JP4835196B2 - Cooling unit and vending machine - Google Patents

Cooling unit and vending machine Download PDF

Info

Publication number
JP4835196B2
JP4835196B2 JP2006044210A JP2006044210A JP4835196B2 JP 4835196 B2 JP4835196 B2 JP 4835196B2 JP 2006044210 A JP2006044210 A JP 2006044210A JP 2006044210 A JP2006044210 A JP 2006044210A JP 4835196 B2 JP4835196 B2 JP 4835196B2
Authority
JP
Japan
Prior art keywords
refrigerant
internal
heat exchanger
evaporator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044210A
Other languages
Japanese (ja)
Other versions
JP2007226336A (en
Inventor
敏章 土屋
久保山  公道
浩司 滝口
裕一 高橋
尚紀 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2006044210A priority Critical patent/JP4835196B2/en
Publication of JP2007226336A publication Critical patent/JP2007226336A/en
Application granted granted Critical
Publication of JP4835196B2 publication Critical patent/JP4835196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は冷却ユニットおよび自動販売機、特に、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷却または加熱するための冷却ユニット、および該冷却ユニトが装備された自動販売機に関する。   The present invention relates to a cooling unit and a vending machine, in particular, a cooling unit for cooling or heating a product such as a beverage in a container such as a can, a bottle, a pack or a plastic bottle, and a vending machine equipped with the cooling unit. Related to the machine.

従来、自動販売機の商品収納庫を冷却するための冷却ユニットは、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒(高圧高温冷媒に同じ)を冷却する放熱器と、該放熱器により冷却された冷媒を膨張する膨張機構と、該膨張機構により膨張された冷媒(低圧低温冷媒に同じ)を蒸発させる複数の庫内蒸発器と、該複数の庫内蒸発器のうち所定の庫内蒸発器に対して前記冷媒を供給する冷媒分配手段とを有する。そして、庫内蒸発器は各商品収納庫内に設置され、これに収納された商品を冷却している。なお、商品収納庫内は収納する商品の種類や季節に応じて加熱用として使用されることがあり、このとき、当該商品収納庫は別途設置されるヒータによって加熱されるものである。   Conventionally, a cooling unit for cooling a commodity storage of a vending machine includes a compressor that compresses a refrigerant, a radiator that cools the refrigerant compressed by the compressor (same as high-pressure and high-temperature refrigerant), and the heat dissipation An expansion mechanism for expanding the refrigerant cooled by the container, a plurality of internal evaporators for evaporating the refrigerant expanded by the expansion mechanism (same as the low-pressure low-temperature refrigerant), and a predetermined one of the plurality of internal evaporators Refrigerant distribution means for supplying the refrigerant to the internal evaporator. And the in-compartment evaporator is installed in each goods storage, and cools the goods stored in this. Note that the inside of the product storage may be used for heating depending on the type of goods to be stored and the season, and at this time, the product storage is heated by a separately installed heater.

また、各商品収納庫内に設置されている庫内蒸発器を放熱器(凝縮器に同じ)として機能させ、その庫内蒸発器に高圧高温冷媒を流して高圧高温冷媒(ホットガスに同じ)の温熱を利用して各商品収納庫内を加熱する「ヒートポンプ運転」により、省電力効果を高めた自動販売機の庫内冷却、加熱装置が開示されている(例えば、特許文献1参照)。   In addition, the internal evaporator installed in each product storage is made to function as a radiator (same as a condenser), and a high-pressure high-temperature refrigerant (same as hot gas) is allowed to flow through the internal evaporator. A vending machine cooling and heating device that improves the power saving effect by “heat pump operation” that heats the inside of each product storage using the heat of the product is disclosed (for example, see Patent Document 1).

特開平05−233941号公報(第3−4頁、図1)Japanese Patent Laid-Open No. 05-233941 (page 3-4, FIG. 1)

ところで、前記特許文献に開示された発明において、環境にやさしいCO2(二酸化炭素)冷媒を採用すると、該冷媒の特徴である圧縮後の高い吐出温度が有効に利用されることから、一層の省電力効果が得られることになる。
しかしながら、高圧高温の冷媒を庫内蒸発器に供給するため、庫内蒸発器および配管系の耐圧性を高める必要が生じることから、製造コストが上昇し、また、過酷な使用環境によって機器の保全性が悪化するという問題があった。また、全商品収納庫をヒートポンプ運転によって加熱しようとしても、全ての庫内蒸発器において冷媒が凝縮するため冷媒が蒸発する工程が無くなり、結果として冷凍サイクルが形成されないことから、これを実施することができないという問題があった。このため、加熱ヒータを撤廃することができないことから、製造コストの低減や消費電力の削減が困難であった。さらに、庫内蒸発器を通過した後の冷熱を有する冷媒が、圧縮機に供給されるため、圧縮機の負担が増すという問題があった。
By the way, in the invention disclosed in the patent document, when an environmentally friendly CO 2 (carbon dioxide) refrigerant is employed, a high discharge temperature after compression, which is a characteristic of the refrigerant, is effectively used. A power effect is obtained.
However, since the high-pressure and high-temperature refrigerant is supplied to the internal evaporator, it is necessary to increase the pressure resistance of the internal evaporator and the piping system, resulting in an increase in manufacturing cost and maintenance of the equipment due to the harsh usage environment. There was a problem that the sex deteriorated. Moreover, even if it is going to heat all goods storage by heat pump driving | operation, since a refrigerant | coolant evaporates in all the evaporators, there is no process which evaporates a refrigerant | coolant and, as a result, a refrigeration cycle is not formed, but this is implemented. There was a problem that could not. For this reason, since the heater cannot be eliminated, it is difficult to reduce manufacturing costs and power consumption. Furthermore, since the refrigerant | coolant which has the cold after passing an internal evaporator is supplied to a compressor, there existed a problem that the burden of a compressor increased.

そこで、本発明の発明者等は、CO2(二酸化炭素)冷媒を採用して省電力効果を図っても、製造コストが上昇しない冷却ユニットおよびこれを装備した自動販売機を既に発明して、これを開示している(特願2004−228860(平成16年8月5日出願)参照)。
すなわち、かかる自動販売機は、二段式圧縮機(一段目圧縮部と二段目圧縮部とを具備)と、2段階の冷媒冷却手段(中間熱交換器とガスクーラとを具備)と、商品収納庫に設置された庫内蒸発器(以下「庫内蒸発器」と称す)と、商品収納庫の外に設置された庫内蒸発器(以下「庫内蒸発器」と称す)と、庫内蒸発器または庫外蒸発器を通過した後の冷媒が有する冷熱を、膨張機構に入る前の冷媒に受け渡す内部熱交換器と、を有するものであって、省エネ効果が発揮され、消費電力の低減による運転コストの低減、製造コストの低廉化、故障や劣化を抑えることによる保全性の向上という効果を奏するものである。
Therefore, the inventors of the present invention have already invented a cooling unit and a vending machine equipped with the cooling unit that do not increase the manufacturing cost even if a CO 2 (carbon dioxide) refrigerant is used to achieve a power saving effect. This is disclosed (see Japanese Patent Application No. 2004-228860 (filed on Aug. 5, 2004)).
That is, the vending machine includes a two-stage compressor (comprising a first-stage compressor and a second-stage compressor), a two-stage refrigerant cooling means (comprising an intermediate heat exchanger and a gas cooler), a product An internal evaporator (hereinafter referred to as “internal evaporator”) installed in the storage, an internal evaporator (hereinafter referred to as “internal evaporator”) installed outside the product storage, and a warehouse An internal heat exchanger that transfers the cold heat of the refrigerant after passing through the internal evaporator or the external evaporator to the refrigerant before entering the expansion mechanism, and exhibits an energy saving effect and consumes power. This reduces the operating cost by reducing the cost, reduces the manufacturing cost, and improves the maintainability by suppressing failure and deterioration.

しかしながら、かかる冷却ユニットにおいてヒートポンプ運転をする際、二段式圧縮機の吐出温度を高めるために、内部熱交換器で高温冷媒(膨張機構に流入前)と中低温冷媒(庫内蒸発器から流出後)の間で熱交換し、二段式圧縮機に吸入される中温冷媒の温度を上げている。このため、運転状態や周囲温度によっては、二段式圧縮機の吐出温度が上がり過ぎることが予測された。   However, when operating the heat pump in such a cooling unit, in order to increase the discharge temperature of the two-stage compressor, the internal heat exchanger uses a high-temperature refrigerant (before flowing into the expansion mechanism) and a medium-low temperature refrigerant (outflow from the internal evaporator). After the heat exchange, the temperature of the intermediate temperature refrigerant sucked into the two-stage compressor is increased. For this reason, it was predicted that the discharge temperature of the two-stage compressor would rise too much depending on the operating state and ambient temperature.

本発明は前記予測を解消するものであって、内部熱交換器における高温冷媒と中温冷媒との間で交換される熱量を調整することができる自動販売機を提供することを目的とする。   The present invention eliminates the above-described prediction, and an object thereof is to provide a vending machine capable of adjusting the amount of heat exchanged between a high-temperature refrigerant and an intermediate-temperature refrigerant in an internal heat exchanger.

本発明に係る冷却ユニット(請求項1)は、冷媒を中間圧力にまで圧縮する一段目圧縮部および冷媒を所定圧力にまで圧縮する二段目圧縮部とを具備する二段式圧縮機と、
冷媒を冷却する中間熱交換器およびガスクーラと、
圧縮された冷媒を膨張する膨張機構と、
冷媒を蒸発または凝縮させる庫内蒸発器と、
前記庫内蒸発器を通過した冷媒の保有する冷熱の一部を前記膨張機構に流入する前の冷媒に受け渡す内部熱交換器とを具備し、
前記内部熱交換器の出口部に出口開閉手段を設置すると共に、前記内部熱交換器の中間部または入口部の一方または両方から、前記内部熱交換器の出口部の下流に連通するバイパス開閉手段を具備するバイパス配管を設けたことを特徴とする。
A cooling unit according to the present invention (Claim 1) includes a first-stage compressor that compresses the refrigerant to an intermediate pressure and a second-stage compressor that compresses the refrigerant to a predetermined pressure;
An intermediate heat exchanger and a gas cooler for cooling the refrigerant;
An expansion mechanism for expanding the compressed refrigerant;
An internal evaporator that evaporates or condenses the refrigerant;
An internal heat exchanger that delivers a part of the cold heat of the refrigerant that has passed through the internal evaporator to the refrigerant before flowing into the expansion mechanism,
Bypass opening / closing means provided with an outlet opening / closing means at an outlet portion of the internal heat exchanger and communicating with one or both of an intermediate portion and an inlet portion of the internal heat exchanger downstream of the outlet portion of the internal heat exchanger Bypass piping provided with is provided.

本発明に係る冷却ユニット(請求項2)は、前記一段目圧縮部において圧縮された冷媒が前記二段目圧縮部に直接供給され、
前記二段目圧縮部において圧縮された冷媒が前記庫内蒸発器のうちの一方の庫内蒸発器に直接供給され、
該一方の庫内蒸発器を通過した冷媒が直接、または全部若しくは一部が前記ガスクーラを経由して前記内部熱交換器に供給され、
前記内部熱交換器を通過した冷媒は前記膨張機構において膨張し、
該膨張した冷媒が前記庫内蒸発器のうちの他方の庫内蒸発器に供給され、
前記庫内蒸発器のうちの他方の庫内蒸発器を通過した冷媒が前記内部熱交換器に供給される際、
前記出口開閉手段および前記バイパス開閉手段をそれぞれ開閉して、当該冷媒が、前記内部熱交換器の全長を通過、または前記内部熱交換器を途中まで通過、あるいは前記内部熱交換器を通過しない、の何れかであることを特徴とする。
In the cooling unit according to the present invention (Claim 2), the refrigerant compressed in the first stage compression unit is directly supplied to the second stage compression unit,
The refrigerant compressed in the second stage compression section is directly supplied to one of the internal evaporators,
The refrigerant that has passed through the one internal evaporator is directly or entirely or partially supplied to the internal heat exchanger via the gas cooler,
The refrigerant that has passed through the internal heat exchanger expands in the expansion mechanism,
The expanded refrigerant is supplied to the other internal evaporator of the internal evaporators,
When the refrigerant that has passed through the other internal evaporator of the internal evaporator is supplied to the internal heat exchanger,
Opening and closing the outlet opening and closing means and the bypass opening and closing means, respectively, the refrigerant passes through the entire length of the internal heat exchanger, passes through the internal heat exchanger halfway, or does not pass through the internal heat exchanger, It is either of these.

本発明に係る冷却ユニット(請求項3)は、冷媒を蒸発または凝縮させる庫外蒸発器が設置され、
前記一段目圧縮部において圧縮された冷媒が前記二段目圧縮部に直接供給され、
前記二段目圧縮部において圧縮された冷媒が前記庫内蒸発器に直接供給され、
該庫内蒸発器を通過した冷媒が直接、または全部若しくは一部が前記ガスクーラを経由して前記内部熱交換器に供給され、
前記内部熱交換器を通過した冷媒は前記膨張機構において膨張し、
該膨張した冷媒が前記庫外蒸発器に供給され、
前記庫外蒸発器を通過した冷媒が前記内部熱交換器に供給される際、
前記出口開閉手段および前記バイパス開閉手段をそれぞれ開閉して、当該冷媒が、前記内部熱交換器の全長を通過、または前記内部熱交換器を途中まで通過、あるいは前記内部熱交換器を通過しない、の何れかであることを特徴とする。
The cooling unit according to the present invention (Claim 3) is provided with an external evaporator for evaporating or condensing the refrigerant,
The refrigerant compressed in the first stage compression unit is directly supplied to the second stage compression unit,
The refrigerant compressed in the second stage compression unit is directly supplied to the internal evaporator,
The refrigerant that has passed through the internal evaporator is supplied directly or in whole or in part to the internal heat exchanger via the gas cooler,
The refrigerant that has passed through the internal heat exchanger expands in the expansion mechanism,
The expanded refrigerant is supplied to the outside evaporator,
When the refrigerant that has passed through the external evaporator is supplied to the internal heat exchanger,
Opening and closing the outlet opening and closing means and the bypass opening and closing means, respectively, the refrigerant passes through the entire length of the internal heat exchanger, passes through the internal heat exchanger halfway, or does not pass through the internal heat exchanger, It is either of these.

本発明に係る自動販売機(請求項4)は、断熱材によって囲まれ一面に開口部を具備する筐体と、
該筐体を複数の商品収納庫に分割する仕切板と、
前記商品収納庫のそれぞれに対応する商品搬出口を具備し、前記開口部を開閉する断熱扉と、
前記商品収納庫のそれぞれに配置され、商品を収納して順次下方に搬出する機能を有する商品ラックと、
該商品ラックから落下した商品を前記商品搬出口に誘導するシュータと、
該シュータの下方に配置されて空気の流れを形成する送風手段と、
該送風手段によって形成された空気の流れを前記商品ラックの内部を経由して前記送風手段に循環させるための循環ダクトと、
請求項1乃至3の何れかに記載の冷却ユニットと、を有し、
前記冷却ユニットを構成する庫内蒸発器が、前記商品収納庫のシュータの下方に配置されていることを特徴とする。
A vending machine according to the present invention (Claim 4) includes a housing surrounded by a heat insulating material and having an opening on one surface thereof;
A partition plate for dividing the housing into a plurality of product storages;
A heat insulating door that opens and closes the opening, comprising a product exit corresponding to each of the product storages,
A product rack disposed in each of the product storages and having a function of storing products and sequentially transporting them downward;
A shooter for guiding a product dropped from the product rack to the product exit;
An air blowing means disposed below the shooter to form an air flow;
A circulation duct for circulating a flow of air formed by the blowing means to the blowing means via the inside of the commodity rack;
A cooling unit according to any one of claims 1 to 3,
The internal evaporator which comprises the said cooling unit is arrange | positioned under the shooter of the said product storage.

本発明の請求項1に係る冷却ユニットは、内部熱交換器を有し、内部熱交換器の出口部に出口開閉手段を設置すると共に、内部熱交換器の中間部または入口部の一方または両方から、内部熱交換器の出口部の下流に連通するバイパス開閉手段を具備するバイパス配管を設けているから、運転状況や周辺温度に応じて、冷媒を所定のバイパス配管に流入させることにより、二段式圧縮機の吐出温度を制御することができる。   The cooling unit according to claim 1 of the present invention has an internal heat exchanger, and an outlet opening / closing means is installed at the outlet of the internal heat exchanger, and one or both of the intermediate part and the inlet part of the internal heat exchanger. Since a bypass pipe having a bypass opening / closing means communicating downstream of the outlet portion of the internal heat exchanger is provided, the refrigerant is allowed to flow into a predetermined bypass pipe according to the operating state and the ambient temperature. The discharge temperature of the stage compressor can be controlled.

本発明に係る冷却ユニット(請求項2)は、内部熱交換器にバイパス配管が設置されているから、一方の庫内蒸発器で発熱し、他方の庫内蒸発器で放熱する、いわゆる「同時加熱冷却運転モード(たとえば、CHH運転モード、CCH運転モード等)」において、運転状況や周辺温度に応じて、冷媒を所定のバイパス配管に流入させることにより、二段式圧縮機の吐出温度を制御することができる。   The cooling unit according to the present invention (Claim 2) has a bypass pipe installed in the internal heat exchanger, so heat is generated by one internal evaporator and heat is released by the other internal evaporator. In the heating / cooling operation mode (for example, CHH operation mode, CCH operation mode, etc.), the discharge temperature of the two-stage compressor is controlled by allowing the refrigerant to flow into a predetermined bypass pipe according to the operating conditions and ambient temperature. can do.

本発明に係る冷却ユニット(請求項3)は、内部熱交換器にバイパス配管が設置されると共に、庫外蒸発器を有しているから、全ての庫内蒸発器で発熱する、いわゆる「単独加熱運転モード(たとえば、HHH運転モード等)」において、運転状況や周辺温度に応じて、冷媒を所定のバイパス配管に流入させることにより、二段式圧縮機の吐出温度を制御することができる。   The cooling unit according to the present invention (Claim 3) has a bypass pipe installed in the internal heat exchanger and has an external evaporator. In the heating operation mode (for example, HHH operation mode), the discharge temperature of the two-stage compressor can be controlled by allowing the refrigerant to flow into a predetermined bypass pipe in accordance with the operation state and the ambient temperature.

本発明に係る自動販売機(請求項4)は、前記冷却ユニットが搭載されているから、運転状況や周辺温度に関わらず、二段式圧縮機の吐出温度を一定に維持することができる。   Since the vending machine according to the present invention (Claim 4) is equipped with the cooling unit, the discharge temperature of the two-stage compressor can be kept constant regardless of the operating state and the ambient temperature.

[実施形態1]
まず、冷却ユニットの構成を説明し、ついで各運転モードにおける冷媒の流れを説明する。なお、以下、庫内蒸発器が3台である場合を例に説明しているが、本発明はこれに限定するものではなく、2台以上の何れの台数であってもよい。また、常に同時加熱冷却運転モードを実行するものであって、単独加熱運転モード(HHH運転モード)を実行しないものについては、庫外蒸発器の設置を省略してもよい。
[Embodiment 1]
First, the configuration of the cooling unit will be described, and then the refrigerant flow in each operation mode will be described. In addition, although the case where the number of internal evaporators is three is demonstrated below as an example, this invention is not limited to this, Any number of two or more may be sufficient. In addition, for those that always execute the simultaneous heating and cooling operation mode and do not execute the single heating operation mode (HHH operation mode), the installation of the external evaporator may be omitted.

(冷却ユニットの構成)
図1および図2は本発明の実施形態1に係る冷却ユニットの構成を説明する構成図であって、それぞれ異なる冷媒の流れを示している。
図1および図1において、冷却ユニット100は、冷媒を圧縮する二段式圧縮機1の一段目圧縮部1aと、二段式圧縮機1の一段目圧縮部1aにより圧縮された冷媒(以下「中圧中温冷媒」と称す)を冷却する一段目熱交換器(以下「中間熱交換器」と称す)2と、中間熱交換器2により冷却された中圧中温冷媒を圧縮する二段式圧縮機1の二段目圧縮部1bと、二段式圧縮機1の二段目圧縮部1bにより圧縮された冷媒(以下「高圧高温冷媒」と称す)を冷却する一段目熱交換器(以下「ガスクーラ」と称す)3と、ガスクーラ3により冷却された冷媒を膨張する膨張機構4と、を有している。
(Configuration of cooling unit)
1 and 2 are configuration diagrams illustrating the configuration of the cooling unit according to the first embodiment of the present invention, and illustrate different refrigerant flows.
1 and 1, a cooling unit 100 includes a first stage compression unit 1a of a two-stage compressor 1 that compresses a refrigerant, and a refrigerant (hereinafter referred to as “the first-stage compression unit 1a”) of the two-stage compressor 1. First-stage heat exchanger (hereinafter referred to as “intermediate heat exchanger”) 2 that cools the intermediate-pressure intermediate-temperature refrigerant ”, and two-stage compression that compresses the intermediate-pressure intermediate-temperature refrigerant cooled by the intermediate heat exchanger 2 A first-stage heat exchanger (hereinafter referred to as “high-pressure high-temperature refrigerant”) that is compressed by the second-stage compression section 1b of the compressor 1 and the second-stage compression section 1b of the two-stage compressor 1 3) and an expansion mechanism 4 for expanding the refrigerant cooled by the gas cooler 3.

また、膨張機構4により膨張された冷媒(以下「低圧低温冷媒」と称す)を蒸発させる庫内蒸発器6a、6b、6cと、庫内蒸発器6a、6b、6cの全部または一部に低圧低温冷媒を選択的に供給する冷媒分配手段5a、5b、5c(以下「電磁弁5」と称す)と、庫内蒸発器6b、6cを通過した低圧低温冷媒を二段式圧縮機1の一段目圧縮部1aに選択的に戻す冷媒分配手段7b、7c(以下「電磁弁7」と称す)と、を有している。
また、蒸発後の低圧低温冷媒が依然保有する冷熱を回収する内部熱交換器8(以下「内部熱交換器」と称す)と、庫外蒸発器9と、各運転モードを実行するために前記機器同士を連通する配管と、を有している。なお、庫外蒸発器9には膨張機構4とを連結する配管49と、一段目圧縮部1aとを連結する配管91とが設置されている。
Further, the internal evaporators 6a, 6b, 6c for evaporating the refrigerant expanded by the expansion mechanism 4 (hereinafter referred to as “low-pressure low-temperature refrigerant”) and the internal evaporators 6a, 6b, 6c are all or partly low-pressure. Refrigerant distribution means 5a, 5b, 5c (hereinafter referred to as “electromagnetic valve 5”) for selectively supplying low-temperature refrigerant and low-pressure low-temperature refrigerant that has passed through the internal evaporators 6b, 6c are supplied to one stage of the two-stage compressor 1. Refrigerant distribution means 7b and 7c (hereinafter referred to as “electromagnetic valve 7”) for selectively returning to the eye compression section 1a.
In addition, the internal heat exchanger 8 (hereinafter referred to as “internal heat exchanger”) for recovering the cold heat still held by the low-pressure low-temperature refrigerant after evaporation, the external evaporator 9, and the above-described operation modes are executed. And piping for communicating the devices. The outside evaporator 9 is provided with a pipe 49 that connects the expansion mechanism 4 and a pipe 91 that connects the first-stage compression unit 1a.

(バイパス手段)
さらに、内部熱交換器8にはバイパス手段800が設置されている。バイパス手段800は、配管71aの内部熱交換器8の下流位置に設置された戻り電磁弁71vと、配管71aの内部熱交換器8の中間位置から分岐して配管71aの戻り電磁弁71vよりも下流位置に連通する第1バイパス配管81(第1バイパス電磁弁81vが設置されている)および第2バイパス配管82(第2バイパス電磁弁82vが設置されている)と、を有している。
なお、配管71aの内部熱交換器8の上流位置から分岐して配管71aの戻り電磁弁71vよりも下流位置に連通する第3バイパス配管83(第3バイパス電磁弁83vが設置されている)を設置してもよい。
(Bypass means)
Further, a bypass means 800 is installed in the internal heat exchanger 8. The bypass means 800 branches from the return electromagnetic valve 71v installed in the downstream position of the internal heat exchanger 8 of the pipe 71a and the intermediate position of the internal heat exchanger 8 of the pipe 71a, and is more than the return electromagnetic valve 71v of the pipe 71a. The first bypass pipe 81 (the first bypass solenoid valve 81v is installed) and the second bypass pipe 82 (the second bypass solenoid valve 82v is installed) communicating with the downstream position.
A third bypass pipe 83 (a third bypass solenoid valve 83v is installed) that branches from the upstream position of the internal heat exchanger 8 of the pipe 71a and communicates with the downstream position of the return solenoid valve 71v of the pipe 71a. May be installed.

以下の説明において、第1バイパス配管81および第2バイパス配管82をまとめて「バイパス配管80」と称し、戻り電磁弁71v、第1バイパス電磁弁81v、および第2バイパス電磁弁82vをまとめて「バイパス電磁弁80v」と称する場合がある。
なお、バイパス配管80を構成する配管の本数は限定するものではない。さらに、バイパス電磁弁80vは、全開または全閉する開閉弁であるものについて説明するが、所定流量を流す流量調整弁であってもよい。
In the following description, the first bypass pipe 81 and the second bypass pipe 82 are collectively referred to as “bypass pipe 80”, and the return solenoid valve 71v, the first bypass solenoid valve 81v, and the second bypass solenoid valve 82v are collectively referred to as “ It may be referred to as “bypass solenoid valve 80v”.
The number of pipes constituting the bypass pipe 80 is not limited. Furthermore, although the bypass electromagnetic valve 80v is described as an on-off valve that is fully opened or fully closed, it may be a flow rate adjusting valve that allows a predetermined flow rate to flow.

(冷媒の流れ:CHH運転モード)
図1において、庫内蒸発器6aを冷却して、庫内蒸発器6b、6cを加熱するものであって、冷媒は太い実線で示す配管を流れ、その流れ方向を矢印で示している。
すなわち、一段目圧縮部1aにおいて圧縮された冷媒は、二段目圧縮部1bに直接流入して、高圧高温になり(以下「高圧高温冷媒」と称す)、二段目圧縮部1bと庫内蒸発器6b、6cとを連結する配管16b、16cを経由して庫内蒸発器6b、6cに供給される。そこで、高圧高温冷媒は庫内蒸発器6b、6cの周囲の空気と熱交換して凝縮または降温するから、周囲の空気は加熱されることになる(以下「庫内蒸発器が加熱される」と記載する)。
(Refrigerant flow: CHH operation mode)
In FIG. 1, the internal evaporator 6a is cooled to heat the internal evaporators 6b and 6c. The refrigerant flows through a pipe indicated by a thick solid line, and the flow direction is indicated by an arrow.
That is, the refrigerant compressed in the first-stage compression unit 1a flows directly into the second-stage compression unit 1b and becomes high-pressure and high-temperature (hereinafter referred to as “high-pressure and high-temperature refrigerant”), and the second-stage compression unit 1b and the inside of the refrigerator It is supplied to the internal evaporators 6b and 6c via the pipes 16b and 16c connecting the evaporators 6b and 6c. Therefore, the high-pressure and high-temperature refrigerant condenses or cools by exchanging heat with the air around the internal evaporators 6b and 6c, so that the surrounding air is heated (hereinafter, “the internal evaporator is heated”). ).

そして、庫内蒸発器を加熱した冷媒(庫内蒸発器を加熱したことにより、冷媒自体の温度は下降している、以下「高圧中温冷媒」と称す)は、庫内蒸発器6b、6cとガスクーラ3とを連結する配管63b、63cを経由しガスクーラ3に流入し、さらに、内部熱交換器8を経由して膨張機構4に供給される。このとき、ここを通過する冷媒は内部熱交換器8において、冷熱を受け取り冷却される(これについては別途説明する)。
そして、膨張機構4において断熱膨張し冷媒(以下「低圧低温冷媒」と称す)は、膨張機構4と庫内蒸発器6aとを連結する配管46aを経由して庫内蒸発器6aに供給される。そこで、低圧低温冷媒は庫内蒸発器6aの周囲の空気と熱交換して蒸発するから、周囲の空気は冷却されることになる(以下「庫内蒸発器が冷却される」と記載する)。
Then, the refrigerant that heated the internal evaporator (the temperature of the refrigerant itself is lowered by heating the internal evaporator, hereinafter referred to as “high-pressure intermediate temperature refrigerant”) is stored in the internal evaporators 6b and 6c. The gas flows into the gas cooler 3 via the pipes 63 b and 63 c connecting the gas cooler 3, and is further supplied to the expansion mechanism 4 via the internal heat exchanger 8. At this time, the refrigerant that passes through this is cooled by receiving cold heat in the internal heat exchanger 8 (this will be described separately).
The refrigerant that adiabatically expands in the expansion mechanism 4 (hereinafter referred to as “low-pressure low-temperature refrigerant”) is supplied to the internal evaporator 6a via a pipe 46a that connects the expansion mechanism 4 and the internal evaporator 6a. . Therefore, since the low-pressure low-temperature refrigerant evaporates by exchanging heat with the air around the internal evaporator 6a, the surrounding air is cooled (hereinafter referred to as “the internal evaporator is cooled”). .

(バイパス手段における熱交換)
そして、庫内蒸発器6aを通過した低圧低温冷媒(庫内蒸発器を冷却したことにより、冷媒自体の温度は上昇している、以下「低圧中温冷媒」と称す)は、配管71aに流れ込み、内部熱交換器8を経由して二段式圧縮機1の一段目圧縮部1aに戻っている。このとき、以下のように、高圧中温冷媒と低圧中温冷媒との間で熱交換が実行される。
(Heat exchange in bypass means)
Then, the low-pressure low-temperature refrigerant that has passed through the internal evaporator 6a (the temperature of the refrigerant itself has risen due to the cooling of the internal evaporator, hereinafter referred to as “low-pressure intermediate-temperature refrigerant”) flows into the pipe 71a, It returns to the first stage compression section 1a of the two-stage compressor 1 via the internal heat exchanger 8. At this time, heat exchange is performed between the high-pressure intermediate temperature refrigerant and the low-pressure intermediate temperature refrigerant as follows.

図1において、戻り電磁弁71vは開き、第1バイパス電磁弁81vと第2バイパス電磁弁82vとは閉じている。このため、前記熱交換が内部熱交換器8の全長に渡って実行される。
図2において、戻り電磁弁71vと第1バイパス電磁弁81vとは閉じ、第2バイパス電磁弁82vが開いている。このため、低圧中温冷媒は内部熱交換器8の途中から分岐している第2バイパス配管82に流入する。すなわち、前記熱交換が内部熱交換器8の上流側の一部において実行される。
このとき、熱交換に寄与する伝熱面積が変動するから、下流側のバイパス配管80を使用するほど、熱交換される熱量が増加することになる。
In FIG. 1, the return solenoid valve 71v is open, and the first bypass solenoid valve 81v and the second bypass solenoid valve 82v are closed. For this reason, the heat exchange is performed over the entire length of the internal heat exchanger 8.
In FIG. 2, the return solenoid valve 71v and the first bypass solenoid valve 81v are closed, and the second bypass solenoid valve 82v is open. For this reason, the low-pressure intermediate temperature refrigerant flows into the second bypass pipe 82 branched from the middle of the internal heat exchanger 8. That is, the heat exchange is performed in a part of the upstream side of the internal heat exchanger 8.
At this time, since the heat transfer area contributing to heat exchange varies, the amount of heat exchanged increases as the downstream bypass pipe 80 is used.

(バイパス手段における熱交換の作用)
図3は本発明の実施形態1に係る冷却ユニットにおける熱交換の作用を説明するモリエル線図である。なお、温度を示す線の記載を省略している。
図3の(a)および(b)において、一段目圧縮部1aにおいて圧縮された冷媒(図中「イ」〜「ロ」)は、さらに、二段目圧縮部1bにおいて圧縮され高圧高温冷媒になる(図中「ロ」〜「ハ」)。すなわち、位置「ハ」で示す圧力と温度になっている。
そして、庫内蒸発器6b、6cにおいて周辺空気に温熱Q6を受け渡し(図中「ハ」〜「二」)、ガスクーラ3において温熱Q3を受け渡し(図中「ニ」〜「ホ」)、さらに、内部熱交換器8において温熱Q8を受け渡す(図中「ホ」〜「ヘ」)。
さらに、膨張機構4において断熱膨張した低圧低温冷媒(図中「ヘ」〜「ト」)は、庫内蒸発器6aにおいて周辺空気に冷熱q6を受け渡し(図中「ト」〜「チ」)、さらに、内部熱交換器8において低圧中温冷媒に冷熱q8を受け渡し(図中「チ」〜「イ」)、当初の一段目圧縮部1a(図中「イ」)に戻っている。
(Operation of heat exchange in the bypass means)
FIG. 3 is a Mollier diagram for explaining the effect of heat exchange in the cooling unit according to Embodiment 1 of the present invention. In addition, description of the line which shows temperature is abbreviate | omitted.
In (a) and (b) of FIG. 3, the refrigerant compressed in the first stage compression section 1a ("A" to "B" in the figure) is further compressed in the second stage compression section 1b to become a high-pressure high-temperature refrigerant. ("B" to "C" in the figure). That is, the pressure and temperature are indicated by the position “c”.
Then, in the internal evaporators 6b and 6c, the warm air Q6 is delivered to the surrounding air ("Ha" to "2" in the figure), the hot air Q3 is delivered to the gas cooler 3 ("ni" to "ho" in the figure), In the internal heat exchanger 8, the warm heat Q8 is delivered ("H" to "F" in the figure).
Further, the low-pressure and low-temperature refrigerant ("F" to "G" in the figure) adiabatically expanded in the expansion mechanism 4 passes the cold heat q6 to the ambient air in the internal evaporator 6a ("G" to "H" in the figure), Further, in the internal heat exchanger 8, the cold heat q8 is delivered to the low-pressure intermediate temperature refrigerant ("H" to "I" in the figure), and the original first stage compression unit 1a ("I" in the figure) is returned.

このとき、内部熱交換器8において受け渡される温熱Q8と冷熱q8とは同一熱量であり、庫内蒸発器6b、6cとガスクーラ3と内部熱交換器8とにおいて周辺空気に受け渡される冷熱の合計(Q6+Q3+Q8)は、庫内蒸発器6aと内部熱交換器8とにおいて周辺空気に受け渡される温熱と二段式圧縮機1による温熱との合計(q6+q8+q1)とは同一熱量である。
また、図3に示すように庫内蒸発器6a、6b、6cの熱交換性能が常に十分な場合は、その出口における冷媒の温度は流入する空気の温度に近くなる。このため、内部熱交換器8において、高圧中温冷媒と低圧中温冷媒との交換熱量(Q8、q8)が変化しても庫内蒸発器6a、6b、6cの出口における冷媒温度はほとんど変化しない。
At this time, the heat Q8 and the cold heat q8 delivered in the internal heat exchanger 8 have the same amount of heat, and the cold heat delivered to the ambient air in the internal evaporators 6b and 6c, the gas cooler 3 and the internal heat exchanger 8 is the same. The total (Q6 + Q3 + Q8) is equal to the sum (q6 + q8 + q1) of the heat transferred to the ambient air in the internal evaporator 6a and the internal heat exchanger 8 and the heat generated by the two-stage compressor 1.
Also, as shown in FIG. 3, when the heat exchange performance of the internal evaporators 6a, 6b, 6c is always sufficient, the temperature of the refrigerant at the outlet is close to the temperature of the inflowing air. For this reason, in the internal heat exchanger 8, the refrigerant temperature at the outlets of the internal evaporators 6a, 6b, 6c hardly changes even if the heat of exchange (Q8, q8) between the high pressure intermediate temperature refrigerant and the low pressure intermediate temperature refrigerant changes.

図3の(a)において、内部熱交換器8における交換熱量が少ない場合、すなわち、△8だけ減少して、それぞれ冷熱(Q8−△8)、温熱(q8−△8)になった場合、点線のように二段式圧縮機1に流入する低圧中温冷媒の温度は低下する(位置「リ」)。その結果、二段式圧縮機1の吐出温度が低くなる(位置「ヌ」)。このとき、ガスクーラ3における放熱量はQ3のままであるから、庫内蒸発器6b、6cにおける放熱量は「ヌ」と「ニ」とのエンタルピ差となり、「ハ」と「ヌ」とのエンタルピ差分(△6)だけ減少することになる(破線にて示す)。   In FIG. 3 (a), when the amount of heat exchanged in the internal heat exchanger 8 is small, that is, when the heat is reduced by Δ8 to become cold (Q8-Δ8) and warm (q8-Δ8), respectively. As indicated by the dotted line, the temperature of the low-pressure intermediate temperature refrigerant flowing into the two-stage compressor 1 decreases (position “re”). As a result, the discharge temperature of the two-stage compressor 1 is lowered (position “nu”). At this time, since the heat radiation amount in the gas cooler 3 remains Q3, the heat radiation amount in the internal evaporators 6b and 6c becomes the enthalpy difference between “nu” and “ni”, and the enthalpy between “ha” and “nu”. It will decrease by the difference (Δ6) (indicated by a broken line).

図3の(b)において、内部熱交換器8における交換熱量が多い場合、すなわち、△8だけ増加して、それぞれ冷熱(Q8+△8)、温熱(q8+△8)になった場合、二段式圧縮機1に流入する低圧中温冷媒の温度は上昇する(位置「イ」から右側の位置「ル」に移動する)。その結果、二段式圧縮機1の吐出温度が高く(位置「ハ」の右側の位置「オ」に移動する)。このとき、ガスクーラ3における放熱量はQ3のままであるから、庫内蒸発器6b、6cにおける放熱量は前記移動したエンタルピ差分(△6)だけ増加することになる(破線にて示す)。   In FIG. 3B, when the amount of exchange heat in the internal heat exchanger 8 is large, that is, when the heat is increased by Δ8 and becomes cold (Q8 + Δ8) and warm (q8 + Δ8), respectively, The temperature of the low-pressure intermediate temperature refrigerant flowing into the compressor 1 rises (moves from the position “I” to the right position “LE”). As a result, the discharge temperature of the two-stage compressor 1 is high (moves to the position “o” on the right side of the position “c”). At this time, since the heat dissipation amount in the gas cooler 3 remains Q3, the heat dissipation amount in the internal evaporators 6b and 6c increases by the moved enthalpy difference (Δ6) (indicated by a broken line).

そうすると、運転状況や周囲温度に応じて、バイパス配管81、82を適宜使い分けることによって、交換熱量の変動量△8を調整れば、二段式圧縮機1の吐出温度、並びに庫内蒸発器6b、6cにおける放熱量を、一定の値に維持することができる。   Then, if the amount of change Δ8 in the exchange heat amount is adjusted by appropriately using the bypass pipes 81 and 82 according to the operating conditions and the ambient temperature, the discharge temperature of the two-stage compressor 1 and the internal evaporator 6b are adjusted. , 6c can be maintained at a constant value.

(バイパス手段の詳細)
図4は本発明の実施形態1に係る冷却ユニットにおけるバイパス手段の詳細を説明する構成図である。図4において、内部熱交換器8は二重配管構成であって、低圧中温冷媒が流れる配管71aが外側に配置され、その中を貫通して高圧中温冷媒が流れる配管34が配置されている。このとき、低圧中温冷媒は高圧中温冷媒の流れ方向とは逆の方向に流れ、いわゆる「カウンターフロー」になっているから、それぞれの位置における熱伝導を容易(温度差を確保)にするようになっている。
(Details of bypass means)
FIG. 4 is a configuration diagram illustrating details of the bypass means in the cooling unit according to the first embodiment of the present invention. In FIG. 4, the internal heat exchanger 8 has a double pipe configuration, and a pipe 71 a through which the low-pressure medium temperature refrigerant flows is arranged outside, and a pipe 34 through which the high-pressure medium temperature refrigerant flows is arranged. At this time, the low-pressure medium-temperature refrigerant flows in the direction opposite to the flow direction of the high-pressure / medium-temperature refrigerant, which is a so-called “counter flow”, so that heat conduction at each position is facilitated (temperature difference is ensured). It has become.

そして、バイパス手段800は、戻り電磁弁71vと、配管71aから分岐した第1バイパス配管81と、第2バイパス配管82と、配管71aの内部熱交換器8の上流位置から分岐してと配管71aの戻り電磁弁71vよりも下流位置に連通する第3バイパス配管83(第3バイパス電磁弁83vが設置されている)を有している。
したがって、戻り電磁弁71vと第1バイパス電磁弁81vと第2バイパス電磁弁82vとを閉じて、第3バイパス電磁弁83vを開けば、低圧中温冷媒は、内部熱交換器を全く通過しないまま二段式圧縮機1に流入することになる。すなわち、高圧中温冷媒に温熱を受け渡さないから、庫内蒸発器6aを出たときの温度を略維持することになる。
And the bypass means 800 is branched from the return solenoid valve 71v, the first bypass pipe 81 branched from the pipe 71a, the second bypass pipe 82, and the upstream position of the internal heat exchanger 8 of the pipe 71a. The third bypass pipe 83 (the third bypass solenoid valve 83v is provided) communicated with the downstream position of the return solenoid valve 71v.
Therefore, if the return solenoid valve 71v, the first bypass solenoid valve 81v, and the second bypass solenoid valve 82v are closed and the third bypass solenoid valve 83v is opened, the low-pressure intermediate temperature refrigerant does not pass through the internal heat exchanger at all. It will flow into the stage compressor 1. That is, since temperature is not delivered to the high-pressure intermediate temperature refrigerant, the temperature when leaving the internal evaporator 6a is substantially maintained.

(バイパス手段の制御手段)
図5は、図1に示す冷却ユニットにおけるバイパス手段の制御手段を説明する制御ブロック図である。図5において、CPU90には、二段式圧縮機1の吐出温度(高圧高温冷媒の温度に同じ)と、運転状況(たとえば、CHH運転モード等)が入力され、表1に示す要領に基づき、バイパス電磁弁80vを制御する(ON/OFF指令を発する)。
(Bypass means control means)
FIG. 5 is a control block diagram for explaining the control means of the bypass means in the cooling unit shown in FIG. In FIG. 5, the CPU 90 is input with the discharge temperature of the two-stage compressor 1 (same as the temperature of the high-pressure high-temperature refrigerant) and the operation status (for example, the CHH operation mode), and based on the procedure shown in Table 1, The bypass solenoid valve 80v is controlled (ON / OFF command is issued).

(バイパス手段の制御フロー)
図6は、図1に示す冷却ユニットにおけるバイパス手段の制御フローを説明するフローチャートである。以下、ステップを「S」と記載する。図6において、二段式圧縮機1が起動(ON)されているか判断する(S1)。次に、二段式圧縮機1の吐出温度と運転状況とを読み込み(S2)、表1に示す要領に基づきバイパス電磁弁80vの切替え要領を判定する(S3)。さらに、バイパス電磁弁80vの切替えがあるか否か判断し(S4)、ある場合には、当該バイパス電磁弁80vに対して切替え指令を発し(S5)、ない場合には、そのまま終了する。
(Bypass control flow)
FIG. 6 is a flowchart for explaining a control flow of the bypass means in the cooling unit shown in FIG. Hereinafter, the step is described as “S”. In FIG. 6, it is determined whether the two-stage compressor 1 is activated (ON) (S1). Next, the discharge temperature and operating state of the two-stage compressor 1 are read (S2), and the switching procedure of the bypass solenoid valve 80v is determined based on the procedure shown in Table 1 (S3). Further, it is determined whether or not the bypass solenoid valve 80v is switched (S4). If so, a switch command is issued to the bypass solenoid valve 80v (S5), and if not, the process ends.

Figure 0004835196
Figure 0004835196

(単独冷却運転モード)
(あ)表1において、運転状態が冷却のみの場合(たとえば、CCC運転モード)、二段式圧縮機1から吐出された高圧高温冷媒の温度や圧力を極力小さくすることが運転効率を向上するために重要であるから、内部熱交換器の全ての伝熱面積を使うようにバイパス電磁弁80vを制御する。すなわち、戻り電磁弁71vのみ開き、第1バイパス電磁弁81vと第2バイパス電磁弁82vとを閉じる。
(い)一方、二段式圧縮機1から吐出された高圧高温冷媒の温度(以下「吐出温度」と称す)が上限設定温度(T2)より高い場合、バイパス手段800では二段式圧縮機1が吸入する低圧中温冷媒の温度(以下「吸入温度」と称す)を下げることができないから、他の手段(たとえば、中間熱交換器2やガスクーラ3に供給する風量を増す等)を実行する。
(Single cooling operation mode)
(A) In Table 1, when the operation state is only cooling (for example, CCC operation mode), reducing the temperature and pressure of the high-pressure high-temperature refrigerant discharged from the two-stage compressor 1 as much as possible improves the operation efficiency. Therefore, the bypass solenoid valve 80v is controlled to use the entire heat transfer area of the internal heat exchanger. That is, only the return solenoid valve 71v is opened, and the first bypass solenoid valve 81v and the second bypass solenoid valve 82v are closed.
(Ii) On the other hand, when the temperature of the high-pressure high-temperature refrigerant discharged from the two-stage compressor 1 (hereinafter referred to as “discharge temperature”) is higher than the upper limit set temperature (T2), the bypass means 800 uses the two-stage compressor 1 Since the temperature of the low-pressure intermediate temperature refrigerant (hereinafter referred to as “intake temperature”) cannot be lowered, other means (for example, increasing the amount of air supplied to the intermediate heat exchanger 2 or the gas cooler 3) is executed.

(同時加熱冷却運転モード)
一方、ヒートポンプ運転によって、庫内を加熱する場合(たとえば、CHH運転モード等)、吐出温度は、できる限り高い方がよい。そこで、表1に示すような電磁弁切替え判定を行い、その指令に基づいてバイパス電磁弁80vを制御する(開く)。
(Simultaneous heating / cooling operation mode)
On the other hand, when the interior is heated by heat pump operation (for example, CHH operation mode), the discharge temperature should be as high as possible. Therefore, the electromagnetic valve switching determination as shown in Table 1 is performed, and the bypass electromagnetic valve 80v is controlled (opened) based on the command.

(う)戻り電磁弁71vが開いている状態(第1バイパス電磁弁81vと第2バイパス電磁弁82vが閉じている)で、吐出温度(T0)が下限設定温度(T1)より高い場合、バイパス手段800では吸入温度を下げることができないから、バイパス電磁弁80vの切り替えをしないで、他の手段(たとえば、中間熱交換器2やガスクーラ3に供給する風量を増す等)を実行する。
(え)一方、戻り電磁弁71vが開いている状態(第1バイパス電磁弁81vと第2バイパス電磁弁82vが閉じている)で、吐出温度(T0)が下限設定温度(T1)より低い場合、戻り電磁弁71vを閉じて第1バイパス電磁弁81vを開く切替えをする。そうすると、低圧中温冷媒は内部熱交換器8の中間位置からバイパスされるため、伝熱面積が減少して温熱の受け渡し量が減り、吸入温度が上がることになる。
(Iii) When the return solenoid valve 71v is open (the first bypass solenoid valve 81v and the second bypass solenoid valve 82v are closed) and the discharge temperature (T0) is higher than the lower limit set temperature (T1), bypass Since the suction temperature cannot be lowered by the means 800, other means (for example, increasing the amount of air supplied to the intermediate heat exchanger 2 or the gas cooler 3) is executed without switching the bypass solenoid valve 80v.
(E) On the other hand, when the return solenoid valve 71v is open (the first bypass solenoid valve 81v and the second bypass solenoid valve 82v are closed), and the discharge temperature (T0) is lower than the lower limit set temperature (T1) The return solenoid valve 71v is closed and the first bypass solenoid valve 81v is opened. Then, since the low-pressure intermediate temperature refrigerant is bypassed from the intermediate position of the internal heat exchanger 8, the heat transfer area is reduced, the amount of heat transferred is reduced, and the intake temperature is increased.

(お)また、第1バイパス電磁弁81vが開いている状態(戻り電磁弁71vと第2バイパス電磁弁82vが閉じている)で、吐出温度(T0)が上限設定温度(T2)より高い場合、二段式圧縮機1が吸入する低圧中温冷媒の温度を下げるように、第1バイパス電磁弁81vを閉じて戻り電磁弁71vを開く切替えをする。そうすると、内部熱交換器8の全長で熱交換が実行されることになるから、伝熱面積が増加して温熱の受け渡し量が増し、吸入温度が下がることになる。
(か)一方、吐出温度(T0)が下限設定温度(T1)より低い場合、第1バイパス電磁弁81vを閉じて第2バイパス電磁弁82vを開く切替えをする。そうすると、低圧中温冷媒は内部熱交換器8のさらに上流からバイパスされるから、伝熱面積がさらに減少して温熱の受け渡し量が減り、吸入温度が上がることになる。
(き)なお、吐出温度(T0)が下限設定温度(T1)と上限設定温度(T2)の間にある場合は、バイパス電磁弁80vを切替えることなく、第1バイパス電磁弁81vを開いたままにしておく。
(O) When the first bypass solenoid valve 81v is open (the return solenoid valve 71v and the second bypass solenoid valve 82v are closed), and the discharge temperature (T0) is higher than the upper limit set temperature (T2). The first bypass solenoid valve 81v is closed and the return solenoid valve 71v is opened so that the temperature of the low-pressure intermediate temperature refrigerant sucked by the two-stage compressor 1 is lowered. As a result, heat exchange is performed over the entire length of the internal heat exchanger 8, so that the heat transfer area increases, the amount of heat transferred increases, and the intake temperature decreases.
On the other hand, when the discharge temperature (T0) is lower than the lower limit set temperature (T1), the first bypass solenoid valve 81v is closed and the second bypass solenoid valve 82v is opened. Then, since the low-pressure intermediate temperature refrigerant is bypassed from further upstream of the internal heat exchanger 8, the heat transfer area is further reduced, the amount of heat transferred is reduced, and the suction temperature is increased.
(I) When the discharge temperature (T0) is between the lower limit set temperature (T1) and the upper limit set temperature (T2), the first bypass solenoid valve 81v is kept open without switching the bypass solenoid valve 80v. Keep it.

(く)さらに、第2バイパス電磁弁82vが開いている状態(戻り電磁弁71vと第1バイパス弁81vが閉じている)で、吐出温度(T0)が上限設定温度(T2)より高い場合、第2バイパス電磁弁82vを閉じて第1バイパス電磁弁81vを開く切替えをする。そうすると、内部熱交換器8のより長い範囲で熱交換が実行されることになるから、伝熱面積が増加して温熱の受け渡し量が増し、吸入温度が下がることになる。   (C) Furthermore, when the second bypass solenoid valve 82v is open (the return solenoid valve 71v and the first bypass valve 81v are closed), and the discharge temperature (T0) is higher than the upper limit set temperature (T2), The second bypass solenoid valve 82v is closed and the first bypass solenoid valve 81v is opened. If it does so, since heat exchange will be performed in the longer range of the internal heat exchanger 8, a heat-transfer area will increase, the delivery amount of warm heat will increase, and suction | inhalation temperature will fall.

[実施形態2]
(冷却ユニットの構成)
図7〜図13は本発明の実施形態2に係る自動販売機に設置された冷却ユニットの運転モードを説明する模式図である。なお、実施形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
図7において、冷却ユニット200は、冷却ユニット100(実施形態1)と同じ機器を有し、以下に説明する冷媒の流れを実行するため、適宜、所定の機器間を連結する配管(電磁弁が設置されているものがある)を追加している。
なお、内部熱交換器8に設置されているバイパス手段800は、冷媒の流れ方に応じて、高圧高温冷媒または中圧中温冷媒に、低圧低温冷媒が依然保有する冷熱が受け渡されるものである(これについては別途詳細に説明する)。
[Embodiment 2]
(Configuration of cooling unit)
7 to 13 are schematic diagrams for explaining the operation mode of the cooling unit installed in the vending machine according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to this same part as Embodiment 1, and a part of description is abbreviate | omitted.
In FIG. 7, the cooling unit 200 includes the same equipment as the cooling unit 100 (Embodiment 1), and in order to execute the flow of the refrigerant described below, a pipe (solenoid valve is connected) between predetermined equipment as appropriate. Some are installed).
The bypass means 800 installed in the internal heat exchanger 8 is for transferring the cold heat still held by the low-pressure / low-temperature refrigerant to the high-pressure / high-temperature refrigerant or the medium-pressure / medium-temperature refrigerant according to the flow of the refrigerant. (This will be explained in detail separately).

(CHH運転モード)
図7に示すCHH運転モード1は、庫内蒸発器6aに低圧低温冷媒を、庫内蒸発器6b、6cに中圧中温冷媒を供給するものであって、冷媒は太い実線で示す配管を流れ、その流れ方向を矢印で示している。
すなわち、一段目圧縮部1aにおいて圧縮された中圧中温冷媒は、一段目圧縮部1aと庫内蒸発器6b、6cとを連結する配管16b、16cを経由して庫内蒸発器6b、6cに供給される。そこで、中圧中温冷媒は庫内蒸発器6b、6cの周囲の空気と熱交換して凝縮または降温するから、周囲の空気は加熱されることになる(以下「庫内蒸発器が加熱される」と記載する)。
(CHH operation mode)
In the CHH operation mode 1 shown in FIG. 7, the low-pressure low-temperature refrigerant is supplied to the internal evaporator 6a and the medium-pressure intermediate-temperature refrigerant is supplied to the internal evaporators 6b and 6c, and the refrigerant flows through a pipe indicated by a thick solid line. The flow direction is indicated by an arrow.
That is, the medium-pressure intermediate temperature refrigerant compressed in the first stage compression unit 1a is transferred to the internal evaporators 6b and 6c via the pipes 16b and 16c connecting the first stage compression unit 1a and the internal evaporators 6b and 6c. Supplied. Accordingly, the medium-pressure intermediate temperature refrigerant exchanges heat with the air around the internal evaporators 6b and 6c to condense or cool down, so the surrounding air is heated (hereinafter, “the internal evaporator is heated). ").

そして、庫内蒸発器6b、6cと二段目圧縮部1bとを連結する配管61b、61cを経由し二段目圧縮部1bに供給される。このとき、配管61b、61cはバイパス配管62によって中間熱交換器2に連結されているから、庫内蒸発器6b、6cを通過した中圧中温冷媒は、バルブ操作によってその全量または一部が中間熱交換器2を通過し、あるいは、その全量が中間熱交換器2を通過しないで直接、二段目圧縮部1bに供給されることになる。   And it supplies to the 2nd step | paragraph compression part 1b via the piping 61b and 61c which connect the evaporator 6b, 6c and the 2nd step | paragraph compression part 1b. At this time, since the pipes 61b and 61c are connected to the intermediate heat exchanger 2 by the bypass pipe 62, all or part of the intermediate-pressure / medium-temperature refrigerant that has passed through the internal evaporators 6b and 6c is intermediate by the valve operation. It passes through the heat exchanger 2 or the entire amount thereof is supplied directly to the second stage compression unit 1b without passing through the intermediate heat exchanger 2.

さらに、二段式圧縮機1の二段目圧縮部1bにおいて圧縮された冷媒(高圧高温冷媒になる)は、二段目圧縮部1bとガスクーラ3とを連結する配管13と、ガスクーラ3と、ガスクーラ3と膨張機構4とを連結する配管34とを経由して膨張機構4に供給される。このとき、配管34は内部熱交換器8の一部を形成しているから、高圧高温冷媒は内部熱交換器8において、冷熱を受け取り冷却される(これについては別途説明する)。
そして、膨張機構4において断熱膨張した低圧低温冷媒は、膨張機構4と庫内蒸発器6aとを連結する配管46aを経由して庫内蒸発器6aに供給される。そこで、低圧低温冷媒は庫内蒸発器6aの周囲の空気と熱交換して蒸発するから、周囲の空気は冷却されることになる(以下「庫内蒸発器が冷却される」と記載する)。
Furthermore, the refrigerant (which becomes a high-pressure and high-temperature refrigerant) compressed in the second-stage compressor 1b of the two-stage compressor 1 includes a pipe 13 that connects the second-stage compressor 1b and the gas cooler 3, a gas cooler 3, The gas is supplied to the expansion mechanism 4 via a pipe 34 that connects the gas cooler 3 and the expansion mechanism 4. At this time, since the pipe 34 forms a part of the internal heat exchanger 8, the high-pressure and high-temperature refrigerant is cooled by receiving the cold in the internal heat exchanger 8 (this will be described separately).
The low-pressure and low-temperature refrigerant adiabatically expanded in the expansion mechanism 4 is supplied to the internal evaporator 6a via a pipe 46a that connects the expansion mechanism 4 and the internal evaporator 6a. Therefore, since the low-pressure low-temperature refrigerant evaporates by exchanging heat with the air around the internal evaporator 6a, the surrounding air is cooled (hereinafter referred to as “the internal evaporator is cooled”). .

そして、庫内蒸発器6aを通過した低圧低温冷媒は、配管71aを経由して一段目圧縮部1aに戻されている。このとき、配管71aは内部熱交換器8の一部を形成しているから、低圧低温冷媒が保有する冷熱は内部熱交換器8において、配管34を流れる高圧高温冷媒に受け渡されることになる。
なお、バイパス電磁弁80vの制御(開閉)は実施形態1に準じる、すなわち、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。
The low-pressure low-temperature refrigerant that has passed through the internal evaporator 6a is returned to the first-stage compression unit 1a via the pipe 71a. At this time, since the pipe 71a forms part of the internal heat exchanger 8, the cold heat held by the low-pressure low-temperature refrigerant is transferred to the high-pressure high-temperature refrigerant flowing through the pipe 34 in the internal heat exchanger 8. .
The control (opening / closing) of the bypass solenoid valve 80v is the same as in the first embodiment, that is, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

なお、配管16c、16b等は適宜統合または分岐され、所定位置に電磁弁や逆流防止弁(逆止弁)あるいは、三方弁、流量調整弁(これらを「開閉バルブ」と総称している)が設置されている。
このとき、庫内蒸発器6b、6cには、高圧高温冷媒に比較して低圧で低温である中圧中温冷媒が供給されるから、庫内蒸発器6b、6cに過酷な耐圧性が要求されることがなく、製造コストの上昇が抑えられ、且つ、故障や劣化のおそれが低減する。
The pipes 16c, 16b and the like are appropriately integrated or branched, and an electromagnetic valve, a backflow prevention valve (check valve), a three-way valve, a flow rate adjustment valve (these are collectively referred to as “open / close valve”) are provided at predetermined positions. is set up.
At this time, the internal evaporators 6b and 6c are supplied with medium-pressure and intermediate-temperature refrigerant that is lower in pressure and lower in temperature than the high-pressure and high-temperature refrigerant, so that the internal evaporators 6b and 6c are required to have severe pressure resistance. The increase in manufacturing cost is suppressed, and the risk of failure or deterioration is reduced.

(HHH運転モード)
図8に示すHHH運転モード2は、庫外蒸発器9を使用している。すなわち、庫外蒸発器9には膨張機構4とを連結する配管49と、一段目圧縮部1aとを連結する配管91とを開通し、二段式圧縮機1の一段目圧縮部1aと庫内蒸発器6aとを連結する配管16aと、庫内蒸発器6aと二段目圧縮部1bとを連結する配管61aとを開通している。
(HHH operation mode)
The HHH operation mode 2 shown in FIG. That is, a pipe 49 for connecting the expansion mechanism 4 and a pipe 91 for connecting the first stage compression unit 1a are opened in the outside evaporator 9, and the first stage compression unit 1a and the warehouse of the two-stage compressor 1 are opened. A pipe 16a that connects the inner evaporator 6a and a pipe 61a that connects the internal evaporator 6a and the second-stage compression unit 1b are opened.

したがって、中圧中温冷媒は庫内蒸発器6a、6b、6cに供給され、庫内蒸発器6a、6b、6cを通過した後二段目圧縮部1bと供給されて高圧高温冷媒になり、高圧高温冷媒は膨張機構4を通過した後、庫外蒸発器9に流入して蒸発し、再度一段目圧縮部1aに戻るから、冷凍サイクルが形成される。すなわち、HHH運転モード2では、加熱用のヒータを別途設置することなくHHH運転モードを実行することが可能になる。   Therefore, the medium-pressure medium temperature refrigerant is supplied to the internal evaporators 6a, 6b, 6c, and after passing through the internal evaporators 6a, 6b, 6c, is supplied to the second stage compression unit 1b to become a high-pressure high-temperature refrigerant. Since the high-temperature refrigerant passes through the expansion mechanism 4 and then flows into the external evaporator 9 to evaporate and returns to the first-stage compression unit 1a again, a refrigeration cycle is formed. That is, in the HHH operation mode 2, it is possible to execute the HHH operation mode without separately installing a heater for heating.

そして、CHH運転モード1と同様に、バイパス電磁弁80vの制御(開閉)は実施形態1に準じ、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。   As in the CHH operation mode 1, the control (opening / closing) of the bypass solenoid valve 80v is performed in accordance with the first embodiment, and the discharge temperature is set to “the temperature of the medium-pressure intermediate temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”. Replace it.

(CHH運転モード)
図9に示すCHH運転モード3は、庫内蒸発器6aに低圧低温冷媒を、庫内蒸発器6b、6cに高圧高温冷媒(高圧高温冷媒に同じ)を供給するものである。すなわち、一段目圧縮部1aにおいて圧縮された中圧中温冷媒は、中間熱交換器2において冷却され、二段目圧縮部1bにおいて高圧高温の高圧高温冷媒に圧縮される。そして、高圧高温冷媒は、二段目圧縮部1bと庫内蒸発器6b、6cとを連結する配管160b、160cを経由して庫内蒸発器6b、6cに供給される。
(CHH operation mode)
In the CHH operation mode 3 shown in FIG. 9, the low-pressure and low-temperature refrigerant is supplied to the internal evaporator 6a, and the high-pressure and high-temperature refrigerant (same as the high-pressure and high-temperature refrigerant) is supplied to the internal evaporators 6b and 6c. That is, the medium-pressure intermediate temperature refrigerant compressed in the first stage compression unit 1a is cooled in the intermediate heat exchanger 2, and compressed in the second stage compression unit 1b into a high-pressure and high-temperature high-pressure refrigerant. The high-pressure and high-temperature refrigerant is supplied to the internal evaporators 6b and 6c via the pipes 160b and 160c that connect the second-stage compression unit 1b and the internal evaporators 6b and 6c.

さらに、庫内蒸発器6b、6cを通過した高圧高温冷媒は、庫内蒸発器6b、6cと内部熱交換器8とを連結する配管68b、68cを経由し内部熱交換器8に供給される。このとき、配管68b、68cはバイパス配管63によってガスクーラ3に連結しているから、庫内蒸発器6b、6cを通過した高圧高温冷媒は、バルブ操作によってその全量または一部がガスクーラ3を通過するように、あるいは、その全量がガスクーラ3を通過しないようにすることができる。
また、内部熱交換器8において、庫内蒸発器6aを通過した低圧低温冷媒の冷熱が庫内蒸発器6b、6cを通過した高圧高温冷媒に受け渡されることになる。そして、CHH運転モード1と同様に、バイパス電磁弁80vを実施形態1に準じて制御(開閉)する。このとき、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。
Further, the high-pressure and high-temperature refrigerant that has passed through the internal evaporators 6b and 6c is supplied to the internal heat exchanger 8 via pipes 68b and 68c that connect the internal evaporators 6b and 6c and the internal heat exchanger 8. . At this time, since the pipes 68b and 68c are connected to the gas cooler 3 by the bypass pipe 63, all or part of the high-pressure and high-temperature refrigerant that has passed through the internal evaporators 6b and 6c passes through the gas cooler 3 by valve operation. Alternatively, it is possible to prevent the entire amount from passing through the gas cooler 3.
In the internal heat exchanger 8, the cold heat of the low-pressure and low-temperature refrigerant that has passed through the internal evaporator 6a is transferred to the high-pressure and high-temperature refrigerant that has passed through the internal evaporators 6b and 6c. Then, similarly to the CHH operation mode 1, the bypass solenoid valve 80v is controlled (opened / closed) according to the first embodiment. At this time, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

(CHH運転モード)
図10に示すCHH運転モード4は、庫内蒸発器6aに低圧低温冷媒を、庫内蒸発器6bに中圧中温冷媒(中圧高温冷媒に同じ)を、庫内蒸発器6cに高圧高温冷媒(高圧高温冷媒に同じ)を供給するものである。すなわち、一段目圧縮部1aにおいて圧縮された中圧中温冷媒は、配管16bを経由して庫内蒸発器6bに供給される。そして、庫内蒸発器6bを通過した中圧中温冷媒は、配管61bを経由し二段目圧縮部1bに供給される。このとき、配管61bはバイパス配管62によって中間熱交換器2に連結しているから、庫内蒸発器6bを通過した中圧中温冷媒は、バルブ操作によってその全量または一部が中間熱交換器2を通過し、あるいは、その全量が中間熱交換器2を通過しないで、二段目圧縮部1bに供給されることになる。
(CHH operation mode)
In the CHH operation mode 4 shown in FIG. 10, the low-pressure low-temperature refrigerant is stored in the internal evaporator 6a, the medium-pressure medium-temperature refrigerant (the same as the medium-pressure high-temperature refrigerant) is stored in the internal evaporator 6b, and the high-pressure high-temperature refrigerant is stored in the internal evaporator 6c. (Same as high-pressure high-temperature refrigerant). That is, the medium-pressure intermediate temperature refrigerant compressed in the first stage compression unit 1a is supplied to the internal evaporator 6b via the pipe 16b. Then, the medium-pressure intermediate temperature refrigerant that has passed through the internal evaporator 6b is supplied to the second-stage compression unit 1b via the pipe 61b. At this time, since the pipe 61b is connected to the intermediate heat exchanger 2 by the bypass pipe 62, the intermediate-pressure intermediate-temperature refrigerant that has passed through the internal evaporator 6b is wholly or partially in the intermediate heat exchanger 2 by the valve operation. Or the entire amount does not pass through the intermediate heat exchanger 2 and is supplied to the second-stage compression unit 1b.

さらに、二段目圧縮部1bにおいて圧縮された高圧高温冷媒は、配管160cを経由して庫内蒸発器6cに供給され、庫内蒸発器6cを通過した高圧高温冷媒は配管68cを経由し内部熱交換器8に流入する。このとき、配管68cはバイパス配管63によってガスクーラ3に連結しているから、庫内蒸発器6cを通過した高圧高温冷媒は、バルブ操作によってその全量または一部がガスクーラ3を通過、あるいは、その全量がガスクーラ3を通過しないことになる。
また、内部熱交換器8において、庫内蒸発器6aを通過した低圧低温冷媒の冷熱が庫内蒸発器6cを通過する高圧高温冷媒に受け渡されることになる。そして、CHH運転モード1と同様に、バイパス電磁弁80vを実施形態1に準じて制御(開閉)する。このとき、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。
Further, the high-pressure and high-temperature refrigerant compressed in the second-stage compression unit 1b is supplied to the internal evaporator 6c via the pipe 160c, and the high-pressure and high-temperature refrigerant that has passed through the internal evaporator 6c passes through the pipe 68c. It flows into the heat exchanger 8. At this time, since the pipe 68c is connected to the gas cooler 3 by the bypass pipe 63, all or a part of the high-pressure and high-temperature refrigerant that has passed through the internal evaporator 6c passes through the gas cooler 3 by the valve operation, or the entire quantity thereof. Will not pass through the gas cooler 3.
In the internal heat exchanger 8, the cold heat of the low-pressure and low-temperature refrigerant that has passed through the internal evaporator 6a is transferred to the high-pressure and high-temperature refrigerant that passes through the internal evaporator 6c. Then, similarly to the CHH operation mode 1, the bypass solenoid valve 80v is controlled (opened / closed) according to the first embodiment. At this time, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

(CHH運転モード)
図11および図12において、CHH運転モード5および6は、二段式圧縮機1の一段目圧縮部1aと中間熱交換器2とを連結する配管12と、二段式圧縮機1の二段目圧縮部1bとガスクーラ3とを連結する配管13と、配管16bと配管160cとを連結する配管16bcと、配管61bと配管68cとを連結する配管18bc(庫内蒸発器6cと内部熱交換器8とを連結する配管に相当する)とを開通している。なお、各配管には開閉バルブが設置されている。
(CHH operation mode)
11 and 12, the CHH operation modes 5 and 6 are the two-stage compressor 1, the pipe 12 connecting the first-stage compression unit 1 a of the two-stage compressor 1 and the intermediate heat exchanger 2, and the two-stage compressor 1. Pipe 13 connecting pipe compression part 1b and gas cooler 3, pipe 16bc connecting pipe 16b and pipe 160c, pipe 18bc connecting pipe 61b and pipe 68c (internal evaporator 6c and internal heat exchanger) 8 corresponding to the pipe connecting 8). Each pipe has an open / close valve.

図11に示すCHH運転モード5は、中圧中温冷媒のみを庫内蒸発器6b、6cに供給する。すなわち、一段目圧縮部1aにおいて圧縮された中圧中温冷媒は、配管16bcにおいて配管16bおよび配管160cに分岐され、庫内蒸発器6bおよび庫内蒸発器6cに供給され、庫内蒸発器6bを通過して配管61bに流入し、また、庫内蒸発器6cを通過して配管68cに流入し、さらに、配管18bcにおいて合流して、直接または中間熱交換器2をバイパスして二段目圧縮部1bに戻っている。
そして、二段目圧縮部1bにおいて圧縮された高圧高温冷媒は、配管13を経由してガスクーラ3に供給され、さらに、内部熱交換器8および膨張機構4を経由して庫内蒸発器6aに供給される。
また、内部熱交換器8において、庫内蒸発器6aを通過した低圧低温冷媒の冷熱がガスクーラ3を通過した高圧高温冷媒に受け渡されることになる。そして、CHH運転モード1と同様に、バイパス電磁弁80vを実施形態1に準じて制御(開閉)する。このとき、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。
In the CHH operation mode 5 shown in FIG. 11, only the medium-pressure medium temperature refrigerant is supplied to the internal evaporators 6b and 6c. That is, the medium-pressure intermediate temperature refrigerant compressed in the first-stage compression unit 1a is branched into the pipe 16b and the pipe 160c in the pipe 16bc, and is supplied to the internal evaporator 6b and the internal evaporator 6c. Passes into the pipe 61b, passes through the internal evaporator 6c, flows into the pipe 68c, and further joins in the pipe 18bc to directly or bypass the intermediate heat exchanger 2 to compress the second stage. Returning to part 1b.
The high-pressure and high-temperature refrigerant compressed in the second-stage compression unit 1b is supplied to the gas cooler 3 via the pipe 13, and further to the internal evaporator 6a via the internal heat exchanger 8 and the expansion mechanism 4. Supplied.
In the internal heat exchanger 8, the cold heat of the low-pressure and low-temperature refrigerant that has passed through the internal evaporator 6 a is transferred to the high-pressure and high-temperature refrigerant that has passed through the gas cooler 3. Then, similarly to the CHH operation mode 1, the bypass solenoid valve 80v is controlled (opened / closed) according to the first embodiment. At this time, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

図12に示すCHH運転モード6は、高圧高温冷媒のみを庫内蒸発器6b、6cに供給する。すなわち、配管12を経由して中間熱交換器2に供給された中圧中温冷媒は、そのまま二段目圧縮部1bに戻る。二段目圧縮部1bにおいて圧縮された高圧高温冷媒は、配管16bcにおいて配管16bおよび配管160cに分岐され、庫内蒸発器6bおよび庫内蒸発器6cに供給され、庫内蒸発器6cを通過して配管68cに流入し、また、庫内蒸発器6bを通過して配管61bに流入し、配管18bcにおいて配管68cに合流する。そして、直接またはガスクーラ3をバイパスして内部熱交換器8に流れ込み、膨張機構4を経由して庫内蒸発器6aに供給される。
また、内部熱交換器8において、庫内蒸発器6aを通過した低圧低温冷媒の冷熱がガスクーラ3を通過した高圧高温冷媒に受け渡されることになる。そして、CHH運転モード1と同様に、バイパス電磁弁80vを実施形態1に準じて制御(開閉)する。このとき、前記吐出温度を「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替える。
In the CHH operation mode 6 shown in FIG. 12, only the high-pressure and high-temperature refrigerant is supplied to the internal evaporators 6b and 6c. That is, the medium-pressure intermediate temperature refrigerant supplied to the intermediate heat exchanger 2 via the pipe 12 returns to the second-stage compression unit 1b as it is. The high-pressure and high-temperature refrigerant compressed in the second-stage compression unit 1b is branched into the pipe 16b and the pipe 160c in the pipe 16bc, supplied to the internal evaporator 6b and the internal evaporator 6c, and passes through the internal evaporator 6c. Flows into the pipe 68c, passes through the internal evaporator 6b, flows into the pipe 61b, and joins the pipe 68c in the pipe 18bc. And it flows into the internal heat exchanger 8 directly or bypassing the gas cooler 3, and is supplied to the internal evaporator 6 a via the expansion mechanism 4.
In the internal heat exchanger 8, the cold heat of the low-pressure and low-temperature refrigerant that has passed through the internal evaporator 6 a is transferred to the high-pressure and high-temperature refrigerant that has passed through the gas cooler 3. Then, similarly to the CHH operation mode 1, the bypass solenoid valve 80v is controlled (opened / closed) according to the first embodiment. At this time, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

(HHH運転モード)
図13に示すHHH運転モード7は、庫外蒸発器9を有し、庫外蒸発器9と膨張機構4とを連結する配管49、および庫外蒸発器9と一段目圧縮部1aとを連結する配管91とが開通している。したがって、中圧中温冷媒は、配管16a、16bを経由して庫内蒸発器6a、6bに供給され、庫内蒸発器6a、6bを通過した後は、配管61a、61bを経由して、直接または中間熱交換器2をバイパスして二段目圧縮部1bに戻っている。そして、二段目圧縮部1bにおいて圧縮された高圧高温冷媒は、配管160cを経由して庫内蒸発器6cに供給され、庫内蒸発器6cを通過した後は、配管68cを経由して、直接またはガスクーラ3をバイパスして内部熱交換器8に流れ込んでいる。
(HHH operation mode)
The HHH operation mode 7 shown in FIG. 13 has an external evaporator 9, and connects the external evaporator 9 and the expansion mechanism 4 with a pipe 49, and connects the external evaporator 9 and the first stage compression unit 1a. Piping 91 to be opened. Therefore, the medium-pressure intermediate temperature refrigerant is supplied to the internal evaporators 6a and 6b via the pipes 16a and 16b, and directly passes through the pipes 61a and 61b after passing through the internal evaporators 6a and 6b. Alternatively, the intermediate heat exchanger 2 is bypassed and returned to the second stage compression unit 1b. And the high-pressure high-temperature refrigerant | coolant compressed in the 2nd stage compression part 1b is supplied to the internal evaporator 6c via the piping 160c, and after passing the internal evaporator 6c, via the piping 68c, It flows into the internal heat exchanger 8 directly or bypassing the gas cooler 3.

さらに、内部熱交換器8を通過した高圧高温冷媒は膨張機構4を通過して低圧低温冷媒となり、配管49を経由して庫外蒸発器9に供給されて蒸発し、再度、配管91を経由して一段目圧縮部1aに戻るから、冷凍サイクルが形成され、HHH運転モードが実行される。よって、加熱用のヒータを別途設置する必要がない。
また、内部熱交換器8において、庫外蒸発器9を通過した低圧低温冷媒は内部熱交換器8に流入するから、低圧低温冷媒が保有する冷熱が、膨張機構4に流入直前の高圧中温冷媒に受け渡されることになる。そして、CHH運転モード1と同様に、バイパス電磁弁80vは実施形態1に準じて制御(開閉)される。このとき、前記吐出温度は「中圧中温冷媒(一段目圧縮部1aから吐出した冷媒)の温度」と読み替えられる。
Further, the high-pressure and high-temperature refrigerant that has passed through the internal heat exchanger 8 passes through the expansion mechanism 4 to become low-pressure and low-temperature refrigerant, is supplied to the outside evaporator 9 via the pipe 49 and evaporates, and again passes through the pipe 91. And since it returns to the 1st stage compression part 1a, a refrigerating cycle is formed and HHH operation mode is performed. Therefore, it is not necessary to separately install a heater for heating.
In the internal heat exchanger 8, the low-pressure and low-temperature refrigerant that has passed through the external evaporator 9 flows into the internal heat exchanger 8, so that the cold heat held by the low-pressure and low-temperature refrigerant immediately before flowing into the expansion mechanism 4. Will be handed over. Then, similarly to the CHH operation mode 1, the bypass solenoid valve 80v is controlled (opened / closed) according to the first embodiment. At this time, the discharge temperature is read as “the temperature of the medium-pressure medium-temperature refrigerant (the refrigerant discharged from the first-stage compression unit 1a)”.

[実施形態3]
(自動販売機)
図14および図15は本発明の実施形態3に係る自動販売機を示す、図14は側面視の断面図、図15は正面視の断面図である。図14、15において、自動販売機600は、断熱材によって囲まれ一面に開口部を具備する筐体601(以下「キャビネット」と称す)と、キャビネット601を商品収納庫602a、602b、602cに分割する仕切り板603ab、603bcと、商品Sを補充する際に開閉する断熱扉604(以下「商品補充用扉」と称す)と、キャビネット601と外気とを遮断するための断熱扉605(以下「内扉」と称す)と、収納した各種商品Sの表示や販売する商品を選択する選択ボタン等が配置された前扉606とを有している。
なお、符号に付した添え字「a、b、c」は、それぞれ商品収納庫602a、602b、602cに設置されることを示し、商品収納庫602a、602b、602cにおいて共通する内容については添え字「a、b、c」を省略する。
[Embodiment 3]
(vending machine)
14 and 15 show a vending machine according to the third embodiment of the present invention. FIG. 14 is a side sectional view and FIG. 15 is a front sectional view. 14 and 15, a vending machine 600 is divided into a housing 601 (hereinafter referred to as “cabinet”) surrounded by a heat insulating material and having an opening on one side, and a cabinet 601 into product storage boxes 602a, 602b, and 602c. Partition plates 603ab and 603bc to be opened, a heat insulating door 604 that opens and closes when the product S is replenished (hereinafter referred to as “product replenishing door”), and a heat insulating door 605 that shuts off the cabinet 601 and the outside air (hereinafter “inside” And a front door 606 on which display buttons for selecting various products S, selection buttons for selecting products to be sold, and the like are arranged.
The subscripts “a, b, c” attached to the symbols indicate that they are installed in the product storages 602a, 602b, 602c, respectively, and the contents common to the product storages 602a, 602b, 602c are subscripts. “A, b, c” is omitted.

各商品収納庫602には、商品Sを収納するための商品ラック608と、商品ラック608から落下した商品Sを取出すための商品取出し口609と、商品ラック608から落下した商品Sを商品取出し口609まで誘導する商品誘導手段610(以下「シュータ」と称す)が設置されている。
そして、商品収納庫602はシュータ610によって上下に区分され、その下方部分に庫内部品収納室612が形成されている。庫内部品収納室612には冷却ユニット100の庫内蒸発器6(図1参照)と、庫内蒸発器6を通過する風流れを形成して庫内空気を循環するための送風手段614(以下「庫内ファン」と称す)が設置されている。
Each product storage 602 has a product rack 608 for storing the product S, a product takeout port 609 for taking out the product S dropped from the product rack 608, and a product takeout port for the product S dropped from the product rack 608. Commodity guidance means 610 (hereinafter referred to as “shooter”) for guiding to 609 is installed.
The product storage 602 is divided into upper and lower parts by a shooter 610, and an in-comparts storage chamber 612 is formed in a lower part thereof. The internal component storage chamber 612 includes an internal evaporator 6 (see FIG. 1) of the cooling unit 100 and an air blowing means 614 for circulating the internal air by forming a wind flow passing through the internal evaporator 6. (Hereinafter referred to as “inside cabinet fan”).

また、商品収納庫602の背面側には、庫内空気を商品ラック608の内部を経由して庫内ファン614に循環させるための循環ダクト617が設けられ、循環ダクト617の下方位置に設けられた空気吹出口616が庫内蒸発器6を収容する熱交換室660に連通し、熱交換室660が庫内ファン614を収容するファンカバー615に連通し、シュータ610には空気が通過する多数の通気孔611が設けられている。
さらに、庫内部品収納室612の下方には、機械室619と電装品収納室620が形成され、機械室619には冷却ユニット100の二段式圧縮機1やガスクーラ3に送風する庫外ファン30等が、電装品収納室620には自動販売機600を制御する各電装品および冷却ユニット100の制御手段の一部が収容されている(図示しない)。
A circulation duct 617 is provided on the back side of the product storage 602 to circulate the internal air to the internal fan 614 via the inside of the product rack 608, and is provided at a position below the circulation duct 617. The air outlet 616 communicates with the heat exchange chamber 660 that accommodates the internal evaporator 6, the heat exchange chamber 660 communicates with the fan cover 615 that accommodates the internal fan 614, and air passes through the shooter 610. Vent 611 is provided.
Furthermore, a machine room 619 and an electrical component storage room 620 are formed below the internal part storage room 612, and the outside fan that blows air to the two-stage compressor 1 and the gas cooler 3 of the cooling unit 100 is formed in the machine room 619. 30 and so on, in the electrical component storage chamber 620, each electrical component that controls the vending machine 600 and a part of the control means of the cooling unit 100 are accommodated (not shown).

したがって、自動販売機600において、商品収納庫602が冷却ユニット100の庫内蒸発器6a、6b、6cによって冷却または加熱され、冷却ユニット100が前記作用効果を奏するものであるから、外気温度に関わらず、自動販売機600に収納された商品を所望の温度に加熱または冷却することができる。
すなわち、同時加熱冷却運転(商品収納庫の加熱と冷却を同時に行うヒートポンプ運転)時には、蒸発温度の設定値を第1の設定温度として蒸発温度を制御し、加熱単独運転(いずれの商品収納庫においても冷却負担が無いヒートポンプ運転)時には、熱収支バランスを保つために庫外へ冷気を排熱する冷凍回路構成に切替えて庫内を加熱して、冷熱を庫外へ排熱する。
Therefore, in the vending machine 600, the commodity storage 602 is cooled or heated by the internal evaporators 6a, 6b, 6c of the cooling unit 100, and the cooling unit 100 exhibits the above-described effects, so that it depends on the outside air temperature. The product stored in the vending machine 600 can be heated or cooled to a desired temperature.
That is, at the time of simultaneous heating and cooling operation (heat pump operation in which the product storage is heated and cooled at the same time), the evaporation temperature is controlled with the set value of the evaporation temperature as the first set temperature, and the single heating operation (in any product storage) At the time of heat pump operation with no cooling burden), in order to maintain the heat balance, the interior is switched to a refrigeration circuit configuration that exhausts cool air to the outside of the cabinet, the inside of the cabinet is heated, and the cold heat is exhausted to the outside.

このとき、冷却ユニット100はバイパス手段800を有しているから、内部熱交換器8において、二段式圧縮機から吐出される冷媒(高圧高温冷媒または中圧中温冷媒)の吐出温度に応じた、熱交換(冷熱の回収)が実行されるから、運転状況や周辺温度に関わらず、商品収納庫602a、602b、602cに収納された商品Sを所望の温度に加熱または冷却することができる。   At this time, since the cooling unit 100 includes the bypass unit 800, the internal heat exchanger 8 corresponds to the discharge temperature of the refrigerant (high-pressure high-temperature refrigerant or medium-pressure intermediate-temperature refrigerant) discharged from the two-stage compressor. Since the heat exchange (recovery of cold energy) is executed, the product S stored in the product storage 602a, 602b, 602c can be heated or cooled to a desired temperature regardless of the operation state or the ambient temperature.

本発明によれば、冷却ユニットが吐出温度を調整することができ、また、これを装備した自動販売機は収納された商品を所望の温度に加熱または冷却することができるから、本発明は各種冷却ユニットや各種自動販売機に広く利用することができる。   According to the present invention, the cooling unit can adjust the discharge temperature, and the vending machine equipped with the cooling unit can heat or cool the stored product to a desired temperature. It can be widely used for cooling units and various vending machines.

本発明の実施形態1に係る冷却ユニットの構成を説明する構成図。The block diagram explaining the structure of the cooling unit which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る冷却ユニットの構成を説明する構成図。The block diagram explaining the structure of the cooling unit which concerns on Embodiment 1 of this invention. 冷却ユニットにおける熱交換の作用を説明するモリエル線図。The Mollier diagram explaining the effect | action of the heat exchange in a cooling unit. 図1に示すバイパス手段の詳細を説明する構成図。The block diagram explaining the detail of the bypass means shown in FIG. 図1に示すバイパス手段の制御手段を説明する制御ブロック図。The control block diagram explaining the control means of the bypass means shown in FIG. 図1に示すバイパス手段の制御フローを説明するフローチャート。The flowchart explaining the control flow of the bypass means shown in FIG. 本発明の実施形態2に係る自動販売機に設置された冷却ユニットの運転モード1を説明する模式図。The schematic diagram explaining the operation mode 1 of the cooling unit installed in the vending machine which concerns on Embodiment 2 of this invention. 図7に準じた運転モードを説明する模式図(HHH運転モード2)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 2). 図7に準じた運転モードを説明する模式図(HHH運転モード3)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 3). 図7に準じた運転モードを説明する模式図(HHH運転モード4)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 4). 図7に準じた運転モードを説明する模式図(HHH運転モード5)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 5). 図7に準じた運転モードを説明する模式図(HHH運転モード6)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 6). 図7に準じた運転モードを説明する模式図(HHH運転モード7)。The schematic diagram explaining the operation mode according to FIG. 7 (HHH operation mode 7). 本発明の実施形態3に係る自動販売機を示す側面視の断面図。Sectional drawing of the side view which shows the vending machine concerning Embodiment 3 of this invention. 本発明の実施形態3に係る自動販売機を示す正面視の断面図。Sectional drawing of the front view which shows the vending machine concerning Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 二段式圧縮機
1a 一段目圧縮部
1b 二段目圧縮部
2 中間熱交換器
3 ガスクーラ
4 膨張機構
5 冷媒分配手段(電磁弁)
6 庫内蒸発器
7 冷媒分配手段(電磁弁)
8 内部熱交換器
9 庫外蒸発器
30 庫外ファン
71v 戻り電磁弁
81 第1バイパス配管(バイパス配管)
82 第2バイパス配管(バイパス配管)
83 第3バイパス配管(バイパス配管)
81v 第1バイパス電磁弁(バイパス電磁弁)
82v 第2バイパス電磁弁(バイパス電磁弁)
83v 第3バイパス電磁弁(バイパス電磁弁)
100 冷却ユニット
200 冷却ユニット
600 自動販売機
601 キャビネット
602 商品収納庫
604 断熱扉
605 断熱扉
606 前扉
608 商品ラック
609 商品取出し口
610 シュータ
612 庫内部品収納室
614 庫内ファン
615 ファンカバー
616 空気吹出口
617 循環ダクト
619 機械室
620 電装品収納室
660 熱交換室
800 バイパス手段
DESCRIPTION OF SYMBOLS 1 Two-stage compressor 1a 1st stage compression part 1b 2nd stage compression part 2 Intermediate heat exchanger 3 Gas cooler 4 Expansion mechanism 5 Refrigerant distribution means (solenoid valve)
6 Internal evaporator 7 Refrigerant distribution means (solenoid valve)
8 Internal heat exchanger 9 External evaporator 30 External fan 71v Return solenoid valve 81 First bypass piping (bypass piping)
82 Second bypass piping (bypass piping)
83 3rd bypass piping (bypass piping)
81v first bypass solenoid valve (bypass solenoid valve)
82v second bypass solenoid valve (bypass solenoid valve)
83v 3rd bypass solenoid valve (bypass solenoid valve)
DESCRIPTION OF SYMBOLS 100 Cooling unit 200 Cooling unit 600 Vending machine 601 Cabinet 602 Product storage 604 Heat insulation door 605 Heat insulation door 606 Front door 608 Product rack 609 Product takeout port 610 Shuter 612 Internal component storage chamber 614 Internal fan 615 Fan cover 616 Air blow Outlet 617 Circulation duct 619 Machine room 620 Electrical component storage room 660 Heat exchange room 800 Bypass means

Claims (4)

冷媒を中間圧力にまで圧縮する一段目圧縮部および冷媒を所定圧力にまで圧縮する二段目圧縮部とを具備する二段式圧縮機と、
冷媒を冷却する中間熱交換器およびガスクーラと、
圧縮された冷媒を膨張する膨張機構と、
冷媒を蒸発または凝縮させる庫内蒸発器と、
前記庫内蒸発器を通過した冷媒の保有する冷熱の一部を前記膨張機構に流入する前の冷媒に受け渡す内部熱交換器とを具備し、
前記内部熱交換器の出口部に出口開閉手段を設置すると共に、前記内部熱交換器の中間部または入口部の一方または両方から、前記内部熱交換器の出口部の下流に連通するバイパス開閉手段を具備するバイパス配管を設けたことを特徴とする冷却ユニット。
A two-stage compressor comprising a first-stage compression section that compresses the refrigerant to an intermediate pressure and a second-stage compression section that compresses the refrigerant to a predetermined pressure;
An intermediate heat exchanger and a gas cooler for cooling the refrigerant;
An expansion mechanism for expanding the compressed refrigerant;
An internal evaporator that evaporates or condenses the refrigerant;
An internal heat exchanger that delivers a part of the cold heat of the refrigerant that has passed through the internal evaporator to the refrigerant before flowing into the expansion mechanism,
Bypass opening / closing means provided with an outlet opening / closing means at an outlet portion of the internal heat exchanger and communicating with one or both of an intermediate portion and an inlet portion of the internal heat exchanger downstream of the outlet portion of the internal heat exchanger A cooling unit provided with a bypass pipe.
前記一段目圧縮部において圧縮された冷媒が前記二段目圧縮部に直接供給され、
前記二段目圧縮部において圧縮された冷媒が前記庫内蒸発器のうちの一方の庫内蒸発器に直接供給され、
該一方の庫内蒸発器を通過した冷媒が直接、または全部若しくは一部が前記ガスクーラを経由して前記内部熱交換器に供給され、
前記内部熱交換器を通過した冷媒は前記膨張機構において膨張し、
該膨張した冷媒が前記庫内蒸発器のうちの他方の庫内蒸発器に供給され、
前記庫内蒸発器のうちの他方の庫内蒸発器を通過した冷媒が前記内部熱交換器に供給される際、
前記出口開閉手段および前記バイパス開閉手段をそれぞれ開閉して、当該冷媒が、前記内部熱交換器の全長を通過、または前記内部熱交換器を途中まで通過、あるいは前記内部熱交換器を通過しない、の何れかであることを特徴とする請求項1記載の冷却ユニット。
The refrigerant compressed in the first stage compression unit is directly supplied to the second stage compression unit,
The refrigerant compressed in the second stage compression section is directly supplied to one of the internal evaporators,
The refrigerant that has passed through the one internal evaporator is directly or entirely or partially supplied to the internal heat exchanger via the gas cooler,
The refrigerant that has passed through the internal heat exchanger expands in the expansion mechanism,
The expanded refrigerant is supplied to the other internal evaporator of the internal evaporators,
When the refrigerant that has passed through the other internal evaporator of the internal evaporator is supplied to the internal heat exchanger,
Opening and closing the outlet opening and closing means and the bypass opening and closing means, respectively, the refrigerant passes through the entire length of the internal heat exchanger, passes through the internal heat exchanger halfway, or does not pass through the internal heat exchanger, The cooling unit according to claim 1, wherein the cooling unit is any one of the following.
冷媒を蒸発または凝縮させる庫外蒸発器が設置され、
前記一段目圧縮部において圧縮された冷媒が前記二段目圧縮部に直接供給され、
前記二段目圧縮部において圧縮された冷媒が前記庫内蒸発器に直接供給され、
該庫内蒸発器を通過した冷媒が直接、または全部若しくは一部が前記ガスクーラを経由して前記内部熱交換器に供給され、
前記内部熱交換器を通過した冷媒は前記膨張機構において膨張し、
該膨張した冷媒が前記庫外蒸発器に供給され、
前記庫外蒸発器を通過した冷媒が前記内部熱交換器に供給される際、
前記出口開閉手段および前記バイパス開閉手段をそれぞれ開閉して、当該冷媒が、前記内部熱交換器の全長を通過、または前記内部熱交換器を途中まで通過、あるいは前記内部熱交換器を通過しない、の何れかであることを特徴とする請求項1記載の冷却ユニット。
An external evaporator that evaporates or condenses the refrigerant is installed,
The refrigerant compressed in the first stage compression unit is directly supplied to the second stage compression unit,
The refrigerant compressed in the second stage compression unit is directly supplied to the internal evaporator,
The refrigerant that has passed through the internal evaporator is supplied directly or in whole or in part to the internal heat exchanger via the gas cooler,
The refrigerant that has passed through the internal heat exchanger expands in the expansion mechanism,
The expanded refrigerant is supplied to the outside evaporator,
When the refrigerant that has passed through the external evaporator is supplied to the internal heat exchanger,
Opening and closing the outlet opening and closing means and the bypass opening and closing means, respectively, the refrigerant passes through the entire length of the internal heat exchanger, passes through the internal heat exchanger halfway, or does not pass through the internal heat exchanger, The cooling unit according to claim 1, wherein the cooling unit is any one of the following.
断熱材によって囲まれ一面に開口部を具備する筐体と、
該筐体を複数の商品収納庫に分割する仕切板と、
前記商品収納庫のそれぞれに対応する商品搬出口を具備し、前記開口部を開閉する断熱扉と、
前記商品収納庫のそれぞれに配置され、商品を収納して順次下方に搬出する機能を有する商品ラックと、
該商品ラックから落下した商品を前記商品搬出口に誘導するシュータと、
該シュータの下方に配置されて空気の流れを形成する送風手段と、
該送風手段によって形成された空気の流れを前記商品ラックの内部を経由して前記送風手段に循環させるための循環ダクトと、
請求項1乃至3の何れかに記載の冷却ユニットと、を有し、
前記冷却ユニットを構成する庫内蒸発器が、前記商品収納庫のシュータの下方に配置されていることを特徴とする自動販売機。
A housing surrounded by a heat insulating material and having an opening on one side;
A partition plate for dividing the housing into a plurality of product storages;
A heat insulating door that opens and closes the opening, comprising a product exit corresponding to each of the product storages,
A product rack disposed in each of the product storages and having a function of storing products and sequentially transporting them downward;
A shooter for guiding a product dropped from the product rack to the product exit;
An air blowing means disposed below the shooter to form an air flow;
A circulation duct for circulating a flow of air formed by the blowing means to the blowing means via the inside of the commodity rack;
A cooling unit according to any one of claims 1 to 3,
A vending machine, wherein an internal evaporator constituting the cooling unit is disposed below a shooter of the commodity storage.
JP2006044210A 2006-02-21 2006-02-21 Cooling unit and vending machine Expired - Fee Related JP4835196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044210A JP4835196B2 (en) 2006-02-21 2006-02-21 Cooling unit and vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044210A JP4835196B2 (en) 2006-02-21 2006-02-21 Cooling unit and vending machine

Publications (2)

Publication Number Publication Date
JP2007226336A JP2007226336A (en) 2007-09-06
JP4835196B2 true JP4835196B2 (en) 2011-12-14

Family

ID=38548130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044210A Expired - Fee Related JP4835196B2 (en) 2006-02-21 2006-02-21 Cooling unit and vending machine

Country Status (1)

Country Link
JP (1) JP4835196B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020711A (en) * 2008-07-14 2010-01-28 Fuji Electric Retail Systems Co Ltd Vending machine
JP5321121B2 (en) * 2009-02-20 2013-10-23 富士電機株式会社 vending machine
JP5267216B2 (en) * 2009-03-04 2013-08-21 富士電機株式会社 vending machine
JP5391841B2 (en) * 2009-06-03 2014-01-15 富士電機株式会社 vending machine
JP6421513B2 (en) * 2014-09-22 2018-11-14 株式会社Ihi Heat exchanger and heat exchanger control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257660A (en) * 1991-02-12 1992-09-11 Matsushita Electric Ind Co Ltd Two stage compression refrigerating cycle device
JP3003356B2 (en) * 1992-02-26 2000-01-24 富士電機株式会社 Vending machine cooling and heating equipment
JP2002130896A (en) * 1999-12-08 2002-05-09 Usui Internatl Ind Co Ltd Temperature adjusting device for thermal fluid medium
JP2004085106A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator and cold storage
JP2004116957A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Refrigerant cycle system
JP2005214558A (en) * 2004-01-30 2005-08-11 Sanyo Electric Co Ltd Heating/cooling system
JP2005326138A (en) * 2004-04-12 2005-11-24 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine with it
JP4274074B2 (en) * 2004-08-05 2009-06-03 富士電機リテイルシステムズ株式会社 Refrigerator and vending machine

Also Published As

Publication number Publication date
JP2007226336A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4935077B2 (en) Refrigerator and vending machine
JP5405015B2 (en) Cooling system
JP5124952B2 (en) vending machine
JP4835196B2 (en) Cooling unit and vending machine
JP7117511B2 (en) condensing unit
JP2012123786A (en) Automatic vending machine
JP2007115096A (en) Cooling device and vending machine
JP4274075B2 (en) Refrigerator and vending machine
JP4274074B2 (en) Refrigerator and vending machine
JP5157307B2 (en) vending machine
JP5405058B2 (en) Cooling system
JP4760559B2 (en) vending machine
JP4702101B2 (en) Refrigerator and vending machine
JP6238935B2 (en) Refrigeration cycle equipment
JP2007108915A (en) Cooling device and vending machine
JP5223550B2 (en) vending machine
JP5418037B2 (en) vending machine
JP2013084073A (en) Automatic vending machine
JP5321121B2 (en) vending machine
JP5013937B2 (en) Cooling and heating device
JP6593483B2 (en) Refrigeration equipment
WO2023135958A1 (en) Freezing apparatus
JP5125823B2 (en) vending machine
JP2010272039A (en) Vending machine
JP2010033508A (en) Vending machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees