JP4841079B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP4841079B2
JP4841079B2 JP2001262452A JP2001262452A JP4841079B2 JP 4841079 B2 JP4841079 B2 JP 4841079B2 JP 2001262452 A JP2001262452 A JP 2001262452A JP 2001262452 A JP2001262452 A JP 2001262452A JP 4841079 B2 JP4841079 B2 JP 4841079B2
Authority
JP
Japan
Prior art keywords
optical
holder
optical device
cylindrical holder
demultiplexing filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001262452A
Other languages
Japanese (ja)
Other versions
JP2003075687A (en
Inventor
光弘 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001262452A priority Critical patent/JP4841079B2/en
Publication of JP2003075687A publication Critical patent/JP2003075687A/en
Application granted granted Critical
Publication of JP4841079B2 publication Critical patent/JP4841079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種光伝送分野において用いられる光デバイスに関する。
【0002】
【従来の技術】
光デバイスには光部品からのレーザー光源への反射戻光の防止及び光ファイバアンプ内で光の共振発生を防止する光アイソレータ、光信号を一方向にのみ通過させるような非相反機能を持つサーキュレータ、光伝送路中に挿入され光路を切り替える光スイッチ、また以下で説明する双方向モジュール等がある。
【0003】
光デバイスの具体例として、双方向通信において光ファイバ1本で送受信を行うときに用いられる双方向モジュールにて説明する。
【0004】
双方向モジュールとは、送信光を発するレーザーダイオード(LD)等の発光素子と、受信光を受信するフォトダイオード(PD)などの受光素子を有し、光信号の送信機能と受信機能を併せ持つ構造の光伝送デバイスである。
【0005】
従来の双方向モジュールは、例えば図5に示すように、波長λ1の送信光を放射するLD等の発光素子1と、PD等の受信素子11とを筐体8に固定し、また光信号を導出、導入する光ファイバ5の一端をフェルール5aを用いて筐体8に固定し、筐体8内には第一分波フィルタ4、送信側集光レンズ2と受信側集光レンズ12を備えているものである。
【0006】
この双方向モジュールでは、発光素子1から出射された波長λ1の光信号は送信側集光レンズ2を介して第一分波フィルタ4を通過し、光ファイバ5から導出される。一方光ファイバ5を通過してしてきた波長λ2の受信に対しては、反射する成分を持つ第一分波フィルタ4で反射され、受信側集光レンズ12により波長λ2に対して感度のある受光素子11に導かれるという構成を持っている。
【0007】
上記発光素子1、受光素子11はそれぞれ筐体8との間に金属によるリング状のスペーサ3、13を介在させ、YAGレーザ溶接またはハンダ付け等の手段によって固定されている(特開2000−304985号公報参照)。
【0008】
また高速通信を行うため送受信同時に駆動させる場合に、送信側の信号光の影響が受信側の信号光へ雑音として悪影響を与えてしまうことをより小さくするために、第一分波フィルタ4と受光素子11の間に第二分波フィルタ6を追加する事により高特性を得るようにしているものがある。この第二分波フィルタ6を追加する上で、受信レンズ12と一体化することでコンパクトにまとめることができる。
【0009】
【発明が解決しようとする課題】
ところが上記従来例において、筒状のホルダー7の両端面に第二分波フィルタ6、受信側集光レンズ12等の光学素子を接着剤、ハンダ付け、もしくは低融点ガラス付け等、高温処理の必要な方法にて固定しようとした場合、ホルダー7と第二分波フィルタ6、受信側集光レンズ12で形成される内部空間が密閉されるために、この内部空間の空気の膨張により、光学素子のずれ、浮きが発生し、信号光が光学素子の有効径外を通過する、または光軸に対し光学素子が傾くことにより光学特性が劣化してしまう、さらには光学素子を通過しない迷光によりS/N比が悪くなるという問題が発生する。
【0010】
上記課題に鑑みて本発明は、2個の光学素子を筒状ホルダーの両開口面に保持固定し、かつ前記筒状ホルダーに空気孔を設けた光デバイスであって、前記空気孔は、前記筒状ホルダーの外部に面して開口部を有し、前記筒状ホルダーの内部と連通するとともに、前記空気孔の内部に前記開口部から前記筒状ホルダーの内部に迷光の進入を阻止する直角に屈曲する屈曲部を1つ有していることを特徴とする。さらに、前記筒状ホルダーは、両開口が互いに径の異なる開口からなり、前記筒状ホルダーの内部に前記互いに径の異なる開口の連結部を有し、上記空気孔が、前記筒状ホルダーの外部に面して開口部を有する第1の空気孔と、前記筒状ホルダーの内部の前記連結部に面して開口部を有する第2の空気孔と、を備え、前記第1の空気孔と前記第2の空気孔とを直角方向に組み合わせて形成されていることを特徴とする。
【0011】
また、双方向モジュールは、筐体と、この筐体に設けられた発光素子と、この発光素子の光軸に対して45度傾けた状態で固定された第一分波フィルタと、前記発光素子に対向させて前記筐体に設けられた光ファイバーと、前記第一分波フィルタの固定位置に前記光軸と直交するように取り付けられた請求項1または請求項2に記載の光デバイスであって、前記2個の光学素子が第二分波フィルタおよび集光レンズである光デバイスと、前記集光レンズに対向するように前記光デバイスの前記筒状ホルダーに設けられた受光素子とを備えことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を図1、図2に基づいて説明する。
【0013】
図1は本発明の実施形態である光デバイスの一例である双方向モジュールの断面図を示し、図2は図1の第二分波フィルタ6、受信側集光レンズ12を保持した受信側のホルダー7の拡大断面図である。
【0014】
筐体8に発光素子1としてレーザダイオード(LD)と、受光素子11としてフォトダイオード(PD)を互いの光軸が直交するように配置し、送受信の光信号の分離体として第一分波フィルタ4は互いの光軸に45度傾けた状態にし、第二分波フィルタ6は受信側光軸に8度傾けた状態で受信側集光レンズ12と一体になるようにホルダー7に固定した上で配置されている。また発光素子1の光軸方向に光ファイバ5を保持したフェルール5aを備えている。
【0015】
発光素子1から出射された波長λ1の送信光は送信集光レンズ2及び第一分波フィルタ4を通過し光ファイバ5により導出される。また光ファイバ5から導入された波長λ2の受信光は第一分波フィルタ4によって反射し、この反射した受信光が第二分波フィルタ6を通過し受信側集光レンズ12により集光されて受光素子11に入射する。これによって双方向光通信が可能となる。
【0016】
第二分波フィルタ6は接着剤により金属製のリング状ホルダー7に接着され、受信側集光レンズ12は圧入により同じく金属製のリング状ホルダー7に固定されている。ここでホルダー7は第二分波フィルタ6の接着面より切欠き7aが設けられ、これによってホルダー7と第二分波フィルタ6、受信側集光レンズ12で形成される内部空間7cと外部とを連通しており、接着硬化時の高温による内部空間の空気の膨張を外部へ逃がすことによって熱膨張した空気圧に起因する第二分波フィルタ6の位置ずれ、光軸方向との角度ずれを防いでいる。
【0017】
ここで言う光学素子は、第二分波フィルタ6、受信側集光レンズ12である。貼付け固定する光学素子は、光学的有効径に対し、片側0.2mm以上大きな光路径を確保するよう開けられたホルダー7の穴に、さらに固定代として0.2mm以上大きい寸法であることが望ましい。
【0018】
光アイソレータ、光サーキュレータ、光スイッチ等では光学素子としてガーネット等のファラデー回転子、方解石、ルチル、LN結晶等の複屈折結晶、レンズ、1/2λ波長板、1/4λ波長板、プリズム、ミラー等があり、これらの光学素子を保持する際にも本発明を適用することができる。
【0019】
ホルダー7の材質としては、熱膨張係数が小さく、またYAGレーザ溶接する事を考慮してSUS304を使用したが、条件により金属、セラミック、樹脂等の使用も可能である。例えば、金属ではFe−Ni合金、Fe−Ni−Cr合金、Fe−Ni−Co合金、Fe−Cr合金等があり、セラミックでは、アルミナ、炭化珪素、窒化珪素、窒化アルミ、ジルコニア等がある。更に樹脂ではPBT、PC、PMMA、PEI、LCP、PA等が考えられる。
【0020】
ホルダー7への光学素子の固定方法としては圧入、紫外線硬化型接着剤、嫌気性接着剤等もあるが、熱処理を伴う固定方法として、エポキシ樹脂系接着剤、ハンダ、低融点ガラス等があり、それぞれ60℃〜125℃、120℃〜400℃、340℃〜500℃程度の高温処理が必要となるため本発明を適用できる。
【0021】
また貫通孔7bの断面形状は円、四角形、多角形と何れでも良いが、切削加工の場合はドリルでの加工上円形が最も望ましい。但し樹脂モールド、メタルインジェクションモールド等の成形品の場合は円形に限ることはなく、図4(c)の様な孔の場合は四角形がより良い。貫通孔7bの位置は上面、側面とも同様な効果はあるが、ホルダー7をボデー等の構造体へ取付ける時に接着剤等を使用する場合には、側面に貫通孔を設けるか、もしくは上面から側面へ至るような孔、切欠きとすることにより、貫通孔への接着剤の回り込みでホルダー7の接着強度を上げることが可能となる。
【0022】
尚このように製作したホルダー7に、密閉構造が必要な場合には、ホルダー7をボデー等の構造体へ取付ける時点で貫通孔7bを接着剤等で塞ぐことにより容易に密閉することが可能となる。
【0023】
図3、図4に本発明の他の実施形態を示す。図3(a)はホルダー7に切欠きではなく側面に内部空間7cと連通する貫通孔7bを設けた場合の側面図である。図3(b)は同じくホルダー7の上部に貫通孔7bを設けた上面図である。また図3(c)はホルダー7に孔が設けられない場合に光学素子である第二分波フィルタ6側に貫通孔6aを設けた場合の上面図を示す。
【0024】
また図4(a)のようにホルダー7の光路形状と光学素子である第二分波フィルタ6の形状を変えることにより、両者の隙間に空気孔を設けることもできる。図4(b)は迷光の進入を阻止するために直角方向の2つの孔を組み合わせて貫通孔7bを形成したものである。図(4c)はメタルインジェクションモールド、樹脂モールド等の成型品では角ピンを使用することにより、図(4b)と同様な効果をスライドコアを使用せず安価な上下型にて成形する形状を示す。
【0025】
以上のように説明に双方向モジュールを一例として示したが、本発明は光デバイス全般の光学素子固定に適用することができる。
【0026】
【実施例】
ここで、以下に示す方法で実験を行った。
【0027】
本発明実施例として図2に示す切欠き7a付きの金属製ホルダー7と、比較例として従来の切欠きのない金属製ホルダー7を作製し、共に受信側集光レンズ12を圧入後第二分波フィルタ6を接着固定し、第二分波フィルタ6のずれ、傾きを確認した。また逆に第二分波フィルタ6を接着固定した後、受信側集光レンズ12を圧入し、その圧入力を確認した。
【0028】
サンプルに使用した各材質は、金属製ホルダー7にSUS304、第二分波フィルタ6に2mm×2mmで0.2mm厚の白板ガラス、受信側集光レンズ12にφ2.5mmのBK7のボールレンズとし、固定用接着剤は2液混合のエポキシ樹脂系接着剤を使用した。また硬化条件は125℃1時間とした。
【0029】
その結果を表1、表2に示す。
【0030】
【表1】

Figure 0004841079
【0031】
【表2】
Figure 0004841079
【0032】
受信側集光レンズ12圧入後の接着結果は、従来例は第二分波フィルタ6に何らかの位置移動が生じたものが10個中8個あったのに対し、本発明実施例では皆無であった。また第二分波フィルタ6接着後の受信側集光レンズ12圧入の結果は、ホルダー7内部の圧縮空気の圧力により平均して従来品が平均20.5Nf圧入力において高くなった。
【0033】
【発明の効果】
以上、光学素子をホルダーを介して固定してなる光デバイスにおいて、2個以上の光学素子を筒状ホルダーの両開口面に保持固定し、かつ上記光学素子もしくはホルダーのいずれかに空気孔を設けることにより、内部空気の膨張による、ずれ、浮きの発生を皆無にでき、安定した光学素子の固定ができる。
【図面の簡単な説明】
【図1】本発明の光デバイスの断面図である。
【図2】本発明の光デバイスにおける光学素子を保持したホルダーの拡大断面図である。
【図3】(a)〜(c)は本発明の光デバイスにおける光学素子を保持したホルダーのさまざまな実施形態を示す図である。
【図4】(a)〜(c)は本発明の光デバイスにおける光学素子を保持したホルダーのさまざまな実施形態を示す図である。
【図5】従来の双方向モジュールの断面図である。
【符号の説明】
1:発光素子
2:送信側集光レンズ
3:送信側スペーサ
4:第一分波フィルタ
5:光ファイバ
5a:光ファイバフェルール部
6:第二分波フィルタ
6a:貫通孔
7:ホルダ−
7a:切欠き部
7b:貫通孔
7c:内部空間
8:筐体
11:受光素子
12:受信側集光レンズ
13:受信側スペーサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical device used in various optical transmission fields.
[0002]
[Prior art]
Optical devices include optical isolators that prevent reflected light from optical components from being reflected back to the laser light source and prevent optical resonance in the optical fiber amplifier, and circulators that have nonreciprocal functions that allow optical signals to pass in only one direction. There are an optical switch that is inserted into the optical transmission path and switches the optical path, and a bidirectional module described below.
[0003]
As a specific example of the optical device, a bidirectional module used for transmission / reception with one optical fiber in bidirectional communication will be described.
[0004]
The bidirectional module has a light emitting element such as a laser diode (LD) that emits transmission light and a light receiving element such as a photodiode (PD) that receives reception light, and has both a transmission function and a reception function of an optical signal. This is an optical transmission device.
[0005]
For example, as shown in FIG. 5, a conventional bidirectional module fixes a light emitting element 1 such as an LD that emits transmission light having a wavelength λ1 and a receiving element 11 such as a PD to a housing 8 and transmits an optical signal. One end of the optical fiber 5 to be led out and introduced is fixed to the housing 8 using a ferrule 5a, and the housing 8 includes the first demultiplexing filter 4, the transmission-side condenser lens 2, and the reception-side condenser lens 12. It is what.
[0006]
In this bidirectional module, the optical signal having the wavelength λ 1 emitted from the light emitting element 1 passes through the first demultiplexing filter 4 via the transmission side condensing lens 2 and is derived from the optical fiber 5. On the other hand, for reception of the wavelength λ 2 that has passed through the optical fiber 5, the light is reflected by the first demultiplexing filter 4 having a component to be reflected and is received by the reception-side condenser lens 12 with sensitivity to the wavelength λ 2. It has a configuration of being guided to the element 11.
[0007]
The light emitting element 1 and the light receiving element 11 are fixed by means such as YAG laser welding or soldering, with ring-shaped spacers 3 and 13 made of metal interposed between the light emitting element 1 and the light receiving element 11, respectively (Japanese Patent Laid-Open No. 2000-304985). No. publication).
[0008]
Further, in order to perform high-speed communication, when the transmission and reception are simultaneously performed, the first demultiplexing filter 4 and the light reception are reduced in order to reduce the influence of the signal light on the transmission side adversely affecting the signal light on the reception side as noise. Some devices obtain high characteristics by adding a second demultiplexing filter 6 between the elements 11. When the second demultiplexing filter 6 is added, the second demultiplexing filter 6 can be made compact by integrating with the receiving lens 12.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional example, optical elements such as the second demultiplexing filter 6 and the receiving-side condenser lens 12 are required to be subjected to high temperature processing such as adhesive, soldering, or low melting point glass on both end faces of the cylindrical holder 7. When trying to fix by the above method, the internal space formed by the holder 7, the second demultiplexing filter 6, and the receiving-side condenser lens 12 is sealed. Deviation and floating occur, and the optical characteristics deteriorate due to signal light passing outside the effective diameter of the optical element, or the optical element tilting with respect to the optical axis, and furthermore, stray light that does not pass through the optical element causes S The problem that the / N ratio becomes worse occurs.
[0010]
In view of the above problems, the present invention is an optical device in which two optical elements are held and fixed on both opening surfaces of a cylindrical holder, and air holes are provided in the cylindrical holder. has an opening facing the outside of the cylindrical holder, with communication with the interior of the cylindrical holder, prevents the entry of stray light into the interior of the tubular holder from the opening to the inside of the air hole It has one bent portion that is bent at a right angle. Further, the cylindrical holder has openings having different diameters, and has a connecting portion of the openings having different diameters inside the cylindrical holder, and the air hole is located outside the cylindrical holder. A first air hole having an opening facing the first air hole, and a second air hole having an opening facing the connecting part inside the cylindrical holder, and the first air hole, It is characterized by being formed by combining the second air holes in a perpendicular direction.
[0011]
The bidirectional module includes a housing, a light emitting element provided in the housing, a first demultiplexing filter fixed in a state inclined by 45 degrees with respect to the optical axis of the light emitting element, and the light emitting element. 3. The optical device according to claim 1, wherein the optical device is attached to the fixing position of the first demultiplexing filter so as to be orthogonal to the optical axis and opposed to the optical axis. the two optical elements having an optical device according to a second demultiplexed filter and the condenser lens, and a light receiving element provided in the tubular holder of the optical device so as to face the condenser lens It is characterized by that.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.
[0013]
FIG. 1 is a sectional view of a bidirectional module which is an example of an optical device according to an embodiment of the present invention. FIG. 2 is a diagram of a receiving side holding the second demultiplexing filter 6 and the receiving side condensing lens 12 of FIG. 7 is an enlarged cross-sectional view of a holder 7. FIG.
[0014]
A laser diode (LD) as the light-emitting element 1 and a photodiode (PD) as the light-receiving element 11 are arranged in the housing 8 so that their optical axes are orthogonal to each other, and a first demultiplexing filter is used as a separator for transmitted and received optical signals. 4 is inclined to each other's optical axis by 45 degrees, and the second demultiplexing filter 6 is fixed to the holder 7 so as to be integrated with the reception-side condenser lens 12 while being inclined by 8 degrees to the reception-side optical axis. Is arranged in. Further, a ferrule 5 a holding an optical fiber 5 in the optical axis direction of the light emitting element 1 is provided.
[0015]
The transmission light having the wavelength λ 1 emitted from the light emitting element 1 passes through the transmission condensing lens 2 and the first demultiplexing filter 4 and is led out by the optical fiber 5. The received light of wavelength λ 2 introduced from the optical fiber 5 is reflected by the first demultiplexing filter 4, and this reflected received light passes through the second demultiplexing filter 6 and is collected by the receiving-side condensing lens 12. The light enters the light receiving element 11. This enables bi-directional optical communication.
[0016]
The second demultiplexing filter 6 is bonded to a metal ring-shaped holder 7 with an adhesive, and the receiving-side condenser lens 12 is fixed to the metal ring-shaped holder 7 by press-fitting. Here, the holder 7 is provided with a notch 7 a from the bonding surface of the second demultiplexing filter 6, whereby the inner space 7 c formed by the holder 7, the second demultiplexing filter 6, and the receiving-side condenser lens 12, and the outside The second demultiplexing filter 6 is prevented from being displaced and angularly deviating from the optical axis direction due to the thermally expanded air pressure by escaping the expansion of the air in the internal space due to the high temperature during the adhesive curing to the outside. It is out.
[0017]
The optical elements referred to here are the second demultiplexing filter 6 and the receiving-side condenser lens 12. The optical element to be bonded and fixed preferably has a dimension larger by 0.2 mm or more as a fixing allowance in the hole of the holder 7 opened so as to ensure an optical path diameter larger by 0.2 mm or more on one side than the optical effective diameter. .
[0018]
In optical isolators, optical circulators, optical switches, etc., optical elements such as Faraday rotators such as garnet, birefringent crystals such as calcite, rutile, LN crystals, lenses, 1 / 2λ wavelength plates, 1 / 4λ wavelength plates, prisms, mirrors, etc. The present invention can also be applied when holding these optical elements.
[0019]
As a material of the holder 7, SUS304 is used in consideration of a small thermal expansion coefficient and YAG laser welding, but metal, ceramic, resin, etc. can be used depending on conditions. For example, metals include Fe—Ni alloys, Fe—Ni—Cr alloys, Fe—Ni—Co alloys, Fe—Cr alloys, and the like, and ceramics include alumina, silicon carbide, silicon nitride, aluminum nitride, zirconia, and the like. Furthermore, PBT, PC, PMMA, PEI, LCP, PA, etc. can be considered as resin.
[0020]
Examples of the fixing method of the optical element to the holder 7 include press-fitting, ultraviolet curable adhesive, anaerobic adhesive, etc., and fixing methods involving heat treatment include epoxy resin adhesive, solder, low melting point glass, etc. The present invention can be applied because high temperature treatments of about 60 ° C to 125 ° C, 120 ° C to 400 ° C, and 340 ° C to 500 ° C are required.
[0021]
The cross-sectional shape of the through-hole 7b may be any of a circle, a quadrangle, and a polygon, but in the case of cutting, a circular shape is most desirable for machining with a drill. However, in the case of a molded product such as a resin mold or a metal injection mold, the shape is not limited to a circle, and in the case of a hole as shown in FIG. The position of the through hole 7b has the same effect on the upper surface and the side surface. However, when an adhesive is used when the holder 7 is attached to a structure such as a body, a through hole is provided on the side surface or the side surface from the upper surface is provided. By making the holes and notches leading to, the adhesive strength of the holder 7 can be increased by the wraparound of the adhesive into the through holes.
[0022]
If the holder 7 manufactured in this manner requires a sealing structure, it can be easily sealed by closing the through hole 7b with an adhesive or the like when the holder 7 is attached to a structure such as a body. Become.
[0023]
3 and 4 show another embodiment of the present invention. FIG. 3A is a side view when the holder 7 is provided with a through hole 7b communicating with the internal space 7c on the side surface instead of a notch. FIG. 3B is a top view in which a through hole 7 b is provided in the upper part of the holder 7. FIG. 3C is a top view when the through hole 6a is provided on the second demultiplexing filter 6 side which is an optical element when the holder 7 is not provided with a hole.
[0024]
Further, by changing the shape of the optical path of the holder 7 and the shape of the second demultiplexing filter 6 which is an optical element as shown in FIG. 4A, an air hole can be provided in the gap between the two. FIG. 4B shows a case where a through hole 7b is formed by combining two holes in a perpendicular direction in order to prevent stray light from entering. Figure (4c) shows a shape that can be molded by an inexpensive upper / lower mold without using a slide core by using square pins in a molded product such as a metal injection mold or a resin mold. .
[0025]
As described above, the bidirectional module is shown as an example in the description, but the present invention can be applied to fixing optical elements in general optical devices.
[0026]
【Example】
Here, the experiment was conducted by the following method.
[0027]
A metal holder 7 with a notch 7a shown in FIG. 2 as an embodiment of the present invention and a conventional metal holder 7 without a notch as a comparative example are produced, and both are separated into the second portion after press-fitting the receiving-side condenser lens 12. The wave filter 6 was adhered and fixed, and the shift and inclination of the second demultiplexing filter 6 were confirmed. Conversely, after the second demultiplexing filter 6 was bonded and fixed, the receiving-side condenser lens 12 was press-fitted and the pressure input was confirmed.
[0028]
Each material used for the sample is SUS304 for the metal holder 7, white plate glass of 2 mm × 2 mm and 0.2 mm thickness for the second demultiplexing filter 6, and a BK7 ball lens of φ2.5 mm for the receiving-side condenser lens 12. As the fixing adhesive, a two-component mixed epoxy resin adhesive was used. The curing condition was 125 ° C. for 1 hour.
[0029]
The results are shown in Tables 1 and 2.
[0030]
[Table 1]
Figure 0004841079
[0031]
[Table 2]
Figure 0004841079
[0032]
As a result of bonding after the receiving-side condenser lens 12 is press-fitted, in the conventional example, there were 8 out of 10 in which some position movement occurred in the second demultiplexing filter 6, but in the embodiment of the present invention, there was none. It was. In addition, the result of the press-fitting of the receiving-side condenser lens 12 after the second demultiplexing filter 6 was bonded was higher when the conventional product averaged 20.5 Nf pressure input on average due to the pressure of the compressed air inside the holder 7.
[0033]
【The invention's effect】
As described above, in an optical device in which an optical element is fixed through a holder, two or more optical elements are held and fixed on both opening surfaces of the cylindrical holder, and an air hole is provided in either the optical element or the holder. This eliminates the occurrence of displacement and floating due to the expansion of the internal air, and enables stable optical element fixation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an optical device of the present invention.
FIG. 2 is an enlarged cross-sectional view of a holder holding an optical element in the optical device of the present invention.
FIGS. 3A to 3C are diagrams showing various embodiments of a holder holding an optical element in the optical device of the present invention. FIGS.
4A to 4C are diagrams showing various embodiments of a holder holding an optical element in the optical device of the present invention. FIG.
FIG. 5 is a cross-sectional view of a conventional bidirectional module.
[Explanation of symbols]
1: Light-emitting element 2: Transmission side condensing lens 3: Transmission side spacer 4: First demultiplexing filter 5: Optical fiber 5a: Optical fiber ferrule 6: Second demultiplexing filter 6a: Through hole 7: Holder
7a: Notch 7b: Through hole 7c: Internal space 8: Housing 11: Light receiving element 12: Reception side condenser lens 13: Reception side spacer

Claims (3)

2個の光学素子を筒状ホルダーの両開口面に保持固定し、かつ前記筒状ホルダーに空気孔を設けた光デバイスであって、前記空気孔は、前記筒状ホルダーの外部に面して開口部を有し、前記筒状ホルダーの内部と連通するとともに、前記空気孔の内部に迷光の進入を阻止する直角に屈曲する屈曲部を1つ有していることを特徴とする光デバイス。An optical device in which two optical elements are held and fixed on both opening surfaces of a cylindrical holder, and air holes are provided in the cylindrical holder, the air holes facing the outside of the cylindrical holder. has an opening, as well as communication with the interior of the tubular holder, optical device characterized in that it a bent portion bent at a right angle to prevent the entry of stray light into the interior of the air hole has one . 前記筒状ホルダーは、両開口が互いに径の異なる開口からなり、前記筒状ホルダーの内部に前記互いに径の異なる開口の連結部を有し、
上記空気孔が、前記筒状ホルダーの外部に面して開口部を有する第1の空気孔と、
前記筒状ホルダーの内部の前記連結部に面して開口部を有する第2の空気孔と、を備え、前記第1の空気孔と前記第2の空気孔とを直角方向に組み合わせて形成されていることを特徴とする請求項1に記載の光デバイス。
The cylindrical holder is composed of openings having different diameters from each other, and has a connecting portion of the openings having different diameters inside the cylindrical holder,
A first air hole having an opening facing the outside of the cylindrical holder;
A second air hole having an opening facing the connecting portion inside the cylindrical holder, and is formed by combining the first air hole and the second air hole in a right angle direction. The optical device according to claim 1.
筐体と、
該筐体に設けられた発光素子と、
該発光素子の光軸に対して45度傾けた状態で固定された第一分波フィルタと、
前記発光素子に対向させて前記筐体に設けられた光ファイバーと、
前記第一分波フィルタの固定位置に前記光軸と直交するように取り付けられた請求項1または請求項2に記載の光デバイスであって、前記2個の光学素子が第二分波フィルタおよび集光レンズである光デバイスと、
前記集光レンズに対向するように前記光デバイスの前記筒状ホルダーに設けられた受光素子とを備えた双方向モジュール。
A housing,
A light emitting element provided in the housing;
A first demultiplexing filter fixed in a state inclined by 45 degrees with respect to the optical axis of the light emitting element;
An optical fiber provided in the housing to face the light emitting element;
3. The optical device according to claim 1, wherein the optical device is attached to a fixed position of the first demultiplexing filter so as to be orthogonal to the optical axis, and the two optical elements are a second demultiplexing filter and An optical device that is a condenser lens;
A bidirectional module comprising: a light receiving element provided in the cylindrical holder of the optical device so as to face the condenser lens .
JP2001262452A 2001-08-30 2001-08-30 Optical device Expired - Fee Related JP4841079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262452A JP4841079B2 (en) 2001-08-30 2001-08-30 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262452A JP4841079B2 (en) 2001-08-30 2001-08-30 Optical device

Publications (2)

Publication Number Publication Date
JP2003075687A JP2003075687A (en) 2003-03-12
JP4841079B2 true JP4841079B2 (en) 2011-12-21

Family

ID=19089348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262452A Expired - Fee Related JP4841079B2 (en) 2001-08-30 2001-08-30 Optical device

Country Status (1)

Country Link
JP (1) JP4841079B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3781026B2 (en) 2003-09-25 2006-05-31 住友電気工業株式会社 Optical module, optical transceiver and optical joint sleeve
JP2005202156A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005202157A (en) 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005234464A (en) 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor
JP4732139B2 (en) * 2005-11-15 2011-07-27 新科實業有限公司 Optical module manufacturing method and optical module
JP4796951B2 (en) * 2006-02-03 2011-10-19 日本碍子株式会社 Optical device
CN109449746A (en) * 2018-11-23 2019-03-08 东莞旺福电子有限公司 A kind of new pattern laser sensor-packaging structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941298B2 (en) * 1989-03-07 1999-08-25 株式会社東芝 Optical element module
JPH09101432A (en) * 1995-10-05 1997-04-15 Toshiba Corp Collimator for optical fiber
JP3370264B2 (en) * 1997-12-11 2003-01-27 日本板硝子株式会社 Optical module

Also Published As

Publication number Publication date
JP2003075687A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US20070122154A1 (en) Bidirectional optical assembly and method for manufacturing the same
EP1986028A2 (en) Optical assemblies and their methods of formation
JP4841079B2 (en) Optical device
JP2012054466A (en) Optical transmitter module and method for manufacturing the same
JP3896097B2 (en) Receptacle type optical module
JP4883969B2 (en) Optical receptacle and optical module using the same
CA2376907C (en) Hermetically sealing package for optical semiconductor and optical semiconductor module
JP2008107760A (en) Optical filter with optical isolator function and optical transmission/reception module with the same
US7503704B2 (en) Optical receptacle
JPH03144602A (en) Two-way light emission and reception module
JP4883927B2 (en) Optical receptacle with lens and optical module using the same
JP4548988B2 (en) Receptacle with optical isolator and its assembly method
JP4981950B2 (en) Fiber stub and optical module using the same
JP4828981B2 (en) Optical receptacle and optical module
JPH04309908A (en) Wavelength multiplex transmission and reception module
JP4599569B2 (en) Array type optical element connection method
JPH08334654A (en) Receptacle type optical coupling device
JP3881555B2 (en) Ferrule for optical fiber and stub and receptacle with optical isolator using the same
JP2005070467A (en) Optical receptacle having optical isolator and optical module using optical receptacle
JP4683852B2 (en) Optical isolator
JP4150310B2 (en) Receptacle with optical isolator
JP2004325606A (en) Receptacle with optical isolator
JP4123755B2 (en) Light emitting module
JPH07294774A (en) Optical transmitter/receiver
JP2002296460A (en) Bidirectional optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees