JP4841912B2 - Magnesium oxide powder for soil hardening material - Google Patents

Magnesium oxide powder for soil hardening material Download PDF

Info

Publication number
JP4841912B2
JP4841912B2 JP2005272597A JP2005272597A JP4841912B2 JP 4841912 B2 JP4841912 B2 JP 4841912B2 JP 2005272597 A JP2005272597 A JP 2005272597A JP 2005272597 A JP2005272597 A JP 2005272597A JP 4841912 B2 JP4841912 B2 JP 4841912B2
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide powder
mass
soil
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005272597A
Other languages
Japanese (ja)
Other versions
JP2007084360A (en
JP2007084360A5 (en
Inventor
智 新松
憲一 阿野
博美 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2005272597A priority Critical patent/JP4841912B2/en
Priority to CN2006101719775A priority patent/CN1974681B/en
Priority to KR1020060090959A priority patent/KR101214032B1/en
Publication of JP2007084360A publication Critical patent/JP2007084360A/en
Publication of JP2007084360A5 publication Critical patent/JP2007084360A5/ja
Application granted granted Critical
Publication of JP4841912B2 publication Critical patent/JP4841912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、土壌硬化材用の酸化マグネシウム粉末に関する。   The present invention relates to a magnesium oxide powder for a soil hardening material.

酸化マグネシウム粉末は、軟弱土壌の硬化材として用いられることがある。酸化マグネシウム粉末は、土壌硬化材として同じく用いられる酸化カルシウムと比べて低アルカリであることから、環境への負荷が少ないなどの利点がある。土壌硬化材用の酸化マグネシウム粉末には、一般に軽焼酸化マグネシウム粉末が用いられる。   Magnesium oxide powder is sometimes used as a hardener for soft soils. Magnesium oxide powder is less alkaline than calcium oxide, which is also used as a soil hardening material, and therefore has advantages such as less environmental burden. Lightly burned magnesium oxide powder is generally used as the magnesium oxide powder for soil hardening material.

特許文献1には、軽焼酸化マグネシウム粉末と、リン酸塩、硫酸塩、炭酸塩、有機酸のいずれか一種以上とからなる土壌固化材が開示されている。この特許文献1の実施例では、軽焼酸化マグネシウム粉末として全て市販試薬の軽焼酸化マグネシウム粉末が用いられている。   Patent Document 1 discloses a soil-solidifying material comprising light-burned magnesium oxide powder and at least one of phosphate, sulfate, carbonate, and organic acid. In the Examples of Patent Document 1, commercially available light burned magnesium oxide powder is used as the light burned magnesium oxide powder.

特許文献2には、軽焼酸化マグネシウム粉末と、石膏、ポルトランドセメント及び高炉スラグから選ばれる一種以上、水溶態リン酸肥料又は活性汚泥焼却灰、又は吸着焼成メタリン酸、及びオキシカルボン酸塩又はケトカルボン酸塩からなる土壌固化材が開示されている。この特許文献2の実施例では、軽焼酸化マグネシウム粉末として全て中国産軽焼酸化マグネシウム粉末が用いられている。
特開2003−193462号公報 特許第3511287号公報
Patent Document 2 includes lightly burned magnesium oxide powder and one or more selected from gypsum, Portland cement and blast furnace slag, water-soluble phosphate fertilizer or activated sludge incinerated ash, or adsorbed calcined metaphosphoric acid, and oxycarboxylate or ketocarboxyl. A soil solidifying material comprising an acid salt is disclosed. In the Example of this patent document 2, all the light burned magnesium oxide powders from China are used as the light burned magnesium oxide powder.
JP 2003-193462 A Japanese Patent No. 3511287

上記のように、酸化マグネシウム粉末は軟弱土壌の硬化材として有用な材料であるが、従来の土壌硬化材に用いられている酸化マグネシウム粉末は反応性が低いため、これを軟弱土壌に添加しても土壌の硬化が発現するのが遅いという問題がある。このため、土壌硬化の発現が速い酸化マグネシウム粉末が望まれている。但し、酸化マグネシウム粉末の反応性が高くなりすぎて、酸化マグネシウム粉末の土壌への添加と同時に急激に硬化が始まると、軟弱土壌と酸化マグネシウム粉末とを均一に混合するのが難しくなるという実用上の問題が発生する。
従って、本発明の目的は、実用上扱いやすい速度で、土壌硬化が発現する酸化マグネシウム粉末を提供することにある。
As described above, magnesium oxide powder is a useful material as a hardener for soft soil, but magnesium oxide powder used in conventional soil hardeners has low reactivity, so it can be added to soft soil. There is also a problem that the hardening of the soil is slow to develop. For this reason, the magnesium oxide powder whose expression of soil hardening is quick is desired. However, the reactivity of the magnesium oxide powder becomes too high, and if hardening begins suddenly at the same time as the magnesium oxide powder is added to the soil, it is difficult to uniformly mix the soft soil and the magnesium oxide powder. Problems occur.
Accordingly, an object of the present invention is to provide a magnesium oxide powder that develops soil hardening at a practically manageable speed.

本発明は、平均ペリクレース結晶子径が10〜50nmの範囲にあり、BET比表面積が5〜20m2/gの範囲にあり、平均粒子径が1〜5μmの範囲にあって、粒子径が10μmを超える粒子の割合が10体積%を超えることがなく、そして見かけ密度が0.3〜0.8g/cm3の範囲にある土壌硬化材用の酸化マグネシウム粉末にある。本発明の酸化マグネシウム粉末は、硫酸根を0.5〜2.5質量%の範囲の量にて含んでいてもよい。 The present invention has an average periclase crystallite diameter in the range of 10 to 50 nm, a BET specific surface area in the range of 5 to 20 m 2 / g, an average particle diameter in the range of 1 to 5 μm, and a particle diameter of 10 μm. In the magnesium oxide powder for soil hardening material, the proportion of particles exceeding 10% does not exceed 10% by volume and the apparent density is in the range of 0.3 to 0.8 g / cm 3 . The magnesium oxide powder of the present invention may contain a sulfate group in an amount in the range of 0.5 to 2.5% by mass.

本発明の土壌硬化材用酸化マグネシウム粉末を用いることによって、従来の土壌硬化材用酸化マグネシウム粉末を用いる場合と比べて、軟弱土壌を適度な速さで硬化させることが可能となる。   By using the magnesium oxide powder for soil hardening material of the present invention, soft soil can be hardened at an appropriate speed as compared with the case of using the conventional magnesium oxide powder for soil hardening material.

本発明の土壌硬化材用酸化マグネシウム粉末は、平均ペリクレース結晶子径が10〜50nmの範囲にあり、BET比表面積が5〜20m2/gの範囲にあり、平均粒子径が1〜5μmの範囲にあって、粒子径が10μmを超える粒子の割合が10体積%を超えることがなく、そして見かけ密度が0.3〜0.8g/cm3の範囲にある。 The magnesium oxide powder for soil hardening material of the present invention has an average periclase crystallite diameter in the range of 10 to 50 nm, a BET specific surface area in the range of 5 to 20 m 2 / g, and an average particle diameter in the range of 1 to 5 μm. Thus, the proportion of particles having a particle diameter exceeding 10 μm does not exceed 10% by volume, and the apparent density is in the range of 0.3 to 0.8 g / cm 3 .

平均ペリクレース結晶子径は、10〜50nmの範囲、好ましくは20〜40nmの範囲である。平均ペリクレース結晶子径は、酸化マグネシウム粒子を形成する結晶子の平均径である。平均ペリクレース結晶子径は、酸化マグネシウム粉末の反応性を表す指標の一つとなる。平均ペリクレース結晶子径が上記の範囲よりも小さいと、反応性が高くなりすぎることになる。一方、平均ペリクレース結晶子径が上記の範囲よりも大きいと、土壌硬化の発現が遅くなる。   The average periclase crystallite diameter is in the range of 10 to 50 nm, preferably in the range of 20 to 40 nm. The average periclase crystallite diameter is an average diameter of crystallites forming the magnesium oxide particles. The average periclase crystallite diameter is one of the indexes representing the reactivity of the magnesium oxide powder. When the average periclase crystallite diameter is smaller than the above range, the reactivity becomes too high. On the other hand, when the average periclase crystallite diameter is larger than the above range, the onset of soil hardening is delayed.

BET比表面積は、5〜20m2/gの範囲、好ましくは10〜20m2/gの範囲である。BET比表面積は、酸化マグネシウム粉末の反応性を表す指標の一つとなる。BET比表面積が上記の範囲よりも小さいと、土壌硬化の発現が遅くなる。一方、BET比表面積が上記の範囲よりも大きいと、反応性が高くなりすぎることになる。 BET specific surface area in the range of 5 to 20 m 2 / g, preferably in the range of 10 to 20 m 2 / g. The BET specific surface area is one of the indexes representing the reactivity of the magnesium oxide powder. When the BET specific surface area is smaller than the above range, the onset of soil hardening is delayed. On the other hand, if the BET specific surface area is larger than the above range, the reactivity becomes too high.

平均粒子径は、1〜5μmの範囲である。平均粒子径は、酸化マグネシウム粉末の分散性やハンドリング性を表す指標の一つとなる。平均粒子径が上記の範囲よりも大きいと、土壌が軟弱な場合に均一に分散させることが難しくなる。一方、平均粒子径が上記の範囲よりも小さいと、粉末のハンドリング性が低下する。   The average particle size is in the range of 1-5 μm. An average particle diameter becomes one of the indexes showing the dispersibility and handling property of magnesium oxide powder. When the average particle size is larger than the above range, it is difficult to uniformly disperse when the soil is soft. On the other hand, when the average particle diameter is smaller than the above range, the handling property of the powder is lowered.

粒子径が10μmを超える粒子の割合は、10体積%未満である。酸化マグネシウム粉末の分散性を表す指標の一つとなる。粒子径が10μmを超える粒子の割合が10体積%を超えると、土壌が軟弱な場合に均一に分散させることが難しくなる。   The proportion of particles having a particle diameter exceeding 10 μm is less than 10% by volume. It becomes one of the indexes showing the dispersibility of the magnesium oxide powder. When the ratio of the particles having a particle diameter exceeding 10 μm exceeds 10% by volume, it becomes difficult to uniformly disperse when the soil is soft.

見かけ密度は、0.3〜0.8g/cm3の範囲、好ましくは0.5〜0.8g/cm3の範囲である。見かけ密度は、酸化マグネシウム粉末の分散性やハンドリング性を表す指標の一つとなる。見かけ密度が上記の範囲よりも小さいと、粉末のハンドリング性が低下する。一方、見かけ密度が上記の範囲よりも大きいと、土壌が軟弱である場合に均一に分散させることが難しくなる。 The apparent density is in the range of 0.3 to 0.8 g / cm 3 , preferably in the range of 0.5 to 0.8 g / cm 3 . The apparent density is one of the indexes representing the dispersibility and handling properties of the magnesium oxide powder. When the apparent density is smaller than the above range, the handleability of the powder is lowered. On the other hand, when the apparent density is larger than the above range, it is difficult to uniformly disperse when the soil is soft.

本発明の土壌硬化材用酸化マグネシウム粉末は、海水に水酸化カルシウムなどのアルカリを加えて生成させた水酸化マグネシウム粒子を、650〜900℃の温度、好ましくは680〜900℃の温度にて焼成することによって製造することができる。海水から得られる水酸化マグネシウム粒子には、海水中の硫酸根が取り込まれるため、この水酸化マグネシウム粒子を上記の温度範囲にて焼成して得られる酸化マグネシウム粉末には、通常は硫酸根が0.5〜2.5質量%の範囲の量にて含まれる。焼成時間は、焼成温度や水酸化マグネシウム粒子サイズなどの要因によって異なるが、一般に10〜120分間である。   The magnesium oxide powder for soil hardening material of the present invention is obtained by firing magnesium hydroxide particles produced by adding alkali such as calcium hydroxide to seawater at a temperature of 650 to 900 ° C, preferably 680 to 900 ° C. Can be manufactured. Since magnesium hydroxide particles obtained from seawater incorporate sulfate radicals in seawater, the magnesium oxide powder obtained by firing the magnesium hydroxide particles in the above temperature range usually has no sulfate radical. Included in an amount in the range of 5-2.5% by weight. The firing time varies depending on factors such as the firing temperature and the magnesium hydroxide particle size, but is generally 10 to 120 minutes.

本発明の土壌硬化材用酸化マグネシウム粉末は、リン酸塩(例、過リン酸石灰)、硫酸塩(例、石膏)、有機酸塩(例、クエン酸ナトリウム)などの土壌硬化材として用いられている公知の材料と混合して用いることができる。リン酸塩の混合割合は、酸化マグネシウム粉末100質量部に対して1〜100質量部の範囲であることが好ましい。硫酸塩の混合割合は、酸化マグネシウム粉末100質量部に対して1〜100質量部の範囲であることが好ましい。有機酸塩の混合割合は、酸化マグネシウム粉末100質量部に対して0.01〜20質量部の範囲であることが好ましい。   The magnesium oxide powder for soil hardening material of the present invention is used as a soil hardening material for phosphates (eg, superphosphate), sulfates (eg, gypsum), and organic acid salts (eg, sodium citrate). It can be used by mixing with known materials. The mixing ratio of the phosphate is preferably in the range of 1 to 100 parts by mass with respect to 100 parts by mass of the magnesium oxide powder. The mixing ratio of the sulfate is preferably in the range of 1 to 100 parts by mass with respect to 100 parts by mass of the magnesium oxide powder. The mixing ratio of the organic acid salt is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the magnesium oxide powder.

本発明の酸化マグネシウム粉末は、従来の土壌硬化材用の軽焼酸化マグネシウム粉末と混合して用いてもよい。この場合、本発明の酸化マグネシウム粉末の配合割合は、酸化マグネシウム粉末全体の40質量%以上であることが好ましく、60質量%以上であることがさらに好ましい。   The magnesium oxide powder of the present invention may be used by mixing with a light burned magnesium oxide powder for a conventional soil hardening material. In this case, the blending ratio of the magnesium oxide powder of the present invention is preferably 40% by mass or more, and more preferably 60% by mass or more of the entire magnesium oxide powder.

本発明の土壌硬化材用酸化マグネシウム粉末は、硬化対象の軟弱土壌に粉末の状態で添加してもよいし、水に分散させた懸濁液の状態で添加してもよい。硬化対象の土壌への酸化マグネシウム粉末の添加量は、土壌の固形分に対して1〜30質量%となる量、好ましくは5〜20質量%となる量である。   The magnesium oxide powder for soil hardening material of the present invention may be added in the form of powder to the soft soil to be hardened, or may be added in the form of a suspension dispersed in water. The amount of magnesium oxide powder added to the soil to be hardened is an amount of 1 to 30% by mass, preferably 5 to 20% by mass, based on the solid content of the soil.

実施例及び比較例にて用いた酸化マグネシウム粉末について、平均ペリクレース結晶子径、BET比表面積、平均粒子径、粒子径が10μmを超える粒子の割合、見かけ密度、純度及び硫酸根量を測定した。平均ペリクレース結晶子径、平均粒子径、粒子径が10μmを超える粒子の割合及び見かけ密度は、下記の方法により測定した。   For the magnesium oxide powders used in Examples and Comparative Examples, the average periclase crystallite diameter, BET specific surface area, average particle diameter, ratio of particles having a particle diameter exceeding 10 μm, apparent density, purity, and sulfate radical amount were measured. The average periclase crystallite diameter, the average particle diameter, the ratio of particles having a particle diameter exceeding 10 μm, and the apparent density were measured by the following methods.

[平均ペリクレース結晶子径]
X線回折装置を用いて、管電圧40kV、管電流20mAの条件で酸化マグネシウム粉末ペリクレース結晶子の(200)面のX線回折パターンを測定して、平均ペリクレース結晶子径を求める。標準試料にはシリコンを使用する。
[Average periclase crystallite diameter]
Using an X-ray diffractometer, the X-ray diffraction pattern of the (200) plane of the magnesium oxide powder periclase crystallite is measured under the conditions of a tube voltage of 40 kV and a tube current of 20 mA to determine the average periclase crystallite diameter. Silicon is used as the standard sample.

[平均粒子径、粒子径が10μmを超える粒子の割合]
酸化マグネシウム粉末をイオン交換水に投入し、超音波分散処理を30秒間行なった後、レーザ回折式粒度分布測定装置(SKレーザーLMS−30、(株)セイシン企業製)を用いて粒度分布を測定して、平均粒子径、及び粒子径が10μmを超える粒子の割合を求める。
[Average particle diameter, ratio of particles having a particle diameter exceeding 10 μm]
Magnesium oxide powder is put into ion-exchanged water, and after ultrasonic dispersion treatment is performed for 30 seconds, the particle size distribution is measured using a laser diffraction particle size distribution analyzer (SK Laser LMS-30, manufactured by Seishin Enterprise Co., Ltd.). Then, the average particle diameter and the ratio of the particles having a particle diameter exceeding 10 μm are obtained.

[見かけ密度]
容量50cm3メスシリンダーに、酸化マグネシウム粉末を、メスシリンダーの50cm3の標線まで少しずつゆっくり投入した後、メスシリンダー内の酸化マグネシウム粉末の質量を秤量して、下記の式により見かけ密度を算出する。
見かけ密度(g/cm3)=酸化マグネシウム粉末の質量(g)/50(cm3
[Apparent density]
After slowly adding magnesium oxide powder to a 50 cm 3 measuring cylinder in small increments up to the 50 cm 3 marked line of the measuring cylinder, weigh the mass of magnesium oxide powder in the measuring cylinder and calculate the apparent density using the following formula. To do.
Apparent density (g / cm 3 ) = mass of magnesium oxide powder (g) / 50 (cm 3 )

[実施例1]
海水に、15質量%濃度の水酸化カルシウム懸濁液を、海水中のマグネシウム量に対するカルシウム量としてモル比で0.9となるように添加して、水酸化マグネシウム粒子を生成させ、水酸化マグネシウム懸濁液を得た。得られた水酸化マグネシウム懸濁液を固形分濃度が35質量%となるように濃縮した。濃縮した水酸化マグネシウム懸濁液を工業用水にて洗浄した後、ろ過、乾燥して水酸化マグネシウム粉末を得た。得られた水酸化マグネシウム粉末の平均粒子径は3.3μmであった。この水酸化マグネシウム粉末をロータリー型キルン焼成炉にて700℃の温度で30分間焼成して、酸化マグネシウム粉末を得た。
得られた酸化マグネシウム粉末は、平均ペリクレース結晶子が31nm、BET比表面積が15.8m2/g、平均粒子径が3.3μm、粒子径が10μmを超える粒子の割合が7体積%、見かけ密度が0.66g/cm3であり、純度が95.88質量%、硫酸根の含有量が1.82質量%であった。
[Example 1]
A calcium hydroxide suspension having a concentration of 15% by mass is added to seawater so that the molar ratio of calcium to the amount of magnesium in seawater is 0.9, thereby producing magnesium hydroxide particles. A suspension was obtained. The obtained magnesium hydroxide suspension was concentrated so that the solid content concentration was 35% by mass. The concentrated magnesium hydroxide suspension was washed with industrial water, then filtered and dried to obtain magnesium hydroxide powder. The average particle diameter of the obtained magnesium hydroxide powder was 3.3 μm. This magnesium hydroxide powder was fired at a temperature of 700 ° C. for 30 minutes in a rotary kiln firing furnace to obtain a magnesium oxide powder.
The obtained magnesium oxide powder has an average periclase crystallite diameter of 31 nm, a BET specific surface area of 15.8 m 2 / g, an average particle diameter of 3.3 μm, and a ratio of particles having a particle diameter exceeding 10 μm is 7% by volume. The density was 0.66 g / cm 3 , the purity was 95.88% by mass, and the sulfate radical content was 1.82% by mass.

上記のようにして得た酸化マグネシウム粉末100質量部に対して、過リン酸石灰30質量部、無水石膏5質量部、そしてクエン酸ナトリウム0.1質量部を加えて、ヘンシェルミキサーにて5分間混合して粉末組成物を製造した。   To 100 parts by mass of the magnesium oxide powder obtained as described above, 30 parts by mass of superphosphate lime, 5 parts by mass of anhydrous gypsum, and 0.1 part by mass of sodium citrate are added, and then for 5 minutes using a Henschel mixer. A powder composition was produced by mixing.

得られた粉末組成物100gを正確に量り取り、コニカルビーカに入れた。次いで、粉末組成物が均質に湿潤するまで水を加えて湿潤混合物を得た(湿潤混合物の調製に必要な水の量は65gであった)。得られた湿潤混合物の上方10cmの高さから、1分毎に重さ5gのステンレス製針を自然落下させ、湿潤混合物にステンレス製針を突き刺して、湿潤混合物の凝結の進行を調べた。湿潤混合物の調製後、湿潤混合物に突き刺したステンレス製針の侵入深さが湿潤混合物の厚さの50%に相当する深さになるまでの時間(凝結始発時間)は、20分であった。さらに、湿潤混合物の調製後、湿潤混合物に突き刺したステンレス製針の侵入深さが湿潤混合物の厚さの5%に相当する深さになるまでの時間(凝結終結時間)は27分であった。   100 g of the obtained powder composition was accurately weighed and placed in a conical beaker. Water was then added until the powder composition was uniformly wet to obtain a wet mixture (the amount of water required to prepare the wet mixture was 65 g). From the height of 10 cm above the obtained wet mixture, a stainless needle having a weight of 5 g was naturally dropped every minute, and the wet mixture was pierced with a stainless needle to examine the progress of condensation of the wet mixture. After the preparation of the wet mixture, the time until the penetration depth of the stainless needle pierced into the wet mixture reached a depth corresponding to 50% of the thickness of the wet mixture (condensation start time) was 20 minutes. Furthermore, after the preparation of the wet mixture, the time required for the penetration depth of the stainless needle inserted into the wet mixture to reach a depth corresponding to 5% of the thickness of the wet mixture (condensation completion time) was 27 minutes. .

[比較例1]
酸化マグネシウム粉末として、平均ペリクレース結晶子が22nm、BET比表面積が31.0m2/g、平均粒子径が3.6μm、粒子径が10μmを超える粒子の割合が1.9体積%、見かけ密度が0.11g/cm3であり、純度98.86質量%、硫酸根の含有量0.39質量%の酸化マグネシウム粉末(関東化学(株)製、試薬1級品)を用いた以外は、実施例1と同様にして、粉末組成物を製造した。
[Comparative Example 1]
As the magnesium oxide powder, the average periclase crystallite size is 22 nm, the BET specific surface area is 31.0 m 2 / g, the average particle size is 3.6 μm, the proportion of particles having a particle size exceeding 10 μm is 1.9% by volume, the apparent density Is 0.11 g / cm 3 , and a magnesium oxide powder having a purity of 98.86% by mass and a sulfate radical content of 0.39% by mass (manufactured by Kanto Chemical Co., Ltd., reagent grade 1 product) is used. A powder composition was produced in the same manner as in Example 1.

得られた粉末組成物100gを正確に量り取り、コニカルビーカに入れた。次いで、次いで、粉末組成物が均質に湿潤するまで水を加えて湿潤混合物を得た(湿潤混合物の調製に必要な水の量は250gであった)。得られた湿潤混合物に実施例1と同様にしてステンレス製針を突き刺して、湿潤混合物の凝結の進行を調べた。その結果、凝結始発時間は230分であった。しかし、湿潤混合物の調製後、720分経過しても、湿潤混合物に突き刺したステンレス製針の侵入深さは、湿潤混合物の厚さの5%に相当する深さにはならなかった。すなわち、市販試薬の酸化マグネシウム粉末を用いた粉末組成物は、本発明に従う酸化マグネシウム粉末を用いた粉末組成物(実施例1)と比べて凝結が起こりにくいことが確認された。   100 g of the obtained powder composition was accurately weighed and placed in a conical beaker. Then, water was added until the powder composition was uniformly wetted to obtain a wet mixture (the amount of water required to prepare the wet mixture was 250 g). The obtained wet mixture was pierced with a stainless steel needle in the same manner as in Example 1 to examine the progress of the condensation of the wet mixture. As a result, the initial setting time was 230 minutes. However, even after 720 minutes have passed since the preparation of the wet mixture, the penetration depth of the stainless needle stuck into the wet mixture did not correspond to a depth corresponding to 5% of the thickness of the wet mixture. That is, it was confirmed that the powder composition using the magnesium oxide powder as a commercially available reagent is less likely to cause coagulation than the powder composition using the magnesium oxide powder according to the present invention (Example 1).

[比較例2]
酸化マグネシウム粉末として、平均ペリクレース結晶子が58nm、BET比表面積が12.9m2/g、平均粒子径が15.8μm、粒子径が10μmを超える粒子の割合が67体積%、見かけ密度が0.68g/cm3であり、純度96.94質量%、硫酸根の含有量0.03質量%の酸化マグネシウム粉末(中国産軽焼酸化マグネシウム粉末)を用いた以外は、実施例1と同様にして、粉末組成物を製造した。
[Comparative Example 2]
As the magnesium oxide powder, the average periclase crystallite size is 58 nm, the BET specific surface area is 12.9 m 2 / g, the average particle size is 15.8 μm, the proportion of particles having a particle size exceeding 10 μm is 67% by volume, and the apparent density is 0. .68 g / cm 3 , except that magnesium oxide powder (China light burned magnesium oxide powder) having a purity of 96.94% by mass and a sulfate radical content of 0.03% by mass was used. Thus, a powder composition was manufactured.

得られた粉末組成物100gを正確に量り取り、コニカルビーカに入れた。次いで、粉末組成物が均質に湿潤するまで水を加えて湿潤混合物を調製した(湿潤混合物の調製に必要な水の量は65gであった)。得られた湿潤混合物に実施例1と同様にしてにステンレス製針を突き刺して、湿潤混合物の凝結の進行を調べた。その結果、湿潤混合物の調製後720分経過しても、湿潤混合物に突き刺したステンレス製針の侵入深さは、湿潤混合物の厚さの50%に相当する深さにはならなかった。すなわち、中国産軽焼酸化マグネシウム粉末を用いた粉末組成物は、本発明に従う酸化マグネシウム粉末を用いた粉末組成物(実施例1)と比べて凝結が起こりにくいことが確認された。   100 g of the obtained powder composition was accurately weighed and placed in a conical beaker. A wet mixture was then prepared by adding water until the powder composition was uniformly wet (the amount of water required to prepare the wet mixture was 65 g). The resulting wet mixture was pierced with a stainless steel needle in the same manner as in Example 1 to examine the progress of condensation of the wet mixture. As a result, even after 720 minutes had passed since the preparation of the wet mixture, the penetration depth of the stainless needle stuck into the wet mixture did not become a depth corresponding to 50% of the thickness of the wet mixture. That is, it was confirmed that the powder composition using the light-burned magnesium oxide powder produced in China is less likely to set than the powder composition using the magnesium oxide powder according to the present invention (Example 1).

[実施例2]
標準砂(豊浦砂)に前記実施例1にて製造した粉末組成物と水とを、粉末組成物が標準砂(豊浦砂)に対して9質量%となる量、水が全体量に対する含水率として9質量%となる量にて加え、ソイルミキサーにて5分間混合した。
得られた混合物を、内径100mm、高さ127mmの円柱状容器に充填し、次いで、円柱状容器内の混合物に高さ30cmの位置から2.5kgの分銅を25回繰り返し落として、混合物を円柱状に加圧成形した。円柱状混合物を容器から抜き出して、防湿フィルムで被覆して、温度25℃、相対湿度95%RH以上に調節した恒温高湿槽内で28日間養生させた。
28日養生後の円柱状混合物の圧縮強度を、JIS−A−1216「土の一軸圧縮試験方法」に準拠した方法により測定したところ、3900kN/m2であった。
[Example 2]
The standard sand (Toyoura sand), the powder composition produced in Example 1 and water, the amount of the powder composition to 9% by mass with respect to the standard sand (Toyoura sand), the water content to the total amount In an amount of 9% by mass and mixed for 5 minutes with a soil mixer.
The obtained mixture was filled into a cylindrical container having an inner diameter of 100 mm and a height of 127 mm, and then 2.5 kg of weight was repeatedly dropped from the position of 30 cm to the mixture in the cylindrical container 25 times, and the mixture was circularly Press-molded into a columnar shape. The columnar mixture was extracted from the container, covered with a moisture-proof film, and cured for 28 days in a constant temperature and high humidity tank adjusted to a temperature of 25 ° C. and a relative humidity of 95% RH or higher.
It was 3900 kN / m < 2 > when the compressive strength of the cylindrical mixture after 28-day curing was measured by the method based on JIS-A-1216 "uniaxial compression test method of soil".

[比較例3]
粉末組成物に前記比較例2にて製造した粉末組成物を用いる以外は実施例2と同様にして、円柱状混合物を作成し、この円柱状混合物の28日養生後の圧縮強度を測定した。その結果、圧縮強度は1500kN/m2であり、実施例2で得られた圧縮強度の1/2以下であった。
[Comparative Example 3]
A cylindrical mixture was prepared in the same manner as in Example 2 except that the powder composition produced in Comparative Example 2 was used as the powder composition, and the compressive strength after 28-day curing of this cylindrical mixture was measured. As a result, the compressive strength was 1500 kN / m 2 , which was 1/2 or less of the compressive strength obtained in Example 2.

Claims (2)

平均ペリクレース結晶子径が10〜50nmの範囲にあり、BET比表面積が5〜20m2/gの範囲にあり、平均粒子径が1〜5μmの範囲にあって、粒子径が10μmを超える粒子の割合が10体積%を超えることがなく、そして見かけ密度が0.3〜0.8g/cm3の範囲にある土壌硬化材用の酸化マグネシウム粉末。 Particles having an average periclase crystallite diameter of 10 to 50 nm, a BET specific surface area of 5 to 20 m 2 / g, an average particle diameter of 1 to 5 μm, and a particle diameter of more than 10 μm. Magnesium oxide powder for a soil hardening material having a proportion not exceeding 10% by volume and an apparent density in the range of 0.3 to 0.8 g / cm 3 . 硫酸根を0.5〜2.5質量%の範囲の量にて含む請求項1に記載の酸化マグネシウム粉末。   The magnesium oxide powder according to claim 1, comprising a sulfate group in an amount ranging from 0.5 to 2.5 mass%.
JP2005272597A 2005-09-20 2005-09-20 Magnesium oxide powder for soil hardening material Active JP4841912B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005272597A JP4841912B2 (en) 2005-09-20 2005-09-20 Magnesium oxide powder for soil hardening material
CN2006101719775A CN1974681B (en) 2005-09-20 2006-09-20 Magnesium oxide powder for soil hardening material
KR1020060090959A KR101214032B1 (en) 2005-09-20 2006-09-20 Magnesium oxide powder for soil hardener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272597A JP4841912B2 (en) 2005-09-20 2005-09-20 Magnesium oxide powder for soil hardening material

Publications (3)

Publication Number Publication Date
JP2007084360A JP2007084360A (en) 2007-04-05
JP2007084360A5 JP2007084360A5 (en) 2008-05-15
JP4841912B2 true JP4841912B2 (en) 2011-12-21

Family

ID=37971741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272597A Active JP4841912B2 (en) 2005-09-20 2005-09-20 Magnesium oxide powder for soil hardening material

Country Status (3)

Country Link
JP (1) JP4841912B2 (en)
KR (1) KR101214032B1 (en)
CN (1) CN1974681B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244368B2 (en) * 2007-11-05 2013-07-24 株式会社テルナイト Heavy metal insolubilizer and heavy metal contaminated soil treatment agent
JP5915202B2 (en) * 2012-01-25 2016-05-11 宇部興産株式会社 Insolubilization method
JP6021059B2 (en) * 2012-09-10 2016-11-02 宇部マテリアルズ株式会社 Paving material and paving method using the same
JP6004895B2 (en) * 2012-10-31 2016-10-12 太平洋セメント株式会社 Treatment method of contaminated soil
CN107254314A (en) * 2017-06-23 2017-10-17 北京农业职业学院 A kind of soil-solidified-agent and its preparation method and application
JP6726146B2 (en) * 2017-09-19 2020-07-22 宇部マテリアルズ株式会社 Red tide control agent and red tide control method using the same
JP7299024B2 (en) * 2019-01-10 2023-06-27 Ube三菱セメント株式会社 Insolubilizing material and method for insolubilizing contaminated soil
JP7382463B1 (en) 2022-07-27 2023-11-16 宇部マテリアルズ株式会社 alkaline agent

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195579A (en) * 1983-04-19 1984-11-06 宇部化学工業株式会社 Manufacture of magnesia clinker with increased density
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JP3638738B2 (en) * 1995-12-19 2005-04-13 協和化学工業株式会社 Heat-resistant deterioration resin composition and molded article comprising polyolefin or copolymer thereof
CN1119295C (en) * 1996-01-04 2003-08-27 宇部材料工业株式会社 Magnesium oxide-based modifier for water quality and bottom sediment quality
JPH10316967A (en) * 1997-05-15 1998-12-02 Katsuichi Kunimatsu Soil solidification agent
WO2000035808A1 (en) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP3479715B2 (en) * 1999-02-17 2003-12-15 東成産業有限会社 Soil solidifying agent
AU6183900A (en) * 1999-08-06 2001-03-05 Kyowa Chemical Industry Co., Ltd. Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP2003033159A (en) * 2001-07-24 2003-02-04 Kyowa Hakko Kogyo Co Ltd Magnesium oxide powder for food additive
JP4336148B2 (en) * 2003-06-12 2009-09-30 宇部マテリアルズ株式会社 Magnesium oxide powder and method for producing the same
JP4074857B2 (en) * 2004-01-27 2008-04-16 独立行政法人農業・食品産業技術総合研究機構 Soil solidifying agent
JP5362171B2 (en) * 2005-12-13 2013-12-11 宇部マテリアルズ株式会社 Soil hardening material

Also Published As

Publication number Publication date
CN1974681B (en) 2011-01-05
KR20070032923A (en) 2007-03-23
JP2007084360A (en) 2007-04-05
CN1974681A (en) 2007-06-06
KR101214032B1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP4841912B2 (en) Magnesium oxide powder for soil hardening material
JP5362171B2 (en) Soil hardening material
JP5244368B2 (en) Heavy metal insolubilizer and heavy metal contaminated soil treatment agent
Garg et al. Some aspects of the durability of a phosphogypsum-lime-fly ash binder
CN105565695B (en) A kind of concrete corrosion inhibitor and corrosion protection concrete
JP5500828B2 (en) Soil hardening material
JP5291333B2 (en) Insolubilizing material and insolubilizing method
Sun et al. Characterisation of water stability of magnesium phosphate cement blended with steel slag and fly ash
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
JP5862911B2 (en) Ground improvement soil and ground improvement method
JP4694434B2 (en) By-product processing method
JP4426907B2 (en) Soil hardening material
JP6441086B2 (en) Effective use of coal ash
JP5656139B2 (en) Ground improvement soil and ground improvement method
Kadhim et al. Using geopolymers materials for remediation of lead-contaminated soil
JP5689605B2 (en) Ground improvement material and ground improvement method
RU2603112C1 (en) Magnesia binder based on dolomite and foam glass production wastes
Salas et al. Engineering properties of blended concrete with Colombian rice husk ash and metakaolin
JP6734684B2 (en) Ground improvement material and improved soil
JP2021161174A (en) Solidification aid, solidification material and solidification method
JP5830792B2 (en) Ground improvement soil and ground improvement method
WO2015044381A1 (en) A binder based on activated ground granulated blast furnace slag useful for forming a concrete type material
JP4798734B2 (en) Hydraulic composition
JP5645380B2 (en) Ground improvement soil and ground improvement method
JP5041503B2 (en) Quick set

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4841912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250