JP4836472B2 - Polypropylene composition for foam molding and molded article thereof - Google Patents

Polypropylene composition for foam molding and molded article thereof Download PDF

Info

Publication number
JP4836472B2
JP4836472B2 JP2005082975A JP2005082975A JP4836472B2 JP 4836472 B2 JP4836472 B2 JP 4836472B2 JP 2005082975 A JP2005082975 A JP 2005082975A JP 2005082975 A JP2005082975 A JP 2005082975A JP 4836472 B2 JP4836472 B2 JP 4836472B2
Authority
JP
Japan
Prior art keywords
component
polypropylene
foam molding
weight
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005082975A
Other languages
Japanese (ja)
Other versions
JP2006265318A (en
Inventor
尚 梅田
孝之 河野
孝二 加藤
義勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2005082975A priority Critical patent/JP4836472B2/en
Publication of JP2006265318A publication Critical patent/JP2006265318A/en
Application granted granted Critical
Publication of JP4836472B2 publication Critical patent/JP4836472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発泡成形用ポリプロピレン系組成物及びその成形体に関する。   The present invention relates to a polypropylene-based composition for foam molding and a molded body thereof.

最近、電子レンジの普及、コンビニエンスストアの増加に伴い電子レンジ用容器の需要が伸びている。該容器には断熱性、耐熱性、耐油性が求められる。ポリプロピレン系樹脂が好ましい素材の一つであるが、結晶性樹脂であるため、結晶融点を境に融点以上では溶融粘度が極めて低くなり、発泡した気泡を保持できないで破泡し易いという問題がある。   Recently, with the spread of microwave ovens and the increase in convenience stores, the demand for containers for microwave ovens has increased. The container is required to have heat insulation, heat resistance, and oil resistance. Polypropylene resin is one of the preferred materials, but since it is a crystalline resin, there is a problem that the melt viscosity becomes extremely low above the melting point at the crystalline melting point, and the foamed bubbles cannot be retained and are easy to break. .

このような問題に対して、粘度の非常に高い高分子量成分を少量有する高溶融張力ポリプロピレンが用いられ発泡特性(高発泡倍率、セルの微細化、低連続気泡率)に優れた発泡体が得られている。しかしながら、これらの樹脂は重合方法が二段重合法であること等により汎用のポリプロピレンに比較して材料コストが高価である(特許文献1、2)。   To solve these problems, a high melt tension polypropylene having a small amount of a high molecular weight component having a very high viscosity is used, and a foam excellent in foaming characteristics (high foaming ratio, cell miniaturization, low open cell ratio) is obtained. It has been. However, these resins are expensive in material cost compared to general-purpose polypropylene due to the two-stage polymerization method (Patent Documents 1 and 2).

また、コスト低減のために汎用ポリプロピレンとのブレンドを行うと発泡特性(コルゲートマーク、シート外観)と熱成形性(ドローダウン性)が十分に満足しない。そこで、発泡特性と熱成形性の課題を解決する材料が望まれている。
WO97/20869パンフレット 特開2002−356601号公報
Further, when blending with general-purpose polypropylene for cost reduction, foaming characteristics (corrugated marks, sheet appearance) and thermoformability (drawdown properties) are not sufficiently satisfied. Therefore, a material that solves the problems of foaming characteristics and thermoformability is desired.
WO97 / 20869 brochure JP 2002-356601 A

本発明の目的は、発泡特性と熱成形性の両者に優れる発泡成形用ポリプロピレン系組成物及びその成形体を提供することである。   An object of the present invention is to provide a polypropylene composition for foam molding which is excellent in both foaming characteristics and thermoformability, and a molded body thereof.

本発明によれば、以下の発泡成形用ポリプロピレン系組成物等が提供される。
1.以下(A)及び(B)成分を含む発泡成形用ポリプロピレン系組成物。
(A):230℃における溶融張力が3〜10gであるポリプロピレン系樹脂:30〜90重量%
(B):下記(1)〜(4)を満たす有機過酸化物存在下に溶融混練して得られるポリプロピレン系樹脂:70〜10重量%
(1)190℃における溶融張力が2〜7g
(2)メルトフローレートが1〜4g/10分
(3)重量平均分子量と数平均分子量の比が3〜7
(4)回転型レオメーターを用いて測定した溶融粘弾性挙動において、角周波数ω=0.1rad/秒における緩和時間(τ)が1〜5秒
2.(A)成分が、超高分子量ポリエチレンを重合用触媒に担持した予備活性化触媒の存在下に、プロピレンを重合して得られた重合体である1に記載の発泡成形用ポリプロピレン系組成物。
3.(C)成分として、無機充填材を0〜20重量%含む1又は2に記載の発泡成形用ポリプロピレン系組成物。
4.1〜3のいずれかに記載の発泡成形用ポリプロピレン系組成物を発泡成形して得られる下記(1)〜(3)を満たす発泡成形体。
(1)平均セル径が500μm以下
(2)連続気泡率が1〜30%
(3)発泡倍率が1〜4倍
According to the present invention, the following polypropylene-based composition for foam molding is provided.
1. Hereinafter, a polypropylene-based composition for foam molding containing the components (A) and (B).
(A): Polypropylene resin having a melt tension of 3 to 10 g at 230 ° C .: 30 to 90% by weight
(B): Polypropylene resin obtained by melt-kneading in the presence of an organic peroxide satisfying the following (1) to (4): 70 to 10% by weight
(1) Melt tension at 190 ° C. is 2 to 7 g
(2) Melt flow rate is 1 to 4 g / 10 min. (3) Ratio of weight average molecular weight to number average molecular weight is 3 to 7
(4) In the melt viscoelastic behavior measured using a rotary rheometer, the relaxation time (τ) at an angular frequency ω = 0.1 rad / sec is 1 to 5 seconds. 2. The polypropylene composition for foam molding according to 1, wherein the component (A) is a polymer obtained by polymerizing propylene in the presence of a pre-activated catalyst in which ultrahigh molecular weight polyethylene is supported on a polymerization catalyst.
3. (C) The polypropylene-type composition for foam molding of 1 or 2 which contains 0-20 weight% of inorganic fillers as a component.
4. A foam molded article satisfying the following (1) to (3) obtained by foam molding the polypropylene composition for foam molding according to any one of 4.1 to 3.
(1) Average cell diameter is 500 μm or less (2) Open cell ratio is 1 to 30%
(3) Foaming ratio is 1 to 4 times

本発明によれば、発泡特性と熱成形性の両者に優れる発泡成形用ポリプロピレン系組成物及びその成形体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the polypropylene-type composition for foam molding which is excellent in both a foaming characteristic and thermoformability, and its molded object can be provided.

以下、本発明のポリプロピレン系組成物に含まれる成分について説明する。
(A)ポリプロピレン系樹脂
ポリプロピレン系樹脂(A)(以下、(A)成分)は、キャピログラフを用い測定温度230℃、引き取り速度3.1m/分にて測定した溶融張力が3〜10gのポリプロピレン系樹脂であれば特に制限はない。3g未満であると発泡特性が低下(発泡倍率低下、連続気泡率が上昇)するとともに熱成形性も低下する恐れがある。10gを超えると生産性が低くなる恐れがある。
ポリプロピレン系樹脂として、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、ランダムブロックポリプロピレン等が挙げられる。
Hereinafter, the components contained in the polypropylene composition of the present invention will be described.
(A) Polypropylene resin Polypropylene resin (A) (hereinafter referred to as component (A)) is a polypropylene resin having a melt tension of 3 to 10 g measured using a capillograph at a measurement temperature of 230 ° C. and a take-up speed of 3.1 m / min. If it is resin, there will be no restriction | limiting in particular. If it is less than 3 g, the foaming characteristics may be lowered (foaming ratio is lowered, the open cell ratio is increased), and thermoformability may be lowered. If it exceeds 10 g, the productivity may be lowered.
Examples of the polypropylene resin include homopolypropylene, block polypropylene, random polypropylene, and random block polypropylene.

このような所定の溶融張力を有するポリプロピレン系樹脂は、超高分子量ポリエチレンを重合用触媒に担持した予備活性化触媒の存在下に、重合工程でプロピレン重合体を製造して得られる。   Such a polypropylene resin having a predetermined melt tension is obtained by producing a propylene polymer in the polymerization step in the presence of a pre-activated catalyst in which ultrahigh molecular weight polyethylene is supported on a polymerization catalyst.

超高分子量ポリエチレンは、好ましくは、135℃のテトラリン中で測定した固有粘度が15〜160dl/gである。
重合用触媒として、チタン化合物を含む遷移金属化合物触媒成分を主成分とする触媒成分、好ましくはチタン含有固体触媒成分を使用でき、有機金属化合物、電子供与体を組み合わせることができる。
この重合体の製造方法の詳細は、国際公開WO97/20869、特開2002−356601に記載されている。
The ultra high molecular weight polyethylene preferably has an intrinsic viscosity of 15 to 160 dl / g measured in tetralin at 135 ° C.
As a polymerization catalyst, a catalyst component mainly composed of a transition metal compound catalyst component containing a titanium compound, preferably a titanium-containing solid catalyst component can be used, and an organic metal compound and an electron donor can be combined.
Details of the production method of this polymer are described in International Publication WO97 / 20869 and JP-A-2002-356601.

本発明の樹脂組成物における(A)成分の割合は、30〜90重量%、好ましくは40〜80重量%である。30%未満では発泡特性が低下(連続気泡率が上昇、シート外観が悪化)し熱成形性も低下する恐れがある。90重量%を超えると生産性が悪化する恐れがある。   The proportion of the component (A) in the resin composition of the present invention is 30 to 90% by weight, preferably 40 to 80% by weight. If it is less than 30%, the foaming characteristics are lowered (the open cell ratio is increased and the sheet appearance is deteriorated), and the thermoformability is also likely to be lowered. If it exceeds 90% by weight, the productivity may deteriorate.

(B)ポリプロピレン系樹脂
ポリプロピレン系樹脂(B)(以下、(B)成分)は、下記(1)〜(4)を満たす。
(1)190℃における溶融張力が2〜7g
(2)メルトフローレート(MFR)が1〜4g/10分
(3)重量平均分子量と数平均分子量の比(Mw/Mn)が3〜7
(4)回転型レオメーターを用いて測定した溶融粘弾性挙動において、各周波数ω=0.1rad/秒における緩和時間(τ)が1〜5秒
(B) Polypropylene resin The polypropylene resin (B) (hereinafter referred to as component (B)) satisfies the following (1) to (4).
(1) Melt tension at 190 ° C. is 2 to 7 g
(2) Melt flow rate (MFR) is 1 to 4 g / 10 minutes (3) Ratio (Mw / Mn) of weight average molecular weight to number average molecular weight is 3 to 7
(4) In the melt viscoelastic behavior measured using a rotary rheometer, the relaxation time (τ) at each frequency ω = 0.1 rad / sec is 1 to 5 seconds.

上記(1)において、溶融張力が2g未満では、連続気泡率の上昇、発泡セル径の増大、熱成形時の型再現性の悪化等が起こり好ましくない。一方、7gを超えると、高分子量成分が増大することにより、延伸性が低下するため好ましくない。(B)成分の溶融張力は、好ましくは3〜6gである。   In the above (1), if the melt tension is less than 2 g, the open cell ratio is increased, the foam cell diameter is increased, the mold reproducibility during thermoforming is deteriorated, and the like is not preferable. On the other hand, if it exceeds 7 g, the high molecular weight component is increased, and the stretchability is lowered. The melt tension of the component (B) is preferably 3 to 6 g.

上記(2)において、MFRが1g/10分未満では発泡成形時の溶融粘度が高くなり生産性が低下する場合がある。また、4g/10分を超えると発泡特性が低下する場合がある。(B)成分のMFRは、好ましくは1g/10分〜3g/10分である。   In said (2), when MFR is less than 1 g / 10min, the melt viscosity at the time of foam molding will become high, and productivity may fall. Moreover, when it exceeds 4 g / 10min, a foaming characteristic may fall. The MFR of the component (B) is preferably 1 g / 10 minutes to 3 g / 10 minutes.

上記(3)において、ゲルパーミエーションクロマトグラフィーにより測定した分子量分布曲線から求めたMwとMnの比(Mw/Mn)が、7を超えると発泡成形時に溶融粘度が高くなり生産性が低下する場合がある。一方、3未満では熱成形時のドローダウン性が低下する場合がある。(B)成分のMw/Mnは、好ましくは3.5〜6.5である。   In the above (3), when the ratio of Mw to Mn (Mw / Mn) obtained from the molecular weight distribution curve measured by gel permeation chromatography exceeds 7, the melt viscosity becomes high at the time of foam molding and the productivity is lowered. There is. On the other hand, if it is less than 3, the drawdown property at the time of thermoforming may deteriorate. (B) Mw / Mn of a component becomes like this. Preferably it is 3.5-6.5.

上記(4)において、(B)成分の回転型レオメーターを用い測定して得られる溶融粘弾性挙動において角周波数ω=0.1rad/秒における緩和時間τ(秒)が、1秒未満では張力が弱いため発泡成形できない場合がある。一方、5秒を超えると溶融粘度が高くなり生産性が低下する恐れがある。(B)成分の緩和時間τ(秒)は、好ましくは2秒〜4秒である。
緩和時間の詳細については特願2004−331795号明細書に記載されている。
In the above (4), in the melt viscoelastic behavior obtained by measurement using the rotational rheometer of the component (B), if the relaxation time τ (seconds) at an angular frequency ω = 0.1 rad / second is less than 1 second, the tension In some cases, foam molding cannot be performed due to weakness. On the other hand, if it exceeds 5 seconds, the melt viscosity increases and the productivity may decrease. The relaxation time τ (second) of the component (B) is preferably 2 seconds to 4 seconds.
Details of the relaxation time are described in the specification of Japanese Patent Application No. 2004-331795.

(B)成分のポリプロピレン系樹脂の構造は特に制限はなく、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、ランダムブロックポリプロピレン等が挙げられる。   The structure of the (B) component polypropylene resin is not particularly limited, and examples thereof include homopolypropylene, block polypropylene, random polypropylene, and random block polypropylene.

上記(1)〜(4)を満たすポリプロピレン系樹脂(B)は、有機過酸化物存在下に溶融混練して得られる。   The polypropylene resin (B) satisfying the above (1) to (4) is obtained by melt-kneading in the presence of an organic peroxide.

コルゲートマーク、熱成形時のドローダウン性を向上するには、特定の高分子成分が最適量必要になる。その方法として有機過酸化物存在下に溶融混練する方法が有効である。   In order to improve the corrugation mark and the drawdown property during thermoforming, an optimum amount of a specific polymer component is required. As the method, a method of melt kneading in the presence of an organic peroxide is effective.

溶融混練を行うにあたり、ポリプロピレン系樹脂と有機過酸化物を混合するが、その混合方法は特に制限されない。例えば、ブレンダ、ミキサー等の混合機を用いて機械的に混合する方法、有機過酸化物を適当な溶剤に溶解してポリプロピレン系樹脂に付着させ、溶剤を乾燥することによって混合する方法等がある。   In performing melt kneading, the polypropylene resin and the organic peroxide are mixed, but the mixing method is not particularly limited. For example, there is a method of mixing mechanically using a blender such as a blender or a mixer, a method of dissolving an organic peroxide in an appropriate solvent, adhering it to a polypropylene resin, and mixing by drying the solvent. .

溶融混練温度は、ポリプロピレン系樹脂の溶融温度以上でかつ有機過酸化物の分解温度以上の温度が採用される。しかし、あまり加熱温度が高いとポリマーの熱劣化を招く。一般に溶融温度は、170〜300℃、特に180〜250℃の範囲内に設定することが好ましい。   As the melt-kneading temperature, a temperature not lower than the melting temperature of the polypropylene resin and not lower than the decomposition temperature of the organic peroxide is adopted. However, if the heating temperature is too high, the polymer will be thermally deteriorated. In general, the melting temperature is preferably set in the range of 170 to 300 ° C, particularly 180 to 250 ° C.

本発明に用いる有機過酸化物は公知のものが一般に使用される。代表的な有機過酸化物としては、メチルエチルパーオキサイド、メチルイソブチルパーオキサイド等のパーオキサイド;イソブチリルパーオキサイド、アセチルパーオキサイド等のジアシルパーオキサイド;ジイソプロピルベンゼンハイドロパーオキサイド、その他のハイドロパーオキサイド;2,5−ジメチル−2,5−ジ−(t−ブチルパーオキシ)ヘキサン、1,3−ビス−(t−ブチルパーオキシイソプロピル)ベンゼン等のジアルキルパーオキサイド;1,1−ジ−t−ブチルパーオキシ−シクロヘキサン、その他のパーオキシケタール;t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート等のアルキルパーエステル;t−ブチルパーオキシイソプロピルカーボネート、その他のパーカーボネート等を挙げられる。   Known organic peroxides are generally used in the present invention. Typical organic peroxides include peroxides such as methyl ethyl peroxide and methyl isobutyl peroxide; diacyl peroxides such as isobutyryl peroxide and acetyl peroxide; diisopropylbenzene hydroperoxide and other hydroperoxides; Dialkyl peroxides such as 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane and 1,3-bis- (t-butylperoxyisopropyl) benzene; 1,1-di-t- Examples include butyl peroxy-cyclohexane and other peroxyketals; alkyl peresters such as t-butyl peroxyacetate and t-butyl peroxybenzoate; t-butyl peroxyisopropyl carbonate and other percarbonates. .

有機過酸化物の使用量は、得られるポリプロピレン系樹脂のメルトフローレートの設定値等によって異なり一概に決定されないが、原料となるポリプロピレン系樹脂100重量部に対して0.001〜1.0重量部、好ましくは0.005〜0.5重量部が一般的である。   The amount of the organic peroxide used varies depending on the set value of the melt flow rate of the obtained polypropylene resin and is not unconditionally determined, but is 0.001 to 1.0 weight with respect to 100 parts by weight of the polypropylene resin as a raw material. Parts, preferably 0.005 to 0.5 parts by weight.

溶融混練に用いるポリプロピレン系樹脂は特に制限はなく、上記のホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、ランダムブロックポリプロピレン等を使用できる。スラリー重合法、気相重合法で得られるものでよい。重合法は一段で重合してもよくまた多段であってもよい。   The polypropylene resin used for melt kneading is not particularly limited, and the above-mentioned homopolypropylene, block polypropylene, random polypropylene, random block polypropylene and the like can be used. It may be obtained by a slurry polymerization method or a gas phase polymerization method. The polymerization method may be performed in a single stage or in multiple stages.

溶融混練に用いるポリプロピレン系樹脂は、好ましくは、四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタン組成物を、エーテル及び電子受容体で処理して得られる固体触媒成分と有機アルミニウム化合物を必須成分とする触媒の存在下、プロピレンを重合して得られたポリプロピレン系樹脂である。   The polypropylene resin used for melt kneading is preferably a solid catalyst component obtained by treating titanium tetrachloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound with an ether and an electron acceptor, and an organoaluminum compound. It is a polypropylene resin obtained by polymerizing propylene in the presence of a catalyst having an essential component.

固体触媒成分において、四塩化チタンを還元する有機アルミニウム化合物としては、例えば、(イ)アルキルアルミニウムジハライド、具体的には、メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、及びn−プロピルアルミニウムジクロライド、(ロ)アルキルアルミニウムセスキハライド、具体的には、エチルアルミニウムセスキクロライド、(ハ)ジアルキルアルミニウムハライド、具体的には、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、及びジエチルアルミニウムブロマイド、(ニ)トリアルキルアルミニウム、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、及びトリイソブチルアルミニウム、(ホ)ジアルキルアルミニウムハイドライド、具体的には、ジエチルアルミニウムハイドライド等を挙げることができる。ここで、「アルキル」は、メチル、エチル、プロピル、ブチル等の低級アルキルである。また、「ハライド」は、クロライド又はブロマイドであり、特に前者が普通である。   Examples of the organoaluminum compound that reduces titanium tetrachloride in the solid catalyst component include (a) alkylaluminum dihalide, specifically, methylaluminum dichloride, ethylaluminum dichloride, and n-propylaluminum dichloride, (b) Alkylaluminum sesquihalides, specifically, ethylaluminum sesquichloride, (ha) dialkylaluminum halides, specifically, dimethylaluminum chloride, diethylaluminum chloride, di-n-propylaluminum chloride, and diethylaluminum bromide, ) Trialkylaluminum, specifically, trimethylaluminum, triethylaluminum, and triisobutylaluminum, (e) dialkylaluminum Um hydride, specifically, may be mentioned diethyl aluminum hydride and the like. Here, “alkyl” is lower alkyl such as methyl, ethyl, propyl, butyl and the like. The “halide” is chloride or bromide, and the former is particularly common.

三塩化チタンを得るための、有機アルミニウム化合物による還元反応は、−60〜60℃、好ましくは−30〜30℃の温度範囲で行うことが普通である。還元反応は、ペンタン、ヘキサン、ヘプタン、オクタン及びデカン等の不活性炭化水素溶媒中で行うのが好ましい。   The reduction reaction with an organoaluminum compound to obtain titanium trichloride is usually carried out in the temperature range of −60 to 60 ° C., preferably −30 to 30 ° C. The reduction reaction is preferably performed in an inert hydrocarbon solvent such as pentane, hexane, heptane, octane and decane.

さらに、四塩化チタンの有機アルミニウム化合物による還元反応によって得られた三塩化チタンに対し、さらにエーテル処理及び電子受容体処理を施すことが好ましい。
前記三塩化チタンのエーテル処理で好ましく用いられるエーテル化合物としては、ジエチルエーテル、ジ−n−プロピルエーテル、ジ−n−ブチルエーテル、ジイソアミルエーテル、ジネオペンチルエーテル、ジ−n−ヘキシルエーテル、ジ−n−オクチルエーテル、ジ−2−エチルヘキシルエーテル、メチル−n−ブチルエーテル及びエチル−イソブチルエーテル等の各炭化水素残基が炭素数2〜8の鎖状炭化水素であるエーテル化合物が挙げられ、これらの中でも特にジ−n−ブチルエーテルを用いることが好適である。
Furthermore, it is preferable that the titanium trichloride obtained by the reduction reaction of titanium tetrachloride with an organoaluminum compound is further subjected to ether treatment and electron acceptor treatment.
Examples of the ether compound preferably used in the ether treatment of titanium trichloride include diethyl ether, di-n-propyl ether, di-n-butyl ether, diisoamyl ether, dineopentyl ether, di-n-hexyl ether, di- Examples include ether compounds in which each hydrocarbon residue is a chain hydrocarbon having 2 to 8 carbon atoms, such as n-octyl ether, di-2-ethylhexyl ether, methyl-n-butyl ether, and ethyl-isobutyl ether. Among them, it is particularly preferable to use di-n-butyl ether.

三塩化チタンの処理で用いられる電子受容体としては、周期律表第III族〜第IV族及び第VIII族の元素のハロゲン化合物が好ましく、具体的には、四塩化チタン、四塩化ケイ素、三フッ化ホウ素、三塩化ホウ素、五塩化アンチモン、三塩化ガリウム、三塩化鉄、二塩化テルル、四塩化スズ、三塩化リン、五塩化リン、四塩化バナジウム及び四塩化ジルコニウム等を挙げることができる。固体触媒成分を調製する際に、三塩化チタンのエーテル化合物及び電子受容体による処理は、両処理剤の混合物を用いて行ってもよく、また、一方による処理後に、他方による処理を行ってもよい。これらのうちでは、後者が好ましく、エーテル処理後に電子受容体処理を行うことがさらに好ましい。   As the electron acceptor used in the treatment of titanium trichloride, halogen compounds of elements of Group III to Group IV and Group VIII of the periodic table are preferable. Specifically, titanium tetrachloride, silicon tetrachloride, three Examples thereof include boron fluoride, boron trichloride, antimony pentachloride, gallium trichloride, iron trichloride, tellurium dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, vanadium tetrachloride, and zirconium tetrachloride. When preparing the solid catalyst component, the treatment with the ether compound of titanium trichloride and the electron acceptor may be performed using a mixture of both treatment agents, or after the treatment with one, the treatment with the other may be performed. Good. Among these, the latter is preferable, and it is more preferable to perform the electron acceptor treatment after the ether treatment.

エーテル化合物及び電子受容体による処理の前に、三塩化チタンを炭化水素で洗浄することが一般に望ましい。前記三塩化チタンのエーテル処理は、該三塩化チタンと前記エーテル化合物を接触させることによって行われる。また、エーテル化合物による三塩化チタンの処理は、希釈剤の存在下で両者を接触させることによって行うのが有利である。このような希釈剤には、ヘキサン、ヘプタン、オクタン、デカン、ベンゼン及びトルエン等の不活性炭化水素化合物を使用することが好適である。   It is generally desirable to wash the titanium trichloride with a hydrocarbon prior to treatment with the ether compound and electron acceptor. The ether treatment of titanium trichloride is performed by bringing the titanium trichloride into contact with the ether compound. The treatment of titanium trichloride with an ether compound is advantageously performed by bringing both into contact in the presence of a diluent. As such a diluent, it is preferable to use an inert hydrocarbon compound such as hexane, heptane, octane, decane, benzene and toluene.

エーテル化合物の使用量は、三塩化チタン1モル当たり、一般に0.05〜3.0モル、好ましくは0.5〜1.5モルの範囲である。尚、有機アルミニウム化合物やエーテル化合物で処理した三塩化チタンは、厳密に言えば、三塩化チタンを主成分とする組成物である。
このような固体触媒成分として、Solvay型三塩化チタンを好適に用いることができる。
The amount of the ether compound used is generally in the range of 0.05 to 3.0 mol, preferably 0.5 to 1.5 mol, per 1 mol of titanium trichloride. Strictly speaking, titanium trichloride treated with an organoaluminum compound or an ether compound is a composition mainly composed of titanium trichloride.
As such a solid catalyst component, Solvay type titanium trichloride can be suitably used.

固体触媒成分と共に用いる有機アルミニウム化合物としては、上記と同様の化合物が挙げられる。   Examples of the organoaluminum compound used together with the solid catalyst component include the same compounds as described above.

このポリプロピレン系樹脂(B)の製造に有機アルミニウム化合物と三塩化チタン組成物からなる触媒系を用いることにより、有機マグネシウム化合物と四塩化チタン組成物からなる触媒系と比較して、分子量分布が広く高分子量成分が多いポリプロピレン系樹脂が得られる。   By using a catalyst system comprising an organoaluminum compound and a titanium trichloride composition for the production of this polypropylene resin (B), the molecular weight distribution is broader than that of a catalyst system comprising an organomagnesium compound and a titanium tetrachloride composition. A polypropylene resin having a high molecular weight component is obtained.

本発明の組成物においては(B)成分は70〜10重量%、好ましくは60〜20重量%である。70重量%を超えると発泡特性が低下する場合がある。10重量%未満では生産コストが高くなる場合がある。   In the composition of the present invention, the component (B) is 70 to 10% by weight, preferably 60 to 20% by weight. If it exceeds 70% by weight, the foaming characteristics may deteriorate. If it is less than 10% by weight, the production cost may increase.

(C)無機充填剤
(C)成分の無機充填剤(以下、(C)成分)は必要に応じて添加される。
無機充填剤としては、例えばタルク、シリカ、炭酸カルシウム、クレー、ゼオライト、アルミナ、硫酸バリウム、水酸化マグネシウム等が挙げられる。これらの中ではシート外観、機械的物性をバランス良く向上できるタルクが好ましい。
(C) Inorganic filler The (C) component inorganic filler (hereinafter referred to as (C) component) is added as necessary.
Examples of the inorganic filler include talc, silica, calcium carbonate, clay, zeolite, alumina, barium sulfate, magnesium hydroxide and the like. In these, the talc which can improve a sheet | seat external appearance and mechanical physical property with sufficient balance is preferable.

(C)成分の充填量は、シート外観等に影響を及ぼさない限り特に制限はないが、0〜20重量%である。充填量が20重量%を超えると、機械的物性の向上に対してシート外観の悪化が大きくなる恐れがある。   The filling amount of the component (C) is not particularly limited as long as it does not affect the appearance of the sheet, but is 0 to 20% by weight. When the filling amount exceeds 20% by weight, the appearance of the sheet may be greatly deteriorated with respect to the improvement of the mechanical properties.

本発明の樹脂組成物はその効果を損なわない範囲で他の成分を含むことができる。本発明の組成物には、必要に応じて、酸化防止剤、中和剤、難燃剤、結晶核剤等の添加剤を含むことができる。   The resin composition of this invention can contain another component in the range which does not impair the effect. The composition of the present invention can contain additives such as an antioxidant, a neutralizing agent, a flame retardant, and a crystal nucleating agent as necessary.

本発明の組成物は、各成分をドライブレンドや押出機内での溶融混練等の通常の方法で混合して製造できる。本発明の組成物は、各成分を混合した後、発泡成形により発泡シート、パイプ等の各種成形体に成形することができる。成形方法としては、環状ダイ成形、T型ダイ成形等の一般的な成形方法を用いることができる。得られた成形体は容器、文具、通い箱等に使用できる。   The composition of the present invention can be produced by mixing each component by a usual method such as dry blending or melt-kneading in an extruder. The composition of the present invention can be molded into various molded articles such as foamed sheets and pipes by foam molding after mixing the respective components. As a molding method, a general molding method such as annular die molding or T-die molding can be used. The obtained molded body can be used for containers, stationery, returnable boxes and the like.

本発明の組成物を発泡成形してなる成形体は、好ましくは、下記(1)〜(3)を満たす。
(1)平均セル径が500μm以下
(2)連続気泡率が1〜30%
(3)発泡倍率が1〜4倍
上記(1)〜(3)を満たす発泡成形品は、断熱性及び容器外観に優れているので好ましい。平均セル径は発泡剤の種類や添加量、発泡倍率等により調整できる。本発明の組成物を発泡成形したものは、容易にこれらの条件を満たす。
The molded body formed by foam molding of the composition of the present invention preferably satisfies the following (1) to (3).
(1) Average cell diameter is 500 μm or less (2) Open cell ratio is 1 to 30%
(3) Foaming ratio is 1 to 4 times The foamed molded product satisfying the above (1) to (3) is preferable because it is excellent in heat insulation and container appearance. The average cell diameter can be adjusted by the type and addition amount of the foaming agent, the expansion ratio, and the like. A foam-molded composition of the present invention easily satisfies these conditions.

本発明の成形体は通常の発泡成形により製造できる。例えば発泡シートは、上記したようなポリプロピレン系組成物と発泡剤とを押出機内で溶融混練した後、この溶融混練物を押出機先端に取り付けた、環状のリップを有する環状ダイスを用い、このダイスのリップより押出発泡して円筒状の発泡体を得、次いでこの円筒状発泡体を切り開いてシート状とする等して容易に製造される。   The molded product of the present invention can be produced by ordinary foam molding. For example, a foam sheet is obtained by using an annular die having an annular lip, in which the above polypropylene-based composition and a foaming agent are melt-kneaded in an extruder and the melt-kneaded product is attached to the tip of the extruder. A cylindrical foam is obtained by extrusion foaming from the lip, and this cylindrical foam is then cut open to form a sheet.

発泡シートを得るにあたり、発泡剤としては、無機発泡剤、揮発性発泡剤、分解型発泡剤等を用いることができる。無機発泡剤としては、二酸化炭素、空気、窒素等が挙げられる。揮発性発泡剤としては、プロパン、n−ブタン、i−ブタン、n−ブタンとi−ブタンとの混合物、ペンタン、ヘキサン等の鎖状脂肪族炭化水素、シクロブタン、シクロペンタン等の環状脂肪族炭化水素等が挙げられる。さらに、分解型発泡剤としては、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウム等が挙げられる。これらの発泡剤は適宜混合して用いることができる。発泡シートを得るに当たって、必要に応じて紫外線吸収剤、酸化防止剤、帯電防止剤、着色剤等の添加剤を添加することもできる。   In obtaining the foam sheet, as the foaming agent, an inorganic foaming agent, a volatile foaming agent, a decomposable foaming agent, or the like can be used. Examples of the inorganic foaming agent include carbon dioxide, air, and nitrogen. Examples of volatile blowing agents include propane, n-butane, i-butane, a mixture of n-butane and i-butane, a chain aliphatic hydrocarbon such as pentane and hexane, and a cyclic aliphatic carbon such as cyclobutane and cyclopentane. Hydrogen etc. are mentioned. Furthermore, examples of the decomposable foaming agent include azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium bicarbonate and the like. These foaming agents can be appropriately mixed and used. In obtaining the foamed sheet, additives such as an ultraviolet absorber, an antioxidant, an antistatic agent, and a colorant can be added as necessary.

本発明の発泡成形体は、発泡成形したものをさらに熱成形して得ることができる。熱成形の方法としては、一般的な真空成形法や圧空成形法が用いられる。これらの成形法により得られる熱成形体は、食品用容器、電子材料用トレー等に用いることができる。   The foam molded article of the present invention can be obtained by further thermoforming a foam molded article. As a thermoforming method, a general vacuum forming method or pressure forming method is used. Thermoformed bodies obtained by these molding methods can be used in food containers, electronic material trays, and the like.

以下、本発明の実施例を説明するが、本発明はこれらの実施例によって限定されるものではない。尚、各例で得られた樹脂、成形体の各種特性の測定、評価は下記の通り行った。
(1)溶融張力(MT)(単位:g)の測定法
東洋精機(株)製キャピログラフ1Cを使用し、(A)成分については測定温度230℃、(B)成分については190℃、引取り速度3.1m/分にて測定した。測定には、長さ8mm、直径2.095mmのオリフイスを使用した。
Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, measurement and evaluation of various properties of the resin and molded body obtained in each example were performed as follows.
(1) Measuring method of melt tension (MT) (unit: g) Using Capillograph 1C manufactured by Toyo Seiki Co., Ltd., measuring temperature 230 ° C for component (A), 190 ° C for component (B) It was measured at a speed of 3.1 m / min. For the measurement, an orifice having a length of 8 mm and a diameter of 2.095 mm was used.

(2)分子量分布(Mw/Mn)
ゲルバーミエーションクロマトグラフ(GPC)法により、下記の装置及び条件で測定したポリプロピレン換算のMw及びMnより算出した。
GPC測定装置
カラム:TOSOGMHHR−H(S)HT
検出器:液体クロマトグラム用RI検出器 WATERS150C
測定条件
溶媒:1,2,4−トリクロロベンゼン
温度:145℃
(2) Molecular weight distribution (Mw / Mn)
It was calculated from Mw and Mn in terms of polypropylene measured by the gel permeation chromatography (GPC) method using the following apparatus and conditions.
GPC measurement device Column: TOSOGMMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS150C
Measurement conditions Solvent: 1,2,4-trichlorobenzene Temperature: 145 ° C

(3)メルトフローレート(MFR)(単位:g/10分)
JIS−K7210に準拠し、測定温度230℃、荷重2.16kgにて測定した。
(4)緩和時間τ(単位:秒)
緩和時間τは、レオメトリックス社製回転型レオメーターにおいて、コーンプレート25mmφ、コーンアングル:0.10ラジアンを用い、温度175℃、歪15%において周波数分散測定を行ったときのω=0.1rad/秒における緩和時間τであり、次式により計算したものである。即ち、樹脂ペレットについて測定した複素弾性率G(iω)を、応力σと歪みγによりσ/γで定義したとき、式
(iω)=σ/γ=G’(ω)+iG”(ω)
τ(ω)=G’(ω)/ωG”(ω)
(ここで、G‘は貯蔵弾性率を示し、G”は損失弾性率を示す。)により、求めた値である。
(3) Melt flow rate (MFR) (Unit: g / 10 min)
Based on JIS-K7210, the measurement was performed at a measurement temperature of 230 ° C. and a load of 2.16 kg.
(4) Relaxation time τ (unit: seconds)
The relaxation time τ is ω 0 = 0. 0 when a frequency dispersion measurement is performed at a temperature of 175 ° C. and a strain of 15% using a cone plate of 25 mmφ and a cone angle of 0.10 radians in a rotational rheometer manufactured by Rheometrics. The relaxation time τ at 1 rad / sec, calculated by the following equation. That is, when the complex elastic modulus G * (iω) measured for the resin pellet is defined as σ * / γ * by stress σ * and strain γ * , the formula G * (iω) = σ * / γ * = G ′ (Ω) + iG ″ (ω)
τ (ω) = G ′ (ω) / ωG ″ (ω)
Here, G ′ represents a storage elastic modulus and G ″ represents a loss elastic modulus.

(5)平均セル径
走査型電子顕微鏡JSM−6100(日本電子製)を用い、倍率70倍にてシートの断面を観察し、画面中の100個のセルの直径を測定して平均値を求めた。
(6)連続気泡率
空気比較式比重計1000型(東京サイエンス製)を用いて測定した。
(7)発泡倍率
得られた発泡シートの重量を水中置換法により求めた体積で除することにより比重を求め発泡倍率を計算した。
(5) Average cell diameter Using a scanning electron microscope JSM-6100 (manufactured by JEOL Ltd.), observe the cross section of the sheet at a magnification of 70 times, and measure the diameter of 100 cells in the screen to obtain the average value. It was.
(6) Open cell ratio It measured using the air comparison type hydrometer 1000 type | mold (made by Tokyo Science).
(7) Foaming ratio The specific gravity was determined by dividing the weight of the obtained foamed sheet by the volume determined by the underwater substitution method, and the foaming ratio was calculated.

(8)熱成形性:ドローダウン性
真空圧空用熱成形機FK−0431−10(浅野研究所製)にてドローダウン性の評価を形状30cm×30cmの発泡シートを用いて間接加熱温度上下500℃(設定)で行った。
ドローダウンの挙動をスクーリングしてシュリンクバック後の最も復元した状態をドローダウンが開始する初期状態を基準にして最小ドローダウン量として求めた。
シュリンクバック後から初期状態を基準にして30mmまでドローダウンした時間を保持時間として求めた。
(8) Thermoformability: Draw-down property Evaluation of draw-down property with a vacuum pressure thermoforming machine FK-0431-10 (manufactured by Asano Laboratories), indirect heating temperature up and down 500 using a foam sheet having a shape of 30 cm × 30 cm Performed at ° C (setting).
The drawdown behavior was schooled and the most restored state after shrinkback was determined as the minimum drawdown amount based on the initial state where the drawdown starts.
The time for drawing down to 30 mm from the initial state after shrinkback was determined as the holding time.

実施例、比較例において使用した(A)、(B)成分は以下の通りである。
(A)成分
高分子量予備重合品:FB3312(JPP製)
高分子量予備重合品:FH3400(JPP製)
The components (A) and (B) used in Examples and Comparative Examples are as follows.
(A) component High molecular weight prepolymerized product: FB3312 (manufactured by JPP)
High molecular weight prepolymerized product: FH3400 (manufactured by JPP)

(B)成分
MFR1.8PP分解品(製造例2)
MFR1.6PP(製造例3)
(B)成分のMT、MFR、Mw/Mn及びτを表1に示す。
(B) Component MFR1.8PP decomposition product (Production Example 2)
MFR1.6PP (Production Example 3)
Table 1 shows MT, MFR, Mw / Mn, and τ of the component (B).

製造例1
[Al−Ti触媒系MFR1.0PPの製造]
(1)予備重合
内容積5リットルの攪拌機付きの三つ口フラスコを十分に乾燥し窒素ガスで置換した後、脱水処理したヘプタンを4リットル、ジエチルアルミニウムクロライド140グラムを加え固体触媒成分(市販のSolvay型三塩化チタン触媒(東ソー・ファインケム社製))20gを加えた。内温を20℃に保持し、攪拌しながらプロピレンを連続的に導入した。80分後、攪拌を停止し結果的に固体触媒1g当たり0.8gのプロピレンが重合した予備重合触媒成分[A]を得た。
Production Example 1
[Production of Al-Ti catalyst system MFR1.0PP]
(1) Prepolymerization A three-necked flask with an internal volume of 5 liters equipped with a stirrer was thoroughly dried and replaced with nitrogen gas. Then, 4 liters of dehydrated heptane and 140 grams of diethylaluminum chloride were added to add a solid catalyst component (commercially available 20 g of Solvay type titanium trichloride catalyst (manufactured by Tosoh Finechem) was added. The internal temperature was kept at 20 ° C., and propylene was continuously introduced while stirring. After 80 minutes, stirring was stopped, and as a result, a prepolymerized catalyst component [A] in which 0.8 g of propylene was polymerized per 1 g of the solid catalyst was obtained.

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、内温を70℃として水素を0.052MPa加えて攪拌しながらプロピレンを導入した。系内が全圧0.74MPa、70℃に安定した後、上記予備重合触媒成分[A]を固体触媒換算で0.50グラム含んだヘプタンスラリー100ミリリットルを加えて重合開始とした。重合開始4時間プロピレンを連続的に供給した後、50ミリリットルのメタノールを添加し重合終了とし降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し1−ブタノール100ミリリットルを加え85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン5リットル、蒸留水1リットルの混合液で固体部を2回洗浄し、真空乾燥してプロピレン重合体2.6kgを得た。この重合体の135℃テトラリン中で測定した極限粘度[η]は2.25dl/gであった。
得られたポリプロピレン100重量部に対して酸化防止剤としてイルガノックス1010を0.1重量部、イルガフォス168を0.1重量部、中和剤としてステアリン酸カルシウムを0.1重量部添加して撹拌混合を十分に行った。次にTEM35B二軸押出し機(東芝機械製)を用いシリンダー温度200℃、押出量30kg/hrにて溶融混練した。得られたポリプロピレンのMFRは、0.9g/10分、τ(秒)は4.2秒、分子量分布Mw/Mnは5.5であった。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, the internal temperature was set to 70 ° C., 0.052 MPa of hydrogen was added, and propylene was introduced while stirring. After the system was stabilized at a total pressure of 0.74 MPa and 70 ° C., 100 ml of a heptane slurry containing 0.50 g of the prepolymerized catalyst component [A] in terms of solid catalyst was added to initiate polymerization. After continuously supplying propylene for 4 hours from the start of polymerization, 50 ml of methanol was added to complete the polymerization, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with a mixed solution of 5 liters of heptane at 85 ° C. and 1 liter of distilled water, and vacuum dried to obtain 2.6 kg of a propylene polymer. The intrinsic viscosity [η] measured in 135 ° C. tetralin of this polymer was 2.25 dl / g.
0.1 parts by weight of Irganox 1010 as an antioxidant, 0.1 part by weight of Irgafos 168 and 0.1 part by weight of calcium stearate as a neutralizing agent are added to 100 parts by weight of the resulting polypropylene and mixed with stirring. Well done. Next, the mixture was melt-kneaded using a TEM35B twin screw extruder (manufactured by Toshiba Machine) at a cylinder temperature of 200 ° C. and an extrusion rate of 30 kg / hr. The obtained polypropylene had an MFR of 0.9 g / 10 minutes, τ (seconds) of 4.2 seconds, and a molecular weight distribution Mw / Mn of 5.5.

製造例2
[MFR1.8PP分解品の製造]
製造例1で得られたポリプロピレン100重量部対して酸化防止剤としてイルガノックス1010を0.1重量部、イルガフォス168を0.1重量部、中和剤としてステアリン酸カルシウムを0.1重量部添加後、有機過酸化物として、カヤヘキサAD(5−ジ−(t−ブチルパーオキシ)ヘキサン)(化薬アクゾ製)を0.007重量部配合し、撹拌混合を十分に行った。次にTEM35B二軸押出し機(東芝機械製)を用いシリンダー温度200℃、押出量30kg/hrにて溶融混練した。得られたポリプロピレンのMTは4.2g、MFRは1.8g/10分、τ(秒)は3.3秒、分子量分布(Mw/Mn)は5.0であった。
Production Example 2
[Manufacture of MFR1.8PP decomposition product]
After adding 100 parts by weight of the polypropylene obtained in Production Example 1, 0.1 part by weight of Irganox 1010 as an antioxidant, 0.1 part by weight of Irgafos 168, and 0.1 part by weight of calcium stearate as a neutralizing agent As an organic peroxide, 0.007 part by weight of Kayahexa AD (5-di- (t-butylperoxy) hexane) (manufactured by Kayaku Akzo) was blended and sufficiently mixed with stirring. Next, the mixture was melt-kneaded using a TEM35B twin screw extruder (manufactured by Toshiba Machine) at a cylinder temperature of 200 ° C. and an extrusion rate of 30 kg / hr. MT of the obtained polypropylene was 4.2 g, MFR was 1.8 g / 10 minutes, τ (second) was 3.3 seconds, and molecular weight distribution (Mw / Mn) was 5.0.

製造例3
[MFR1.6PPの製造]
(固体触媒成分の調製)
窒素で置換した内容積5Lの攪拌器付三つ口フラスコにジエトキシマグネシウム160g(1.4mol)を投入し、さらに脱水処理したヘプタンを500ml加えた。40℃に加熱し四塩化珪素28.5ml(0.225mol)を加え、20分攪拌し、ジブチルフタレートを0.127mol加えた。溶液を80℃まで昇温し、引き続き四塩化チタンを滴下ロートを用いて770ml(7.0mol)滴下した。内温を110℃とし2時間攪拌し担持処理した。その後、脱水ヘプタンを用いて充分洗浄を行った。さらに四塩化チタンを1220ml(11.2mol)加え、内温を110℃とし2時間攪拌し2回目の担持処理を行った。その後脱水ヘプタンを用いて充分洗浄を行い固体触媒成分を得た。固体触媒成分中にTiは2.2重量%含まれていた。
Production Example 3
[Production of MFR1.6PP]
(Preparation of solid catalyst component)
160 g (1.4 mol) of diethoxymagnesium was charged into a three-neck flask with a stirrer having an internal volume of 5 L substituted with nitrogen, and 500 ml of dehydrated heptane was further added. The mixture was heated to 40 ° C., 28.5 ml (0.225 mol) of silicon tetrachloride was added, stirred for 20 minutes, and 0.127 mol of dibutyl phthalate was added. The temperature of the solution was raised to 80 ° C., and subsequently, 770 ml (7.0 mol) of titanium tetrachloride was dropped using a dropping funnel. The internal temperature was set to 110 ° C., and the mixture was stirred for 2 hours for supporting treatment. Thereafter, it was thoroughly washed with dehydrated heptane. Further, 1220 ml (11.2 mol) of titanium tetrachloride was added, the internal temperature was set to 110 ° C., and the mixture was stirred for 2 hours to carry out a second loading treatment. Thereafter, it was thoroughly washed with dehydrated heptane to obtain a solid catalyst component. The solid catalyst component contained 2.2% by weight of Ti.

(予備重合)
窒素で置換した内容積2Lの攪拌器付三つ口フラスコに脱水処理したヘプタンを1500mL加え、さらにトリエチルアルミニウム6.9mmol、ジシクロペンチルジメトキシシラン12.4mmol、上記固体触媒成分を15g(Tiとして6.9mmol)加えた。室温で攪拌しながらプロピレンを導入し予備重合触媒[B]を得た。ポリプロピレンは6.4g生成していた。
(Preliminary polymerization)
1500 mL of dehydrated heptane was added to a 3 L flask equipped with a stirrer with an internal volume of 2 L substituted with nitrogen, 6.9 mmol of triethylaluminum, 12.4 mmol of dicyclopentyldimethoxysilane, and 15 g of the above solid catalyst component (6. 9 mmol) was added. While stirring at room temperature, propylene was introduced to obtain a prepolymerized catalyst [B]. 6.4 g of polypropylene was produced.

(重合)
内容積10Lの攪拌器付ステンレス製オートクレーブを十分乾燥し、窒素置換の後、内部に脱水処理したヘプタンを6L加えた。攪拌しながら内温が80℃になるまで昇温し、トリエチルアルミニウム12mmol、続いてジシクロペンチルジメトキシシラン0.6mmol加えた。次に、系内の窒素をプロピレンで置換し水素を0.01MPa導入し、全圧が0.79MPaになるまでプロピレンを導入した。
内温、圧力が安定したことを確認して上記予備重合触媒[B]をTiとして0.5mmol投入して重合開始とした。その後、1時間経過したところで50mLのメタノールを投入することによって重合停止した。その後、降温、脱圧し内容物を取り出し、エバポレーターで溶媒を除去し、真空乾燥してポリプロピレン重合体を得た。得られたポリプロピレン重合体の収量は、2.4kgであり135℃テトラリン中で測定した極限粘度[η]は2.55dl/gであった。
得られたポリプロピレン重合体100重量部対して酸化防止剤としてイルガノックス1010を0.1重量部、イルガフォス168を0.1重量部、中和剤としてステアリン酸カルシウムを0.1重量部添加して撹拌混合を十分に行った。次にTEM35B二軸押出し機(東芝機械製)を用いシリンダー温度200℃、押出量30kg/hrにて溶融混練した。得られたポリプロピレンのMTは4.5g、MFRは1.6g/10分、τ(秒)は3.0秒、分子量分布Mw/Mnは4.0であった。
(polymerization)
A stainless steel autoclave with a stirrer with an internal volume of 10 L was sufficiently dried, and after substitution with nitrogen, 6 L of dehydrated heptane was added. While stirring, the temperature was raised until the internal temperature reached 80 ° C., and 12 mmol of triethylaluminum was added followed by 0.6 mmol of dicyclopentyldimethoxysilane. Next, nitrogen in the system was replaced with propylene, hydrogen was introduced at 0.01 MPa, and propylene was introduced until the total pressure reached 0.79 MPa.
After confirming that the internal temperature and pressure were stable, 0.5 mmol of the prepolymerized catalyst [B] was added as Ti to initiate polymerization. Thereafter, when 1 hour had elapsed, 50 mL of methanol was added to terminate the polymerization. Thereafter, the temperature was lowered and the pressure was removed, the contents were taken out, the solvent was removed with an evaporator, and the product was vacuum dried to obtain a polypropylene polymer. The yield of the obtained polypropylene polymer was 2.4 kg, and the intrinsic viscosity [η] measured in 135 ° C. tetralin was 2.55 dl / g.
0.1 parts by weight of Irganox 1010 as an antioxidant, 0.1 part by weight of Irgafos 168 and 0.1 part by weight of calcium stearate as a neutralizing agent are added to 100 parts by weight of the resulting polypropylene polymer and stirred. Thorough mixing was performed. Next, the mixture was melt-kneaded using a TEM35B twin screw extruder (manufactured by Toshiba Machine) at a cylinder temperature of 200 ° C. and an extrusion rate of 30 kg / hr. MT of the obtained polypropylene was 4.5 g, MFR was 1.6 g / 10 minutes, τ (second) was 3.0 seconds, and molecular weight distribution Mw / Mn was 4.0.

Figure 0004836472
Figure 0004836472

実施例1
(A)成分としてJPP社製、FB3312を70重量%、(B)成分として製造例2より得たポリプロピレンを30重量%配合してなるペレットブレンド100重量部に、発泡剤(永和化成工業製 EE205)を0.4重量部ドライブレンドした。発泡成形機は東芝機械(株)製のTEM−41SSを用いた。スクリュー回転数60rpm、シリンダー温度210℃、ダイス温度170℃に設定し、二酸化炭素注入量120g/hrにて成形を行った。引取速度2m/分で得られた発泡シートに関し、連続気泡率、シート外観観察を行いその結果を表2に示した。また、発泡倍率は、いずれの系もほぼ2倍であった。また、引取速度1.8m/分で得られた発泡シートを用いて熱成形を行い、ドローダウン性を把握した。結果を表2に示す。
Example 1
(A) As a component, manufactured by JPP Co., Ltd., 70% by weight of FB3312, and as a component (B), 30% by weight of the polypropylene obtained from Production Example 2 was blended with 100 parts by weight of a pellet blend (EEwa Kasei Kogyo EE205). ) Was 0.4 parts by weight dry blended. As the foam molding machine, TEM-41SS manufactured by Toshiba Machine Co., Ltd. was used. Molding was performed at a screw rotation speed of 60 rpm, a cylinder temperature of 210 ° C., a die temperature of 170 ° C., and a carbon dioxide injection rate of 120 g / hr. With respect to the foamed sheet obtained at a take-up speed of 2 m / min, the open cell ratio and sheet appearance were observed, and the results are shown in Table 2. In addition, the expansion ratio was almost double in all systems. Moreover, thermoforming was performed using the foamed sheet obtained at a take-up speed of 1.8 m / min, and the drawdown property was grasped. The results are shown in Table 2.

実施例2
実施例1において(B)成分の配合割合を表1に示すように変えたこと以外は実施例1と同様に行なった。結果を表2に示す。
Example 2
The same procedure as in Example 1 was performed except that the blending ratio of the component (B) in Example 1 was changed as shown in Table 1. The results are shown in Table 2.

実施例3
実施例1においてA)成分をJPP社製、FH3400に変えたこと以外は実施例1と同様に行なった。結果を表2に示す。
Example 3
The same procedure as in Example 1 was carried out except that component A) was changed to FH3400 manufactured by JPP. The results are shown in Table 2.

実施例4
実施例1において(B)成分を70重量%、(C)成分としてタルク(浅田製粉(株)製、商品名JA−80R、レーザー法で測定した平均粒子径が10μm)を15重量%配合したこと以外は、実施例1と同様に行なった。結果を表2に示す。
Example 4
In Example 1, 70% by weight of component (B) and 15% by weight of talc (manufactured by Asada Flour Milling Co., Ltd., trade name JA-80R, average particle diameter measured by laser method is 10 μm) as component (C) were blended. Except for this, the same procedure as in Example 1 was performed. The results are shown in Table 2.

比較例1
実施例1において(B)成分として製造例3のポリプロピレンに変えたこと以外は実施例1と同様に行なった。結果を表2に示す。
Comparative Example 1
Example 1 was carried out in the same manner as in Example 1 except that the component (B) was changed to the polypropylene of Production Example 3. The results are shown in Table 2.

比較例2
実施例2において(B)成分として製造例3のポリプロピレンに変えたこと以外は実施例2と同様に行なった。結果を表2に示す。
Comparative Example 2
The same procedure as in Example 2 was performed except that the component (B) was changed to the polypropylene of Production Example 3 in Example 2. The results are shown in Table 2.

Figure 0004836472
Figure 0004836472

本発明の発泡成形用ポリプロピレン系組成物により得られた発泡成形体は、断熱性、耐熱性、耐油性に優れ食品容器、特に電子レンジ用容器(トレイ、丼、カップ等)として好適である。
The foam-molded product obtained from the polypropylene-based composition for foam molding of the present invention is excellent in heat insulation, heat resistance, and oil resistance and is suitable as a food container, particularly a microwave oven container (tray, basket, cup, etc.).

Claims (7)

以下(A)及び(B)成分を含む発泡成形用ポリプロピレン系組成物。
(A):230℃における溶融張力が3〜10gであるポリプロピレン系樹脂:30〜90重量%
(B):下記(1)〜(4)を満たす、有機過酸化物存在下において180〜250℃で溶融混練して得られるポリプロピレン系樹脂:70〜10重量%
(1)190℃における溶融張力が2〜7g
(2)メルトフローレートが1〜4g/10分
(3)重量平均分子量と数平均分子量の比が3〜7
(4)回転型レオメーターを用いて測定した溶融粘弾性挙動において、角周波数ω=0.1rad/秒における緩和時間(τ)が1〜5秒
Hereinafter, a polypropylene-based composition for foam molding containing the components (A) and (B).
(A): Polypropylene resin having a melt tension of 3 to 10 g at 230 ° C .: 30 to 90% by weight
(B): the following (1) to (4) satisfy the polypropylene resin obtained by melt-kneading at 180 to 250 ° C. in an organic peroxide presence: 70 to 10 wt%
(1) Melt tension at 190 ° C. is 2 to 7 g
(2) Melt flow rate is 1 to 4 g / 10 min. (3) Ratio of weight average molecular weight to number average molecular weight is 3 to 7
(4) In the melt viscoelastic behavior measured using a rotational rheometer, the relaxation time (τ) at an angular frequency ω = 0.1 rad / sec is 1 to 5 seconds.
(A)成分が、超高分子量ポリエチレンを重合用触媒に担持した予備活性化触媒の存在下に、プロピレンを重合して得られた重合体である請求項1に記載の発泡成形用ポリプロピレン系組成物。   2. The polypropylene-based composition for foam molding according to claim 1, wherein the component (A) is a polymer obtained by polymerizing propylene in the presence of a pre-activated catalyst in which ultrahigh molecular weight polyethylene is supported on a polymerization catalyst. object. (C)成分として、無機充填材を0〜20重量%含む請求項1又は2に記載の発泡成形用ポリプロピレン系組成物。   The polypropylene-based composition for foam molding according to claim 1 or 2, comprising 0 to 20% by weight of an inorganic filler as component (C). 前記(B)成分を得るために使用される、溶融混練に用いるポリプロピレン系樹脂が、四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタン組成物を、エーテル及び電子受容体で処理して得られる固体触媒成分と、有機アルミニウム化合物を必須成分とする触媒の存在下、プロピレンを重合して得られたポリプロピレン系樹脂である請求項1〜3のいずれかに記載の発泡成形用ポリプロピレン系組成物。The polypropylene resin used for melt kneading used to obtain the component (B) is obtained by treating a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound with an ether and an electron acceptor. A polypropylene resin for foam molding according to any one of claims 1 to 3, which is a polypropylene resin obtained by polymerizing propylene in the presence of a solid catalyst component obtained in the above and a catalyst containing an organic aluminum compound as an essential component. Composition. 請求項1〜のいずれかに記載の発泡成形用ポリプロピレン系組成物を発泡成形して得られる下記(1)〜(3)を満たす発泡成形体。
(1)平均セル径が500μm以下
(2)連続気泡率が1〜30%
(3)発泡倍率が1〜4倍
A foam molded article satisfying the following (1) to (3) obtained by foam molding of the polypropylene composition for foam molding according to any one of claims 1 to 4 .
(1) Average cell diameter is 500 μm or less (2) Open cell ratio is 1 to 30%
(3) Foaming ratio is 1 to 4 times
前記(A)成分30〜90重量%と、前記(B)成分70〜10重量%とを、混合する工程を有する、請求項1又は2に記載の発泡成形用ポリプロピレン系組成物の製造方法。  The manufacturing method of the polypropylene-type composition for foam molding of Claim 1 or 2 which has the process of mixing the said (A) component 30-90 weight% and the said (B) component 70-10 weight%. 四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタン組成物を、エーテル及び電子受容体で処理して得られる固体触媒成分と、有機アルミニウム化合物を必須成分とする触媒の存在下、プロピレンを重合して得られるポリプロピレン系樹脂を溶融混練して、前記(B)成分を製造する工程を有する、請求項6に記載の発泡成形用ポリプロピレン系組成物の製造方法。Propylene in the presence of a solid catalyst component obtained by treating a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound with an ether and an electron acceptor, and a catalyst having an organoaluminum compound as an essential component. The manufacturing method of the polypropylene-type composition for foam molding of Claim 6 which has the process of melt-kneading the polypropylene resin obtained by superposing | polymerizing this, and manufacturing the said (B) component.
JP2005082975A 2005-03-23 2005-03-23 Polypropylene composition for foam molding and molded article thereof Active JP4836472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082975A JP4836472B2 (en) 2005-03-23 2005-03-23 Polypropylene composition for foam molding and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082975A JP4836472B2 (en) 2005-03-23 2005-03-23 Polypropylene composition for foam molding and molded article thereof

Publications (2)

Publication Number Publication Date
JP2006265318A JP2006265318A (en) 2006-10-05
JP4836472B2 true JP4836472B2 (en) 2011-12-14

Family

ID=37201621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082975A Active JP4836472B2 (en) 2005-03-23 2005-03-23 Polypropylene composition for foam molding and molded article thereof

Country Status (1)

Country Link
JP (1) JP4836472B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505906B1 (en) * 2014-05-02 2016-11-29 Fina Technology, Inc. Polymer foams
US20180072828A1 (en) * 2015-03-31 2018-03-15 Prime Polymer Co., Ltd. Polypropylene resin composition and production method thereof, biaxially stretched film and production method thereof, and capacitor film for film capacitor
JP6896419B2 (en) * 2016-12-28 2021-06-30 株式会社プライムポリマー Propylene resin composition and its foam
JP6845689B2 (en) * 2016-12-28 2021-03-24 株式会社プライムポリマー Propylene resin composition and its foam
JP7299032B2 (en) * 2019-02-07 2023-06-27 デンカ株式会社 Laminated foam sheet and molding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869606B2 (en) * 1992-11-26 1999-03-10 チッソ株式会社 High melt tension polypropylene, its production method and molded article
JP2844299B2 (en) * 1993-11-19 1999-01-06 チッソ株式会社 Polypropylene composition
JP2000143858A (en) * 1998-11-11 2000-05-26 Chisso Corp Extruded foamed article, its formed article and production of extruded foamed article
JP4493821B2 (en) * 2000-09-04 2010-06-30 株式会社プライムポリマー Method for producing modified polypropylene and foam
JP2002212327A (en) * 2001-01-19 2002-07-31 Denki Kagaku Kogyo Kk Polypropylene-based resin foamed sheet and container
JP2005271499A (en) * 2004-03-26 2005-10-06 Kaneka Corp Method for manufacturing thermoplastic resin expansion molded body and molded body
JP2005336419A (en) * 2004-05-31 2005-12-08 Idemitsu Kosan Co Ltd Polypropylene-based resin composition and its molded product
JP2006143769A (en) * 2004-11-16 2006-06-08 Prime Polymer:Kk Polypropylene-based resin composition and foam molding

Also Published As

Publication number Publication date
JP2006265318A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
KR100503136B1 (en) Polypropylene resin composition and use thereof
JPWO2005097842A1 (en) Propylene-based multistage polymer, method for producing the same, and propylene-based resin composition
JP7391516B2 (en) Propylene polymer composition and method for producing the same
CN101939374A (en) Polypropylene resin composition and molded article
JP4836472B2 (en) Polypropylene composition for foam molding and molded article thereof
JP7300839B2 (en) Propylene-based polymer composition and expanded molded product thereof
JP5166811B2 (en) PROPYLENE RESIN COMPOSITION FOR SOFT FOAM AND USE THEREOF
JP2005146160A (en) Propylene polymer, polypropylene-based resin composition containing the same polymer and injection-molded article obtained from the same composition
JP2006241356A (en) Polypropylene-based resin composition for expansion molding by t die and its expansion molding
JP2006152271A (en) Polypropylene-based resin and injection foamed molded form thereof
JP2017222850A (en) Propylene-based resin composition and method for producing the same, and molded body using the propylene-based resin composition
JP6896419B2 (en) Propylene resin composition and its foam
MX2011006470A (en) Foamed polyolefin composition.
JP5301822B2 (en) Propylene resin composition and propylene resin foam molded article
JP6845689B2 (en) Propylene resin composition and its foam
JP2000159922A (en) Production of pre-expanded particle
JP7328745B2 (en) Expandable polypropylene composition, injection foam molded article, and method for producing the same
CN114008132A (en) Polypropylene resin composition containing ultrahigh molecular weight propylene polymer (copolymer)
JP5252478B2 (en) Foamed resin composition for air-cooled inflation and air-cooled inflation foam film using the same
JP3355816B2 (en) Manufacturing method and molded product of modified polypropylene
JP4085673B2 (en) Propylene polymer composition and foam molded article obtained using the same
JP2000290333A (en) Polypropylene block copolymer resin and preparation thereof
JP3694902B2 (en) Modified polypropylene and molded products
JP6997517B2 (en) Foam and its manufacturing method
JP2009221473A (en) Polypropylene-based extrusion foamed article and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250