JP4839949B2 - Electrolysis method of alkali metal chloride - Google Patents

Electrolysis method of alkali metal chloride Download PDF

Info

Publication number
JP4839949B2
JP4839949B2 JP2006123321A JP2006123321A JP4839949B2 JP 4839949 B2 JP4839949 B2 JP 4839949B2 JP 2006123321 A JP2006123321 A JP 2006123321A JP 2006123321 A JP2006123321 A JP 2006123321A JP 4839949 B2 JP4839949 B2 JP 4839949B2
Authority
JP
Japan
Prior art keywords
alkali metal
metal chloride
chlorine
brine
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006123321A
Other languages
Japanese (ja)
Other versions
JP2007291479A (en
Inventor
隆 菊池
浩泰 越智
Original Assignee
日本錬水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本錬水株式会社 filed Critical 日本錬水株式会社
Priority to JP2006123321A priority Critical patent/JP4839949B2/en
Publication of JP2007291479A publication Critical patent/JP2007291479A/en
Application granted granted Critical
Publication of JP4839949B2 publication Critical patent/JP4839949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、アルカリ金属塩化物の電解方法に関し、詳しくは、飽和ブライン調製工程、電解工程、塩素脱気工程、塩素分解除去工程、脱芒工程を包含するアルカリ金属塩化物の電解方法であって、脱芒工程を改良した、工業的に有利な電解方法に関する。   The present invention relates to an alkali metal chloride electrolysis method, and more particularly, to an alkali metal chloride electrolysis method including a saturated brine preparation step, an electrolysis step, a chlorine deaeration step, a chlorine decomposition removal step, and a denitrification step. The present invention relates to an industrially advantageous electrolysis method with an improved degassing step.

従来より、飽和ブライン調製工程、電解工程、塩素脱気工程、塩素分解除去工程、脱芒工程を包含するアルカリ金属塩化物の電解方法は公知である。   2. Description of the Related Art Conventionally, alkali metal chloride electrolysis methods including a saturated brine preparation step, an electrolysis step, a chlorine deaeration step, a chlorine decomposition removal step, and a denitrification step are known.

例えば、不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を還元剤で分解除去するための塩素分解除去工程、陰イオン交換基と陽イオン交換基とを有し且つ両イオン交換基が内部塩を形成している両性イオン交換体が充填された分離塔に上記の淡ブラインを供給して上記両性イオン交換体にアルカリ金属塩化物を吸着させた後、当該分離塔に溶離水を供給するクロマト分離操作を繰り返し行う脱芒工程とを包含し、上記のクロマト分離において、溶離水の供給により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離し、前者を廃水として系外に除去し、後者を上記の飽和ブライン調製工程へ循環するアルカリ金属塩化物の電解方法が知られている(例えば特許文献1)。
特開2001−181878号公報
For example, a saturated brine preparation process in which alkali metal chloride containing sulfate as an impurity is dissolved in water, an ion exchange membrane type electrolysis process in which saturated brine is electrolyzed, the concentration of alkali metal chloride extracted from the electrolysis process Chlorine deaeration process for degassing chlorine from light brine with reduced water content, chlorine decomposition and removal process for decomposing and removing residual chlorine in light brine derived from the chlorine deaeration process with a reducing agent, anion exchange groups and positive ions The above-mentioned light brine is supplied to a separation column packed with an amphoteric ion exchanger having both ion exchange groups and an internal salt of both ion exchange groups, and an alkali metal chloride is added to the amphoteric ion exchanger. A desorption step of repeatedly performing the chromatographic separation operation of supplying the elution water to the separation column after the adsorption, and in the above chromatographic separation, Then, the effluent fraction containing sulfate (A) and the effluent fraction containing mainly alkali metal chloride (B) are separated into two sections, and the former is removed from the system as waste water. An electrolytic method of alkali metal chloride is known in which the latter is circulated to the saturated brine preparation step (for example, Patent Document 1).
JP 2001-181878 A

ところで、上記の脱芒工程においては、淡ブラインに比し、通常1.7〜3.2倍の溶離水が必要であり、1〜3倍の廃水が排出される。溶離水には純水や軟水が使用されるため、その製造設備は淡ブライン処理量に比して過大であり、また、廃水処理設備への負荷も膨大でる。   By the way, in said denitrification process, 1.7 to 3.2 times as many elution water is normally required compared with a light brine, and 1-3 times waste water is discharged | emitted. Since pure water or soft water is used as the elution water, the production facility is excessive as compared with the amount of the light brine treatment, and the load on the wastewater treatment facility is enormous.

本発明は、上記実情に鑑みなされたものであり、その目的は、飽和ブライン調製工程、電解工程、塩素脱気工程、塩素分解除去工程、脱芒工程を包含するアルカリ金属塩化物の電解方法であって、脱芒工程を改良した、工業的に有利な電解方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is the electrolysis method of the alkali metal chloride including a saturated brine preparation process, an electrolysis process, a chlorine deaeration process, a chlorine decomposition removal process, a denitrification process. Then, it is providing the industrially advantageous electrolysis method which improved the denitrification process.

すなわち、本発明の要旨は、不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を還元剤で分解除去するための塩素分解除去工程、陰イオン交換基と陽イオン交換基とを有し且つ両イオン交換基が内部塩を形成している両性イオン交換体が充填された分離塔に上記の淡ブラインを供給して上記両性イオン交換体にアルカリ金属塩化物を吸着させた後、当該分離塔に溶離水を供給するクロマト分離操作を繰り返し行う脱芒工程とを包含し、上記のクロマト分離において、溶離水の供給により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離し、流出分画液(B)を上記の飽和ブライン調製工程へ循環するアルカリ金属塩化物の電解方法であって、流出分画液(A)の内の最初の流出分から80重量%相当分までの流出範囲内で回収した液を上記の分離塔に供給して使用することを特徴とするアルカリ金属塩化物の電解方法に存する。   That is, the gist of the present invention is extracted from a saturated brine preparation step of dissolving alkali metal chloride containing sulfate as an impurity in water, an ion exchange membrane type electrolysis step of electrolyzing saturated brine, and an electrolysis step. Chlorine degassing step for degassing chlorine from light brine with reduced alkali metal chloride concentration, Chlorine decomposing / removing step for decomposing and removing residual chlorine in the light brine derived from the chlorine degassing step with a reducing agent, The amphoteric ion exchanger is prepared by supplying the above-mentioned light brine to a separation column packed with an amphoteric ion exchanger having an anion exchange group and a cation exchange group, and the both ion exchange groups forming an internal salt. A desorption step of repeatedly adsorbing the alkali metal chloride to the separation column and then supplying the elution water to the separation column. In this manner, the effluent fraction (A) mainly containing sulfate and the effluent fraction (B) mainly containing alkali metal chloride are separated into two sections, and the effluent fraction (B). Is a method of electrolyzing an alkali metal chloride that circulates to the above-mentioned saturated brine preparation step, wherein the liquid recovered within the effluent range from the first effluent fraction of the effluent fraction (A) to the equivalent of 80% by weight is obtained. The present invention resides in an alkali metal chloride electrolysis method characterized by being supplied to the separation tower and used.

本発明によれば、脱芒工程で使用する溶離水量および脱芒工程から排出される廃水量を削減できる。   According to the present invention, it is possible to reduce the amount of elution water used in the denitrification process and the amount of waste water discharged from the denitrification process.

以下、本発明を添付図面に基づき詳細に説明する。図1は、本発明の電解方法の一例を示す工程説明図である。図中、符号(1)は飽和ブライン調製工程の溶解槽、(6)は必要に応じて設けられる精製設備、(7)は電解工程の電解槽、(13)は塩素脱気工程の塩素脱気塔、(15)は脱芒工程の分離塔、(23)は塩素分解除去工程の塩素分解反応器を示す。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a process explanatory view showing an example of the electrolysis method of the present invention. In the figure, reference numeral (1) is a dissolution tank for a saturated brine preparation process, (6) is a purification facility provided as necessary, (7) is an electrolytic tank for an electrolysis process, and (13) is a chlorine degassing process for a chlorine deaeration process. A gas tower, (15) is a separation tower in the degassing step, and (23) is a chlorine decomposition reactor in the chlorine decomposition / removal step.

本発明の電解方法は、不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を還元剤で分解除去するための塩素分解除去工程、陰イオン交換基と陽イオン交換基とを有し且つ両イオン交換基が内部塩を形成している両性イオン交換体が充填された分離塔に上記の淡ブラインを供給して上記両性イオン交換体にアルカリ金属塩化物を吸着させた後、当該分離塔に溶離水を供給するクロマト分離操作を繰り返し行う脱芒工程とを包含し、上記のクロマト分離において、溶離水の供給により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離し、流出分画液(B)を上記の飽和ブライン調製工程へ循環する。この点は、以下に説明する様に、前述の特開2001−181878号公報に記載の電解方法と基本的には同じである。   The electrolysis method of the present invention includes a saturated brine preparation step in which alkali metal chloride containing sulfate as an impurity is dissolved in water, an ion exchange membrane type electrolysis step in which saturated brine is electrolyzed, an alkali extracted from the electrolysis step, and alkaline Chlorine deaeration process for degassing chlorine from light brine with reduced metal chloride concentration, chlorine decomposition and removal process for decomposing and removing residual chlorine in light brine derived from chlorine deaeration process with a reducing agent, The above-mentioned light brine is supplied to a separation column packed with an amphoteric ion exchanger having both an ion exchange group and a cation exchange group, and both the ion exchange groups form an internal salt. A desorption step in which an alkali metal chloride is adsorbed and then a chromatographic separation operation in which elution water is supplied to the separation column is repeatedly performed. The effluent fraction (A) mainly containing sulfate and the effluent fraction (B) mainly containing alkali metal chloride are separated into two sections, and the effluent fraction (B) is separated. Recycle to the saturated brine preparation step. This point is basically the same as the electrolysis method described in JP-A-2001-181878 as described below.

先ず、溶解槽(1)において電解槽(7)に供給する高濃度塩水を調製する。すなわち、溶解槽(1)には、送給路(2)からアルカリ金属塩化物の原塩(不純物として硫酸塩を含有する)、導管(3)の枝管(3a)から水(溶解水)、導管(12)から淡ブライン(電解槽(7)から循環される)、導管(4)から硫酸塩が実質的に除去された分画液がそれぞれ供給される。上記の分画液とは、分離塔(15)によって硫酸塩が実質的に除去されたアルカリ金属塩化物含有分画液を指し、その詳細は後述する。   First, high-concentration salt water to be supplied to the electrolytic cell (7) is prepared in the dissolution tank (1). That is, in the dissolution tank (1), the raw salt of alkali metal chloride (containing sulfate as an impurity) from the feed path (2), and water (dissolved water) from the branch pipe (3a) of the conduit (3) From the conduit (12), a fresh brine (circulated from the electrolytic cell (7)) and a fraction solution from which the sulfate is substantially removed are supplied from the conduit (4). The above fraction liquid refers to an alkali metal chloride-containing fraction liquid from which sulfate has been substantially removed by the separation tower (15), and details thereof will be described later.

塩水中のアルカリ金属塩化物濃度は出来るだけ高濃度であることが好ましく、通常、飽和濃度の塩水(飽和ブライン)が調製される。溶解槽(1)で調製された飽和ブラインは、導管(5)により精製設備(6)に送られ、原塩に由来する飽和ブライン中のカルシウム塩、マグネシウム塩、ストロンチウム塩などの不純物が除去される。精製方法としては、例えば、炭酸ソーダ、苛性ソーダを順次添加して、炭酸カルシウム、水酸化マグネシウムとして沈澱させる。更に必要であれば、キレ−ト樹脂処理などの精製法を併用してもよい。次いで、飽和ブラインはイオン交換膜方式の電解槽(7)に送られ常法に従って電解が行われる。   The alkali metal chloride concentration in the brine is preferably as high as possible, and usually a saturated brine (saturated brine) is prepared. The saturated brine prepared in the dissolution tank (1) is sent to the purification facility (6) through the conduit (5) to remove impurities such as calcium salt, magnesium salt and strontium salt in the saturated brine derived from the raw salt. The As a purification method, for example, sodium carbonate and caustic soda are sequentially added to precipitate calcium carbonate and magnesium hydroxide. If necessary, a purification method such as a chelate resin treatment may be used in combination. Next, the saturated brine is sent to an ion exchange membrane type electrolytic cell (7), and electrolysis is performed according to a conventional method.

電解槽(7)はイオン交換膜から成る隔膜(20)により陰極室と陽極室とに分けられ、陰極室で生成した苛性アルカリは導管(11)から、また、水素ガスは導管(9)から排出され、陽極室で生成した塩素ガスは導管(8)から排出され、各成分は夫々回収される。なお、符号(10)は、電解槽(7)から苛性アルカリを押し出すために供給される水の導管である。電解により飽和ブライン中のアルカリ金属塩化物の約50%及び水の約20%が消費され、残った塩水(淡ブライン)は導管(12)から抜き出され後述の各工程を経た後に溶解槽(1)へ循環される。電解槽(7)からから抜き出される淡ブライン中には、通常、アルカリ金属塩化物が180〜200g/L、硫酸塩が6〜12g/L程度含まれている。また、そのpHは通常2〜4程度である。斯かる淡ブラインは、好適には例えば塩酸により1〜2にpH調節した後、塩素脱気塔(13)でのエアーレーションにより塩素が脱気される。そして、要すれば、図示されていない貯槽に貯えた後、バルブ(14a)の開により、少くともその一部を一定量づつ塩素分解反応器(23)へ送給する。その後、分離塔(15)にて処理する。   The electrolytic cell (7) is divided into a cathode chamber and an anode chamber by a diaphragm (20) made of an ion exchange membrane. Caustic alkali generated in the cathode chamber is from the conduit (11), and hydrogen gas is from the conduit (9). The chlorine gas discharged and generated in the anode chamber is discharged from the conduit (8), and each component is recovered. In addition, a code | symbol (10) is a conduit | pipe of the water supplied in order to extrude a caustic alkali from an electrolytic cell (7). Electrolysis consumes about 50% of the alkali metal chloride and about 20% of the water in the saturated brine, and the remaining brine (fresh brine) is withdrawn from the conduit (12) and after each step described below, It is circulated to 1). The light brine extracted from the electrolytic cell (7) usually contains about 180 to 200 g / L of alkali metal chloride and about 6 to 12 g / L of sulfate. The pH is usually about 2 to 4. Such light brine is preferably deaerated by aeration in a chlorine deaeration tower (13) after pH adjustment to 1-2 with hydrochloric acid, for example. And if needed, after storing in the storage tank which is not illustrated, at least one part is sent to a chlorine decomposition reactor (23) by a fixed quantity by opening valve | bulb (14a). Then, it processes in a separation tower (15).

上記の塩素分解反応器(23)で使用する還元剤としては、例えば亜硫酸ナトリウム等の亜硫酸塩の水溶液が好適に使用される。還元剤の使用量は、遊離塩素1.0当量当たり1.0〜5.0当量である。通常、淡ブラインと還元剤との反応は撹拌槽によって行われるが、撹拌は淡ブラインの移送配管中に還元剤を添加するラインミキシング方式によって行なうことも出来る。還元反応の際のpH値は、通常7〜12、好ましくは9〜11である。斯かるpH調節は、淡ブラインに例えば苛性ソーダ水溶液を添加することにより行われる。還元反応温度は通常50〜90℃、滞留時間は、通常1〜60分、好ましくは10〜30分とされる。   As the reducing agent used in the chlorinolysis reactor (23), an aqueous solution of a sulfite such as sodium sulfite is preferably used. The amount of the reducing agent used is 1.0 to 5.0 equivalents per 1.0 equivalent of free chlorine. Usually, the reaction between the light brine and the reducing agent is carried out in a stirring tank, but the stirring can also be carried out by a line mixing system in which a reducing agent is added to a transfer pipe for the light brine. The pH value during the reduction reaction is usually 7 to 12, preferably 9 to 11. Such pH adjustment is performed by adding, for example, an aqueous caustic soda solution to the light brine. The reduction reaction temperature is usually 50 to 90 ° C., and the residence time is usually 1 to 60 minutes, preferably 10 to 30 minutes.

本発明においては、前記の塩素脱気工程から導出される淡ブラインを2分割し、一部を塩素分解除去工程に導入し、残余を直接に前記の前記の飽和ブライン調製工程へ循環するが、その理由は次の通りである。すなわち、淡ブライン中の残存塩素の分解除去工程を設けることにより脱芒工程のイオン交換体の劣化防止を図ることが出来るが、淡ブラインの全量を脱芒工程に供給する必要はなく、従って、脱芒工程に供給される量見合いの量の淡ブラインについて残存塩素の分解除去を行なえばよい。そこで、淡ブラインを2分割して一部を塩素分解除去工程に導入する。   In the present invention, the light brine derived from the chlorine deaeration step is divided into two parts, a part is introduced into the chlorine decomposition and removal step, and the remainder is directly circulated to the saturated brine preparation step. The reason is as follows. That is, it is possible to prevent deterioration of the ion exchanger in the desulfurization process by providing a process for decomposing and removing residual chlorine in the light brine, but it is not necessary to supply the entire amount of the light brine to the desulfurization process. Residual chlorine may be decomposed and removed with respect to the amount of light brine to be supplied to the degassing step. Therefore, the light brine is divided into two parts, and a part is introduced into the chlorine decomposition and removal step.

塩素分解除去工程に導入される淡ブライン量は3〜50%が好ましい。すなわち、塩素分解除去工程に導入される淡ブライン量が3%未満の場合はイオン交換体の劣化防止を図りつつ脱芒処理される淡ブラインの量が少なすぎるため、電解プラント内に蓄積される芒硝(NaSO)の量が増加し、その結果、電解工程においてイオン交換膜の劣化や消費電力の増加という問題が惹起される。一方、塩素分解除去工程に導入される淡ブライン量が50%を超える場合は、不必要な量の淡ブラインを処理する結果となり、塩素分解除去工程で使用する各種の薬剤(還元剤、pH調節剤など)や脱芒工程で使用するイオン交換体が不必要に多くなり経済的ではない。塩素分解除去工程に導入する淡ブラインの好ましい量は5〜30%、更に好ましい量は5〜15%である。 The amount of light brine introduced into the chlorine decomposition removal step is preferably 3 to 50%. That is, when the amount of light brine introduced into the chlorination and removal step is less than 3%, the amount of light brine to be degassed while preventing the deterioration of the ion exchanger is too small, and is accumulated in the electrolytic plant. The amount of sodium nitrate (Na 2 SO 4 ) increases, and as a result, problems such as deterioration of the ion exchange membrane and increase in power consumption are caused in the electrolysis process. On the other hand, if the amount of light brine introduced into the chlorination removal process exceeds 50%, it results in processing unnecessary amount of light brine, and various chemicals (reducing agent, pH adjustment) used in the chlorination removal process Etc.) and ion exchangers used in the degassing process are unnecessarily large, which is not economical. The preferable amount of the light brine to be introduced into the chlorination removal step is 5 to 30%, and a more preferable amount is 5 to 15%.

分離塔(15)には、陰イオン交換基と陽イオン交換基とを有し、これら両イオンが内部塩を形成している両性イオン交換体が充填されている。内部塩を形成している両性イオン交換体としては、例えば一般にスネークケージ型と呼ばれている樹脂が挙げられる。スネークケージ型樹脂とは、スチレン又はアクリル系の強塩基性イオン交換体にアクリル酸を含浸、重合させた複合体であり、ダウケミカル社の「リタ−デイオン11A−8」、三菱化成社の「ダイヤイオンSR−1」等の名称で市販されている。また、内部塩を形成している両性イオン交換体としては、アクリル系またはスチレン系の架橋共重合体から成る樹脂母体に直接結合した次の一般式(1)で示されるイオン交換基を有する樹脂も使用される。   The separation column (15) is packed with an amphoteric ion exchanger having an anion exchange group and a cation exchange group, and these both ions forming an internal salt. Examples of the amphoteric ion exchanger forming the internal salt include a resin generally called a snake cage type. The snake cage resin is a composite in which acrylic acid is impregnated and polymerized in a styrene or acrylic strong basic ion exchanger, and “Rita Deion 11A-8” manufactured by Dow Chemical Company, “ It is marketed under names such as “Diaion SR-1”. In addition, as the amphoteric ion exchanger forming an internal salt, a resin having an ion exchange group represented by the following general formula (1) directly bonded to a resin matrix composed of an acrylic or styrene cross-linked copolymer Also used.

Figure 0004839949
Figure 0004839949

(式中R及びRは、夫々炭素数1〜3のアルキル基を示し、m及びnは夫々1〜4の数を示す。) (Wherein R 1 and R 2 each represent an alkyl group having 1 to 3 carbon atoms, and m and n each represent a number 1 to 4)

一般式(1)で示されるイオン交換基を有する樹脂は、例えば特公昭60−45942号公報に記載されている方法に従い、スチレン系の架橋共重合体にハロメチル基を導入し、次いで、N,N’−ジメチルグリシンの酸無水物、酸アマイド、酸ハロゲン化物、低級アルキルエステル等のN−置換−アミノ酸の酸誘導体を反応させた後、加水分解する方法およびこれに準ずる方法により製造される。   A resin having an ion exchange group represented by the general formula (1) is prepared by introducing a halomethyl group into a styrene-based cross-linked copolymer according to a method described in, for example, Japanese Patent Publication No. 60-45942. It is produced by a method in which an acid derivative of N-substituted amino acid such as acid anhydride, acid amide, acid halide, lower alkyl ester or the like of N′-dimethylglycine is reacted, followed by hydrolysis and a method analogous thereto.

上記の両性イオン交換体は球状であり、その粒径は、通常100〜1200μm、好ましくは150〜350μmである。両性イオン交換体の内部塩を形成する交換容量は、通常1〜6meq/g樹脂、好ましくは2.0〜4.5meq/g樹脂である。また、両性イオン交換体の水分は、通常20〜80重量%、好ましくは30〜60重量%である。分離塔(15)に充填する両性イオン交換体の層高は、イオン交換体の種類や処理水の量(電解プラントの容量)によるが、通常1〜4m程度がよい。   The amphoteric ion exchanger has a spherical shape, and the particle size thereof is usually 100 to 1200 μm, preferably 150 to 350 μm. The exchange capacity for forming the internal salt of the amphoteric ion exchanger is usually 1 to 6 meq / g resin, preferably 2.0 to 4.5 meq / g resin. Moreover, the water | moisture content of an amphoteric ion exchanger is 20 to 80 weight% normally, Preferably it is 30 to 60 weight%. The bed height of the amphoteric ion exchanger packed in the separation tower (15) depends on the type of ion exchanger and the amount of treated water (capacity of the electrolysis plant), but is usually about 1 to 4 m.

分離塔(15)へ供給する淡ブラインの量は、原塩中の硫酸塩量や電解槽(7)に供給される飽和ブライン中に許容される硫酸塩濃度などを考慮して決められる。淡ブライン中の硫酸塩は完全に除去する必要は無く、電解の障害にならない濃度以下に維持すればよい。少なくとも、新たに添加される原塩に伴う硫酸塩量を除くことにより、飽和ブラインへの硫酸塩の更なる蓄積を阻止すればよい。そのためには電解槽(7)に循環されるブラインを分離塔(15)で処理すればよい。分離塔(15)に供給する1回の淡ブラインの量は充填イオン交換体容積の0.1〜0.5倍容量であり、供給流速は空間速度(SV)で1〜5/hがよい。供給温度は40〜80℃が好ましい。1回量の淡ブラインを供給した後バルブ(14a)を閉じ、バルブ(14b)を開いて導管(3b)から水(溶離水)を分離塔(15)へ供給してクロマト分離操作を行う。この操作により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離することが出来る。1回の供給量は充填イオン交換体容積の0.2〜1.1倍で、供給流速はSVで通常1〜5/h、好ましくは上記淡ブラインの供給流速と同じにするのがよい。供給温度は40〜80℃であり、上記淡ブラインの供給温度と同じにするのがよい。   The amount of the fresh brine supplied to the separation tower (15) is determined in consideration of the amount of sulfate in the raw salt, the concentration of sulfate allowed in the saturated brine supplied to the electrolytic cell (7), and the like. The sulfate in the light brine does not need to be completely removed and may be maintained at a concentration that does not hinder electrolysis. What is necessary is just to prevent the further accumulation | storage of the sulfate to a saturated brine by removing the amount of sulfate accompanying the raw salt newly added at least. For that purpose, the brine circulated to the electrolytic cell (7) may be treated in the separation tower (15). The amount of one-time fresh brine supplied to the separation tower (15) is 0.1 to 0.5 times the packed ion exchanger volume, and the supply flow rate is preferably 1 to 5 / h in space velocity (SV). . The supply temperature is preferably 40 to 80 ° C. After supplying a small amount of light brine, the valve (14a) is closed, the valve (14b) is opened, and water (eluting water) is supplied from the conduit (3b) to the separation tower (15) to perform the chromatographic separation operation. By this operation, the effluent fraction (A) mainly containing sulfate and the effluent fraction (B) mainly containing alkali metal chloride can be separated in order. The supply amount at one time is 0.2 to 1.1 times the packed ion exchanger volume, and the supply flow rate is usually 1 to 5 / h in SV, preferably the same as the supply flow rate of the above-mentioned light brine. Supply temperature is 40-80 degreeC, and it is good to make it the same as the supply temperature of the said light brine.

淡ブライン及び溶離水の供給方向は、充填イオン交換体が分離塔(15)内を完全に充満するように充填されている場合は上向流または下向流の何れでもよく、イオン交換体が空塔部分を残して充填されている場合は下向流とし、充填イオン交換体が流動しない様に供給する。分離塔(15)から流出してくる液中の成分濃度の変化は電導度計または屈折率計などから成る検出器で検出し、伝達路(21)及び(22)によってバルブ(18)及び(19)に伝達し、主として硫酸塩を含有する流出分画液(A)を流出管(17)を経て排出させ、一方、主としてアルカリ金属塩化物を含有する流出分画液(B)を導管(4)を経て溶解槽(1)へ循環する。再度、バルブ(14a)を開けて淡ブラインを供給し、次いで、溶離水を供給する。そして、これらの操作を繰り返し行う。   The supply direction of the light brine and the eluent water may be either an upward flow or a downward flow when the packed ion exchanger is packed so as to completely fill the separation column (15). When it is packed with the empty portion remaining, it is made a downward flow and supplied so that the packed ion exchanger does not flow. Changes in the concentration of components in the liquid flowing out from the separation tower (15) are detected by a detector such as a conductivity meter or a refractometer, and the valves (18) and (22) are transmitted by transmission paths (21) and (22). 19), and the effluent fraction (A) mainly containing sulfate is discharged via the effluent pipe (17), while the effluent fraction (B) mainly containing alkali metal chloride is discharged into the conduit ( It circulates to a dissolution tank (1) through 4). The valve (14a) is opened again to supply light brine, and then elution water is supplied. Then, these operations are repeated.

本発明においては、前述の様に、クロマト分離操作により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離するが、流出分画液(A)の全量を廃水として排出するのではなく、流出分画液(A)の内の最初の流出分から80重量%相当分までの流出範囲内で回収した液(回収液)を上記の分離塔に供給して使用し、残余を廃水として排出する。   In the present invention, as described above, the effluent fraction (A) mainly containing sulfate and the effluent fraction (B) mainly containing alkali metal chloride are sequentially separated by the chromatographic separation operation. The effluent fraction (A) is not discharged as waste water, but within the effluent range from the first effluent fraction of the effluent fraction (A) to the equivalent of 80% by weight. The recovered liquid (recovered liquid) is supplied to the separation tower and used, and the remainder is discharged as waste water.

流出分画液(A)と流出分画液(B)との区別は、前述の通り、各種の検出器を利用して行うことが出来るが、何れにしても、分離塔(15)から流出する液の電気伝導率が5S/m相当に至るまでの流出区分を流出分画液(A)とし、電気伝導率が5S/m相当に至った以降の流出区分を流出分画液(B)として区別するのが好ましい。これにより、分離塔(15)に供給する回収液へのアルカリ金属塩化物の混入を避けることが出来る。また、回収液への硫酸塩の混入を減少させる観点から、分離塔(15)に供給する液の割合は、流出分画液(A)の内の最初の流出分から60重量%相当分までの流出範囲内で回収した液が好ましく、流出分画液(A)の内の最初の流出分から40重量%相当分までの流出範囲内で回収した液が更に好ましい。図2は本発明におけるクロマト分離操作で得られたクロマト分離曲線の一例であるが、図中の符号(a1)は、分離塔(15)から流出する液の電気伝導率が5S/m相当に至るまでの流出区分を表し、符号(a2)は、最初の流出分から80重量%相当分までの流出範囲を表す。   As described above, the effluent fraction (A) and the effluent fraction (B) can be distinguished by using various detectors, but in any case, the effluent fraction (A) is separated from the separation tower (15). The effluent fraction (A) is the effluent fraction until the electrical conductivity of the liquid reaches 5 S / m, and the effluent fraction (B) is the effluent fraction after the electrical conductivity reaches 5 S / m. It is preferable to distinguish as follows. Thereby, mixing of the alkali metal chloride into the recovery liquid supplied to the separation tower (15) can be avoided. Further, from the viewpoint of reducing the mixing of sulfate into the recovered liquid, the ratio of the liquid supplied to the separation tower (15) is from the first effluent in the effluent fraction (A) to the equivalent of 60% by weight. The liquid collected within the outflow range is preferable, and the liquid recovered within the outflow range from the first outflow fraction of the outflow fraction (A) to the equivalent of 40% by weight is more preferable. FIG. 2 is an example of a chromatographic separation curve obtained by the chromatographic separation operation in the present invention. Reference numeral (a1) in the figure indicates that the electrical conductivity of the liquid flowing out from the separation tower (15) corresponds to 5 S / m. The code | symbol (a2) represents the outflow range from the first outflow part to the part equivalent to 80 weight%.

上記の回収液の分離塔(15)への供給は、流出管(17)、バルブ(24)、流出管(17)の枝管(17a)、回収タンク(25)、供給管(26)を経て行われる。そして、上記の廃水の排出は、流出管(17)、バルブ(24)、流出管(17)の枝管(17b)を経て行われる。   The recovery liquid is supplied to the separation tower (15) through the outflow pipe (17), the valve (24), the branch pipe (17a) of the outflow pipe (17), the recovery tank (25), and the supply pipe (26). After that. The waste water is discharged through the outflow pipe (17), the valve (24), and the branch pipe (17b) of the outflow pipe (17).

また、上記の回収液は、一般的には、次のクロマト分離操作における溶離水として使用する。すなわち、再度、分離塔(15)に淡ブラインを供給した後に溶離水として供給する。この場合、回収タンク(25)及び供給管(26)を設けず、アルカリ金属塩化物の原塩の溶解のために導管(3)から供給される水の貯蔵タンク(図示せず)に供給してもよい。なお、上記の回収液は、上記の使用態様の他、淡ブラインの供給前に分離塔(15)に供給し、導管(3b)から通常の溶離水のみを供給する態様で使用してもよい。   In addition, the recovered liquid is generally used as eluting water in the next chromatographic separation operation. That is, again, after supplying light brine to the separation tower (15), it is supplied as elution water. In this case, the recovery tank (25) and the supply pipe (26) are not provided, but are supplied to a water storage tank (not shown) supplied from the conduit (3) for dissolving the alkali metal chloride raw salt. May be. In addition to the above usage mode, the recovered liquid may be supplied to the separation tower (15) before supply of the light brine, and used in a mode in which only normal elution water is supplied from the conduit (3b). .

本発明は上記の様にして実施され、そして、以下に本発明の特徴部分について示すが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   The present invention is carried out as described above, and the characteristic portions of the present invention will be described below. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1:
電解槽(7)から45m/hで淡ブラインを流出させ、pHを約2に調節し、塩素脱気塔(13)でエアレーションし、61mg−Cl/Lの遊離塩素と5.0g/L硫酸根を含有する淡ブラインを得た。そして、得られた淡ブラインの内の3.6m/h(全体の約8%)について、再度、pHを約11に調節し、撹拌槽式の塩素分解反応器(23)に供給し、淡ブライン1.0L当たり220mgの亜硫酸ナトリウムを水溶液として添加し、60℃で還元処理した。塩素分解反応器(23)から流出する淡ブラインの遊離塩素を測定したところ、0.10mg−Cl/L未満であり、液は清澄であった。
Example 1:
Pale brine was discharged from the electrolytic cell (7) at 45 m 3 / h, the pH was adjusted to about 2, aerated in the chlorine degassing tower (13), 61 mg-Cl / L free chlorine and 5.0 g / L A pale brine containing sulfate radicals was obtained. And about 3.6 m < 3 > / h (about 8% of the whole) of the obtained light brine, pH is again adjusted to about 11, and it supplies to a stirring tank type chlorination reactor (23), 220 mg of sodium sulfite per 1.0 L of light brine was added as an aqueous solution and reduced at 60 ° C. When the free chlorine in the light brine flowing out from the chlorination reactor (23) was measured, it was less than 0.10 mg-Cl / L, and the liquid was clear.

その後、内径1200mm×長さ4000mmのカラムに両性イオン交換樹脂(三菱化学株式会社製「ダイヤイオンDSR01」)2.4mが充填された分離塔(15)に上記の淡ブラインを供給し、次のクロマト分離操作により硫酸根を除去した。すなわち、淡ブライン3.6mを5回に分けて0.72m毎処理し、1時間で全量の3.6mを処理した。(1)先ず、SV4.0の流速で淡ブライン0.72mを供給する。(2)次いで、淡ブラインの供給を止め、SV4.0の流速で溶離水1.2mを供給する。以後(1)と(2)の操作を5回繰り返すが、1回のクロマト分離操作は、分離塔(15)からの流出液の電気伝導率を測定しつつ次の様に行った。 Thereafter, the above-mentioned light brine was supplied to a separation column (15) in which a column having an inner diameter of 1200 mm and a length of 4000 mm was charged with 2.4 m 3 of an amphoteric ion exchange resin (“Diaion DSR01” manufactured by Mitsubishi Chemical Corporation). The sulfate radical was removed by the chromatographic separation operation. That is, a light brine 3.6 m 3 treated every 0.72 m 3 in five were treated 3.6 m 3 of the total amount in 1 hour. (1) First, 0.72 m 3 of light brine is supplied at a flow rate of SV4.0. (2) Next, the supply of light brine is stopped, and 1.2 m 3 of elution water is supplied at a flow rate of SV4.0. Thereafter, the operations of (1) and (2) are repeated five times. One chromatographic separation operation was performed as follows while measuring the electrical conductivity of the effluent from the separation tower (15).

すなわち、最初の流出分から0.24m迄の液を回収タンク(25)に回収し、引続き流出する0.54mの液を廃棄した。この直後における流出液の電気伝導率は約5.0S/mであり、それ以降の流出液1.14mを回収して溶解槽(1)に循環した。そして、回収タンク(25)に回収した液(回収液)は次のクロマト分離操作における溶離水の一部として使用した。 That is, the liquid from the first effluent to 0.24 m 3 was collected in the collection tank (25), and the 0.54 m 3 liquid that continued to flow out was discarded. Immediately after this, the electrical conductivity of the effluent was about 5.0 S / m, and the subsequent effluent 1.14 m 3 was collected and circulated to the dissolution tank (1). The liquid recovered in the recovery tank (25) (recovered liquid) was used as part of the elution water in the next chromatographic separation operation.

上記の操作により、260kg/dの硫酸根除去能力が得られ、電解プラント全体の硫酸根濃度が管理できた。脱芒工程で使用したフレッシュな溶離水量は淡ブライン量の1.3倍量であり、脱芒工程から排出される廃水量は淡ブライン量の0.75倍量であった。   Through the above operation, a sulfate radical removal ability of 260 kg / d was obtained, and the sulfate radical concentration of the entire electrolytic plant could be managed. The amount of fresh elution water used in the denitrification step was 1.3 times the amount of light brine, and the amount of waste water discharged from the deionization step was 0.75 times the amount of light brine.

比較例1:
実施例1において、1回のクロマト分離操作の際、最初の流出分から電気伝導率は約5.0S/mに至る迄の液の全量(0.78m)を廃棄した以外は、実施例1と同様に操作した。脱芒工程で使用したフレッシュな溶離水量は淡ブライン量の1.7倍量であり、脱芒工程から排出される廃水量は淡ブライン量の1.1倍量であった。
Comparative Example 1:
In Example 1, in the case of one chromatographic separation operation, Example 1 was used except that the entire amount of liquid (0.78 m 3 ) from the first effluent until the electric conductivity reached about 5.0 S / m was discarded. Was operated in the same way. The amount of fresh elution water used in the desulfurization step was 1.7 times the amount of light brine, and the amount of waste water discharged from the deionization step was 1.1 times the amount of light brine.

本発明の電解方法の一例を示す工程説明図Process explanatory drawing which shows an example of the electrolysis method of this invention クロマト分離曲線の一例の説明図Illustration of an example chromatographic separation curve

符号の説明Explanation of symbols

1:飽和ブライン調製工程の溶解槽
6:精製設備
7:電解工程の電解槽
13:塩素脱気工程の塩素脱気塔
15:脱芒工程の分離塔
23:塩素分解除去工程の塩素分解反応器
25:回収タンク
1: Saturation brine preparation process dissolution tank 6: Purification equipment 7: Electrolysis process electrolysis tank 13: Chlorine degassing process chlorine degassing tower 15: Degassing process separation tower 23: Chlorine cracking removal process chlorine decomposition reactor 25: Collection tank

Claims (4)

不純物として硫酸塩が含まれたアルカリ金属塩化物を水に溶解する飽和ブライン調製工程、飽和ブラインを電解するイオン交換膜方式の電解工程、電解工程から抜き出され且つアルカリ金属塩化物の濃度が低下した淡ブラインから塩素を脱気する塩素脱気工程、塩素脱気工程から導出される淡ブライン中の残存塩素を還元剤で分解除去するための塩素分解除去工程、陰イオン交換基と陽イオン交換基とを有し且つ両イオン交換基が内部塩を形成している両性イオン交換体が充填された分離塔に上記の淡ブラインを供給して上記両性イオン交換体にアルカリ金属塩化物を吸着させた後、当該分離塔に溶離水を供給するクロマト分離操作を繰り返し行う脱芒工程とを包含し、上記のクロマト分離において、溶離水の供給により、順次、主として硫酸塩を含有する流出分画液(A)と、主としてアルカリ金属塩化物を含有する流出分画液(B)との2つの区分に分離し、流出分画液(B)を上記の飽和ブライン調製工程へ循環するアルカリ金属塩化物の電解方法であって、流出分画液(A)の内の最初の流出分から80重量%相当分までの流出範囲内で回収した液を上記の分離塔に供給して使用することを特徴とするアルカリ金属塩化物の電解方法。   Saturated brine preparation process in which alkali metal chloride containing sulfate as an impurity is dissolved in water, ion exchange membrane type electrolysis process to electrolyze saturated brine, and the concentration of alkali metal chloride is reduced from the electrolysis process Chlorine deaeration process for degassing chlorine from the treated fresh brine, chlorine decomposition removal process for removing residual chlorine in the light brine derived from the chlorine deaeration process with a reducing agent, anion exchange group and cation exchange The above-mentioned light brine is supplied to a separation column packed with an amphoteric ion exchanger in which the amphoteric ion exchanger forms an internal salt, and the alkali metal chloride is adsorbed on the amphoteric ion exchanger. And a desulfurization step of repeatedly performing a chromatographic separation operation for supplying the eluting water to the separation column. The effluent fraction (A) containing salt and the effluent fraction (B) mainly containing alkali metal chloride were separated into two sections, and the effluent fraction (B) was prepared as the saturated brine described above. A method for electrolyzing alkali metal chloride circulated to a process, wherein a liquid recovered within an effluent range from the first effluent fraction of the effluent fraction (A) to an equivalent of 80% by weight is supplied to the separation column. And an alkali metal chloride electrolysis method, characterized by being used. 脱芒工程の分離塔から流出する液の電気伝導率が5S/m相当に至るまでの流出区分を流出分画液(A)とし、電気伝導率が5S/m相当に至った以降の流出区分を流出分画液(B)として区別する請求項1に記載の電解方法。   The spilled liquid (A) is the spillage until the electrical conductivity of the liquid flowing out from the separation tower in the degassing step reaches 5 S / m, and the spillage after the electrical conductivity reaches 5 S / m. The electrolysis method according to claim 1, wherein the effluent fraction solution (B) is distinguished. 流出分画液(A)の内の最初の流出分から60重量%相当分までの流出範囲内で回収した液を分離塔に供給して使用する請求項1又は2に記載の電解方法。   The electrolysis method according to claim 1 or 2, wherein the liquid recovered within the effluent range from the first effluent fraction of the effluent fraction (A) to the equivalent of 60 wt% is supplied to the separation tower and used. 回収液を次のクロマト分離操作における溶離水として使用する請求項1〜3の何れかに記載の電解方法。   The electrolysis method according to any one of claims 1 to 3, wherein the recovered liquid is used as eluting water in the next chromatographic separation operation.
JP2006123321A 2006-04-27 2006-04-27 Electrolysis method of alkali metal chloride Active JP4839949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123321A JP4839949B2 (en) 2006-04-27 2006-04-27 Electrolysis method of alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123321A JP4839949B2 (en) 2006-04-27 2006-04-27 Electrolysis method of alkali metal chloride

Publications (2)

Publication Number Publication Date
JP2007291479A JP2007291479A (en) 2007-11-08
JP4839949B2 true JP4839949B2 (en) 2011-12-21

Family

ID=38762374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123321A Active JP4839949B2 (en) 2006-04-27 2006-04-27 Electrolysis method of alkali metal chloride

Country Status (1)

Country Link
JP (1) JP4839949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0823341A2 (en) * 2008-12-17 2015-06-23 Chemetics Inc Process for reducing the concentration of perchlorate in an aqueous concentrated multi-component saline

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482305B1 (en) * 1999-09-01 2002-11-19 Archer-Daniels-Midland Company Electrodialysis water splitting process
JP2001181878A (en) * 1999-12-22 2001-07-03 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride

Also Published As

Publication number Publication date
JP2007291479A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
NO810728L (en) PROCEDURE FOR THE PREPARATION OF SODIUM CHLORATE
EP1400494B1 (en) Electrochemical treatment of ammonia in waste-water
EP0143962B1 (en) Process for removing aluminum and silica from alkali metal halide brine solutions
US4483754A (en) Electrolysis of sodium chloride with the use of ion exchange membranes
JP2009518267A (en) Method for purifying aqueous solutions
WO2020162796A2 (en) Method for producing high-purity lithium hydroxide monohydrate
US11802060B2 (en) Brine purification process
JP4839949B2 (en) Electrolysis method of alkali metal chloride
JP2010180445A (en) Method of electrolyzing alkaline metal chloride
JP3249677B2 (en) Electrolysis method of alkali metal chloride
SK49793A3 (en) Process for preparing alkali metal chlorate (v) and device for its executing
NO309007B1 (en) Process and plant for the purification of an aqueous alkali metal chloride solution
JP2007291480A (en) Method of electrolyzing alkali metal chloride
JP2005281777A (en) Method for electrolyzing alkali metal chloride
JP2001181880A (en) Method for electrolyzing alkali metal chloride
CN107406276A (en) Iodide are removed from salt solution using ion retardation resin
JP2005272994A (en) Method for electrolyzing alkali metal chloride
JP4436183B2 (en) Iodine ion removal process and electrolysis process
JP2008111158A (en) Method of purifying brine for electrolysis
WO2022254878A1 (en) Method and apparatus for producing sodium hypochlorite solution
JP2001181878A (en) Method for electrolyzing alkali metal chloride
JP2005272993A (en) Method for electrolyzing alkali metal chloride
EP2888388A1 (en) Side stream removal of impurities in electrolysis systems
JP2001181877A (en) Method for electrolyzing alkali metal chloride
JP2001181879A (en) Method for electrolyzing alkali metal chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350