent 71 having an effect of improving chemical adhesion, the adhesion with the sealing resin can be improved.
As the silane coupling agent 71, for example, KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd.) or the like can be used.

実施の形態4.
図7はこの発明の実施の形態4における回路基板10を示す断面図である。
この実施の形態の回路基板10では、絶縁スペーサー11bは、ガラスエポキシ基板12、硬化層13b及びガラスエポキシ基板12の3層構造の積層体である。
ここで、硬化層13bは、プリプレグ層13aが熱硬化処理され、完全に硬化されたプリプレグの硬化層をいう。
他の構成は、実施の形態1と同じである。
Embodiment 4 FIG.
FIG. 7 is a sectional view showing a circuit board 10 according to the fourth embodiment of the present invention.
In the circuit board 10 of this embodiment, the insulating spacer 11b is a laminate having a three-layer structure of the glass epoxy substrate 12, the hardened layer 13b, and the glass epoxy substrate 12.
Here, the hardened layer 13b refers to a hardened layer of a prepreg that has been completely cured by heat-curing the prepreg layer 13a.
Other configurations are the same as those of the first embodiment.

次に、この実施の形態の回路基板10の製造手順について図8を用いて説明する。
先ず、図8(A)に示すように、ベース板4に熱伝導シート2を配置し、圧力を加えながら接着させる。
次に、熱伝導シート2に、ガラスエポキシ基板12、プリプレグ層13a及びガラスエポキシ基板12の3層構造の積層体からなる未硬化絶縁スペーサー11aを配置し(図8(B))、引き続き孔6に電極3をはめ込み、配置する(図8(C))。
最後に、電極3及び未硬化絶縁スペーサー11aに圧力をかけながら熱伝導シート2を高温で硬化させることで、図7に示す回路基板10を得ることができる。
Next, the manufacturing procedure of the circuit board 10 of this embodiment will be described with reference to FIG.
First, as shown to FIG. 8 (A), the heat conductive sheet 2 is arrange | positioned to the base plate 4, and it adhere | attaches it, applying a pressure.
Next, an uncured insulating spacer 11a made of a three-layer laminate of the glass epoxy substrate 12, the prepreg layer 13a, and the glass epoxy substrate 12 is disposed on the heat conductive sheet 2 (FIG. 8B), and the holes 6 are continuously formed. The electrode 3 is fitted in and disposed (FIG. 8C).
Finally, the circuit board 10 shown in FIG. 7 can be obtained by curing the heat conductive sheet 2 at a high temperature while applying pressure to the electrode 3 and the uncured insulating spacer 11a.

この実施の形態の回路基板10によれば、電極3及び未硬化絶縁スペーサー11aに圧力をかけながら熱伝導シート2を高温で硬化させる際に、プリプレグ層13aが軟化し、電極3の周側面と未硬化絶縁スペーサー11aとの隙間が埋められる。また、未硬化絶縁スペーサー11aのプリプレグ層13aも硬化して硬化層13bに変成する。その結果、熱伝導シート2の全面に均等に圧力が加わり、全面に渡って等しい厚さの熱伝導シート2を得ることができる。
また、モールド樹脂は、熱伝導シート2と接触することはなく、絶縁スペーサー11bに対する接着性が確保され、回路基板10の耐電圧特性、耐湿性が向上する。
なお、図9に示す回路基板80のように、絶縁スペーサー81は、硬化層13b及びガラスエポキシ基板12の2層構成の積層体であってもよい。
According to the circuit board 10 of this embodiment, when the heat conductive sheet 2 is cured at a high temperature while applying pressure to the electrode 3 and the uncured insulating spacer 11a, the prepreg layer 13a is softened, and the peripheral side surface of the electrode 3 A gap with the uncured insulating spacer 11a is filled. Further, the prepreg layer 13a of the uncured insulating spacer 11a is also cured and transformed into a cured layer 13b. As a result, the pressure is evenly applied to the entire surface of the heat conductive sheet 2, and the heat conductive sheet 2 having the same thickness over the entire surface can be obtained.
Further, the mold resin does not come into contact with the heat conductive sheet 2, and adhesion to the insulating spacer 11 b is ensured, so that the withstand voltage characteristics and moisture resistance of the circuit board 10 are improved.
Note that the insulating spacer 81 may be a two-layer laminate of the hardened layer 13b and the glass epoxy substrate 12 as in the circuit board 80 shown in FIG.

この実施の形態の回路基板80によれば、電極3及び絶縁スペーサー81に圧力をかけながら熱伝導シート2を高温で硬化させる際に、プリプレグ層13aが軟化し、電極3の周側面と絶縁スペーサー81との隙間が埋められる。その結果、熱伝導シート2の全面に均等に圧力が加わり、全面に渡って等しい厚さの熱伝導シート2を得ることができる。
また、熱伝導シート2を高温で硬化させる際、プリプレグ層13aが接しているために、絶縁スペーサー81と熱伝導シート2の接着力を向上させることができる。
また、モールド樹脂は、熱伝導シート2と接触することはなく、絶縁スペーサー81に対する接着性が確保され、回路基板80の耐電圧特性、耐湿性が向上する。
According to the circuit board 80 of this embodiment, when the heat conductive sheet 2 is cured at a high temperature while applying pressure to the electrode 3 and the insulating spacer 81, the prepreg layer 13a softens, and the peripheral side surface of the electrode 3 and the insulating spacer A gap with 81 is filled. As a result, the pressure is evenly applied to the entire surface of the heat conductive sheet 2, and the heat conductive sheet 2 having the same thickness over the entire surface can be obtained.
Further, when the heat conductive sheet 2 is cured at a high temperature, the adhesive force between the insulating spacer 81 and the heat conductive sheet 2 can be improved because the prepreg layer 13a is in contact therewith.
In addition, the mold resin does not come into contact with the heat conductive sheet 2, the adhesiveness to the insulating spacer 81 is ensured, and the withstand voltage characteristic and the moisture resistance of the circuit board 80 are improved.

実施の形態5.
図10はこの発明の実施の形態5における回路基板90を示す断面図である。
この実施の形態の回路基板90では、絶縁スペーサー91は、実施の形態4で示した、ガラスエポキシ基板12、硬化層13b及びガラスエポキシ基板12の3層構造の最表面に半硬化プリプレグ層13cが形成されている。
他の構成は、実施の形態1と同じである。
この実施の形態の回路基板90によれば、モールド樹脂で封止される前の段階では、最表面の半硬化プリプレグ層13cは半硬化の状態で形成されており、封止樹脂との接着界面に半硬化の樹脂を構成させることができる。その結果、モールド樹脂と絶縁スペーサー91との接着性が向上し、回路基板90の耐電圧特性、耐湿性が向上する。
Embodiment 5 FIG.
FIG. 10 is a sectional view showing a circuit board 90 according to the fifth embodiment of the present invention.
In the circuit board 90 of this embodiment, the insulating spacer 91 has the semi-cured prepreg layer 13c on the outermost surface of the three-layer structure of the glass epoxy substrate 12, the cured layer 13b, and the glass epoxy substrate 12 shown in the fourth embodiment. Is formed.
Other configurations are the same as those of the first embodiment.
According to the circuit board 90 of this embodiment, before the sealing with the mold resin, the outermost semi-cured prepreg layer 13c is formed in a semi-cured state and has an adhesive interface with the sealing resin. A semi-cured resin can be constituted. As a result, the adhesion between the mold resin and the insulating spacer 91 is improved, and the withstand voltage characteristic and the moisture resistance of the circuit board 90 are improved.

実施の形態6.
図11はこの発明の実施の形態6における回路基板20を示す断面図である。
この実施の形態の回路基板20では、絶縁スペーサー21は、ガラスエポキシ基板12、硬化層13b及びガラスエポキシ基板12の3層構造の積層体の表面に、エンボス加工した表面加工フィルム22が形成されている。
なお、表面加工フィルム22については、粗化処理されたものであればよく、エンボス加工に限定されない。
Embodiment 6 FIG.
FIG. 11 is a sectional view showing a circuit board 20 according to the sixth embodiment of the present invention.
In the circuit board 20 of this embodiment, the insulating spacer 21 has an embossed surface processed film 22 formed on the surface of a three-layer structure of the glass epoxy substrate 12, the cured layer 13b, and the glass epoxy substrate 12. Yes.
In addition, about the surface processed film 22, what is necessary is just to have roughened, and it is not limited to embossing.

この実施の形態の回路基板20によれば、絶縁スペーサー21は、実施の形態4で示した3層構造の積層体の表面に、表面加工フィルム22が形成されているので、実施の形態4の絶縁スペーサー11bと比較して、モールド樹脂と絶縁スペーサー21との接触面積が増大し、モールド樹脂の絶縁スペーサー21に対する接着性が実施の形態4の回路基板10と比較してより向上し、回路基板20の耐電圧特性、耐湿性がより向上する。   According to the circuit board 20 of this embodiment, the insulating spacer 21 has the surface processed film 22 formed on the surface of the three-layer structure shown in the fourth embodiment. Compared with the insulating spacer 11b, the contact area between the mold resin and the insulating spacer 21 is increased, and the adhesion of the mold resin to the insulating spacer 21 is further improved as compared with the circuit board 10 of the fourth embodiment. The withstand voltage characteristics and moisture resistance of 20 are further improved.

実施の形態7.
図12はこの発明の実施の形態7における回路基板30を示す断面図である。
この実施の形態の回路基板30では、実施の形態6の回路基板20と比較して、絶縁スペーサー31の高さが、プレス圧力と、電極3と絶縁スペーサー31との熱膨張率差とを利用して電極3の高さよりも高い。
なお、絶縁スペーサー31と電極3との高さの違いは、初期厚みを調整することでも可能である。
他の構成は、実施の形態6と同じである。
Embodiment 7 FIG.
FIG. 12 is a sectional view showing a circuit board 30 according to the seventh embodiment of the present invention.
In the circuit board 30 of this embodiment, the height of the insulating spacer 31 uses the press pressure and the difference in thermal expansion coefficient between the electrode 3 and the insulating spacer 31 as compared with the circuit board 20 of the sixth embodiment. Thus, it is higher than the height of the electrode 3.
Note that the difference in height between the insulating spacer 31 and the electrode 3 can also be achieved by adjusting the initial thickness.
Other configurations are the same as those of the sixth embodiment.

この実施の形態の回路基板30によれば、隣接した電極3間における沿面距離が長くなり、回路基板30の耐電圧特性がより向上する。   According to the circuit board 30 of this embodiment, the creeping distance between the adjacent electrodes 3 is increased, and the withstand voltage characteristics of the circuit board 30 are further improved.

実施の形態8.
図13(A)〜図13(C)はこの実施の形態8における回路基板40の製造手順を示す図である。
この実施の形態の回路基板40では、図13(A)に示すように、ベース板4に熱伝導シート2を配置し圧力をかけながら接着させる。次に、電極3及び未硬化絶縁スペーサー11aに圧力及び温度を加えて予め一体化されたブロックを、熱伝導シート2上に配置し、圧力をかけながら熱伝導シート2を高温で硬化させることにより、プリプレグ層13aが硬化層13bになった絶縁スペーサー11bを有する回路基板40を得る(図13(B)、図13(C))。
Embodiment 8 FIG.
FIG. 13A to FIG. 13C are diagrams showing a procedure for manufacturing the circuit board 40 in the eighth embodiment.
In the circuit board 40 of this embodiment, as shown in FIG. 13 (A), the heat conductive sheet 2 is disposed on the base plate 4 and bonded while applying pressure. Next, by applying pressure and temperature to the electrode 3 and the uncured insulating spacer 11a, a block integrated in advance is placed on the heat conductive sheet 2, and the heat conductive sheet 2 is cured at a high temperature while applying pressure. Then, the circuit board 40 having the insulating spacer 11b in which the prepreg layer 13a is the cured layer 13b is obtained (FIGS. 13B and 13C).

この実施の形態の回路基板40では、電極3及び未硬化絶縁スペーサー11aからなるブロックは、圧力及び温度を加えて一体化されており、熱伝導シート2の全面に均等に圧力が加わり、全面に渡って等しい厚さの熱伝導シート2を得ることができる。   In the circuit board 40 of this embodiment, the block composed of the electrode 3 and the uncured insulating spacer 11a is integrated by applying pressure and temperature, and pressure is evenly applied to the entire surface of the heat conductive sheet 2 so that the entire surface is covered. A heat conductive sheet 2 having an equal thickness can be obtained.

実施の形態9.
図14はこの発明の実施の形態9におけるパワーモジュール50を示す断面図である。
この実施の形態のパワーモジュール50は、図7に示された実施の形態4の回路基板10と、電極3上にはんだ51を用いて接着されたパワー半導体素子52と、パワー半導体素子52と電極3とをはんだ51を用いて電気的に接続したリード線54と、電極3にはんだ51を用いて接続されたリードフレーム53と、回路基板10、パワー半導体素子52及びリード線54を封止したPPS(ポリフェニレンサルファイド)からなる熱可塑性樹脂のモールド樹脂55とを備えている。
また、この実施の形態のパワーモジュール50では、ベース板4の反熱伝導シート2側にヒートスプレッダ56が接続されている。このヒートスプレッダ56は、金属製の放熱構造を有するものである。
Embodiment 9 FIG.
FIG. 14 is a sectional view showing a power module 50 according to the ninth embodiment of the present invention.
The power module 50 according to this embodiment includes a circuit board 10 according to the fourth embodiment shown in FIG. 7, a power semiconductor element 52 bonded to the electrode 3 using solder 51, a power semiconductor element 52, and an electrode. 3, the lead wire 54 electrically connected to the electrode 3 using the solder 51, the lead frame 53 connected to the electrode 3 using the solder 51, the circuit board 10, the power semiconductor element 52, and the lead wire 54 are sealed. And a thermoplastic resin mold resin 55 made of PPS (polyphenylene sulfide).
In the power module 50 according to this embodiment, the heat spreader 56 is connected to the base plate 4 on the side opposite to the heat-conductive sheet 2. The heat spreader 56 has a metal heat dissipation structure.

なお、上記パワーモジュール50では、実施の形態4の回路基板10がPPS樹脂で封止されているが、実施の形態1〜3,5〜8の回路基板1,60,70,10,80,90,20,30,40がPPS樹脂で封止されたものでもよい。
また、PPS樹脂に限定されるものではなく、例えばPBT(ポリブチレンテレフタレート)やLCP(液晶ポリマー)等の熱可塑性樹脂を用いてもよい。
In the power module 50, the circuit board 10 of the fourth embodiment is sealed with PPS resin, but the circuit boards 1, 60, 70, 10, 80, of the first to third and fifth to eighth embodiments. 90, 20, 30, 40 may be sealed with PPS resin.
Moreover, it is not limited to PPS resin, For example, you may use thermoplastic resins, such as PBT (polybutylene terephthalate) and LCP (liquid crystal polymer).

上記構成のパワーモジュール50によれば、絶縁スペーサー11の最上層は、熱可塑性樹脂であるPPSに対して優れた接着性を有するガラスエポキシ基板12で構成されているので、PPSに対する接着性が確保され、電極3間の耐絶縁性が向上し、耐電圧特性、耐湿性が向上する。
また、上記特許文献1に記載のパワーモジュールと比較して、モールド樹脂の容量が小さくなり、小型化される。
なお、上記実施の形態9のモールド樹脂55は、熱可塑性樹脂に限定されるものではなく、例えば、熱硬化性樹脂であるエポキシ樹脂を用いてもよい。特に、実施の形態1に示した絶縁スペーサー5は、熱硬化性樹脂であるエポキシ樹脂に対して優れた接着性を有するガラスエポキシ基板で構成されているので、エポキシ樹脂に対する接着性が確保され、電極3間の耐絶縁性が向上し、耐電圧特性、耐湿性が向上する。
According to the power module 50 having the above configuration, the uppermost layer of the insulating spacer 11 is composed of the glass epoxy substrate 12 having excellent adhesiveness to the PPS which is a thermoplastic resin, so that the adhesiveness to the PPS is ensured. Thus, the insulation resistance between the electrodes 3 is improved, and the withstand voltage characteristics and the moisture resistance are improved.
Moreover, compared with the power module described in Patent Document 1, the capacity of the mold resin is reduced and the size is reduced.
In addition, the mold resin 55 of the said Embodiment 9 is not limited to a thermoplastic resin, For example, you may use the epoxy resin which is a thermosetting resin. In particular, since the insulating spacer 5 shown in the first embodiment is composed of a glass epoxy substrate having excellent adhesion to an epoxy resin that is a thermosetting resin, adhesion to the epoxy resin is ensured, Insulation resistance between the electrodes 3 is improved, and withstand voltage characteristics and moisture resistance are improved.

次に、この発明における上記実施の形態1,2,4〜8の各回路基板1,60,10,90,20,30,40の製造方法の具体例、並びに実施の形態9のパワーモジュール50の製造方法の具体例について以下に示す実施例1〜8で説明する。   Next, a specific example of a method of manufacturing each circuit board 1, 60, 10, 90, 20, 30, 40 of the first, second, fourth to eighth embodiments of the present invention, and the power module 50 of the ninth embodiment. Specific examples of the production method will be described in Examples 1 to 8 shown below.

実施例1.
実施の形態1に関する回路基板1の一例として、ベース板4、電極3には銅を用いた。ベース板4及び電極3は、ぞれぞれの表面が熱伝導シート2との密着性向上のため、表面にエッチングによって凹凸面を形成したCZ処理を施したものを使用した。
ベース板4上に35mm×45mmにカットした熱伝導シート2を載置し、100kg/cm(100℃,15分加熱)で真空プレスすることによって熱伝導シート2をベース板4に接着させた。
次に、絶縁スペーサー5、絶縁スペーサー5の孔6に嵌入した電極3をそれぞれ熱伝導シート2上に載置し、さらに200kg/cm(100℃,15分加熱後に、引き続き180℃,30分加熱の条件下)でプレスすることで回路基板1を得た。
Example 1.
As an example of the circuit board 1 related to the first embodiment, the base plate 4 and the electrode 3 are made of copper. The base plate 4 and the electrode 3 were each subjected to a CZ process in which an uneven surface was formed by etching on the surface in order to improve adhesion to the heat conductive sheet 2.
The heat conductive sheet 2 cut to 35 mm × 45 mm was placed on the base plate 4 and vacuum-pressed at 100 kg / cm 2 (100 ° C., heated for 15 minutes) to adhere the heat conductive sheet 2 to the base plate 4. .
Next, the insulating spacer 5 and the electrode 3 fitted in the hole 6 of the insulating spacer 5 are respectively placed on the heat conductive sheet 2 and further heated to 200 kg / cm 2 (100 ° C., 15 minutes, then 180 ° C., 30 minutes). The circuit board 1 was obtained by pressing under heating conditions.

絶縁スペーサー5には、ガラスエポキシ基板で構成された厚さ0.5mmのものを1枚使用した。ガラスエポキシ基板の加工は機械加工で行ったものを用いた。
熱伝導シート2には、フィラーとして窒化ホウ素と窒化アルミニウムの混合系で充填量が65vol%のエポキシ樹脂を用いた。真空プレス後の熱伝導シート2の厚さは約150μmであった。フィラーの径は、熱伝導シート2の最終的な厚さ以下の径の1〜100μmであることが好ましい。
For the insulating spacer 5, one 0.5 mm thick one made of a glass epoxy substrate was used. The glass epoxy substrate was machined.
For the heat conductive sheet 2, an epoxy resin with a filling amount of 65 vol% in a mixed system of boron nitride and aluminum nitride was used as a filler. The thickness of the heat conductive sheet 2 after vacuum pressing was about 150 μm. It is preferable that the diameter of a filler is 1-100 micrometers of the diameter below the final thickness of the heat conductive sheet 2. As shown in FIG.

実施例2.
実施の形態2に関する回路基板60の一例として、実施例1と同様の工程及び条件で回路基板1を得た後、ガラスエポキシ基板12と同形状の(電極形状を打ち抜きした)プレス後の仕上がり厚み0.1mmのプリプレグ層13aをガラスエポキシ基板12上に配置し、20kg/cm(100℃,15分)で接着させ、ガラスエポキシ基板12上に半硬化プリプレグ層13cを有する絶縁スペーサー61bを備えた回路基板60を得た。
Example 2
As an example of the circuit board 60 relating to the second embodiment, after the circuit board 1 is obtained in the same process and conditions as in the first embodiment, the finished thickness after pressing the same shape as the glass epoxy board 12 (with the electrode shape punched out). A 0.1 mm prepreg layer 13 a is disposed on the glass epoxy substrate 12, adhered at 20 kg / cm 2 (100 ° C., 15 minutes), and provided with an insulating spacer 61 b having a semi-cured prepreg layer 13 c on the glass epoxy substrate 12. A circuit board 60 was obtained.

実施例3.
実施の形態4に関する回路基板10の一例として、熱伝導シート2上に、プレス後の仕上がり層厚が0.2mmのガラスエポキシ基板12で、プレス後の仕上がり層厚が0.1mmのプリプレグ層13aを挟んだ未硬化絶縁スペーサー11aと、0.5mm厚の電極3とを載置し、高温度のもと、同時にプレスし、硬化層13bを有する絶縁スペーサー11bを備えた回路基板10を得た。
他の製造工程、条件は、実施例1の工程、条件と同じである。
Example 3
As an example of the circuit board 10 regarding Embodiment 4, it is the glass epoxy board | substrate 12 whose final layer thickness after a press is 0.2 mm on the heat conductive sheet 2, and the prepreg layer 13a whose final layer thickness after a press is 0.1 mm An uncured insulating spacer 11a with a thickness of 0.5 mm and an electrode 3 having a thickness of 0.5 mm were placed and pressed simultaneously at a high temperature to obtain a circuit board 10 having an insulating spacer 11b having a cured layer 13b. .
Other manufacturing processes and conditions are the same as those in Example 1.

実施例4.
実施の形態5に関する回路基板90の一例として、熱伝導シート2上に、プレス後の仕上がり層厚が0.2mmのガラスエポキシ基板12で、プレス後の仕上がり層厚が0.1mmのプリプレグ層13を挟んだ積層体と、0.5mm厚の電極3とを載置し、高温度のもと、同時にプレスした。その後、積層体と同形状の(電極形状を打ち抜きした)プレス後仕上がり厚み0.1mmのプリプレグ層13aを積層体上に置き、20kg/cm(100℃,15分)で接着させて、最表面に半硬化プリプレグ層13cを有する絶縁スペーサー91を備えた回路基板90を得た。
他の製造工程、条件は、実施例1の工程、条件と同じである。
Example 4
As an example of the circuit board 90 relating to the fifth embodiment, a glass epoxy substrate 12 having a finished layer thickness of 0.2 mm after pressing on the heat conductive sheet 2 and a prepreg layer 13 having a finished layer thickness after pressing of 0.1 mm. The laminate with the electrode sandwiched therebetween and the electrode 3 having a thickness of 0.5 mm were placed and pressed simultaneously at a high temperature. Thereafter, a post-press finished prepreg layer 13a having the same shape as the laminated body (with the electrode shape punched out) is placed on the laminated body, and bonded at 20 kg / cm 2 (100 ° C., 15 minutes). A circuit board 90 provided with an insulating spacer 91 having a semi-cured prepreg layer 13c on the surface was obtained.
Other manufacturing processes and conditions are the same as those in Example 1.

実施例5.
実施の形態6に関する回路基板20の一例として、熱伝導シート2上に、層厚が0.2mmのガラスエポキシ層12で、層厚0.06mmのプリプレグ層13aを挟み、さらに最表面に層厚0.05mmの表面加工フィルム22(0.05mm)を載置した未硬化絶縁スペーサーと、0.5mm厚の電極3とを載置し、高温度のもと、同時にプレスすることで、硬化層13bを有する絶縁スペーサー21を備えた回路基板20を得た。
他の製造工程、条件は、実施例1の工程、条件と同じである。
Example 5 FIG.
As an example of the circuit board 20 relating to the sixth embodiment, a glass epoxy layer 12 having a layer thickness of 0.2 mm is sandwiched between a prepreg layer 13a having a layer thickness of 0.06 mm on the heat conductive sheet 2, and a layer thickness is further formed on the outermost surface. An uncured insulating spacer on which a 0.05 mm surface processed film 22 (0.05 mm) is placed and an electrode 3 having a thickness of 0.5 mm are placed and pressed simultaneously at a high temperature to form a cured layer. The circuit board 20 provided with the insulating spacer 21 having 13b was obtained.
Other manufacturing processes and conditions are the same as those in Example 1.

実施例6.
実施の形態7に関する回路基板30の一例として、熱伝導シート2上に、プレス後の層厚が0.2mmのガラスエポキシ基板12で、層厚0.10mmのプリプレグ層13aを挟み、さらに最表面に層厚0.05mmの表面加工フィルム22(0.05mm)を重ねた未硬化絶縁スペーサーと、0.5mm厚の電極3とを載置し、高温度のもと、同時にプレスすることで、硬化層13bを有する絶縁スペーサー31を備えた回路基板30を得た。
この回路基板30では、回路基板30の表面には凹凸形状の段差が生じるが、プレス工程では、プレス時に段差を吸収するクッション紙を介して絶縁スペーサー31及び電極3に圧力が加わるようになっており、熱伝導シート2の全面により均等の圧力が加わるようになっている。
他の製造工程、条件は、実施例1の工程、条件と同じである。
Example 6
As an example of the circuit board 30 relating to the seventh embodiment, a glass epoxy board 12 having a layer thickness of 0.2 mm after pressing is sandwiched on the heat conductive sheet 2 and a prepreg layer 13a having a layer thickness of 0.10 mm is sandwiched between the outermost surfaces. By placing an uncured insulating spacer having a surface processed film 22 (0.05 mm) having a layer thickness of 0.05 mm on the surface and an electrode 3 having a thickness of 0.5 mm, and simultaneously pressing at a high temperature, A circuit board 30 provided with an insulating spacer 31 having a hardened layer 13b was obtained.
In this circuit board 30, uneven steps are formed on the surface of the circuit board 30, but in the pressing process, pressure is applied to the insulating spacer 31 and the electrode 3 through cushion paper that absorbs the steps during pressing. Thus, a uniform pressure is applied to the entire surface of the heat conductive sheet 2.
Other manufacturing processes and conditions are the same as those in Example 1.

実施例7.
実施の形態8に関する回路基板40の一例として、電極3と未硬化絶縁スペーサー11aとを予め一体化したブロックを用いた例を示す。
一体化するために、未硬化絶縁スペーサー11aにはプレス後の厚さが0.2mmのガラスエポキシ基板12を2枚とその間にプリプレグ層13aを1枚(プレス後仕上がり膜厚0.1mm)を配置し、絶縁スペーサー0.5mm厚に電極3をはめこみ、20kg/cmで180℃,30分(室温まで戻してから圧力を開放する)加熱プレスを行った。ベース板4に35mm×45mmにカットした熱伝導シート2を置き、100kg/cm(100℃,15分加熱)で真空プレスすることによって熱伝導シート2をベース板4に接着させた。
次に、電極3と未硬化絶縁スペーサー11aを一体化したブロック絶縁スペーサー11bを熱伝導シート2上に載置し、さらに200kg/cm(100℃,15分加熱後、引き続き180℃,30分加熱の条件下)でプレスすることで、回路基板40を得た。
Example 7
As an example of the circuit board 40 according to the eighth embodiment, an example using a block in which the electrode 3 and the uncured insulating spacer 11a are integrated in advance will be described.
In order to integrate, the uncured insulating spacer 11a includes two glass epoxy substrates 12 having a thickness of 0.2 mm after pressing and one prepreg layer 13a therebetween (finished film thickness of 0.1 mm after pressing). The electrode 3 was inserted into an insulating spacer having a thickness of 0.5 mm, and a heating press was performed at 20 kg / cm 2 at 180 ° C. for 30 minutes (return to room temperature and release the pressure). The heat conductive sheet 2 cut to 35 mm × 45 mm was placed on the base plate 4 and vacuum-pressed at 100 kg / cm 2 (100 ° C., heated for 15 minutes) to adhere the heat conductive sheet 2 to the base plate 4.
Next, the block insulating spacer 11b in which the electrode 3 and the uncured insulating spacer 11a are integrated is placed on the heat conductive sheet 2, and further heated at 200 kg / cm 2 (100 ° C., 15 minutes, then 180 ° C., 30 minutes). The circuit board 40 was obtained by pressing under conditions of heating.

実施例8.
実施の形態9に関するパワーモジュール50の一例として、実施例3で得られた回路基板10を用いて作製したパワーモジュール50の実施例について述べる。
回路基板10の電極3上に、パワー半導体素子52及びリードフレーム53をはんだ51を用いて接着し、その後PPSを金型内に射出してモールド樹脂55を成形してパワーモジュール50を得た。PPSは樹脂注入部であるゲートから注入されて、注入ノズル先端温度は310度、金型温度は150℃設定、圧力は40MPa条件下で行った。
Example 8 FIG.
As an example of the power module 50 according to the ninth embodiment, an example of the power module 50 manufactured using the circuit board 10 obtained in Example 3 will be described.
The power semiconductor element 52 and the lead frame 53 were bonded onto the electrode 3 of the circuit board 10 using the solder 51, and then PPS was injected into the mold to mold the mold resin 55, whereby the power module 50 was obtained. PPS was injected from the gate as a resin injection part, the injection nozzle tip temperature was set to 310 ° C., the mold temperature was set to 150 ° C., and the pressure was set to 40 MPa.

なお、本願の発明者は、実施例1で得られた回路基板1を用いて作製したパワーモジュール50に対して、「−40℃での30分間保持及び125℃での30分間保持」を1サイクルとして、300サイクルを施したヒートサイクル試験を行った。
そして、回路基板1におけるベース板4と熱伝導シート2、電極3と熱伝導シート2、絶縁スペーサー5とモールド樹脂55とのそれぞれの界面での剥離を超音波探傷測定で確認したところ、剥離は認められず放熱性を維持することができ、高容量化が可能となり、優れた耐電圧特性を有するパワーモジュール50であることが確認された。
In addition, the inventor of the present application applied 1 “holding at −40 ° C. for 30 minutes and holding at 125 ° C. for 30 minutes” to the power module 50 manufactured using the circuit board 1 obtained in Example 1. As a cycle, the heat cycle test which performed 300 cycles was done.
And when the peeling at each interface between the base plate 4 and the heat conductive sheet 2, the electrode 3 and the heat conductive sheet 2, the insulating spacer 5 and the mold resin 55 in the circuit board 1 was confirmed by ultrasonic flaw detection, the peeling was It was confirmed that the power module 50 was able to maintain heat dissipation, increased capacity, and had excellent withstand voltage characteristics.

この発明の実施の形態1における回路基板の平面図である。It is a top view of the circuit board in Embodiment 1 of this invention. 図1のII−II線に沿った矢視断面図である。It is arrow sectional drawing along the II-II line | wire of FIG. (A)〜(C)は図1の回路基板の各製造工程を示す断面図である。(A)-(C) are sectional drawings which show each manufacturing process of the circuit board of FIG. この発明の実施の形態2における回路基板の断面図である。It is sectional drawing of the circuit board in Embodiment 2 of this invention. (A)〜(D)は図4の回路基板の各製造工程を示す断面図である。(A)-(D) are sectional drawings which show each manufacturing process of the circuit board of FIG. この発明の実施の形態3における回路基板の断面図である。It is sectional drawing of the circuit board in Embodiment 3 of this invention. この発明の実施の形態4における回路基板を示す断面図である。It is sectional drawing which shows the circuit board in Embodiment 4 of this invention. (A)〜(C)は図7の回路基板の各製造工程を示す断面図である。(A)-(C) are sectional drawings which show each manufacturing process of the circuit board of FIG. この発明の実施の形態4における回路基板の変形例を示す断面図である。It is sectional drawing which shows the modification of the circuit board in Embodiment 4 of this invention. この発明の実施の形態5における回路基板を示す断面図である。It is sectional drawing which shows the circuit board in Embodiment 5 of this invention. この発明の実施の形態6における回路基板を示す断面図である。It is sectional drawing which shows the circuit board in Embodiment 6 of this invention. この発明の実施の形態7における回路基板を示す断面図である。It is sectional drawing which shows the circuit board in Embodiment 7 of this invention. (A)〜(C)はこの発明の実施の形態8における回路基板の各製造工程を示す断面図である。(A)-(C) are sectional drawings which show each manufacturing process of the circuit board in Embodiment 8 of this invention. この発明の実施の形態9におけるパワーモジュールを示す断面図である。It is sectional drawing which shows the power module in Embodiment 9 of this invention.

符号の説明Explanation of symbols

1,10,20,30,40,60,70,80,90 回路基板、2 熱伝導シート、3 電極、4 ベース板、5,11b,21,31,61b,81,91,101 絶縁スペーサー、11a,61a 未硬化絶縁スペーサー、6 孔、12 ガラスエポキシ基板、13a プリプレグ層、13b 硬化層、13c 半硬化プリプレグ層、22 表面加工フィルム、50 パワーモジュール、51 はんだ、52 パワー半導体素子、55 モールド樹脂、71 シランカップリング剤。   1, 10, 20, 30, 40, 60, 70, 80, 90 Circuit board, 2 Thermal conductive sheet, 3 Electrode, 4 Base plate, 5, 11b, 21, 31, 61b, 81, 91, 101 Insulating spacer, 11a, 61a Uncured insulating spacer, 6 holes, 12 glass epoxy substrate, 13a prepreg layer, 13b cured layer, 13c semi-cured prepreg layer, 22 surface processed film, 50 power module, 51 solder, 52 power semiconductor element, 55 mold resin 71 Silane coupling agent.

Claims (9)

熱伝導シートと、
この熱伝導シートの一面に設けられた電極と、
前記熱伝導シートの他面に設けられたベース板とを備え、
樹脂で封止される回路基板において、
前記熱伝導シートの前記一面の前記電極を除く領域には、前記樹脂と接着する絶縁スペーサーが設けられており、
前記絶縁スペーサーは、ガラスエポキシ基板で構成されていることを特徴とする回路基板。
A heat conductive sheet;
An electrode provided on one surface of the heat conductive sheet;
A base plate provided on the other surface of the heat conductive sheet,
In circuit boards sealed with resin,
In the region excluding the electrode on the one surface of the heat conductive sheet, an insulating spacer that is bonded to the resin is provided ,
The circuit board , wherein the insulating spacer is formed of a glass epoxy substrate.
前記絶縁スペーサーは、前記ガラスエポキシ基板の表面に半硬化プリプレグ層が形成されたものであることを特徴とする請求項1に記載の回路基板。 The insulation spacer, the circuit board according to claim 1, characterized in that the surface of the glass epoxy substrate in which the semi-hardened prepreg layer is formed. 前記絶縁スペーサーは、前記ガラスエポキシ基板の表面がシランカップリング剤処理されたものであることを特徴とする請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the insulating spacer is obtained by treating the surface of the glass epoxy substrate with a silane coupling agent. 熱伝導シートと、
この熱伝導シートの一面に設けられた電極と、
前記熱伝導シートの他面に設けられたベース板とを備え、
樹脂で封止される回路基板において、
前記熱伝導シートの前記一面の前記電極を除く領域には、前記樹脂と接着する絶縁スペーサーが設けられており、
前記絶縁スペーサーは、ガラスエポキシ基板とプリプレグの硬化層とが積層された積層体であることを特徴とする回路基板。
A heat conductive sheet;
An electrode provided on one surface of the heat conductive sheet;
A base plate provided on the other surface of the heat conductive sheet,
In circuit boards sealed with resin,
In the region excluding the electrode on the one surface of the heat conductive sheet, an insulating spacer that is bonded to the resin is provided,
The insulating spacer, characterized circuitry substrate that is a laminate in which the cured layer of the glass epoxy substrate and the prepreg are laminated.
前記絶縁スペーサーは、前記積層体の表面に半硬化プリプレグ層が形成されたものであることを特徴とする請求項に記載の回路基板。 The insulation spacer, the circuit board according to claim 4, characterized in that the surface of the laminate in which the semi-hardened prepreg layer is formed. 前記絶縁スペーサーは、前記積層体の表面に粗化処理された表面加工フィルムが形成されたものであることを特徴とする請求項に記載の回路基板。 The insulation spacer, the circuit board according to claim 4, wherein the surface treatment film which is roughened on the surface of the laminate and is formed. 前記絶縁スペーサーと前記電極とは、同一厚さであることを特徴とする請求項1〜の何れか1項に記載の回路基板。 Wherein the insulating spacer and the electrode, the circuit board according to any one of claim 1 to 6, characterized in that the same thickness. 前記絶縁スペーサーの厚みは、前記電極の厚みよりも厚いことを特徴とする請求項1〜の何れか1項に記載の回路基板。 The insulating spacer has a thickness of the circuit board according to any one of claim 1 to 6, wherein the thicker than the thickness of the electrode. 請求項1〜の何れか1項に記載の回路基板と、
前記電極上に設けられたパワー半導体素子と、
前記回路基板及び前記パワー半導体素子を封止した前記樹脂とを備えたことを特徴とするパワーモジュール。
The circuit board according to any one of claims 1 to 8 ,
A power semiconductor element provided on the electrode;
A power module comprising the circuit board and the resin encapsulating the power semiconductor element.
JP2007057548A 2007-03-07 2007-03-07 Circuit board and power module Expired - Fee Related JP4842177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057548A JP4842177B2 (en) 2007-03-07 2007-03-07 Circuit board and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057548A JP4842177B2 (en) 2007-03-07 2007-03-07 Circuit board and power module

Publications (2)

Publication Number Publication Date
JP2008218907A JP2008218907A (en) 2008-09-18
JP4842177B2 true JP4842177B2 (en) 2011-12-21

Family

ID=39838550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057548A Expired - Fee Related JP4842177B2 (en) 2007-03-07 2007-03-07 Circuit board and power module

Country Status (1)

Country Link
JP (1) JP4842177B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333077B2 (en) * 2009-09-07 2013-11-06 新神戸電機株式会社 Resin molded body
JP5669917B1 (en) * 2013-11-01 2015-02-18 三菱電機株式会社 Power supply
JP7374613B2 (en) * 2019-05-21 2023-11-07 日本発條株式会社 Resin mold circuit body, mold, manufacturing method, and circuit board
JP7451827B2 (en) 2022-03-30 2024-03-18 デンカ株式会社 Circuit board manufacturing method and circuit board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260198A (en) * 1987-04-17 1988-10-27 古河電気工業株式会社 Manufacture of multilayer circuit board
JP2001024081A (en) * 1999-07-08 2001-01-26 Toshiba Corp Conductive base and its manufacture
JP3418617B2 (en) * 2000-09-22 2003-06-23 松下電器産業株式会社 Heat conductive substrate and semiconductor module using the same
JP3946659B2 (en) * 2003-04-14 2007-07-18 株式会社住友金属エレクトロデバイス High heat dissipation plastic package and manufacturing method thereof
JP2005347354A (en) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd Circuit device and its manufacturing method

Also Published As

Publication number Publication date
JP2008218907A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
KR100756303B1 (en) Mold resin-sealed power semiconductor device and method of manufacturing the same
JPH10125826A (en) Semiconductor device and manufacture thereof
JP4545022B2 (en) Circuit device and manufacturing method thereof
JP5983249B2 (en) Manufacturing method of semiconductor module
JP4842177B2 (en) Circuit board and power module
JP2014072305A (en) Semiconductor module manufacturing method, bonding device and semiconductor module
JP6031642B2 (en) Power module and manufacturing method thereof
JP2003170465A (en) Method for manufacturing semiconductor package and sealing mold therefor
JP5895549B2 (en) Semiconductor device and manufacturing method thereof
JP2003249510A (en) Method for sealing semiconductor
JP6116416B2 (en) Power module manufacturing method
JP2008181922A (en) Heat-conductive substrate and manufacturing method thereof, and semiconductor device using heat-conductive substrate
JP2020047763A (en) Semiconductor device and manufacturing method of semiconductor device
JP4010860B2 (en) Hybrid integrated circuit device and manufacturing method thereof
JP5456113B2 (en) Resin sealed package
JP2010141158A (en) Electronic device
JP5146358B2 (en) Electronic equipment
JP2007015325A (en) Molding method for thermally conductive substrate
JP2008258435A (en) Semiconductor device, and manufacturing method thereof
JP7463909B2 (en) Semiconductor device and its manufacturing method
JP2014107375A (en) Semiconductor device and semiconductor device manufacturing method
JP2002270744A (en) Lead frame, method for manufacturing the same, and method for manufacturing heat conductive substrate
JP3985558B2 (en) Method for manufacturing thermally conductive substrate
JPH09223760A (en) Semiconductor device and multi-layer lead frame for it
JP2003152143A (en) Method for manufacture of thermally conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees