JP4840841B2 - Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method - Google Patents

Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method Download PDF

Info

Publication number
JP4840841B2
JP4840841B2 JP2005125865A JP2005125865A JP4840841B2 JP 4840841 B2 JP4840841 B2 JP 4840841B2 JP 2005125865 A JP2005125865 A JP 2005125865A JP 2005125865 A JP2005125865 A JP 2005125865A JP 4840841 B2 JP4840841 B2 JP 4840841B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
crystal silicon
substrate
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005125865A
Other languages
Japanese (ja)
Other versions
JP2006298722A (en
Inventor
直克 佐野
忠昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
Original Assignee
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation filed Critical Kwansei Gakuin Educational Foundation
Priority to JP2005125865A priority Critical patent/JP4840841B2/en
Publication of JP2006298722A publication Critical patent/JP2006298722A/en
Application granted granted Critical
Publication of JP4840841B2 publication Critical patent/JP4840841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シードの有するイクロパイプ等の欠陥の悪影響を低減させることができ、且つ低コストな単結晶炭化ケイ素基板の製造方法に関する。 The present invention relates to a method for producing a single-crystal silicon carbide substrate that can reduce the adverse effects of defects such as an icero pipe that a seed has and that is low in cost.

炭化ケイ素(SiC)は、耐熱性及び機械的強度に優れ、放射線にも強く、不純物の添加によって電子や正孔の価電子制御も容易にできるとともに、広い禁制帯幅(6H型の単結晶SiCで約3.0eV、4H型の単結晶SiCで3.3eV)を有するという特徴を備えている。従って、ケイ素(Si)やガリウム砒素(GaAs)などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であるとされ、次世代のパワーデバイス、高周波デバイス用半導体の材料として期待が高まっている。また、六方晶SiCは、窒化ガリウム(GaN)と格子定数が近く、GaNの基板としても期待されている。   Silicon carbide (SiC) has excellent heat resistance and mechanical strength, is resistant to radiation, can easily control the valence electrons of electrons and holes by adding impurities, and has a wide band gap (6H-type single crystal SiC). About 3.0 eV and 3.3 eV for 4H type single crystal SiC. Therefore, it is said that it is possible to realize high temperature, high frequency, withstand voltage / environment resistance that cannot be realized with existing semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). Expectation is growing as a semiconductor material. Further, hexagonal SiC has a lattice constant close to that of gallium nitride (GaN), and is expected as a GaN substrate.

そして、この種の単結晶SiCを製造する方法としては、例えば特許文献1や特許文献2に示すような方法が提案されている。
特許文献1の方法は、単結晶SiC基板とSi原子及びC原子により構成された板材とを微小隙間を隔てて平行に対峙させ、その状態で、大気圧以下の不活性ガス雰囲気かつSiC飽和蒸気雰囲気下で、単結晶SiC基板側が板材よりも低温となるように温度傾斜を持たせる。そして、熱処理することにより、微小隙間内でSi原子及びC原子を昇華再結晶させ、単結晶SiC基板上に単結晶を析出させるというものである。
And as a method of manufacturing this kind of single crystal SiC, the method as shown, for example in patent document 1 or patent document 2 is proposed.
In the method of Patent Document 1, a single crystal SiC substrate and a plate material composed of Si atoms and C atoms are faced in parallel with a minute gap therebetween, and in that state, an inert gas atmosphere and an SiC saturated vapor at atmospheric pressure or lower Under an atmosphere, a temperature gradient is provided so that the single crystal SiC substrate side is at a lower temperature than the plate material. Then, by performing heat treatment, Si atoms and C atoms are sublimated and recrystallized in a minute gap, and a single crystal is deposited on a single crystal SiC substrate.

しかしながら、特許文献1のような昇華再結晶法では、シードとしての単結晶SiC基板が有する欠陥(特に、「マイクロパイプ欠陥」と呼ばれる直径数ミクロンから0.1mm程度の管状の空隙)が、析出する単結晶のエピタキシャル構造に伝播し易く、これが、製造される単結晶SiCを前述のパワーデバイス等として用いる際の大きな障害となっている。この点は特許文献2も指摘するところであり、これを解決する方法として特許文献2では、単結晶SiC上に液相エピタキシャル成長法(LPE)によって第1のエピタキシャル層を形成し、基板に現れたマイクロパイプ欠陥がエピタキシャル層でほぼ複製されなくなる厚さになるまでこのエピタキシャル層を成長させ続けることで、基板からエピタキシャル層に伝播したマイクロパイプ欠陥をふさぐとともに、その後に、気相法(CVD)によって表面に第2のエピタキシャル層を形成する方法を提案している。特許文献2は、これにより、欠陥の少ない炭化ケイ素のエピタキシャル層を成長させることができるとする。
特開平11−315000号公報 特表平10−509943号公報
However, in the sublimation recrystallization method as disclosed in Patent Document 1, defects (particularly, tubular voids having a diameter of several microns to about 0.1 mm called “micropipe defects”) that are present in the single crystal SiC substrate as a seed are precipitated. This easily propagates to a single crystal epitaxial structure, and this is a major obstacle when the manufactured single crystal SiC is used as the power device described above. This point is also pointed out by Patent Document 2, and as a method for solving this problem, in Patent Document 2, a first epitaxial layer is formed on a single crystal SiC by a liquid phase epitaxial growth method (LPE), and a micro-appeared on a substrate is formed. By continuing to grow this epitaxial layer until the pipe defect has a thickness that is almost not replicated in the epitaxial layer, the micropipe defect propagated from the substrate to the epitaxial layer is blocked, and then the surface is formed by vapor deposition (CVD). Proposed a method of forming a second epitaxial layer. According to Patent Document 2, it is possible to grow a silicon carbide epitaxial layer with few defects.
JP 11-315000 A Japanese National Patent Publication No. 10-509943

上記特許文献2の方法は、確かに液相エピタキシャル成長法を用いることでシードのマイクロパイプ欠陥の影響を実質的に減少させることができる。しかしながら、例えば結晶SiCに大径のマイクロパイプが多数存在するような場合には、それを塞ぐのには、一般に液相エピタキシャル成長法が昇華再結晶法に比較して成長速度が非常に遅い(1時間につき10μs以下)こととあいまって、非常に時間が掛かり、生産性が大きく低下してしまう。 The method of Patent Document 2 can substantially reduce the influence of micropipe defects in the seed by using the liquid phase epitaxial growth method. However, for example, when there are a large number of large-diameter micropipes in single- crystal SiC, generally the liquid phase epitaxial growth method is much slower than the sublimation recrystallization method in order to block it ( Coupled with that of 10 μs or less per hour), it takes a very long time and the productivity is greatly reduced.

また、上記マイクロパイプのほかにも、シードに存在するステップバンチング、モホロジー、研磨損傷などの欠陥が液相エピタキシャル成長層に悪影響し、これらによっても、単結晶SiCの品質の安定性が低下してしまっていた。結局、高品質な単結晶SiCを得るためには、欠陥の少ない高価な単結晶SiCをシードとして使用しなければならず、この意味でもコストアップの一因となっていた。 In addition to the above micropipes, defects such as step bunching, morphology, and polishing damage existing in the seed adversely affect the liquid phase epitaxial growth layer, which also deteriorates the quality stability of the single crystal SiC. It was. Eventually, in order to obtain high quality single crystal SiC, expensive single crystal SiC with few defects must be used as a seed , which also contributes to an increase in cost.

また、特許文献1も特許文献2も、シードとしての単結晶SiC上に単結晶SiCを析出ないし成長させるものであって、シードとなる単結晶SiCは相当に高価である。従って、コストの低い単結晶SiCの成長方法の開発が望まれていた。 In both Patent Document 1 and Patent Document 2, single crystal SiC is deposited or grown on single crystal SiC as a seed , and the single crystal SiC as a seed is considerably expensive. Therefore, it has been desired to develop a method for growing single crystal SiC at a low cost.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

◆本発明の第1の観点によれば、以下のような、単結晶炭化ケイ素基板の製造方法が提供される。シードとなる単結晶炭化ケイ素をC原子供給基板に対向させつつ密閉容器内で均一に熱処理を行うことによって、前記単結晶炭化ケイ素と前記C原子供給基板との間に金属シリコン融液を介在させて単結晶炭化ケイ素基板を液相エピタキシャル成長させる。前記シードとなる単結晶炭化ケイ素のシード面は、前記C原子供給基板よりも小さい面積であり、前記金属シリコン融液が、前記シード面と前記C原子供給基板との間に存在すると共に、前記シード面の面方向外側の領域と前記C原子供給基板との間にも存在し、前記熱処理により、まず、前記シード面上に単結晶炭化ケイ素が液相エピタキシャル成長し、この成長結晶が、前記対向する方向と垂直な方向に液相エピタキシャル成長することにより、前記シード面の面積より大きな面積の単結晶炭化ケイ素基板られる。 ◆ According to the first aspect of the present invention, the following method for producing a single crystal silicon carbide substrate is provided. By uniformly heat-treating the single crystal silicon carbide serving as a seed to the C atom supply substrate in a sealed container, a metal silicon melt is interposed between the single crystal silicon carbide and the C atom supply substrate. A single crystal silicon carbide substrate is grown by liquid phase epitaxial growth. Seed plane of the single crystal silicon carbide serving as the seed, the a smaller area than the C atom supply substrate, together with the metal silicon melt is present between the C atoms supply substrate and the seed surface, wherein It exists also between the area | region outside the surface direction of a seed surface, and the said C atom supply board | substrate, and by the said heat processing, first, the single crystal silicon carbide grows on the said seed surface by liquid phase epitaxial, This growth crystal | crystallization is the said opposing surface. by growing a liquid phase epitaxial in a direction perpendicular to the direction in which the single crystal silicon carbide substrate of a larger area than the area of the seed surface is Ru obtained.

この方法では、シードとなる単結晶炭化ケイ素のシード面から周囲に広がるように液相エピタキシャル成長するので、シード面上の部分においてはシード面の有するマイクロパイプ等の欠陥が伝播するにしても、広がるように成長した部分に対してはシードの欠陥の悪影響は殆どない。従って、少なくともシード面上に相当する部分以外の部分においては、欠点の殆どない単結晶炭化ケイ素基板を提供できる。 In this way, since the liquid phase epitaxial growth so as to spread around the seed surface of the single crystal silicon carbide serving as a seed, even if the defects such as micropipe having the seed surface propagating in part on the seed surface, spread Thus, there is almost no adverse effect of seed defects on the grown portion. Therefore, a single crystal silicon carbide substrate having almost no defects can be provided at least in a portion other than the portion corresponding to the seed surface .

◆前記の単結晶炭化ケイ素基板の製造方法においては、前記シード面は、一つのC原子供給基板に対し複数設置されることが好ましい。 In the method for producing a single crystal silicon carbide substrate, it is preferable that a plurality of seed surfaces are provided for one C atom supply substrate.

これにより、一回の成長処理で単結晶の基板を複数得られることになるから、製造効率を一層向上でき、製造コストを低減できる。   As a result, a plurality of single crystal substrates can be obtained by a single growth process, so that the production efficiency can be further improved and the production cost can be reduced.

◆前記の単結晶炭化ケイ素基板の製造方法においては、単結晶炭化ケイ素基板を面積比で前記シード面の2倍以上成長させることが好ましい。 ◆ In the production method of the monocrystalline silicon carbide substrate, it is preferable to grow more than 2 times the seed surface single crystal silicon carbide substrate in Area Ratio.

これにより、大面積の基板を得ることができるとともに、製造効率の向上を一層図ることができる。   As a result, a large-area substrate can be obtained, and the manufacturing efficiency can be further improved.

◆前記の単結晶炭化ケイ素基板の製造方法においては、前記シード面は、単結晶炭化ケイ素からなる板部材の前記C原子供給基板と対向する表面に設けられている凹凸のうち、相対的な凸の部分の先端面であることが好ましい。 In the method for manufacturing a single crystal silicon carbide substrate, the seed surface is a relative protrusion among the unevenness provided on the surface of the plate member made of single crystal silicon carbide facing the C atom supply substrate. It is preferable that it is the front end surface of this part.

これにより、板部材に適宜の凹凸を施すことで、シード面を、短時間で多数作ることができる。従って、大量生産によるコスト削減に一層良好に適合させることができる。 Thereby, many seed surfaces can be made in a short time by giving an appropriate unevenness | corrugation to a board member. Therefore, it can be better adapted to cost reduction by mass production.

◆前記の単結晶炭化ケイ素基板の製造方法においては、前記単結晶炭化ケイ素基板を液相エピタキシャル成長させる工程の前に、前記板部材の表面に前記凹凸を設ける凹凸形成工程を有しており、前記凹凸形成工程は、表面に突出部を有するC原子供給基板と、平坦状の前記板部材とを金属シリコン融液を介して対向させつつ熱処理を行うことにより、前記板部材の、前記突出部に対向する部分に、単結晶炭化ケイ素を液相エピタキシャル成長させて、前記凸の部分を形成することが好ましい。 The method for producing a single crystal silicon carbide substrate includes a concavo-convex forming step of providing the concavo-convex on the surface of the plate member before the liquid phase epitaxial growth of the single crystal silicon carbide substrate, irregularities forming step, by performing the C atom supply substrate having protrusions on the surface, a heat treatment while the flat of the plate member is opposed to via metals silicon melt, said plate member, said protrusion Preferably, the convex portion is formed by liquid phase epitaxial growth of single crystal silicon carbide on the portion facing the portion.

これにより、表面に突出部を有するC原子供給基板を平坦状の板部材に対向させ、板部材の、C原子供給基板の突出部に対向する部分に液相エピタキシャル成長させることで、シード面を構成する凸の部分を形成できる。従って、単結晶炭化ケイ素からなる板部材を直接加工して凸の部分を形成しなくて済むので、上記凸の部分の形成コストを低減できる。 Configuration Thus, the C atom supply substrate having a projecting portion on a surface to face the flat plate member, the plate member, by the liquid phase epitaxial growth at a portion facing to the projecting portion of the C atoms supply substrate, a seed surface a convex portion which can be formed. Accordingly, it is not necessary to directly process the plate member made of single crystal silicon carbide to form the convex portion, so that the formation cost of the convex portion can be reduced.

◆前記の単結晶炭化ケイ素基板の製造方法においては、前記シードとなる単結晶炭化ケイ素は、タンタルカーバイド加工された表面を有するタンタル基板の表面に薄板状の部材として設置されていることが好ましい。 In the method for producing a single crystal silicon carbide substrate, it is preferable that the single crystal silicon carbide serving as the seed is installed as a thin plate-like member on the surface of the tantalum substrate having a tantalum carbide processed surface.

これにより、シードとしての単結晶炭化ケイ素を小面積の部材として設置するだけで形成できるから、製造コストを極めて大きく低減できる。 Thus, because the single crystal silicon carbide as a seed can be formed by simply Installation as a member of the small area, it may very greatly reduced manufacturing cost.

◆前記の単結晶炭化ケイ素基板の製造方法においては、前記シード面は、円形状に構成されていることが好ましい。In the method for manufacturing a single crystal silicon carbide substrate, the seed surface is preferably formed in a circular shape.

これにより、単結晶炭化ケイ素を均等に液相エピタキシャル成長させることができ、製造される単結晶の基板の品質を向上させることができるほか、基板の製造効率を向上させ、製造に要する時間を低減できる。また、シード面の面積を小さくできるから、シードとなる単結晶炭化ケイ素のコストを低減することも容易である。Thereby, the single crystal silicon carbide can be uniformly liquid phase epitaxially grown, the quality of the produced single crystal substrate can be improved, the production efficiency of the substrate can be improved, and the time required for the production can be reduced. . Further, since the area of the seed surface can be reduced, it is easy to reduce the cost of the single crystal silicon carbide used as a seed.

次に、発明の実施の形態を説明する。先ず最初に、本発明の単結晶SiC基板の製造方法を実施するために好適な熱処理装置の一例を、図1の模式断面図を参照して説明する。   Next, embodiments of the invention will be described. First, an example of a heat treatment apparatus suitable for carrying out the method for producing a single crystal SiC substrate of the present invention will be described with reference to the schematic cross-sectional view of FIG.

図1において、熱処理装置1は、本加熱室2と、予備加熱室3と、この予備加熱室3から前記本加熱室2に続く部分にある前室4とを主要部分として構成されている。この構成で、後述の単結晶SiC保持板5等が収納された密閉容器16が予備加熱室3から前室4、本加熱室2へと順次移動することで、単結晶SiC保持板5を短時間で所定の温度(例えば、約1200℃〜約2300℃)で加熱できるようになっている。   In FIG. 1, the heat treatment apparatus 1 is mainly composed of a main heating chamber 2, a preheating chamber 3, and a front chamber 4 in a portion following the preheating chamber 3 to the main heating chamber 2. With this configuration, the hermetically sealed container 16 in which a single crystal SiC holding plate 5 or the like to be described later is moved sequentially from the preheating chamber 3 to the front chamber 4 and the main heating chamber 2, thereby shortening the single crystal SiC holding plate 5. It can be heated at a predetermined temperature (for example, about 1200 ° C. to about 2300 ° C.) over time.

この熱処理装置1は、図1に示すように、本加熱室2と前室4との接続部分、及び、前室4と予備加熱室3との接続部分が、それぞれ連通部を有して仕切られている。このため、上記の各室2・3・4は予め所定の圧力下に制御することが可能である。また必要な場合には、各室毎にゲートバルブ7を設けることによって、各室2・3・4毎に圧力調整を行うようにすることもできる。これによって、単結晶SiC保持板5等を収納した密閉容器16の移動時において、外気に触れることなく、所定圧力下の炉内を適宜の移動手段(図略)によって移動させることができ、不純物の混入を抑制することができる。   As shown in FIG. 1, the heat treatment apparatus 1 has a connecting portion between the main heating chamber 2 and the front chamber 4 and a connecting portion between the front chamber 4 and the preheating chamber 3 each having a communication portion. It has been. For this reason, each of the chambers 2, 3, and 4 can be controlled in advance under a predetermined pressure. If necessary, the pressure can be adjusted for each of the chambers 2, 3, and 4 by providing a gate valve 7 for each chamber. As a result, when the closed container 16 containing the single crystal SiC holding plate 5 or the like is moved, the inside of the furnace under a predetermined pressure can be moved by an appropriate moving means (not shown) without touching the outside air. Can be prevented.

予備加熱室3には、加熱手段としてのハロゲンランプ6が設けられており、この構成により、約10-5Pa以下の減圧下で所定の範囲の温度(例えば、約800℃〜1000℃の範囲内)に急速に加熱することができる。また前述したように、予備加熱室3と前室4との接続部分にはゲートバルブ7が設けられて、予備加熱室3及び前室4の圧力制御を容易なものにしている。 The preheating chamber 3 is provided with a halogen lamp 6 as a heating means. With this configuration, a temperature within a predetermined range (for example, a range of about 800 ° C. to 1000 ° C.) under a reduced pressure of about 10 −5 Pa or less. Inner) can be heated rapidly. As described above, the gate valve 7 is provided at the connecting portion between the preheating chamber 3 and the front chamber 4 to facilitate the pressure control of the preheating chamber 3 and the front chamber 4.

液相エピタキシャル成長のための単結晶SiC保持板5等が収納された密閉容器16は、この予備加熱室3で、テーブル8に載置された状態で約800℃以上に予め加熱される。その後、予備加熱室3と前室4との圧力調整が行われ、調整完了後、前室4に設けられている昇降式のサセプタ9に載置されるように移動する。   The sealed container 16 in which the single crystal SiC holding plate 5 or the like for liquid phase epitaxial growth is accommodated is preheated to about 800 ° C. or more in the state of being placed on the table 8 in the preheating chamber 3. Thereafter, pressure adjustment between the preheating chamber 3 and the front chamber 4 is performed, and after the adjustment is completed, the preheating chamber 3 and the front chamber 4 are moved so as to be placed on a liftable susceptor 9 provided in the front chamber 4.

前室4に移動した密閉容器16は、一部図示している昇降式の移動手段10によって、サセプタ9とともに前室4から本加熱室2へ移動する。本加熱室2は、図示しない真空ポンプによって予め所定の減圧下に調整され、また、加熱ヒータ11によって所定の範囲の温度(例えば、約1200℃〜約2300℃)となるように温度調節されている。なお、前記本加熱室2の圧力環境は、例えば約10-2Pa以下の真空、好ましくは10-5Pa以下の真空の環境か、又は例えば約10-2Pa以下の真空、好ましくは10-5Pa以下の真空にした後に若干の不活性ガスが導入された希薄ガス雰囲気下であることが好ましい。 The sealed container 16 that has moved to the front chamber 4 is moved from the front chamber 4 to the main heating chamber 2 together with the susceptor 9 by the lifting and lowering moving means 10 partially shown. The main heating chamber 2 is preliminarily adjusted under a predetermined reduced pressure by a vacuum pump (not shown), and the temperature of the main heating chamber 2 is adjusted by the heater 11 so that the temperature is within a predetermined range (for example, about 1200 ° C. to about 2300 ° C.) Yes. The pressure environment of the main heating chamber 2 is, for example, a vacuum of about 10 −2 Pa or less, preferably 10 −5 Pa or less, or a vacuum of about 10 −2 Pa or less, preferably 10 −. It is preferable to be in a dilute gas atmosphere in which some inert gas is introduced after the vacuum of 5 Pa or less.

上記本加熱室2の状態をこのように設定しておき、密閉容器16を前室4から本加熱室2内へ移動すると、密閉容器16を例えば約1400℃〜2300以下の範囲に急速に短時間で加熱することができる。本加熱室2内には、加熱ヒータ11の周囲に反射鏡12が設置されており、加熱ヒータ11からの熱を反射して、加熱ヒータ11の内部に位置する単結晶SiC保持板5側に熱が集中するようにしている。   When the state of the main heating chamber 2 is set in this way and the sealed container 16 is moved from the front chamber 4 into the main heating chamber 2, the closed container 16 is rapidly shortened to a range of about 1400 ° C. to 2300 or less, for example. Can be heated in time. In the main heating chamber 2, a reflecting mirror 12 is installed around the heater 11, and reflects the heat from the heater 11 to the single crystal SiC holding plate 5 side located inside the heater 11. The heat is concentrated.

また、移動手段10と本加熱室2との嵌合部25は、移動手段10に設けられている凸状の段付き部21と、本加熱室2に形成されている凹状の段付き部22とで構成されている。また、本加熱室2の密閉のために、移動手段10の段付き部21の各段部には図略のシール部材(例えば、Oリング)が設けられている。   The fitting portion 25 between the moving means 10 and the main heating chamber 2 includes a convex stepped portion 21 provided in the moving means 10 and a concave stepped portion 22 formed in the main heating chamber 2. It consists of and. Further, in order to seal the heating chamber 2, an unillustrated seal member (for example, an O-ring) is provided at each step portion of the stepped portion 21 of the moving means 10.

本加熱室2内の加熱ヒータ11の内側には、汚染物除去機構29が設けられている。この汚染物除去機構29は、単結晶SiC保持板5等から熱処理中に排出される不純物を、加熱ヒータ11と接触しないように除去する。これによって、加熱ヒータ11が単結晶SiC保持板5等から排出される不純物と反応し劣化することを防止できる。なお、この汚染物除去機構29は、単結晶SiC保持板5等から排出する不純物を吸着するものであれば、特に限定されるものではない。   A contaminant removal mechanism 29 is provided inside the heater 11 in the main heating chamber 2. The contaminant removal mechanism 29 removes impurities discharged from the single crystal SiC holding plate 5 or the like during the heat treatment so as not to come into contact with the heater 11. Thereby, it is possible to prevent the heater 11 from reacting and deteriorating with impurities discharged from the single crystal SiC holding plate 5 or the like. The contaminant removal mechanism 29 is not particularly limited as long as it can adsorb impurities discharged from the single crystal SiC holding plate 5 or the like.

加熱ヒータ11は、タンタル等の金属製の抵抗加熱ヒータであり、前記サセプタ9側に設置されたベースヒータ11aと、本加熱室2側に設けられた上部ヒータ11bとで構成されている。前記移動手段10によって密閉容器16がベースヒータ11aとともに本加熱室2側へ上昇移動すると、密閉容器16が加熱ヒータ11によって取り囲まれる形となる。このような加熱ヒータ11のレイアウトにより、前述の反射鏡12ともあいまって、密閉容器16を均一に加熱することが可能となる。なお、本加熱室2の加熱方式としては、抵抗加熱ヒータに限定せず、例えば高周波誘導加熱式のものを採用することができる。   The heater 11 is a resistance heater made of metal such as tantalum, and includes a base heater 11 a installed on the susceptor 9 side and an upper heater 11 b provided on the main heating chamber 2 side. When the closed container 16 is moved upward together with the base heater 11 a to the main heating chamber 2 by the moving means 10, the closed container 16 is surrounded by the heater 11. Such a layout of the heater 11 makes it possible to uniformly heat the sealed container 16 together with the above-described reflecting mirror 12. Note that the heating method of the main heating chamber 2 is not limited to the resistance heater, and for example, a high frequency induction heating type can be adopted.

次に、図2と図3を参照しつつ、SiCの液相エピタキシャル成長に用いられる前記密閉容器16及びその内部に配置される基板等について説明する。図2は密閉容器の上容器と下容器とを取り外した図である。図3は、熱処理前の密閉容器の様子を示す模式断面図である。   Next, the sealed container 16 used for SiC liquid phase epitaxial growth and the substrate disposed therein will be described with reference to FIGS. FIG. 2 is a view in which the upper container and the lower container are removed. FIG. 3 is a schematic cross-sectional view showing the state of the sealed container before the heat treatment.

前述の密閉容器16は、図2や図3に示すような上容器16aと下容器16bとを嵌め合わせることにより構成されている。密閉容器16の形状は図2に示すようにほぼ六面体状とされているが、これは一例であって、例えば円筒状に構成されていても良い。密閉容器16の素材としては適宜のものを採用できるが、例えば、タンタル又はタンタルカーバイドで形成されていることが好ましい。   The above-described sealed container 16 is configured by fitting an upper container 16a and a lower container 16b as shown in FIGS. Although the shape of the airtight container 16 is substantially hexahedral as shown in FIG. 2, this is an example, and may be configured in a cylindrical shape, for example. An appropriate material can be adopted as the material of the sealed container 16, but it is preferably formed of, for example, tantalum or tantalum carbide.

また、上容器16aと下容器16bとを図3に示すように嵌め合わせたときの嵌合部分の遊びは、約2mm以下であることが好ましい。これによって、密閉容器16内への不純物の混入を抑制することができるし、更には前記本加熱室2での熱処理時に密閉容器16内のSi分圧を約10Pa以下とならないように制御することができる。このため、密閉容器16内のSiC分圧及びSi分圧を高め、密閉容器16に収納される単結晶SiC保持板5や、C原子供給基板17、金属Si融液18等(詳細は後述)の昇華が抑制される。逆に言えば、上記の嵌合部の遊びが約2mmより大きい場合には、密閉容器16内のSi分圧を所定圧に制御することが困難になり、また、不純物がこの嵌合部を介して密閉容器16内に侵入するおそれが大きくなるため、好ましくない。   Moreover, it is preferable that the play of a fitting part when the upper container 16a and the lower container 16b are fitted as shown in FIG. 3 is about 2 mm or less. Thereby, mixing of impurities into the sealed container 16 can be suppressed, and furthermore, the Si partial pressure in the sealed container 16 is controlled not to be about 10 Pa or less during the heat treatment in the main heating chamber 2. Can do. For this reason, the SiC partial pressure and the Si partial pressure in the sealed container 16 are increased, the single crystal SiC holding plate 5 accommodated in the sealed container 16, the C atom supply substrate 17, the metal Si melt 18 and the like (details will be described later). Is suppressed. In other words, if the play of the fitting part is larger than about 2 mm, it becomes difficult to control the Si partial pressure in the sealed container 16 to a predetermined pressure, and impurities can cause the fitting part to move. This is not preferable because the risk of entering the sealed container 16 increases.

そして、この密閉容器16の内部では図3に示すように、単結晶SiC保持板5、Si基板14、C原子供給基板17の順に下から上へと順に積層されている。単結晶SiC保持板5は、前記Si基板14を挟むようにして、C原子供給基板17に対向させて設置している。なお、必要に応じて、前記Si基板14の上に重石を載置することとしても良い。   In the sealed container 16, as shown in FIG. 3, the single crystal SiC holding plate 5, the Si substrate 14, and the C atom supply substrate 17 are sequentially stacked from the bottom to the top. The single crystal SiC holding plate 5 is disposed so as to face the C atom supply substrate 17 with the Si substrate 14 interposed therebetween. If necessary, a weight may be placed on the Si substrate 14.

本実施形態において単結晶SiC保持板5は、それ全体が単結晶SiCからなる円形板状の部材からなり、その一側の面(上側、即ち前述のC原子供給基板17側を向く面)には、適宜の間隔で凹加工が施されて、凹部5aが形成される。また、凹部5a以外の部分は、平坦面5b(相対的な凸の部分の先端面)とされている。本実施形態においては、この平坦面5bが、単結晶SiCを生成させるためのシード面としての役割を果たす。 In the present embodiment, the single crystal SiC holding plate 5 is made of a circular plate-like member that is entirely made of single crystal SiC, and has a surface on one side thereof (ie, a surface facing the C atom supply substrate 17 side). Are recessed at appropriate intervals to form the recesses 5a. Moreover, parts of the non-recessed portion 5a is a flat surface 5b (the distal end surface of a portion of the relative convex). In the present embodiment, the flat surface 5b serves as a seed surface for generating single crystal SiC .

この単結晶SiC保持板5としては、例えば、昇華法で作製された単結晶6H−SiCのウェハより所望の大きさに切り出されたものを使用することができる。あるいは、熱処理によって表面改良が行われた単結晶6H若しくは4H−SiC基板を使用することもできる。また、上記の凹部5aを形成するための表面加工の方法としては、例えば機械加工など、適宜の方法を採用できる。   As the single crystal SiC holding plate 5, for example, a single crystal 6H—SiC wafer cut by a sublimation method and cut into a desired size can be used. Alternatively, a single crystal 6H or 4H—SiC substrate whose surface has been improved by heat treatment can also be used. In addition, as a surface processing method for forming the concave portion 5a, an appropriate method such as machining can be employed.

本実施形態では、上側のC原子供給基板17として多結晶SiC基板を用いているが、このほかにも、例えば、異種単結晶のSiC基板、カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板からなる群から選ばれた少なくとも一種の基板を用いることができる。カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板は、表面エネルギーが大きく、中でもカーボン基板はC原子供給量を増やせるために、成長速度を増大させ、スループットを良好とできる点で好ましい。更に、カーボン基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板は、加工性に優れており、またコストの点でも有利である。 In the present embodiment, a polycrystalline SiC substrate is used as the upper C atom supply substrate 17, but, for example, a different single crystal SiC substrate, a carbon substrate, a porous SiC substrate, a sintered SiC substrate, At least one substrate selected from the group consisting of crystalline SiC substrates can be used. Carbon substrate, a porous SiC substrate, a sintered SiC substrate, an amorphous SiC substrate has a large front surface energy, in order inter alia carbon substrate is Fuyaseru the C atom supply amount, to increase the growth rate, that it can throughput and good Is preferable. Furthermore, a carbon substrate, a porous SiC substrate, a sintered SiC substrate, an amorphous SiC substrate is excellent in Workability, also is advantageous in terms of cost.

なお、本実施形態のように多結晶SiC基板を前記C原子供給基板17として用いる場合、例えば、CVD法で作製されたSi半導体製造工程でダミーウェハとして使用されるSiCから所望の大きさに切り出されたものを使用することができる。また、この多結晶SiC基板は、平均粒子径が1μm以上10μm以下で、粒子径が揃っているものが好ましい。また、その多結晶SiC基板の結晶構造としては、3C−SiC、4H−SiC、6H−SiCのいずれも使用することができる。   When a polycrystalline SiC substrate is used as the C atom supply substrate 17 as in the present embodiment, for example, it is cut out to a desired size from SiC used as a dummy wafer in a Si semiconductor manufacturing process manufactured by a CVD method. Can be used. The polycrystalline SiC substrate preferably has an average particle diameter of 1 μm to 10 μm and a uniform particle diameter. As the crystal structure of the polycrystalline SiC substrate, any of 3C—SiC, 4H—SiC, and 6H—SiC can be used.

単結晶SiC保持板5の少なくとも前記平坦面5bや、C原子供給基板17のSiC側を向く面は、いずれも鏡面に研磨加工されるとともに、その表面に付着した油類、酸化膜、金属等が洗浄等によって除去されている。   At least the flat surface 5b of the single crystal SiC holding plate 5 and the surface facing the SiC side of the C atom supply substrate 17 are all polished to a mirror surface, and oils, oxide films, metals, etc. attached to the surface Has been removed by washing or the like.

そして、以上に説明した積層構造を収容した密閉容器16が、図1の熱処理装置1の予備加熱室3内に設置された後、上述のように10-5Pa以下で800℃以上(好ましくは1000℃以上)に加熱される。このとき、本加熱室2内も同様に、10-2Pa以下に設定された後、1400℃〜2300℃に予め加熱しておく。 And after the airtight container 16 which accommodated the laminated structure demonstrated above was installed in the preheating chamber 3 of the heat processing apparatus 1 of FIG. 1, as above-mentioned, it is 800-5 degreeC or less (preferably 10-5 Pa or less) 1000 ° C. or higher). At this time, the inside of the main heating chamber 2 is similarly set to 10 −2 Pa or less and then preheated to 1400 ° C. to 2300 ° C.

上記の予備加熱工程の後、ゲートバルブ7が開かれるとともに、密閉容器16は前室4のサセプタ9上へ移動した後、移動手段10によって、1400℃〜2300℃に加熱されている本加熱室2内へ上昇移動される。これによって、密閉容器16は、30分以内の短時間で急速に1400℃〜2300℃に加熱され、前述のSi基板14が溶融して、図4に示すように、単結晶SiC保持板5とC原子供給基板17との間に極薄の金属Si融液層18が形成される。   After the above preheating step, the gate valve 7 is opened, and the sealed container 16 is moved onto the susceptor 9 in the front chamber 4 and then heated to 1400 ° C. to 2300 ° C. by the moving means 10. 2 is moved up into 2. As a result, the sealed container 16 is rapidly heated to 1400 ° C. to 2300 ° C. in a short time within 30 minutes, and the above-described Si substrate 14 is melted, and as shown in FIG. An ultrathin metal Si melt layer 18 is formed between the C atom supply substrate 17.

本加熱室2での熱処理温度は、理論上は密閉容器16内に設置していたSi基板14が溶融する温度であれば良いが、1400℃〜2300℃といった高温とすることが好ましい。これは、処理温度を高温で行うほど、Si基板14が溶融してできる金属Si融液とSiCとの濡れ性が向上し、金属Si融液層18が毛細管現象によって、単結晶SiC保持板5とC原子供給基板17との間に浸透し易くなるからである。これによって、単結晶SiC保持板5(前述の平坦面5b)とC原子供給基板17との間に、厚み50μm以下の極薄の金属Si融液層18を介在させることができる。   The heat treatment temperature in the main heating chamber 2 may theoretically be a temperature at which the Si substrate 14 installed in the sealed container 16 is melted, but is preferably set to a high temperature of 1400 ° C. to 2300 ° C. This is because the higher the processing temperature is, the better the wettability between the Si Si melt formed by melting the Si substrate 14 and SiC, and the metal Si melt layer 18 becomes a single crystal SiC holding plate 5 by capillary action. This is because it easily penetrates between the C atom supply substrate 17 and the C atom supply substrate 17. As a result, an extremely thin metal Si melt layer 18 having a thickness of 50 μm or less can be interposed between the single crystal SiC holding plate 5 (the above-described flat surface 5 b) and the C atom supply substrate 17.

なお、上記の熱処理は、できるだけ短時間に1400℃〜2300℃に昇温することが好ましい。結晶成長を短時間で終了でき、結晶成長の効率化を図ることができるからである。   In addition, it is preferable to heat up said heat processing to 1400 degreeC-2300 degreeC in as short time as possible. This is because crystal growth can be completed in a short time and the efficiency of crystal growth can be improved.

ここで単結晶SiCの成長メカニズムを概観すると、上記の熱処理に伴い、単結晶SiC保持板5と上側のC原子供給基板17との間に、溶融したSiが侵入して、両基板5・17の界面に、厚さ約30μm〜50μmの金属Si融液層18が形成される。この金属Si融液層18は、熱処理温度が高温になるに従って薄くなり、例えば30μm程度となる。そして、C原子供給基板17から流れ出したC原子は金属Si融液層18を通して単結晶SiC保持板5の前記平坦面5bに供給され、この平坦面上に4H−SiC単結晶20として液相エピタキシャル成長する。   Here, when the growth mechanism of the single crystal SiC is overviewed, the melted Si enters between the single crystal SiC holding plate 5 and the upper C atom supply substrate 17 in accordance with the heat treatment, and both the substrates 5, 17. A metal Si melt layer 18 having a thickness of about 30 μm to 50 μm is formed at the interface. The metal Si melt layer 18 becomes thinner as the heat treatment temperature becomes higher, for example, about 30 μm. Then, the C atoms flowing out from the C atom supply substrate 17 are supplied to the flat surface 5b of the single crystal SiC holding plate 5 through the metal Si melt layer 18, and liquid phase epitaxial growth is performed on the flat surface as 4H-SiC single crystal 20. To do.

そして本実施形態の構成では、単結晶SiC保持板5の表面に前述のように凹加工を施したことにより、前記金属Si融液層18の厚みが、前述の平坦面5bの部分において最小となるが、それ以外の部分(凹部5aの部分)においては大きくなっている。従って、C原子供給基板17から放出されたC原子は、その大部分が平坦面5bの部分に供給され、SiC単結晶20は、先ず平坦面5bの部分に成長する。換言すれば、C原子供給基板17からのC原子が前述の平坦面5bに供給され、凹部5aの部分には殆ど供給されないように、前述の凹部5aの深さや形状を適宜設定しておくのである。   In the configuration of the present embodiment, the surface of the single crystal SiC holding plate 5 is recessed as described above, so that the thickness of the metal Si melt layer 18 is minimized at the flat surface 5b. However, it is large in the other part (the part of the recess 5a). Therefore, most of the C atoms released from the C atom supply substrate 17 are supplied to the flat surface 5b, and the SiC single crystal 20 first grows to the flat surface 5b. In other words, the depth and shape of the recess 5a are set as appropriate so that C atoms from the C atom supply substrate 17 are supplied to the flat surface 5b and hardly supplied to the recess 5a. is there.

上記の平坦面5b上に図4のように現れたSiC単結晶20は、C原子供給基板17へ向かう方向(厚み方向)へエピタキシャル成長する。しかしながら本実施形態では、成長過程の初期において平坦面5bの部分にのみ成長結晶20が現れることから、その成長結晶20の周囲(厚み方向と垂直な方向の周囲)にも、金属Si融液層18の融液が回り込んで存在している。従ってSiC単結晶20は、図5に示すように、前記C原子供給基板17に対向する方向(金属Si融液層18の厚み方向)とほぼ垂直な方向にもエピタキシャル成長する。   The SiC single crystal 20 appearing on the flat surface 5b as shown in FIG. 4 is epitaxially grown in the direction toward the C atom supply substrate 17 (thickness direction). However, in this embodiment, since the growth crystal 20 appears only in the flat surface 5b at the initial stage of the growth process, the metal Si melt layer is also present around the growth crystal 20 (periphery in the direction perpendicular to the thickness direction). There are 18 melts around. Accordingly, the SiC single crystal 20 is epitaxially grown in a direction substantially perpendicular to the direction (the thickness direction of the metal Si melt layer 18) facing the C atom supply substrate 17, as shown in FIG.

なお、このエピタキシャル成長に伴い、上側のC原子供給基板17は、前述の平坦面5bに対向する部分が溶解するように削り取られて凹部19が形成される(図)。この凹部19は、SiC単結晶20が横方向に成長するに従い、図に示すように、その形成領域も大きくなっていく。 With this epitaxial growth, the upper C atom supply substrate 17 is scraped off so that the portion facing the flat surface 5b is dissolved to form a recess 19 (FIG. 4 ). The recess 19 is, in accordance with the SiC single crystal 20 is grown in the lateral direction, as shown in FIG. 5, it becomes larger also the formation region.

このように本実施形態では、C原子供給基板17が金属Si融液層18に面している面積よりも、(単結晶SiC保持板5のうちシードとして機能する部分である)前記平坦面5bの面積が、小さくなっている。言い換えれば、前記平坦面5bの周囲(前記C原子供給基板17と対向する方向と垂直な方向における周囲)に凹部5aを形成して、この凹部5aの部分に金属Si融液18を存在させるようにしている。そして、図4→図5に示すように、SiC単結晶20を、C原子供給基板17に対向する方向と垂直な方向に液相エピタキシャル成長させ、上記平坦面5bの当初の面積より大きな面積の単結晶SiC基板27を得るように構成されている。 Thus, in the present embodiment, the flat surface 5b (which is a portion functioning as a seed in the single crystal SiC holding plate 5) is larger than the area where the C atom supply substrate 17 faces the metal Si melt layer 18. The area of is smaller. In other words, the recess 5a is formed around the flat surface 5b (periphery in the direction perpendicular to the direction facing the C atom supply substrate 17), and the metal Si melt 18 is present in the recess 5a. I have to. Then, as shown in FIGS. 4 to 5, the SiC single crystal 20 is grown by liquid phase epitaxial growth in a direction perpendicular to the direction facing the C atom supply substrate 17, and a single crystal having an area larger than the initial area of the flat surface 5b is obtained. A crystalline SiC substrate 27 is configured to be obtained.

従って、この方法で得られた単結晶SiC基板27は、シード面上の部分(平坦面5b上の部分)においては、そのシード面に存在するマイクロパイプ等の欠陥がある程度伝播するにしても、それ以外の横方向に成長した部分は、上記のような欠陥が殆どない高品質の単結晶SiC基板が得られる。この効果は、生成される単結晶SiCがシード面(平坦面5b)よりも面積比で2倍以上となるよう成長させることにより、高品質の単結晶SiCが広面積で得られることとなって、いっそう顕著となる。 Therefore, in the single crystal SiC substrate 27 obtained by this method, in the portion on the seed surface ( the portion on the flat surface 5b), even if defects such as micropipes existing on the seed surface propagate to some extent. The other portions grown in the lateral direction can provide a high-quality single crystal SiC substrate having almost no defects as described above. This effect is that high-quality single-crystal SiC can be obtained in a wide area by growing the generated single-crystal SiC so that the area ratio is twice or more than the seed surface (flat surface 5b). It becomes even more prominent.

また、本実施形態では図3に示すように、単結晶SiC保持板5のうちシード面となる前記平坦面5bは、一枚のC原子供給基板17に対し複数となるように形成されている。従って、一度の熱処理で図5のように複数の単結晶SiC基板27を製造できるから、製造効率が向上し、製造コストを低減できる。 In the present embodiment, as shown in FIG. 3, the flat surface 5 b serving as the seed surface of the single crystal SiC holding plate 5 is formed to be plural with respect to one C atom supply substrate 17. . Therefore, since a plurality of single crystal SiC substrates 27 can be manufactured as shown in FIG. 5 by a single heat treatment, the manufacturing efficiency can be improved and the manufacturing cost can be reduced.

本実施形態では特に、シード面は、その全体が単結晶SiCからなる単結晶SiC保持板5の前記C原子供給基板17と対向する表面に設けられている凹凸のうち、相対的に凸の部分の先端面(前記平坦面5b)として構成されている。従って、シード面としての平坦面5bを機械加工等を利用して一度に多数形成することが容易で、単結晶SiC基板27の大量生産に好適である。 In the present embodiment, in particular, the seed surface is a relatively convex portion among the concavo-convex portions provided on the surface of the single crystal SiC holding plate 5 made of single crystal SiC and facing the C atom supply substrate 17. It is comprised as a front end surface (the said flat surface 5b). Therefore, it is easy to form a large number of flat surfaces 5b as seed surfaces at a time using machining or the like, which is suitable for mass production of the single crystal SiC substrate 27.

〔第2実施形態〕
第2実施形態では、シードとなるSiC単結晶28は、図6(a)に示すように、前記C原子供給基板17に対し全面にわたって対向するように設けた平板状のタンタル基板15に配置されている。このタンタル基板15のC原子供給基板17側の面は、タンタルカーバイド加工された表面15aとされており、その表面15a上には、シードとしてのSiC単結晶28が予め形成されている。このSiC単結晶28としては、上記タンタルカーバイドの表面15aに例えば気相法(CVD)で薄板状に形成したものを採用することができる。上記SiC単結晶28は図6(b)で示すように、平面視で周方向に等間隔をおいて4箇所設けられており、それぞれ円形に形成されている。それ以外の構成については、前述の第1実施形態とほぼ同様であるので、対応する部材には同じ符号を付して、説明を省略する。
[Second Embodiment]
In the second embodiment, the SiC single crystal 28 serving as a seed is disposed on a flat tantalum substrate 15 provided so as to face the C atom supply substrate 17 over the entire surface, as shown in FIG. ing. The surface of the tantalum substrate 15 on the C atom supply substrate 17 side is a surface tantalum carbide processed surface 15a, and a SiC single crystal 28 as a seed is formed in advance on the surface 15a. As the SiC single crystal 28, a tantalum carbide surface 15a formed in a thin plate shape by, for example, a vapor phase method (CVD) can be employed. As shown in FIG. 6B, the SiC single crystal 28 is provided at four locations at equal intervals in the circumferential direction in plan view, and each is formed in a circular shape. Since other configurations are substantially the same as those of the first embodiment described above, the corresponding members are denoted by the same reference numerals and description thereof is omitted.

図6(a)に示す密閉容器16を前述の熱処理装置1で熱処理した場合、C原子供給基板17のC原子はSiC単結晶28の上面に供給され、成長結晶は、先ずSiC単結晶28の上面(シード面)に現れる。そして、その現れたSiC成長結晶の周囲(金属Si融液層18の厚み方向に垂直な方向での周囲)に、Si基板14が溶融した結果としての金属Si融液が回り込んで存在するので、SiC単結晶28上に生成した成長結晶20は、その厚み方向のみならず横方向へも成長することになる。これにより得られる単結晶SiC基板27も第1実施形態と同様に、少なくともシード面上(SiC単結晶28上以外の部分においては、マイクロパイプ等の欠陥の殆どない極めて高品質な単結晶SiCとできる。また本実施形態では特に、単結晶28をタンタル基板15の表面に配置するだけで良いから、単結晶SiC基板27の製造コストを大幅に低減することができる。 When the sealed container 16 shown in FIG. 6A is heat-treated by the heat treatment apparatus 1 described above, C atoms of the C atom supply substrate 17 are supplied to the upper surface of the SiC single crystal 28, and the grown crystal is first formed of the SiC single crystal 28. Appears on the upper surface (seed surface) . Then, the metal Si melt as a result of melting the Si substrate 14 wraps around the appearing SiC growth crystal (periphery in the direction perpendicular to the thickness direction of the metal Si melt layer 18). , grown crystal 20 produced on the SiC single crystal 2 8 would also grow laterally as well the thickness direction only. Similarly to the first embodiment, the single crystal SiC substrate 27 obtained in this way also has an extremely high quality single crystal SiC having almost no defects such as micropipes at least in the portion other than the seed surface (on the SiC single crystal 28 ). And can. In this embodiment, in particular, the single crystal 28 only needs to be disposed on the surface of the tantalum substrate 15, so that the manufacturing cost of the single crystal SiC substrate 27 can be greatly reduced.

また、本実施形態では図6(a)に示すように、シードとなるSiC単結晶28は、一枚のC原子供給基板17に対し複数となるように設置されている。従って、一度の熱処理で複数の単結晶SiC基板27を製造できるから、製造効率が向上し、製造コストを低減できる。更には、各SiC単結晶28の平面視の形状(シード面の形状)が図6に示すように円形状とされているので、図7に示すようにSiC単結晶20を横方向に均等にエピタキシャル成長させることができ、単結晶SiC基板27の品質を向上させることができるほか、単結晶SiC基板27の製造に要する時間を低減できる。また、シードとしてのSiC単結晶28をより小さくすることができ、シードのコストを大幅に低減できる。 In the present embodiment, as shown in FIG. 6A, a plurality of SiC single crystals 28 serving as seeds are installed on one C atom supply substrate 17. Therefore, since a plurality of single crystal SiC substrates 27 can be manufactured by a single heat treatment, the manufacturing efficiency can be improved and the manufacturing cost can be reduced. Furthermore , since the shape of each SiC single crystal 28 in plan view (the shape of the seed surface ) is circular as shown in FIG. 6 , the SiC single crystal 20 is evenly distributed in the lateral direction as shown in FIG. The epitaxial growth can be performed, the quality of the single crystal SiC substrate 27 can be improved, and the time required for manufacturing the single crystal SiC substrate 27 can be reduced. Further, it is possible to further reduce the SiC single crystal 28 as a seed, it is possible to significantly reduce the cost of the seed.

〔第3実施形態〕
図8に示す第3実施形態において、単結晶SiC保持板5’は、前記第1実施形態と同様に、全体が単結晶SiCからなる円形板状の部材からなる。そして、単結晶SiC保持板5’と対向するようにC原子供給基板30が設置される。
[Third Embodiment]
In the third embodiment shown in FIG. 8, the single crystal SiC holding plate 5 ′ is made of a circular plate-like member that is entirely made of single crystal SiC, as in the first embodiment. And C atom supply board | substrate 30 is installed so that single crystal SiC holding | maintenance board 5 'may be opposed.

単結晶SiC保持板5’のC原子供給基板30側を向く面は、単なる平坦面に構成されている。一方、C原子供給基板30においては、単結晶SiC保持板5’側を向く面に、予め凹凸を凹部30a、凸部(突出部)30bのように設けている。そして、図8のように両板5’,30の間にSi基板14を挟んだ状態で密閉容器16に収納して、図1の熱処理装置1で高温熱処理を行うことによって、前記単結晶SiC保持板5’と前記C原子供給基板30との間に金属Si融液18を介在させる。すると図9に示すように、単結晶SiC保持板5’の平坦面上には、上記C原子供給基板30の前記凸部30bに対向する部分にのみ単結晶SiCが液相エピタキシャル成長し、この結果、単結晶SiC保持板5’に凸部5cが形成される。なお、この凸部5cの先端面5bは、次の熱処理における水平方向の液相エピタキシャル成長の際のシード面として機能する。 The surface of the single crystal SiC holding plate 5 ′ facing the C atom supply substrate 30 side is configured as a simple flat surface. On the other hand , in the C atom supply substrate 30, unevenness is provided in advance on the surface facing the single crystal SiC holding plate 5 ′ side, such as a concave portion 30a and a convex portion (protruding portion) 30b. Then, as shown in FIG. 8, the Si substrate 14 is sandwiched between the two plates 5 'and 30, and then stored in the sealed container 16, and high-temperature heat treatment is performed by the heat treatment apparatus 1 of FIG. interposing the metal Si melt 18 between the retaining plate 5 'and the pre-Symbol C atoms supply substrate 30. Then, as shown in FIG. 9, on the flat surface of the single crystal SiC holding plate 5 'is in a portion opposed to the convex portion 30b of the upper Symbol C atoms supply substrate 30 only the single crystal SiC liquid phase epitaxial growth, the As a result, the convex portion 5c is formed on the single crystal SiC holding plate 5 ′. Incidentally, the distal end surface 5 b of the convex portion 5c functions as a seed surface when in the horizontal direction of the liquid phase epitaxial growth in the subsequent heat treatment.

上記凸部5cは、図10(b)で示すように、平面視で周方向に等間隔をおいて4箇所設けられており、それぞれ円形に形成されている。言い換えれば、このような凸部5cの配置及び形状となるように、前記C原子供給基板30の凹凸形状(具体的には、前記凸部30bの配置及び形状)を定めるのである。 As shown in FIG. 10 (b), the convex portions 5c are provided at four positions at equal intervals in the circumferential direction in a plan view, and are each formed in a circular shape. In other words, so that the arrangement and shape of such protrusions 5c, (specifically, the arrangement and shape of the convex portion 30b) before Symbol C atoms irregularities of supply substrate 30 is to determine the.

そして、図10(a)に示すように、上記の凸部5cを形成した単結晶SiC保持板5’に対し新しいC原子供給基板17をSi基板14を挟んで対向させた状態で密閉容器16に収納し、再び図1の熱処理装置で高温熱処理を行う。すると図11に示すように、凸部5cの先端面5b上に生成したSiC単結晶20は、前記C原子供給基板17に対向する方向(金属Si融液層18の厚み方向)とほぼ垂直な方向にもエピタキシャル成長し、単結晶SiC基板27が得られる。このSiC単結晶基板27は、第1実施形態や第2実施形態と同様に、シード面上の部分(凸部5cの先端面5b上の部分)以外の横方向に成長した部分においては欠陥が殆どない、極めて高品質のものとできる。 Then, as shown in FIG. 10A, the sealed container 16 is placed in a state in which a new C atom supply substrate 17 is opposed to the single crystal SiC holding plate 5 ′ formed with the convex portion 5c with the Si substrate 14 interposed therebetween. The high temperature heat treatment is again performed with the heat treatment apparatus of FIG. Then, as shown in FIG. 11, the SiC single crystal 20 formed on the tip surface 5b of the protrusion 5c is substantially perpendicular to the direction facing the C atom supply substrate 17 (the thickness direction of the metal Si melt layer 18). The single crystal SiC substrate 27 is obtained by epitaxial growth in the direction. As in the first and second embodiments, this SiC single crystal substrate 27 has defects in the laterally grown portion other than the portion on the seed surface ( the portion on the tip surface 5b of the convex portion 5c). It can be of very high quality with little.

特に本実施形態では、図8のようにC原子供給基板30に凹凸を形成して単結晶SiC保持板5’に対向させて熱処理することにより、図9に示すように、C原子供給基板30の凸部(突出部)30bに相当する部分において、単結晶SiC保持板5’上にエピタキシャル成長により凸部5cや先端面5bを形成できる。従って、単結晶SiC保持板5’を直接加工して凸部5c等を形成しなくて済むので、凸部5cや先端面5bの形成コストを低減できる。また、例えばC原子供給基板30として多結晶SiC基板を用いた場合は、単結晶SiCで構成される保持板5’に比べて、凹凸加工が相当に容易である。従って、シード面の形成コストを大きく低減でき、この効果はシード面を一度に多数形成したい場合に特に顕著である。 In particular, in this embodiment, by applying a heat treatment to face the C atom supply substrate 30 to form the uneven single-crystal SiC holding plate 5 'as shown in FIG. 8, as shown in FIG. 9, C atoms supply substrate 30 In the portion corresponding to the convex portion (projecting portion) 30b, the convex portion 5c and the tip surface 5b can be formed on the single crystal SiC holding plate 5 ′ by epitaxial growth. Therefore, since it is not necessary to directly process the single crystal SiC holding plate 5 ′ to form the convex portions 5c and the like, the formation cost of the convex portions 5c and the tip surface 5b can be reduced. In the case of using a polycrystalline SiC substrate as C atom supply substrate 30 For example, as compared with the holding plate 5 'consists of single-crystal SiC, the roughened is considerably easier. Therefore, the formation cost of the seed surface can be greatly reduced, and this effect is particularly remarkable when it is desired to form a large number of seed surfaces at once.

また、本実施形態では図10(a)に示すように、シード面(言い換えれば上記凸部5cの先端面5b)は、一枚のC原子供給基板17に対し複数となるように形成されている。従って、一度の熱処理で複数の単結晶SiC基板20を製造できるから、製造効率が向上し、製造コストを低減できる。更には、シード面(凸部5cの先端面5b)が図10(b)に示すように円形状とされているので、図11に示すようにSiC単結晶20を横方向に均等にエピタキシャル成長させることができ、単結晶SiC基板27の品質を向上させることができるほか、単結晶SiC基板27の製造に要する時間を低減できる。また、シード面(凸部5c先端面5b)をより小さくすることができる。 In the present embodiment, as shown in FIG. 10A, the seed surface (in other words, the tip surface 5 b of the convex portion 5 c) is formed to be plural with respect to one C atom supply substrate 17. Yes. Accordingly, since a plurality of single crystal SiC substrates 20 can be manufactured by a single heat treatment, the manufacturing efficiency can be improved and the manufacturing cost can be reduced. Furthermore, since the seed surface (tip surface 5b of the convex portion 5c) is circular as shown in FIG. 10B, the SiC single crystal 20 is epitaxially grown evenly in the lateral direction as shown in FIG. The quality of the single crystal SiC substrate 27 can be improved, and the time required for manufacturing the single crystal SiC substrate 27 can be reduced. In addition, the seed surface (tip surface 5b of the convex portion 5c) can be made smaller.

以上に本発明の好適な複数の実施形態を示したが、上記の実施形態は例えば以下のように変更して実施することができる。   A plurality of preferred embodiments of the present invention have been described above, but the above embodiments can be implemented with the following modifications, for example.

(1)シードとなる単結晶SiCのシード面の平面形状(具体的には、第1実施形態の平坦面5bの平面形状、第2実施形態の単結晶SiC28の平面形状、第3実施形態の凸部5cの先端面5bの平面形状)は、得たい単結晶SiCの大きさ等に応じて、例えば第2実施形態や第3実施形態のように円形状とすることに限らず、適宜選択して良い。また、本加熱室2での熱処理時間についても、生成される単結晶SiCが所望の大きさ(面積)或いは厚みとなるように、適宜選択することができる。 (1) The planar shape (specifically seed face of the single crystal SiC as a seed, the planar shape of the flat surface 5b of the first embodiment, the planar shape of the single crystal SiC28 the second embodiment, the third embodiment The planar shape of the front end surface 5b of the convex portion 5c is not limited to the circular shape as in the second embodiment or the third embodiment, for example, depending on the size of the single crystal SiC to be obtained. You can do it. Also, the heat treatment time in the main heating chamber 2 can be appropriately selected so that the generated single crystal SiC has a desired size (area) or thickness.

(2)金属Si融液層18に対するSi材料の供給源としては、図3や図6、図8や図10に例示したSi基板14を用いることに代えて、前記単結晶SiC保持板5等の表面に予め気相法(CVD)で形成された厚さ50〜200μm程度の金属Si膜や、単結晶SiC保持板5等の表面に配置されたSi粉末等を使用してもよい。 (2) Instead of using the Si substrate 14 illustrated in FIGS. 3, 6, 8, or 10 as the Si material supply source for the metal Si melt layer 18, the single crystal SiC holding plate 5 or the like Alternatively, a metal Si film having a thickness of about 50 to 200 μm formed on the surface in advance by the vapor phase method (CVD), a Si powder disposed on the surface of the single crystal SiC holding plate 5 or the like may be used.

(3)上記の実施形態では、密閉容器16の内部で単結晶SiC保持板5,5’やタンタル基板15を下側に、C原子供給基板17を上側に配置することとしたが、互いが対向するように配置する限りはその位置関係は任意に変更することができ、例えば上下を逆に配置したり、両基板を水平に対向するように配置しても構わない。 (3) In the above embodiment, the single crystal SiC holding plates 5 and 5 ′ and the tantalum substrate 15 are disposed on the lower side and the C atom supply substrate 17 is disposed on the upper side in the sealed container 16. As long as they are arranged so as to face each other, the positional relationship can be arbitrarily changed. For example, they may be arranged upside down, or both substrates may be arranged to face each other horizontally.

(4)また、単結晶SiC保持板5とC原子供給基板17との間に介在させる金属Si融液層18の厚みを調整するために、単結晶SiC保持板5,5’とC原子供給基板17との間に、例えば30〜50μm程度の適宜の厚みのスペーサを設置しても良い。このスペーサの数や形状や配置個数は特に限定せず、シード面のレイアウト等の事情に応じて適宜選択して使うことができる。このスペーサとしては、例えば、単結晶SiC保持板5,5’やタンタル基板15に機械加工で設けた凸部や、固相反応によって接着した凸部を採用することができる。 (4) In order to adjust the thickness of the metal Si melt layer 18 interposed between the single crystal SiC holding plate 5 and the C atom supply substrate 17, the single crystal SiC holding plates 5 and 5 ′ and the C atom supply are provided. For example, a spacer having an appropriate thickness of about 30 to 50 μm may be provided between the substrate 17 and the substrate 17. The number, shape, and arrangement number of the spacers are not particularly limited, and can be appropriately selected and used according to circumstances such as the layout of the seed surface . As the spacer, for example, a convex portion provided by machining on the single crystal SiC holding plates 5 and 5 ′ or the tantalum substrate 15, or a convex portion bonded by a solid phase reaction can be employed.

本発明のSiC単結晶基板の製造方法に好適な熱処理装置の一例を示す模式断面図。The schematic cross section which shows an example of the heat processing apparatus suitable for the manufacturing method of the SiC single crystal substrate of this invention. 密閉容器の上容器と下容器とを取り外した図。The figure which removed the upper container and the lower container of the airtight container. 第1実施形態において、熱処理前の密閉容器の様子を示す模式断面図。In 1st Embodiment, the schematic cross section which shows the mode of the airtight container before heat processing. シード面上にSiC単結晶が液相エピタキシャル成長した状態を示す模式断面図。 The schematic cross section which shows the state which the liquid crystal epitaxial growth of the SiC single crystal grew on the seed surface . 図4の状態からSiC単結晶が横方向に液相エピタキシャル成長し、SiC単結晶基板が製造された状態を示す模式断面図。FIG. 5 is a schematic cross-sectional view showing a state in which a SiC single crystal substrate is manufactured by liquid phase epitaxial growth of a SiC single crystal in the lateral direction from the state of FIG. 4. (a)は第2実施形態において、熱処理前の密閉容器の様子を示す模式断面図、(b)は模式平面図。(A) is a schematic cross section which shows the state of the airtight container before heat processing in 2nd Embodiment, (b) is a schematic top view. (a)は図6の状態から熱処理を行い、SiC単結晶基板が製造された状態を示す模式断面図、(b)は模式平面図。(A) is a schematic cross section which shows the state which heat-processed from the state of FIG. 6, and the SiC single crystal substrate was manufactured, (b) is a schematic top view. 第3実施形態において、熱処理前の密閉容器の様子を示す模式断面図。In 3rd Embodiment, the schematic cross section which shows the mode of the airtight container before heat processing. 図8の状態から熱処理を行い単結晶SiC保持板の表面に部分的にSiC単結晶の島(凸部)が液相エピタキシャル成長した状態を示す模式断面図。FIG. 9 is a schematic cross-sectional view showing a state where an island (convex portion) of SiC single crystal is partially grown on the surface of a single crystal SiC holding plate by heat treatment from the state of FIG. (a)は第3実施形態において、熱処理前の密閉容器の様子を示す模式断面図、(b)は模式平面図。(A) is a schematic cross section which shows the mode of the airtight container before heat processing in 3rd Embodiment, (b) is a schematic top view. (a)は図10の状態から熱処理を行い、SiC単結晶基板が製造された状態を示す模式断面図、(b)は模式平面図。(A) is a schematic cross section which shows the state which heat-processed from the state of FIG. 10, and the SiC single crystal substrate was manufactured, (b) is a schematic top view.

1 熱処理装置
5,5’ 単結晶SiC保持板(板部材)
5a 凹部
5b 平坦面、凸部の先端面(シード面
5c 凸部(凸の部分
14 金属Si板
15 タンタル基板
15a タンタルカーバイド加工された表面
16 密閉容器
17 C原子供給基板
18 金属Si融液
20 成長結晶
27 単結晶SiC基板
30 原子供給基板
30a 凹部
30b 凸部(突出部)
1 Heat treatment apparatus 5, 5 ′ single crystal SiC holding plate (plate member)
5a Concave portion 5b Flat surface, tip surface of convex portion ( seed surface )
5c Convex part ( convex part )
14 Metal Si Plate 15 Tantalum Substrate 15a Tantalum Carbide Surface 16 Sealed Container 17 C Atom Supply Substrate 18 Metal Si Melt
20 Grown crystal 27 Single crystal SiC substrate 30 C atom supply substrate 30a Recessed portion 30b Convex portion (protruding portion)

Claims (7)

シードとなる単結晶炭化ケイ素をC原子供給基板に対向させつつ密閉容器内で均一に熱処理を行うことによって、前記単結晶炭化ケイ素と前記C原子供給基板との間に金属シリコン融液を介在させて単結晶炭化ケイ素基板を液相エピタキシャル成長させる、単結晶炭化ケイ素基板の製造方法であって、
前記シードとなる単結晶炭化ケイ素のシード面は、前記C原子供給基板よりも小さい面積であり、
前記金属シリコン融液が、前記シード面と前記C原子供給基板との間に存在すると共に、前記シード面の面方向外側の領域と前記C原子供給基板との間にも存在し、
前記熱処理により、まず、前記シード面上に単結晶炭化ケイ素が液相エピタキシャル成長し、この成長結晶が、前記対向する方向と垂直な方向に液相エピタキシャル成長することにより、前記シード面の面積より大きな面積の単結晶炭化ケイ素基板が得られることを特徴とする、単結晶炭化ケイ素基板の製造方法。
By uniformly heat-treating the single crystal silicon carbide serving as a seed to the C atom supply substrate in a sealed container, a metal silicon melt is interposed between the single crystal silicon carbide and the C atom supply substrate. A method for producing a single crystal silicon carbide substrate, wherein the single crystal silicon carbide substrate is subjected to liquid phase epitaxial growth.
The seed surface of the single crystal silicon carbide serving as the seed is smaller in area than the C atom supply substrate,
The metal silicon melt exists between the seed surface and the C atom supply substrate, and also exists between a region outside the seed surface in the surface direction and the C atom supply substrate,
By the heat treatment, first, single crystal silicon carbide is grown on the seed surface by liquid phase epitaxial growth, and the grown crystal is grown by liquid phase epitaxial growth in a direction perpendicular to the opposing direction, so that the area larger than the area of the seed surface. A method for producing a single crystal silicon carbide substrate, characterized in that a single crystal silicon carbide substrate is obtained.
請求項1に記載の単結晶炭化ケイ素基板の製造方法であって、
前記シード面は、一つのC原子供給基板に対し複数設置されることを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to claim 1,
A method for producing a single crystal silicon carbide substrate, wherein a plurality of seed surfaces are provided for one C atom supply substrate.
請求項1又は請求項2に記載の単結晶炭化ケイ素基板の製造方法であって、
単結晶炭化ケイ素基板を面積比で前記シード面の2倍以上に成長させることを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to claim 1 or 2,
A method for producing a single-crystal silicon carbide substrate, comprising growing a single-crystal silicon carbide substrate at an area ratio twice or more of the seed surface.
請求項1から請求項3までの何れか一項に記載の単結晶炭化ケイ素基板の製造方法であって、
前記シード面は、単結晶炭化ケイ素からなる板部材の前記C原子供給基板と対向する表面に設けられている凹凸のうち、相対的な凸の部分の先端面であることを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to any one of claims 1 to 3,
The seed surface is a tip surface of a relative convex portion among the concave and convex portions provided on the surface of the plate member made of single crystal silicon carbide facing the C atom supply substrate. A method for producing a crystalline silicon carbide substrate.
請求項4に記載の単結晶炭化ケイ素基板の製造方法であって、
前記単結晶炭化ケイ素基板を液相エピタキシャル成長させる工程の前に、前記板部材の表面に前記凹凸を設ける凹凸形成工程を有しており、
前記凹凸形成工程は、
表面に突出部を有するC原子供給基板と、平坦状の前記板部材とを金属シリコン融液を介して対向させつつ熱処理を行うことにより、前記板部材の、前記突出部に対向する部分に、単結晶炭化ケイ素を液相エピタキシャル成長させて、前記凸の部分を形成することを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to claim 4,
Before the step of liquid phase epitaxial growth of the single crystal silicon carbide substrate, has a concavo-convex formation step of providing the concavo-convex on the surface of the plate member,
The unevenness forming step includes
By performing heat treatment with the C atom supply substrate having a protrusion on the surface and the flat plate member facing each other through a metal silicon melt, the portion of the plate member facing the protrusion is A method for producing a single crystal silicon carbide substrate, wherein the convex portion is formed by liquid phase epitaxial growth of single crystal silicon carbide.
請求項1から請求項3までの何れか一項に記載の単結晶炭化ケイ素基板の製造方法であって、
前記シードとなる単結晶炭化ケイ素は、タンタルカーバイド加工された表面を有するタンタル基板の表面に薄板状の部材として設置されていることを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to any one of claims 1 to 3,
The method for producing a single-crystal silicon carbide substrate, wherein the single-crystal silicon carbide serving as a seed is disposed as a thin plate-like member on a surface of a tantalum substrate having a tantalum carbide-processed surface.
請求項1から請求項6までの何れか一項に記載の単結晶炭化ケイ素基板の製造方法であって、
前記シード面は、円形状に構成されていることを特徴とする、単結晶炭化ケイ素基板の製造方法。
A method for producing a single crystal silicon carbide substrate according to any one of claims 1 to 6,
The method for manufacturing a single crystal silicon carbide substrate, wherein the seed surface is formed in a circular shape.
JP2005125865A 2005-04-25 2005-04-25 Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method Active JP4840841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125865A JP4840841B2 (en) 2005-04-25 2005-04-25 Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125865A JP4840841B2 (en) 2005-04-25 2005-04-25 Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011111721A Division JP5545268B2 (en) 2011-05-18 2011-05-18 SiC multichip substrate

Publications (2)

Publication Number Publication Date
JP2006298722A JP2006298722A (en) 2006-11-02
JP4840841B2 true JP4840841B2 (en) 2011-12-21

Family

ID=37467230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125865A Active JP4840841B2 (en) 2005-04-25 2005-04-25 Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method

Country Status (1)

Country Link
JP (1) JP4840841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153074A (en) * 2011-05-18 2011-08-11 Kwansei Gakuin Single crystal silicon carbide substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167947B2 (en) * 2008-05-21 2013-03-21 トヨタ自動車株式会社 Method for producing silicon carbide single crystal thin film
WO2010024390A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
JP4820897B2 (en) * 2009-09-04 2011-11-24 東洋炭素株式会社 screw
JP5688780B2 (en) * 2013-05-07 2015-03-25 学校法人関西学院 SiC substrate, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
CN115910755A (en) * 2023-01-09 2023-04-04 宁波合盛新材料有限公司 Silicon carbide epitaxial wafer and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981879B2 (en) * 1998-03-06 1999-11-22 日本ピラー工業株式会社 Single crystal SiC and method for producing the same
JPH11268990A (en) * 1998-03-20 1999-10-05 Denso Corp Production of single crystal and production device
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP3541789B2 (en) * 2000-07-31 2004-07-14 日新電機株式会社 Method for growing single crystal SiC
JP4224195B2 (en) * 2000-10-06 2009-02-12 新日本製鐵株式会社 Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153074A (en) * 2011-05-18 2011-08-11 Kwansei Gakuin Single crystal silicon carbide substrate

Also Published As

Publication number Publication date
JP2006298722A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP7244116B2 (en) nitride semiconductor substrate
EP2196565B1 (en) Method for producing sic epitaxial substrate
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP5464544B2 (en) Single crystal SiC substrate with epitaxial growth layer, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
JP4840841B2 (en) Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method
JP3491402B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2007308364A (en) Method and apparatus for aluminum nitride monocrystal boule growth
WO2015151412A1 (en) METHOD FOR REMOVING WORK-AFFECTED LAYER ON SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND SiC SUBSTRATE MANUFACTURING METHOD
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP4431643B2 (en) Single crystal silicon carbide growth method
JP2011225392A (en) Method for producing silicon carbide single crystal ingot, and seed crystal for producing silicon carbide single crystal ingot
WO2010125674A1 (en) METHOD FOR FABRICATING SiC SUBSTRATE
JP2001294499A (en) Small silicon carbide single crystal wafer having mosaic property
JP2009155140A (en) METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC FILM
JP4482642B2 (en) Single crystal silicon carbide growth method
WO2015012190A1 (en) METHOD FOR PRODUCING SiC SUBSTRATES
JP5545268B2 (en) SiC multichip substrate
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JP5688780B2 (en) SiC substrate, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
JP5164121B2 (en) Single crystal silicon carbide growth method
JP2006041544A5 (en)
JP2017214232A (en) Production method of nitride compound semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

R150 Certificate of patent or registration of utility model

Ref document number: 4840841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250