JP4834297B2 - Stereolithography apparatus and stereolithography method - Google Patents

Stereolithography apparatus and stereolithography method Download PDF

Info

Publication number
JP4834297B2
JP4834297B2 JP2004283552A JP2004283552A JP4834297B2 JP 4834297 B2 JP4834297 B2 JP 4834297B2 JP 2004283552 A JP2004283552 A JP 2004283552A JP 2004283552 A JP2004283552 A JP 2004283552A JP 4834297 B2 JP4834297 B2 JP 4834297B2
Authority
JP
Japan
Prior art keywords
layer
light
mask
photocuring
photocured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004283552A
Other languages
Japanese (ja)
Other versions
JP2006095806A (en
Inventor
高邦 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2004283552A priority Critical patent/JP4834297B2/en
Publication of JP2006095806A publication Critical patent/JP2006095806A/en
Application granted granted Critical
Publication of JP4834297B2 publication Critical patent/JP4834297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光硬化性樹脂組成物に光を照射して光硬化させて、光学的に立体造形物を製造する光造形装置及び光造形方法に関する。   The present invention relates to an optical modeling apparatus and an optical modeling method for optically manufacturing a three-dimensional model by irradiating a photocurable resin composition with light and photocuring it.

近年、三次元CADに入力されたデータに基づいて光硬化性樹脂を硬化させて立体造形物を製造する光造形装置が実用化されている。このような光造形技術は、設計の途中で外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を製作するための樹脂型、金型を製作するためのベースモデルなどのような複雑な三次元物体を容易に造形できることから注目を集めている。   In recent years, an optical modeling apparatus that manufactures a three-dimensional model by curing a photocurable resin based on data input to a three-dimensional CAD has been put into practical use. This stereolithography technology is a model for verifying the appearance design in the middle of design, a model for checking the functionality of parts, a resin mold for producing molds, and a base model for producing molds. It attracts attention because it can easily form complex three-dimensional objects such as.

光造形装置によって造形物を製造するに当たっては、造形浴槽を用いる方法が汎用されており、その手順としては、造形浴槽に液状の光硬化性樹脂組成物を入れ、液面に所望のパターンが得られるようにコンピュータで制御されたスポット状の紫外線レーザー光を選択的に照射して所定の厚みに光硬化させて光硬化層を形成し、その光硬化層を造形浴槽内で下方に移動させて造形浴槽内の光硬化性樹脂液を該光硬化層上に流動させて光硬化性樹脂液の層を形成し、その光硬化性樹脂液層にスポット状の紫外線レーザー光を照射して光硬化層を積層形成するといった工程を所定の形状および寸法の立体造形物が得られるまで繰り返して行う。   When manufacturing a modeled object with an optical modeling apparatus, a method using a modeling bath is widely used. As a procedure, a liquid photocurable resin composition is put into the modeling bath, and a desired pattern is obtained on the liquid surface. As shown in the figure, a spot-shaped ultraviolet laser beam controlled by a computer is selectively irradiated and photocured to a predetermined thickness to form a photocured layer, and the photocured layer is moved downward in the modeling bath. The photocurable resin liquid in the modeling bath is made to flow on the photocured layer to form a layer of the photocurable resin liquid, and the photocurable resin liquid layer is irradiated with a spot-like ultraviolet laser beam for photocuring. The process of laminating and forming layers is repeated until a three-dimensional object having a predetermined shape and size is obtained.

しかしながら、スポット状の紫外線レーザー光を用いる上記した従来法による場合は、1個のスポット状レーザー光を光硬化性樹脂組成物の表面に照射しながら移動させて面状の光硬化したパターンを形成する、いわゆる点描方式であるため、造形に長い時間を要し、生産性が低いという問題がある。しかも、光源として用いられる紫外線レーザー装置は極めて高価であるため、この種の光造形装置を高価格なものにしている。   However, in the case of the above-described conventional method using spot-like ultraviolet laser light, a surface-shaped photocured pattern is formed by moving one spot-like laser light while irradiating the surface of the photocurable resin composition. Since this is a so-called stippling method, there is a problem that it takes a long time for modeling and productivity is low. Moreover, since an ultraviolet laser device used as a light source is extremely expensive, this type of stereolithography apparatus is made expensive.

そこで、従来においては、光を選択的に透過または遮光する液晶シャッター(液晶マスク)を光硬化性樹脂の液面に対して平行に走向し得るように配置すると共に、液晶シャッターの走向範囲を複数に分割し、液晶シャッターをその分割された走向範囲の各々を順次走向させて各走向範囲の露光を行い、1層分の所定の断面形状パターンを有する光硬化層を形成する光造形装置が提案されている(例えば、特許文献1参照)。
特開平8−112863号公報
Therefore, conventionally, a liquid crystal shutter (liquid crystal mask) that selectively transmits or blocks light is arranged so as to be able to run parallel to the liquid surface of the photocurable resin, and a plurality of liquid crystal shutters have a running range. Proposing a stereolithography apparatus that divides the liquid crystal shutter into each of the divided strike ranges and exposes each strike range to form a photocured layer having a predetermined cross-sectional pattern for one layer. (For example, refer to Patent Document 1).
JP-A-8-112863

しかしながら、液晶シャッターの走向範囲を複数に分割し、各々の走向範囲ごとに露光を行って1層分の光硬化層を形成するため、各走向範囲間の境界部分で硬化状態が不連続になったり、或いは、不均一になり易く、それに伴って立体造形物全体の強度ムラや強度不足、外観不良を招き、立体造形物の品位が悪くなるといった問題があった。   However, since the strike range of the liquid crystal shutter is divided into a plurality of portions and exposure is performed for each strike range to form a photo-curing layer for one layer, the cured state becomes discontinuous at the boundary between the strike ranges. There is also a problem that the three-dimensional structure is liable to become non-uniform, resulting in uneven strength, insufficient strength, and poor appearance of the three-dimensional structure, resulting in poor quality of the three-dimensional structure.

本発明は、上述した事情に鑑みてなされたものであり、高品位な立体造形物を製造することのできる光造形装置及び光造形方法を提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and aims at providing the optical modeling apparatus and optical modeling method which can manufacture a high-quality three-dimensional molded item.

上記目的を達成するために、本発明は、未硬化樹脂層の表面に所定パターンを有するマスクを介して光を照射して1層分の光硬化層を形成し、当該光硬化層の表面に新たな未硬化樹脂層を形成すると共に、当該未硬化樹脂層に前記マスクを介して光を照射して光硬化層を形成する工程を繰り返して光硬化層を積層することにより立体造形物を形成する光造形装置において、前記マスクを介して照射された光による露光面を前記未硬化樹脂層の表面の一端側から他端側に向かって直線的に連続移動させながら光硬化エリアを形成し、この手順で互いに平行な連続移動方向で光硬化エリアを複数形成し、隣接する該光硬化エリアの境界を互いに重ねることにより重複露光された境界部分が形成されて1層分の前記光硬化層を形成し、前記光硬化層の表面に新たに1層分の光硬化層を前記手順で積層形成する場合、前記光硬化エリアを形成した連続移動方向に対して所定角度だけ連続移動方向を異ならせて新たな光硬化層を形成しつつ、前記光硬化層との間で境界部分が重なる交差点Oでの照射強度を減じて積層成形することを特徴とする。 In order to achieve the above object, the present invention forms a photocured layer for one layer by irradiating light through a mask having a predetermined pattern on the surface of the uncured resin layer, A new uncured resin layer is formed, and a three-dimensional structure is formed by laminating the photocured layer by repeating the process of irradiating the uncured resin layer with light through the mask to form the photocured layer. In the optical modeling apparatus, a photocuring area is formed while linearly moving the exposure surface by the light irradiated through the mask from one end side to the other end side of the surface of the uncured resin layer, the photocurable area parallel continuous moving directions in this procedure to form a plurality, the photocurable layer boundaries overlap the exposed boundary portion by the overlap one another adjacent the light curing area is formed one layer of Forming and photocuring layer If newly laminated photocurable layer of one layer in the procedure to the surface, forming a new photo hardening layers with different continuous movement direction by a predetermined angle with respect to the direction of the continuous movement of forming the light curing area while being characterized by laminate molding by subtracting the irradiation intensity at the intersection O overlapping the boundary between the photocurable layer.

また本発明は、上記発明において、前記光硬化層の表面に新たに光硬化層を積層形成する場合には、前記露光面の連続移動方向を常に異ならせるようにしたことを特徴とする。   The present invention is characterized in that, in the above invention, when a photocured layer is newly formed on the surface of the photocured layer, the continuous movement direction of the exposure surface is always different.

また本発明は、上記発明において、前記露光面の連続移動方向を異ならせる場合、前記露光面の連続移動方向が互いに直交するようにしたことを特徴とする。   The present invention is characterized in that, in the above invention, when the continuous movement direction of the exposure surface is different, the continuous movement directions of the exposure surface are orthogonal to each other.

また本発明は、上記発明において、前記マスクは、微小ドットエリアでの遮光及び透光が可能な複数の微小光シャッターが面状に配置され、これらの微小光シャッターによりマスク画像を形成する面状マスクであり、前記未硬化樹脂層の表面に対する前記露光面の連続移動と同期して、形成すべきパターンに応じて前記マスク画像を連続的に変化させることを特徴とする。   Further, the present invention is the above-described invention, wherein the mask has a planar shape in which a plurality of minute light shutters capable of shielding and transmitting light in a minute dot area are arranged in a planar shape, and a mask image is formed by these minute light shutters. It is a mask, and the mask image is continuously changed according to a pattern to be formed in synchronization with the continuous movement of the exposure surface with respect to the surface of the uncured resin layer.

また上記目的を達成するために、本発明は、未硬化樹脂層の表面に所定パターンを有するマスクを介して光を照射して1層分の光硬化層を形成し、当該光硬化層の表面に新たな未硬化樹脂層を形成すると共に、当該未硬化樹脂層に前記マスクを介して光を照射して光硬化層を形成する工程を繰り返して光硬化層を積層することにより立体造形物を形成する光造形方法において、前記マスクを介して照射された光による露光面を前記未硬化樹脂層の表面の一端側から他端側に向かって直線的に連続移動させながら光硬化エリアを形成し、この手順で互いに平行な連続移動方向で光硬化エリアを複数形成し、隣接する該光硬化エリアの境界を互いに重ねることにより重複露光された境界部分が形成されて1層分の前記光硬化層を形成し、前記光硬化層の表面に新たに1層分の光硬化層を前記手順で積層形成する場合、前記光硬化エリアを形成した連続移動方向に対して所定角度だけ連続移動方向を異ならせて新たな光硬化層を形成しつつ、前記光硬化層との間で境界部分が重なる交差点Oでの照射強度を減じて積層成形することを特徴とする。 In order to achieve the above object, according to the present invention, the surface of the uncured resin layer is irradiated with light through a mask having a predetermined pattern to form a photocured layer for one layer. Forming a new uncured resin layer and irradiating the uncured resin layer with light through the mask to form a photocured layer, and then laminating the photocured layer to form a three-dimensional structure. In the optical modeling method to be formed, a photocuring area is formed while linearly continuously moving an exposure surface by light irradiated through the mask from one end side to the other end side of the surface of the uncured resin layer. the photocurable area parallel continuous moving directions in this procedure to form a plurality, the photocurable layer boundaries overlap the exposed boundary portion by the overlap one another adjacent the light curing area is formed one layer Forming the light hard For new laminated photocurable layer of one layer in the procedure the surface of the layer, a new photo hardening layers with different continuous movement direction by a predetermined angle with respect to the direction of the continuous movement of forming the light curing area And forming the laminate by reducing the irradiation intensity at the intersection O where the boundary portion overlaps with the photocured layer.

本発明によれば、高品位な立体造形物を製造することが可能となる。   According to the present invention, it is possible to manufacture a high-quality three-dimensional structure.

以下、図面を参照して本発明の一実施の形態について詳細に説明する。図1は本実施の形態に係る光造形装置100の外観構成を示す図である。この図に示すように、光造形装置100は、大別して、液状の光硬化性樹脂組成物が満たされる造形浴槽10と、当該光硬化性樹脂組成物に対して上方から光を照射する光照射装置20とを備えている。上記造形浴槽10の内部には、造形テーブル11が昇降機構30により昇降可能に配置されている。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an external configuration of an optical modeling apparatus 100 according to the present embodiment. As shown in this figure, the optical modeling apparatus 100 is roughly divided into a modeling bath 10 filled with a liquid photocurable resin composition, and light irradiation for irradiating light on the photocurable resin composition from above. Device 20. Inside the modeling bath 10, the modeling table 11 is arranged so as to be lifted and lowered by the lifting mechanism 30.

上記造形テーブル11は、立体造形物を製造する際に、図2に示すように、造形浴槽10に満たされた液状の光硬化性樹脂組成物の液面12から所定距離dだけ引き下げられて、当該造形テーブル11の面上に、立体造形物の1層分に相当する液状の光硬化性樹脂層、すなわち、未硬化の光硬化性樹脂層(以下、「造形面5」という)が形成される。そして、光照射装置20が造形面5に対して光を照射することで造形面5を光硬化させて、立体造形物の1層分に相当する光硬化層を形成する。その後、造形テーブル11を更に所定距離dだけ引き下げて、先に形成した光硬化層の上面に1層分の造形面5を形成し、上記と同様に、光照射装置20が造形面5に対して光を照射することで、先に形成した光硬化層の上に新たに1層分の光硬化層を積層形成する。また、各光硬化層を形成する際には、光照射装置20が所定パターンの光を造形面5に照射することで各光硬化層が所定パターンに形成され、かかる光硬化層を積層形成することで目的の立体造形物が製造される。   When manufacturing the three-dimensional modeled object, the modeling table 11 is pulled down from the liquid surface 12 of the liquid photocurable resin composition filled in the modeling bath 10 by a predetermined distance d, as shown in FIG. On the surface of the modeling table 11, a liquid photocurable resin layer corresponding to one layer of the three-dimensional modeled object, that is, an uncured photocurable resin layer (hereinafter referred to as “modeling surface 5”) is formed. The And the light irradiation apparatus 20 photocures the modeling surface 5 by irradiating light with respect to the modeling surface 5, and forms the photocuring layer corresponded to 1 layer of a three-dimensional molded item. Thereafter, the modeling table 11 is further lowered by a predetermined distance d to form a modeling surface 5 for one layer on the upper surface of the previously formed photocured layer, and the light irradiation device 20 is applied to the modeling surface 5 in the same manner as described above. By irradiating with light, a photocurable layer for one layer is newly laminated on the previously formed photocured layer. Moreover, when forming each photocured layer, each photocured layer is formed in a predetermined pattern by the light irradiation device 20 irradiating the modeling surface 5 with a predetermined pattern of light, and the photocured layer is laminated. Thus, the target three-dimensional model is manufactured.

上記光照射装置20の構成について詳述すると、図3に示すように、光照射装置20は、光源1と、集光レンズ2と、面状描画マスク3と、投影レンズ4とを備えている。光源1は、液状の光硬化性樹脂組成物に光を照射して光硬化層を形成するものであり、例えば超高圧水銀ランプや、メタルハライドランプ、或いは紫外線蛍光灯等の紫外線ランプが用いられる。光源1の光放射端1aは全体的に球面を帯びた形状になされ、当該光放射端1aから出射された光が所定の拡散角を持って拡散し集光レンズ2に入射する。   The configuration of the light irradiation device 20 will be described in detail. As shown in FIG. 3, the light irradiation device 20 includes a light source 1, a condenser lens 2, a planar drawing mask 3, and a projection lens 4. . The light source 1 irradiates a liquid photocurable resin composition with light to form a photocured layer. For example, an ultra-high pressure mercury lamp, a metal halide lamp, or an ultraviolet lamp such as an ultraviolet fluorescent lamp is used. The light emitting end 1 a of the light source 1 is formed in a spherical shape as a whole, and the light emitted from the light emitting end 1 a is diffused with a predetermined diffusion angle and enters the condenser lens 2.

集光レンズ2は、入射光を集光して投影レンズ4に対して照射するものであり、投影レンズ4は、液状の光硬化性樹脂組成物の液面に光を照射して、当該光硬化性樹脂組成物を光硬化させる。上記面状描画マスク3は、図3に示すように、集光レンズ2と投影レンズ4との間に、その全面に光が照射されるように介挿される。すなわち、集光レンズ2から放射された光うち、面状描画マスク3のマスク画像(マスクパターン)を通過した光が造形面5に照射されて露光面を形成し、その露光面が光硬化することで、造形面5にマスク画像に応じたパターンの光硬化層(以下、「露光像」という)6が形成される。   The condensing lens 2 collects incident light and irradiates the projection lens 4 with light, and the projection lens 4 irradiates the liquid surface of the liquid photocurable resin composition with light. The curable resin composition is photocured. As shown in FIG. 3, the planar drawing mask 3 is interposed between the condenser lens 2 and the projection lens 4 so that the entire surface is irradiated with light. That is, of the light emitted from the condenser lens 2, the light that has passed through the mask image (mask pattern) of the planar drawing mask 3 is irradiated onto the modeling surface 5 to form an exposure surface, and the exposure surface is photocured. Thus, a photocuring layer (hereinafter referred to as “exposure image”) 6 having a pattern corresponding to the mask image is formed on the modeling surface 5.

面状描画マスク3について詳述すると、当該面状描画マスク3は、微小ドットエリアでの遮光及び透光が可能な複数の微小光シャッターが面状に配置され、これらの微小光シャッターによりマスク画像を形成する面状マスクであり、本実施の形態では、この面状描画マスク3に、液晶式の面状描画マスクを用いて面状描画マスク3のマスク画像を適宜変更することで、所望のパターンを有する露光像6を得ることとしている。かかる面状描画マスク3としては、例えばカシオ社製のTFT方式VGA(640×480画素)の液晶を用いることができる。   The planar drawing mask 3 will be described in detail. In the planar drawing mask 3, a plurality of minute light shutters capable of shielding and transmitting light in minute dot areas are arranged in a planar shape, and a mask image is formed by these minute light shutters. In this embodiment, the mask image of the surface drawing mask 3 is appropriately changed to the surface drawing mask 3 by using a liquid crystal type surface drawing mask. An exposure image 6 having a pattern is obtained. As the planar drawing mask 3, for example, a TFT-type VGA (640 × 480 pixels) liquid crystal manufactured by Casio Co., Ltd. can be used.

ここで、本実施の形態では、面状描画マスク3を固定した状態で造形面5の全体に一括露光して一層分の光硬化層を一度に形成するのではなく、図3に示すように、面状描画マスク3として、目的の光硬化層の全幅、或いは、造形面5の全幅よりも幅寸法の小さい面状描画マスク3を用いると共に、面状描画マスク3を移動させて、造形面5内で光照射位置、すなわち、露光面を連続移動させることで露光像6を順次形成して、一層分の光硬化層を形成することとしている(なお、図3には造形面5の幅の約半分の幅を有する画状描画マスク3を用いた場合を例示する)。   Here, in the present embodiment, as shown in FIG. 3, instead of forming a single layer of photocured layer at a time by performing batch exposure on the entire modeling surface 5 with the planar drawing mask 3 fixed. As the planar drawing mask 3, a planar drawing mask 3 having a width smaller than the entire width of the target photocured layer or the modeling surface 5 is used, and the planar drawing mask 3 is moved to form a modeling surface. 5, the exposure image 6 is sequentially formed by continuously moving the light irradiation position, that is, the exposure surface, to form a photo-curing layer for one layer (in FIG. 3, the width of the modeling surface 5 is shown). The case where the image drawing mask 3 having a width of about half of the above is used is illustrated).

光照射位置、すなわち、露光面の連続移動のための構成について詳述すると、図1に示すように、光造形装置100は、造形浴槽10の上方に配置された、上記光照射装置20をX−Y軸の2軸に移動させるためのX軸ガイドレール40及びY軸ガイドレール41とを有している。これらのガイドレール40、41には、上記光照射装置20を支持する支持プレート42が移動可能に連結されている。また、この支持プレート42は、図示せぬモータ駆動回路を介してコンピュータ50によってフィードバック制御されるX軸サーボモータ43及びY軸サーボモータ44と連結されており、これらのサーボモータ43、44の駆動によって支持プレート42と共に上記光照明装置20がX−Y軸に沿って、すなわち、造形面5に対して平行に移動する。   The light irradiation position, that is, the configuration for continuous movement of the exposure surface will be described in detail. As shown in FIG. 1, the optical modeling apparatus 100 includes the light irradiation apparatus 20 arranged above the modeling bath 10 as X. -It has the X-axis guide rail 40 and the Y-axis guide rail 41 for moving to 2 axes | shafts of a Y-axis. A support plate 42 that supports the light irradiation device 20 is movably connected to the guide rails 40 and 41. The support plate 42 is connected to an X-axis servo motor 43 and a Y-axis servo motor 44 that are feedback-controlled by the computer 50 via a motor drive circuit (not shown). As a result, the light illuminating device 20 moves together with the support plate 42 along the XY axis, that is, parallel to the modeling surface 5.

一方、面状描画マスク3には、光照射装置20の連続移動と同期して、マスク画像データがコンピュータ50から動画的に連続変化するように出力される。具体的には、コンピュータ50は、立体造形物の各光硬化層ごとに、形成すべきパターン画像を予め記憶装置(例えばハードディスク装置等)に記憶しており、X軸サーボモータ43及びY軸サーボモータ44の駆動させて光照射装置20を連続移動させるのに伴って、面状描画マスク3に対して、露光面に応じたマスク画像を順次出力し、当該面状描画マスク3のマスク画像を動画的に変化させる。これにより、光照射装置20の連続移動に伴って、造形面5内に所定パターンを有する露光像6が連続的に形成される。   On the other hand, in synchronism with the continuous movement of the light irradiation device 20, the mask image data is output from the computer 50 to the planar drawing mask 3 so as to continuously change in a moving image. Specifically, the computer 50 stores a pattern image to be formed in advance in a storage device (for example, a hard disk device or the like) for each photocured layer of the three-dimensional structure, and the X-axis servo motor 43 and the Y-axis servo. As the light irradiation device 20 is continuously moved by driving the motor 44, a mask image corresponding to the exposure surface is sequentially output to the planar drawing mask 3, and the mask image of the planar drawing mask 3 is output. Change like a movie. Thereby, the exposure image 6 which has a predetermined pattern in the modeling surface 5 is continuously formed with the continuous movement of the light irradiation apparatus 20.

この露光像6の連続的形成について図4を参照して、より詳細に説明すると、光造形装置100は、先ず、図4の(1)に示すように、面状描画マスク3が造形面5の端部5aにくるように位置させる。このとき、面状描画マスク3には、造形浴槽10への光照射を遮るべく、全面黒色等の全面遮光パターンがコンピュータ50から出力される。次いで図4の(2)〜(5)に示すように、露光面を造形面5のもう一方の端部5bの方向へと、造形面5に対して平行状態で直線的に連続移動させる。その際、面状描画マスク3によるマスク画像は、光照射位置及び形成すべきパターンに応じて動画的に連続的に変化し、該マスク画像に対応した光が造形面5に照射されて露光像6が連続的に形成される。   The continuous formation of the exposure image 6 will be described in more detail with reference to FIG. 4. First, as shown in FIG. 4 (1), the optical modeling apparatus 100 is configured so that the planar drawing mask 3 is the modeling surface 5. It is located so that it may come to the edge part 5a. At this time, the entire surface light-shielding pattern such as the entire surface black is output from the computer 50 to the surface drawing mask 3 so as to block the light irradiation to the modeling bath 10. Next, as shown in FIGS. 4 (2) to (5), the exposure surface is continuously moved linearly in a parallel state with respect to the modeling surface 5 in the direction of the other end 5 b of the modeling surface 5. At that time, the mask image by the planar drawing mask 3 continuously changes in a moving image according to the light irradiation position and the pattern to be formed, and light corresponding to the mask image is irradiated onto the modeling surface 5 to expose the exposure image. 6 are formed continuously.

そして、図4の(5)に示すように、光照射位置が造形面5の端部5bの外側に位置したときには、当該造形面5には、形成すべき所定パターンの半幅分の露光像6が形成されているので、その段階で、露光面を造形面5の残り半幅分の位置に移動し(図4の(6))、その位置から図4の(6)〜(10)に示すように、造形面5の端部5bから造形面5の端部5a側へと露光面を連続移動させ、上記と同様にして、露光像6を連続的に形成する。これによって、造形面5に、図5に示すように、形成すべき所定パターン(断面形状パターン)を有する1層分の光硬化層9が形成される。   As shown in FIG. 4 (5), when the light irradiation position is located outside the end portion 5b of the modeling surface 5, an exposure image 6 corresponding to a half width of the predetermined pattern to be formed is formed on the modeling surface 5. In this stage, the exposure surface is moved to a position corresponding to the remaining half width of the modeling surface 5 ((6) in FIG. 4), and the positions shown in (6) to (10) in FIG. As described above, the exposure surface is continuously moved from the end portion 5b of the modeling surface 5 to the end portion 5a side of the modeling surface 5, and the exposure image 6 is continuously formed in the same manner as described above. As a result, as shown in FIG. 5, one layer of the photocured layer 9 having a predetermined pattern (cross-sectional shape pattern) to be formed is formed on the modeling surface 5.

なお、上記の説明では、露光面を造形面5の一端の端部5aから他端の端部5bとの間で一往復させて1層分の光硬化層を形成する場合について例示したが、これに限らず、光照射面積(露光面積)と造形面5の面積に応じて、当該造形面5内で露光面を複数回往復させて1層分の光硬化層9を形成しても良い。また、上記の説明では、露光面の往路と復路との各々で光照射を行うことで造形面5内に露光像6を順次形成する場合を例示したが、これに限らず、往路または復路のみで光照射を行って光照射を行って、露光像6を順次形成する構成としても良い。例えば、この構成においては、露光面を造形面5の一端の端部5aから他端の端部5bまで連続移動させて露光像6を順次形成した後、光照射を行わずに光照射位置を端部5bから端部5aまで移動させ、そして、先に形成した露光像6と隣接する位置に露光面をずらし、再び、端部5aから他端の端部5bまで連続移動させて露光像6を順次形成する。そして、かかる工程を繰り返し行い、一層分の光硬化層9を形成する。   In the above description, the exposure surface is illustrated as a case where one photocuring layer is formed by reciprocating between the end 5a at one end of the modeling surface 5 and the end 5b at the other end. Not only this but according to the light irradiation area (exposure area) and the area of the modeling surface 5, you may form the photocured layer 9 for one layer by reciprocating the exposure surface in the modeling surface 5 several times. . In the above description, the case where the exposure image 6 is sequentially formed in the modeling surface 5 by irradiating light on each of the outward path and the return path of the exposure surface is illustrated, but not limited thereto, only the forward path or the return path. It is good also as a structure which performs light irradiation and performs light irradiation and forms the exposure image 6 sequentially. For example, in this configuration, the exposure surface is continuously moved from one end 5a to the other end 5b of the modeling surface 5 to sequentially form the exposure images 6, and then the light irradiation position is set without performing light irradiation. The exposure surface 6 is moved from the end portion 5b to the end portion 5a, and the exposure surface is shifted to a position adjacent to the previously formed exposure image 6, and continuously moved again from the end portion 5a to the end portion 5b at the other end. Are sequentially formed. And this process is repeated and the photocured layer 9 for one layer is formed.

ところで、本実施の形態では、造形面5内で露光面を往復させて露光像6を順次形成する際に、図6に示すように、N回目の露光面の連続移動によって光硬化させた光硬化エリアANと、N+1回目の露光面の連続移動によって光硬化させた光硬化エリアAN+1との境界部分BNに重複するように光照射を行うことで各光硬化エリアA同士の接合強度を向上させるようにしている。 By the way, in this Embodiment, when reciprocating an exposure surface within the modeling surface 5 and forming the exposure image 6 sequentially, as shown in FIG. 6, the light hardened | cured by the continuous movement of the Nth exposure surface. a curing area a N, N + 1 th exposure surface continuous movement by the respective light-curing area a together by irradiating light to overlap the boundary portion B N of the photocurable area a N + 1 obtained by photocured The joining strength is improved.

しかしながら、このように境界部分Bで光照射を重複させつつ一層の光硬化層9を形成し、これを多層に積層して目的とする立体造形物を形成した場合、各境界部分Bに、線、筋、突条などが出現し、立体造形物の外観が不良になり易く、また、場合によっては寸法精度の低下や強度ムラなどが生じ易くなる。そこで、本実施の形態では、光硬化エリアA間の境界部分Bが立体造形物に線、筋、突状などとして出現を防止するために、光硬化エリアA間の境界部分Bが、最終的に得られる立体造形物において目立たないようにして光造形を行うべく、次のようにしている。   However, when the light-curing layer 9 is formed while overlapping the light irradiation in the boundary portions B as described above, and the desired three-dimensional object is formed by laminating the light-cured layers 9, the line portions are formed on the boundary portions B. In addition, streaks, ridges, and the like appear, the appearance of the three-dimensional structure tends to be poor, and in some cases, a decrease in dimensional accuracy and unevenness in strength tend to occur. Therefore, in the present embodiment, in order to prevent the boundary portion B between the photocuring areas A from appearing as lines, streaks, protrusions, or the like on the three-dimensional object, the boundary portion B between the photocuring areas A is finally In order to perform stereolithography so that it is not conspicuous in the three-dimensional model obtained in the following manner, the following is performed.

すなわち、図7に示すように、上下の光硬化層9の間で露光面の連続移動方向を互いに異ならせることで、光硬化エリアA間の境界部分Bの位置を上下に積層する際に互いにずれるようにし、これにより、上下の光硬化層9の間で境界部分Bが同じ箇所に集中するのを防止して、最終的に得られる立体造形物に線、筋、突条などが発生するのを防止している。   That is, as shown in FIG. 7, by changing the continuous movement direction of the exposure surface between the upper and lower photocuring layers 9, the positions of the boundary portions B between the photocuring areas A are mutually stacked. As a result, the boundary portion B is prevented from concentrating at the same location between the upper and lower light-curing layers 9, and lines, streaks, ridges, etc. are generated in the finally obtained three-dimensional object. Is preventing.

露光面の連続移動方向を上下の光硬化層9の間で互いに異ならせるための構成について詳述すると、コンピュータ50には、1層分の光硬化層9を形成した後、次の光硬化層9を形成する際に、露光面の連続移動方向を所定角度(図7の例では90度)だけ変更して、先の光硬化層9を形成したときの露光面の連続移動方向と異ならせるように予めプログラミングされている。また、露光面を連続移動させた際には、コンピュータ50が面状描画マスク3に対して、露光面の連続移動方向に即したマスク画像を動画的に順次出力するようになされている。   The configuration for making the continuous movement direction of the exposure surface different between the upper and lower photocuring layers 9 will be described in detail. After the photocuring layer 9 for one layer is formed in the computer 50, the next photocuring layer is formed. When forming 9, the continuous movement direction of the exposure surface is changed by a predetermined angle (90 degrees in the example of FIG. 7) to be different from the continuous movement direction of the exposure surface when the previous photocured layer 9 is formed. Is programmed in advance. Further, when the exposure surface is continuously moved, the computer 50 sequentially outputs a mask image corresponding to the continuous movement direction of the exposure surface to the planar drawing mask 3 in a moving image manner.

このような構成の下、立体造形物を製造する場合には、例えば図7に示すように、先ず、造形面5内でY軸方向に露光面を往復移動させて、当該Y軸方向に伸びる光硬化エリアAをX軸方向に順次連接するように形成して1層の光硬化層9を形成する。次いで、その上層に光硬化層9を形成する際には、X軸方向に露光面を往復移動させて、当該X軸方向に伸びる光硬化エリアAをY軸方向に順次連接するように形成して上層の光硬化層9を形成する。こうすることで、図8に示すように、立体造形物の側面をみたときに、上下の光硬化層9の間で境界部分Bが同じ箇所に集中するのを防止でき、以って、最終的に得られる立体造形物に線、筋、突条などが発生すのを防止することができる。この結果、外観および寸法精度に優れ、しかも強度ムラや硬化ムラの低減した立体造形物が得られる。   When manufacturing a three-dimensional molded article under such a configuration, for example, as shown in FIG. 7, first, the exposure surface is reciprocated in the Y-axis direction within the modeling surface 5, and extends in the Y-axis direction. The photocuring area A is formed so as to be successively connected in the X-axis direction to form one photocuring layer 9. Next, when the photocuring layer 9 is formed on the upper layer, the exposure surface is reciprocated in the X-axis direction so that the photocuring areas A extending in the X-axis direction are sequentially connected in the Y-axis direction. Then, the upper photo-curing layer 9 is formed. By doing so, as shown in FIG. 8, when the side surface of the three-dimensional structure is viewed, it is possible to prevent the boundary portion B from being concentrated at the same location between the upper and lower photocured layers 9, and thus the final It is possible to prevent lines, streaks, ridges and the like from being generated in a three-dimensionally shaped object that is obtained in an automated manner. As a result, it is possible to obtain a three-dimensionally shaped article that is excellent in appearance and dimensional accuracy and has reduced strength unevenness and curing unevenness.

なお、上述した説明では、上下の光硬化層9の間で、露光面の連続移動方向が直交するようにしたが、これに限らず、例えば、光照射装置20を多軸に移動可能な構成とし、光硬化層9を一層形成するごとに、例えば図9に示すように、露光面の連続移動方向を所定角度θだけ回転させながら、光硬化層9を積層形成する構成としても良い。この構成によれば、光硬化層9を積層形成したときに、光硬化層9の間で境界部分Bが交差する交差点Oが高さ方向に異ならせることができる。   In the above description, the continuous movement direction of the exposure surface is made orthogonal between the upper and lower photocuring layers 9, but this is not a limitation, for example, a configuration in which the light irradiation device 20 can be moved in multiple axes. Each time the photocured layer 9 is formed, the photocured layer 9 may be laminated while rotating the direction of continuous movement of the exposure surface by a predetermined angle θ as shown in FIG. 9, for example. According to this structure, when the photocuring layer 9 is laminated and formed, the intersection O where the boundary portion B intersects between the photocuring layers 9 can be varied in the height direction.

また、光硬化層9の間で境界部分Bが交差する交差点Oで強度ムラなどが生じるのを防止すべく、交差点Oの光照射強度の合計が、交差点O以外の部分における光照射強度と同じか、或いは、それと近似した光照射強度となるように、光照射を行う構成としても良い。この構成について詳述すると、コンピュータ50に、光硬化層9ごとに交差点Oの位置情報を予め格納すると共に、露光面を連続移動させたときに、交差点Oでのへの透過光を低減するマスク画像を面状描画マスク3に発現させるように、コンピュータ50に予めプログラミングしておく。これにより、各光硬化層間で境界部分Bが交差する交差点Oで強度ムラや硬化ムラが生じるのを防止することができる。   In addition, in order to prevent unevenness in intensity at the intersection O where the boundary portion B intersects between the photocured layers 9, the total light irradiation intensity at the intersection O is the same as the light irradiation intensity at portions other than the intersection O. Alternatively, the light irradiation may be performed so that the light irradiation intensity approximates that. This configuration will be described in detail. The position information of the intersection O for each photocuring layer 9 is stored in the computer 50 in advance, and the transmitted light to the intersection O is reduced when the exposure surface is continuously moved. The computer 50 is programmed in advance so that the image is developed on the planar drawing mask 3. Thereby, it is possible to prevent unevenness in strength and unevenness of curing from occurring at the intersection O where the boundary portion B intersects between the photocuring layers.

以上説明したように、本実施の形態によれば、露光面を未硬化樹脂層である造形面5の表面の一端5aから他端5bに向かって直線的に連続移動させながら光硬化エリアAを形成し、この手順で形成した光硬化エリアAを隣接するように複数形成して1層分の光硬化層9を形成し、この光硬化層9の表面に更に光硬化層9を積層形成する場合に、露光面の連続移動方向を異ならせるようにしたため、製造された立体造形物の側面をみたときに、上下の光硬化層9の間で境界部分Bが同じ箇所に集中するのを防止でき、以って、最終的に得られる立体造形物に線、筋、突条などが発生すのを防止することができる。この結果、外観および寸法精度に優れ、しかも強度ムラや硬化ムラの低減した高品位な立体造形物が得られる。   As described above, according to the present embodiment, the photocuring area A is moved while linearly continuously moving the exposed surface from one end 5a to the other end 5b of the surface 5 of the modeling surface 5 that is an uncured resin layer. A plurality of photocuring areas A formed in this procedure are formed so as to be adjacent to each other to form one photocured layer 9, and a photocured layer 9 is further laminated on the surface of the photocured layer 9. In this case, since the continuous movement direction of the exposure surface is changed, it is possible to prevent the boundary portion B from being concentrated at the same position between the upper and lower photocured layers 9 when the side surface of the manufactured three-dimensional structure is viewed. Therefore, it is possible to prevent lines, streaks, ridges and the like from being generated in the finally obtained three-dimensional structure. As a result, it is possible to obtain a high-quality three-dimensional structure that is excellent in appearance and dimensional accuracy and has reduced strength unevenness and curing unevenness.

また、1層分の光硬化層9を形成する際に、露光面を造形面5に対して連続移動させながら光硬化エリアAを形成し、この光硬化エリアAが隣接するように複数形成して1層分の光硬化層9を形成するようにしたことにより、光源1として、高価な紫外線レーザー装置に代えてを紫外線ランプ等の比較的安価な光源を用いることができるため、装置コストを下げることができる。   Moreover, when forming the photocuring layer 9 for one layer, the photocuring area A is formed while continuously moving the exposure surface with respect to the modeling surface 5, and a plurality of the photocuring areas A are formed so as to be adjacent to each other. By forming the photo-curing layer 9 for one layer, a relatively inexpensive light source such as an ultraviolet lamp can be used as the light source 1 instead of an expensive ultraviolet laser device. Can be lowered.

なお、上述した実施の形態では、光硬化層9の表面に更に光硬化層9を積層形成する場合に、露光面の連続移動方向を常に異ならせるようにしたが、これに限らない。すなわち、例えば一層の光硬化層9の厚みが非常に薄く、ある程度の層数を積層形成しても境界部分Bによって線や筋、突条などが目立たなければ、露光面の連続移動方向を異ならせるように複数の光硬化層9を積層形成した後に、1或いは複数の光硬化層9を、露光面の連続移動方向を同一として積層形成する構成としても良い。   In the above-described embodiment, when the photocured layer 9 is further formed on the surface of the photocured layer 9, the continuous movement direction of the exposure surface is always different, but the present invention is not limited to this. That is, for example, if the thickness of one layer of the light-curing layer 9 is very thin and a line, streak, protrusion, etc. are not noticeable by the boundary portion B even if a certain number of layers are laminated, the direction of continuous movement of the exposure surface is different. Alternatively, after a plurality of photocured layers 9 are laminated and formed, one or a plurality of photocured layers 9 may be laminated and formed with the same continuous movement direction of the exposure surface.

また本実施の形態によれば、露光面の連続移動方向を異ならせる場合に、露光面の連続移動方向が直交するようにしたことにより、製造された立体造形物の一側面内に存在する境界部分Bの数を減らすことができるため、外観の優れた立体造形物を得ることができる。   In addition, according to the present embodiment, when the continuous movement direction of the exposure surface is changed, the boundary that exists in one side surface of the manufactured three-dimensional structure is obtained by making the continuous movement direction of the exposure surface orthogonal. Since the number of the parts B can be reduced, a three-dimensional molded article having an excellent appearance can be obtained.

また、本実施の形態によれば、マスクとして、微小ドットエリアでの遮光及び透光が可能な複数の微小光シャッターが面状に配置され、これらの微小光シャッターによりマスク画像を形成する面状描画マスク3を用いる構成としたため、露光面積を拡大することができ、これにより、例えばスポット状のレーザー光を造形面5内で走査させてパターンを形成する、いわゆる点描画方式に比べて、造形に要する時間を短縮し、生産性を高めることが可能となる。   Further, according to the present embodiment, as a mask, a plurality of minute light shutters that can shield and transmit light in minute dot areas are arranged in a planar shape, and a planar shape that forms a mask image by these minute light shutters. Since the drawing mask 3 is used, the exposure area can be increased, and, for example, compared with a so-called point drawing method in which a spot-shaped laser beam is scanned in the modeling surface 5 to form a pattern. It is possible to shorten the time required for increasing the productivity.

また、本実施の形態によれば、面状描画マスク3が、造形面5に対する露光面の連続移動と同期して、形成すべきパターンに応じてマスク画像を連続的に変化させる構成としたため、小型、中型の立体造形物は勿論のこと、大型の立体造形物であっても、高い造形制度で、且つ、硬化ムラの発生を防止しながら、高品位な立体造形物を速い造形速度で生産性良く製造することができる。   In addition, according to the present embodiment, the planar drawing mask 3 is configured to continuously change the mask image according to the pattern to be formed in synchronization with the continuous movement of the exposure surface with respect to the modeling surface 5. Produces high-quality three-dimensional models at a high molding speed, not only for small and medium-sized three-dimensional models, but also for large three-dimensional models, with a high modeling system and prevention of uneven curing. It can be manufactured with good performance.

(変形例)
上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形可能である。そこで以下に、各種の変形例について説明する。
(Modification)
The above-described embodiments merely show one aspect of the present invention, and can be arbitrarily modified within the scope of the present invention. Therefore, various modifications will be described below.

(変形例1)
上述した実施の形態では、光硬化層9を積層形成する場合に、各光硬化層9の間で、露光面の連続移動方向を異ならせる構成について例示したが、図10に示すように、1つの光硬化層9の中で、露光面を交差させるようにして、1つの光硬化層9を形成する構成としても良い。すなわち、この構成においては、露光面を造形面5(未硬化樹脂層)の表面の一端側から他端側に向かって直線的に連続移動させながら光硬化エリアを形成し、この手順で形成した光硬化エリアを隣接するように複数形成するとともに、複数の光硬化エリアが形成された造形面5の表面に対して、更に光を照射して1層分の光硬化層9を形成する場合に、先の連続移動方向と異なる方向に露光面を直線的に連続移動させるようにする。このとき、露光面の連続移動によって形成される各光硬化エリアは、隣接する光硬化エリアと一部が重なって境界Bが形成される。
このような構成とすることで、露光面を一方向に複数回にわたって連続移動させて複数の光硬化エリアを形成した後に、更に、この上に光照射を行って、1層の光硬化層9を形成する場合、露光面の連続移動方向を先の連続移動方向と異ならせることで、1層の中での露光ムラや硬化強度を低減することができる。この結果、外観および寸法精度に優れ、しかも強度ムラや硬化ムラの低減した立体造形物が得られる。
(Modification 1)
In the above-described embodiment, when the photocuring layer 9 is laminated, the configuration in which the continuous movement direction of the exposure surface is different between the photocuring layers 9 is illustrated, but as shown in FIG. It is good also as a structure which forms the one photocured layer 9 so that an exposure surface may be made to cross | intersect in the one photocured layer 9. FIG. That is, in this structure, the photocuring area was formed while moving the exposure surface linearly continuously from one end side to the other end side of the surface of the modeling surface 5 (uncured resin layer), and formed in this procedure. When a plurality of photocuring areas are formed adjacent to each other, and the surface of the modeling surface 5 on which the plurality of photocuring areas are formed is further irradiated with light to form one photocuring layer 9. The exposure surface is continuously moved linearly in a direction different from the previous continuous movement direction. At this time, each photocuring area formed by continuous movement of the exposure surface partially overlaps with an adjacent photocuring area to form a boundary B.
By adopting such a configuration, after the exposure surface is continuously moved in one direction a plurality of times to form a plurality of photocured areas, light irradiation is further performed thereon to form one photocured layer 9. In the case of forming, the exposure unevenness and the curing strength in one layer can be reduced by making the continuous movement direction of the exposure surface different from the previous continuous movement direction. As a result, it is possible to obtain a three-dimensionally shaped article that is excellent in appearance and dimensional accuracy and has reduced strength unevenness and curing unevenness.

(変形例2)
上述した実施の形態では、光源1からの光を直接集光レンズ2に照射する構成としたが、これに限らず、図11に示すように、光源1からの光を、光伝送機構60を介して集光レンズ2に導く構成としても良い。具体的には、光伝送機構60は、光源1からの光をライン状にして出力するロッドレンズ61と、当該ロッドレンズ61から出力されたライン状の光を拡散させる結像レンズ62と、当該結像レンズ62により拡散された光を集光レンズ2に向けて照射する反射鏡63とを有している。このように、光伝送機構60を介して光源1の光を集光レンズ2に伝達する構成とすることで、光源1と集光レンズ2とを離間配置することができると共に、光源1の光軸と集光レンズ2との光軸とを合致させる必要がなく、光学系のレイアウトが柔軟になる。
(Modification 2)
In the above-described embodiment, the condensing lens 2 is directly irradiated with light from the light source 1. However, the present invention is not limited to this, and as shown in FIG. It is good also as a structure led to the condensing lens 2 via this. Specifically, the light transmission mechanism 60 includes a rod lens 61 that outputs light from the light source 1 in a line shape, an imaging lens 62 that diffuses the line light output from the rod lens 61, And a reflecting mirror 63 that irradiates the light diffused by the imaging lens 62 toward the condenser lens 2. As described above, the configuration in which the light from the light source 1 is transmitted to the condenser lens 2 via the light transmission mechanism 60 enables the light source 1 and the condenser lens 2 to be spaced apart from each other, and the light from the light source 1 to be disposed. There is no need to match the axis and the optical axis of the condenser lens 2, and the layout of the optical system becomes flexible.

なお、光伝送機構60は上記の構成に限らず、図12に示すように、光伝送機構60として光ファイバー64(ライドガイドでも良い)を用い、光源1からの光を当該光ファイバー64内を導波させて、当該光ファイバー64の出射端64aから集光レンズ2に向けて光を照射する構成としても良い。このように、光伝送機構60に光ファイバー64等の可撓性材を用いることにより、造形面5内で光照射位置を連続移動させる際に、光源1を所定の位置に固定配置したまま、光伝送機構60を集光レンズ2、面状描画マスク3および投影レンズ4と共に連続移動させることができる。   The optical transmission mechanism 60 is not limited to the above configuration, and as shown in FIG. 12, an optical fiber 64 (or a ride guide) may be used as the optical transmission mechanism 60 to guide light from the light source 1 through the optical fiber 64. In this case, light may be emitted from the emission end 64 a of the optical fiber 64 toward the condenser lens 2. In this way, by using a flexible material such as the optical fiber 64 for the light transmission mechanism 60, when the light irradiation position is continuously moved in the modeling surface 5, the light source 1 is fixedly disposed at a predetermined position. The transmission mechanism 60 can be continuously moved together with the condenser lens 2, the planar drawing mask 3, and the projection lens 4.

(変形例3)
上述した実施の形態では、面状描画マスク3として液晶式のものを用いた構成を例示したが、これに限らず、微小ドットエリアでの遮光及び透光が可能であり、なおかつ、連続的に、これらの遮光及び透光が可能であればよく、例えば、デジタルマイクロミラーシャッターを面状に配置した面状描画マスク(以下「DMD式面状描画マスク」という)を用いる構成としても良い。このように、面状描画マスク3として、DMD式面状描画マスクを用いる場合には、図13に示すように、形成しようとする所定の断面形状とDMD式面状描画マスクの連続移動に対応させてコンピュータ50に予め記憶させた情報に応じて、面状に配置された複数の微小なミラーシャッターのうち特定のミラーシャッターは光が投影レンズ4および造形面5の方向に反射される(導かれる)方向に向き、一方光を遮蔽させるべき箇所に位置するミラーシャッターは光が投影レンズ4および造形面5の方向に反射されない(導かれない)方向に向き、そのような操作を、所定の断面形状を有する光硬化した樹脂層が形成されるまで連続的(動画的)に繰り返すように設計すれば良い。
(Modification 3)
In the above-described embodiment, the configuration using the liquid crystal type as the planar drawing mask 3 is exemplified. However, the configuration is not limited to this, and light shielding and light transmission in a minute dot area are possible, and continuously. However, it is sufficient that these light shielding and light transmission are possible. For example, a planar drawing mask (hereinafter referred to as “DMD type planar drawing mask”) in which digital micromirror shutters are arranged in a plane may be used. Thus, when a DMD type surface drawing mask is used as the surface drawing mask 3, as shown in FIG. 13, it corresponds to the predetermined cross-sectional shape to be formed and the continuous movement of the DMD type surface drawing mask. Then, according to the information stored in advance in the computer 50, light is reflected in the direction of the projection lens 4 and the modeling surface 5 from a specific mirror shutter among a plurality of minute mirror shutters arranged in a plane (guided). The mirror shutter located at a position where light should be shielded is directed in a direction in which light is not reflected (not guided) in the direction of the projection lens 4 and the modeling surface 5, and such an operation is performed in a predetermined manner. What is necessary is just to design it to repeat continuously (moving image) until the photocured resin layer which has a cross-sectional shape is formed.

なお、面状描画マスク3として、液晶式或いはDMD式のいずれを用いる場合であっても、その形状は上述した実施の形態に特に制限されるものではなく、製造しようとする光造形物の形状や寸法(特に断面形状やその寸法)などに応じて適当な形状のものを採用することができる。すなわち、面状描画マスク3は、例えば、図3に示すような正方形或いは矩形の形状であってもよいし、またはその他の形状であってもよい。   In addition, even if it is a case where either a liquid crystal type or DMD type is used as the planar drawing mask 3, the shape is not particularly limited to the above-described embodiment, and the shape of the optical modeling object to be manufactured. Depending on the size and dimensions (particularly the cross-sectional shape and its dimensions), a suitable shape can be employed. That is, the planar drawing mask 3 may have a square or rectangular shape as shown in FIG. 3 or other shapes, for example.

さらに、面状描画マスク3の寸法も、製造しようとする光造形物の形状や寸法(特に断面形状やその寸法)などに応じて適当な寸法のものを採用することができる。例えば、図3に示すように、形成しようとする所定の光硬化した断面形状パターンの全幅(造形面の全幅)よりもその幅寸法が小さい面状描画マスク3を使用して、該面状描画マスク3よりも大きな寸法を有する所定の光硬化した断面形状パターンを製造することができる。   Furthermore, the dimensions of the planar drawing mask 3 can be appropriately sized according to the shape and dimensions (particularly the cross-sectional shape and dimensions thereof) of the optical modeling object to be manufactured. For example, as shown in FIG. 3, a planar drawing mask 3 having a width dimension smaller than the full width of the predetermined photocured cross-sectional shape pattern to be formed (full width of the modeling surface) is used. A predetermined photocured cross-sectional shape pattern having a size larger than that of the mask 3 can be manufactured.

(変形例4)
上述した実施の形態では、面状描画マスク3を造形面5に対して平行移動させる構成としたが、必ずしもそれに限定されず、必要に応じて造形面5に対して非平行状態で移動させてもよい。例えば、立体造形物を製造するに当たって、各光硬化層のすべてにおいて、形成しようとする所定の断面形状パターンが面状描画マスクの寸法(面積)よりも大きな連続した描画領域となるような形状および構造を有する立体造形物の製造においては、面状描画マスク3を光硬化性樹脂組成物の表面(造形面5)に対して連続的に移動させると共に面状描画マスクのマスク画像を、形成しようとする断面形状パターンに対応させて面状描画マスク3の移動と同期させて連続的に変えながら(動画的に変えながら)、光硬化性樹脂組成物の表面に面状描画マスク3を介して光を照射して、所定の断面形状パターンを有する光硬化層を形成し、これを積層形成することで、目的とする立体造形物を製造することができる。
(Modification 4)
In the above-described embodiment, the planar drawing mask 3 is configured to move parallel to the modeling surface 5, but is not necessarily limited thereto, and may be moved non-parallel to the modeling surface 5 as necessary. Also good. For example, in manufacturing a three-dimensional model, in each of the photocured layers, a shape in which a predetermined cross-sectional shape pattern to be formed becomes a continuous drawing region larger than the dimension (area) of the planar drawing mask and In the manufacture of a three-dimensional structure having a structure, the planar drawing mask 3 is continuously moved relative to the surface of the photocurable resin composition (the modeling surface 5), and a mask image of the planar drawing mask is formed. The surface of the photocurable resin composition is placed on the surface of the photocurable resin composition through the surface drawing mask 3 while continuously changing in synchronization with the movement of the surface drawing mask 3 corresponding to the cross-sectional shape pattern. By irradiating light, a photocured layer having a predetermined cross-sectional shape pattern is formed, and this is laminated to form a desired three-dimensional modeled object.

なお、立体造形物の形状や構造によっては、面状描画マスク3の面積よりも大きな所定の断面形状パターンの形成と共に、面状描画マスク3の面積よりも小さな断面形状パターンを造形操作の途中で形成することが必要な場合がある(例えば、球状をなす本体の頂部に尖った角(つの)を有する立体造形物において、球状の本体部分の横断面積(断面形状パターン)は面状描画マスク3の面積よりも大きく、角に相当する部分の横断面積(断面形状パターン)が面状描画マスク3の面積よりも小さい場合など)。そのような場合には、大きな断面形状パターンを有する本体部分の形成は、面状描画マスク3のマスク画像を動画的に連続的に変える上記した造形操作を多層にわたって繰り返すことによって行い、一方小さな断面形状パターンを有する角の部分は、面状描画マスク3のマスク画像を動画的に変化させずに静止画の状態にし、そのマスク画像を通して光を造形面に照射する操作を角部分の形成が完了するまで多層にわたって繰り返すことによって、目的とする立体造形物を製造することができる。   Depending on the shape and structure of the three-dimensional model, a predetermined cross-sectional pattern larger than the area of the planar drawing mask 3 is formed and a cross-sectional pattern smaller than the area of the planar drawing mask 3 is formed during the molding operation. It may be necessary to form (for example, in a three-dimensional structure having a sharp corner (one) at the top of the spherical main body, the cross-sectional area (cross-sectional shape pattern) of the spherical main body portion is the planar drawing mask 3. The cross-sectional area (cross-sectional shape pattern) of the portion corresponding to the corner is smaller than the area of the planar drawing mask 3). In such a case, the formation of the main body portion having a large cross-sectional shape pattern is performed by repeating the above-described modeling operation for continuously changing the mask image of the planar drawing mask 3 over multiple layers, while the small cross-section is formed. In the corner portion having the shape pattern, the mask image of the planar drawing mask 3 is changed to a still image state without changing the moving image, and the formation of the corner portion is completed through the operation of irradiating the modeling surface with light through the mask image. By repeating the process over multiple layers, a target three-dimensional model can be manufactured.

(変形例5)
上述した実施の形態では、面状描画マスク3の数が1個の構成について例示したが、これに限定されず、複数(2個以上)の面状描画マスク3を備える構成とし、これらの面状描画マスク3が同時に連続移動して露光像6を形成するようにしても良い。このようにすることで、造形速度が一層向上する。
(Modification 5)
In the above-described embodiment, the configuration in which the number of the planar drawing masks 3 is one is illustrated. However, the configuration is not limited to this, and a configuration including a plurality (two or more) of the planar drawing masks 3 is used. It is also possible to form the exposure image 6 by continuously moving the shape drawing mask 3 simultaneously. By doing in this way, modeling speed improves further.

(変形例6)
上述した実施の形態では、造形浴槽10に満たした液状の光硬化性樹脂組成物に対して光を照射して、当該造形浴槽10内に配置された造形テーブル11の上面に光硬化層を形成し、当該光硬化層を積層形成して立体造形物を形成する構成について例示したが、これに限らず、例えば、気体雰囲気中に造形テーブルを配置し、その造形テーブル面に1層分の液状、ペースト状、粉末状或いは薄膜状の光硬化性樹脂組成物を施して面状描画マスク3を介して光を照射して所定のパターンおよび厚みを有する光硬化層を形成した後、該光硬化層面に1層分の液状、ペースト状、粉末状または薄膜状の光硬化性樹脂組成物を施して面状描画マスク3を介して制御下に光を照射して所定のパターンおよび厚みを有する光硬化層を一体に積層形成する工程を繰り返して行って、立体造形物を形成する構成としても良い。
(Modification 6)
In embodiment mentioned above, light is irradiated with respect to the liquid photocurable resin composition with which the modeling bathtub 10 was filled, and a photocuring layer is formed in the upper surface of the modeling table 11 arrange | positioned in the said modeling bathtub 10 concerned. And although it illustrated about the structure which laminates and forms the said photohardened layer and forms a three-dimensional molded item, it is not restricted to this, For example, a modeling table is arrange | positioned in gas atmosphere and the liquid for one layer is formed on the modeling table surface. Then, after applying a photocurable resin composition in the form of a paste, powder or thin film and irradiating light through the planar drawing mask 3 to form a photocured layer having a predetermined pattern and thickness, the photocuring Light having a predetermined pattern and thickness by applying a liquid, paste-like, powdery or thin-film photocurable resin composition for one layer to the layer surface and irradiating light under control through the planar drawing mask 3 Work to laminate the hardened layer together Performed by repeating, it may be configured to form a three-dimensional object.

また、この構成においては、造形テーブルまたは光硬化層を上向きにしておき、その上面に光硬化性樹脂組成物を施し、面状描画マスク3を介して光照射して光硬化層を順次積層形成する構成としても良いし、造形テーブルまたは光硬化層を垂直または斜めに配置しておいて造形テーブル面または光硬化層面上に光硬化性樹脂層を施し面状描画マスク3を介して光照射して光硬化層を順次積層形成する構成としても良いし、或いは、造形テーブルまたは光硬化層を下向きに配置しておいて造形テーブル面または光硬化層面に光硬化性樹脂層組成物を施し面状描画マスク3を介して光照射して順次下方に光硬化層を積層形成してゆく構成としても良い。造形テーブル面または光硬化層面に光硬化性樹脂組成物を施すに当たっては、例えば、ブレード塗装、流延塗装、ローラー塗装、転写塗装、ハケ塗り、スプレー塗装などを用いることができる。   Further, in this configuration, the modeling table or the photocuring layer is faced upward, the photocurable resin composition is applied to the upper surface, and light is irradiated through the planar drawing mask 3 to sequentially form the photocuring layers. It is good also as a structure to carry out, and it arrange | positions a modeling table or a photocuring layer perpendicularly | vertically or diagonally, gives a photocurable resin layer on a modeling table surface or a photocuring layer surface, and irradiates light through the planar drawing mask 3. It is good also as composition which carries out layering formation of a photocuring layer one by one, or arranges a modeling table or a photocuring layer in the downward direction, and gives a photocurable resin layer composition to a modeling table surface or a photocuring layer surface, and is planar It is good also as a structure which irradiates light through the drawing mask 3 and laminates | stacks a photocuring layer below sequentially. In applying the photocurable resin composition to the modeling table surface or the photocured layer surface, for example, blade coating, cast coating, roller coating, transfer coating, brush coating, spray coating, or the like can be used.

(変形例7)
光硬化性樹脂組成物の種類は特に制限されず、光造形に用い得る液状、ペースト、粉末状、薄膜状などの光硬化性樹脂組成物のいずれもが使用できる。例えば、光硬化性樹脂組成物としては、アクリル系化合物や多官能性ビニル化合物、各種エポキシ系化合物などの1種または2種以上と、光重合開始剤および必要に応じて増感剤などを含有する光硬化性樹脂組成物を用いることができる。また、これらの成分以外にも、必要に応じて、レベリング剤、リン酸エステル塩系界面活性剤以外の界面活性剤、有機高分子改質剤、有機可塑剤などを含有していてもよい。さらに、必要に応じて、固体微粒子やウィスカーなどの充填材を含有していてもよい。充填材を含有する光硬化性樹脂組成物を用いると、硬化時の体積収縮の低減による寸法精度の向上、機械的物性や耐熱性の向上などを図ることができる。
(Modification 7)
The kind in particular of photocurable resin composition is not restrict | limited, Any of liquid, paste, powder form, thin film form, etc. which can be used for optical shaping | molding can use all. For example, the photo-curable resin composition contains one or more of acrylic compounds, polyfunctional vinyl compounds, various epoxy compounds, a photopolymerization initiator, and a sensitizer if necessary. The photocurable resin composition to be used can be used. In addition to these components, a leveling agent, a surfactant other than a phosphate ester-based surfactant, an organic polymer modifier, an organic plasticizer, and the like may be contained as necessary. Furthermore, you may contain fillers, such as a solid fine particle and a whisker, as needed. When a photocurable resin composition containing a filler is used, it is possible to improve dimensional accuracy by reducing volume shrinkage at the time of curing, improve mechanical properties and heat resistance, and the like.

(変形例8)
本光造形装置は、精密部品や、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物、金型、母型などのためのモデルや加工用モデルの製造に用いることができ、また、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企両用の部品、その他の複雑な形状や構造を有する各種の立体造形物の製造にも用いることができる。
(Modification 8)
This stereolithography equipment should be used to manufacture models for precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, molds, master molds, and processing models. It can also be used to manufacture parts for designing complex heat medium circuits, parts for analyzing heat medium behavior of complex structures, and other various 3D objects with complex shapes and structures. Can do.

本発明の光造形装置の構成を示す図である。It is a figure which shows the structure of the optical modeling apparatus of this invention. 造形浴槽の構成を示す図である。It is a figure which shows the structure of a modeling bathtub. 光照明装置の構成を示す図である。It is a figure which shows the structure of a light illuminating device. 1層分の光硬化層の形成手順を説明するための図である。It is a figure for demonstrating the formation procedure of the photocuring layer for one layer. 所定パターンを有する光硬化層の上面図である。It is a top view of the photocuring layer which has a predetermined pattern. 1層分の光硬化層の形成手順を説明するための図である。It is a figure for demonstrating the formation procedure of the photocuring layer for one layer. 光硬化層の積層形成手順を説明するための図である。It is a figure for demonstrating the lamination | stacking formation procedure of a photocuring layer. 本発明の光造形装置により製造した立体造形物の一側面を模式的に示す図である。It is a figure which shows typically one side of the three-dimensional molded item manufactured with the optical modeling apparatus of this invention. 1層分の光硬化層の他の形成手順を説明するための図である。It is a figure for demonstrating the other formation procedure of the photocuring layer for one layer. 1層分の光硬化層のその他の形成手順を説明するための図である。It is a figure for demonstrating the other formation procedure of the photocuring layer for one layer. 光造形装置の他の構成を示す図である。It is a figure which shows the other structure of an optical modeling apparatus. 光造形装置のその他の構成を示す図である。It is a figure which shows the other structure of an optical modeling apparatus. 光造形装置のその他の構成を示す図である。It is a figure which shows the other structure of an optical modeling apparatus.

符号の説明Explanation of symbols

1 光源
3 面状描画マスク
5 造形面(未硬化樹脂層)
9 光硬化層
10 造形浴槽
11 造形テーブル
50 コンピュータ
100 光造形装置
A 光硬化エリア
B 境界部分
DESCRIPTION OF SYMBOLS 1 Light source 3 Planar drawing mask 5 Modeling surface (uncured resin layer)
DESCRIPTION OF SYMBOLS 9 Photocuring layer 10 Modeling bathtub 11 Modeling table 50 Computer 100 Stereolithography apparatus A Photocuring area B Boundary part

Claims (5)

未硬化樹脂層の表面に所定パターンを有するマスクを介して光を照射して1層分の光硬化層を形成し、当該光硬化層の表面に新たな未硬化樹脂層を形成すると共に、当該未硬化樹脂層に前記マスクを介して光を照射して光硬化層を形成する工程を繰り返して光硬化層を積層することにより立体造形物を形成する光造形装置において、
前記マスクを介して照射された光による露光面を前記未硬化樹脂層の表面の一端側から他端側に向かって直線的に連続移動させながら光硬化エリアを形成し、この手順で互いに平行な連続移動方向で光硬化エリアを複数形成し、隣接する該光硬化エリアの境界を互いに重ねることにより重複露光された境界部分が形成されて1層分の前記光硬化層を形成し、
前記光硬化層の表面に新たに1層分の光硬化層を前記手順で積層形成する場合、前記光硬化エリアを形成した連続移動方向に対して所定角度だけ連続移動方向を異ならせて新たな光硬化層を形成しつつ、前記光硬化層との間で境界部分が重なる交差点Oでの照射強度を減じて積層成形することを特徴とする光造形装置。
The surface of the uncured resin layer is irradiated with light through a mask having a predetermined pattern to form one photocured layer, a new uncured resin layer is formed on the surface of the photocured layer, and In the optical modeling apparatus for forming a three-dimensional object by repeating the step of forming a photocured layer by irradiating light through the mask to the uncured resin layer,
A photocuring area is formed while linearly continuously moving the exposure surface by the light irradiated through the mask from one end side to the other end side of the surface of the uncured resin layer, and in this procedure, they are parallel to each other. the photocurable area forming a plurality of consecutive moving direction, to form the photocurable layer of the adjacent first layer boundaries are overlapped exposure boundary portion formed by the overlapping each other of the light curing area fraction,
When a new photocuring layer for one layer is formed on the surface of the photocuring layer by the above procedure, a new moving direction is changed by a predetermined angle with respect to the continuous moving direction in which the photocuring area is formed. while forming the photo hardening layer, the stereolithography apparatus characterized by laminate molding by subtracting the irradiation intensity at the intersection O overlapping the boundary between the photocurable layer.
前記光硬化層の表面に新たに光硬化層を積層形成する場合には、前記露光面の連続移動方向を常に異ならせるようにしたことを特徴とする請求項1に記載の光造形装置。   The optical modeling apparatus according to claim 1, wherein when a photocured layer is newly formed on the surface of the photocured layer, the continuous movement direction of the exposure surface is always changed. 前記露光面の連続移動方向を異ならせる場合、前記露光面の連続移動方向が互いに直交するようにしたことを特徴とする請求項1または2に記載の光造形装置。 3. The stereolithography apparatus according to claim 1, wherein when the continuous movement direction of the exposure surface is different, the continuous movement directions of the exposure surface are orthogonal to each other. 前記マスクは、微小ドットエリアでの遮光及び透光が可能な複数の微小光シャッターが面状に配置され、これらの微小光シャッターによりマスク画像を形成する面状マスクであり、前記未硬化樹脂層の表面に対する前記露光面の連続移動と同期して、形成すべきパターンに応じて前記マスク画像を連続的に変化させる
ことを特徴とする請求項1乃至3のいずれかに記載の光造形装置。
The mask is a planar mask in which a plurality of micro light shutters capable of shielding and transmitting light in a micro dot area are arranged in a plane, and a mask image is formed by these micro light shutters, and the uncured resin layer synchronously the continuous movement of the exposure surface relative to the surface of the optical modeling apparatus according to any one of claims 1 to 3 in accordance with the to be formed pattern is characterized by continuously changing the mask image.
未硬化樹脂層の表面に所定パターンを有するマスクを介して光を照射して1層分の光硬化層を形成し、当該光硬化層の表面に新たな未硬化樹脂層を形成すると共に、当該未硬化樹脂層に前記マスクを介して光を照射して光硬化層を形成する工程を繰り返して光硬化層を積層することにより立体造形物を形成する光造形方法において、
前記マスクを介して照射された光による露光面を前記未硬化樹脂層の表面の一端側から他端側に向かって直線的に連続移動させながら光硬化エリアを形成し、この手順で互いに平行な連続移動方向で光硬化エリアを複数形成し、隣接する該光硬化エリアの境界を互いに重ねることにより重複露光された境界部分が形成されて1層分の前記光硬化層を形成し、
前記光硬化層の表面に新たに1層分の光硬化層を前記手順で積層形成する場合、前記光硬化エリアを形成した連続移動方向に対して所定角度だけ連続移動方向を異ならせて新たな光硬化層を形成しつつ、前記光硬化層との間で境界部分が重なる交差点Oでの照射強度を減じて積層成形することを特徴とする光造形方法。
The surface of the uncured resin layer is irradiated with light through a mask having a predetermined pattern to form one photocured layer, a new uncured resin layer is formed on the surface of the photocured layer, and In the optical modeling method for forming a three-dimensional object by repeating the step of forming a photocured layer by irradiating light through the mask to the uncured resin layer,
A photocuring area is formed while linearly continuously moving the exposure surface by the light irradiated through the mask from one end side to the other end side of the surface of the uncured resin layer, and in this procedure, they are parallel to each other. the photocurable area forming a plurality of consecutive moving direction, to form the photocurable layer of the adjacent first layer boundaries are overlapped exposure boundary portion formed by the overlapping each other of the light curing area fraction,
When a new photocuring layer for one layer is formed on the surface of the photocuring layer by the above procedure, a new moving direction is changed by a predetermined angle with respect to the continuous moving direction in which the photocuring area is formed. An optical modeling method, comprising forming a photo-curing layer and reducing the irradiation intensity at an intersection O where a boundary portion overlaps with the photo-curing layer, and performing lamination molding .
JP2004283552A 2004-09-29 2004-09-29 Stereolithography apparatus and stereolithography method Expired - Fee Related JP4834297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283552A JP4834297B2 (en) 2004-09-29 2004-09-29 Stereolithography apparatus and stereolithography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283552A JP4834297B2 (en) 2004-09-29 2004-09-29 Stereolithography apparatus and stereolithography method

Publications (2)

Publication Number Publication Date
JP2006095806A JP2006095806A (en) 2006-04-13
JP4834297B2 true JP4834297B2 (en) 2011-12-14

Family

ID=36236085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283552A Expired - Fee Related JP4834297B2 (en) 2004-09-29 2004-09-29 Stereolithography apparatus and stereolithography method

Country Status (1)

Country Link
JP (1) JP4834297B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676838B2 (en) * 1988-10-24 1997-11-17 ソニー株式会社 3D image formation method
JPH058306A (en) * 1991-07-08 1993-01-19 Mitsui Eng & Shipbuild Co Ltd Optically shaping method
JP3641276B2 (en) * 1991-12-20 2005-04-20 Jsr株式会社 3D image forming method
JPH0671761A (en) * 1992-08-26 1994-03-15 Matsushita Electric Works Ltd Formation of three-dimensional form
JP3306125B2 (en) * 1992-10-01 2002-07-24 シーメット株式会社 Photo-curing molding method with improved strain suppression ability
GB2378151A (en) * 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
JP3792168B2 (en) * 2002-03-12 2006-07-05 ナブテスコ株式会社 Optical three-dimensional modeling method and apparatus

Also Published As

Publication number Publication date
JP2006095806A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4417911B2 (en) Optical three-dimensional modeling method and apparatus
JP3792168B2 (en) Optical three-dimensional modeling method and apparatus
JP4669843B2 (en) Stereolithography apparatus and stereolithography method
US20150328833A1 (en) Stereolithography rapid prototyping apparatus and method
CN105711088B (en) Photocuring 3D printer
JPH0342233A (en) Optical shaping method
JP4824382B2 (en) Optical three-dimensional modeling method and apparatus
KR102045213B1 (en) Three dimensional printing apparatus and printing method thereof
JPH06246839A (en) Optically shaping device
JP4834297B2 (en) Stereolithography apparatus and stereolithography method
JP4140891B2 (en) Optical three-dimensional modeling method and apparatus
JP5993224B2 (en) 3D modeling equipment
JP4459742B2 (en) Optical 3D modeling equipment
JP4503404B2 (en) Stereolithography apparatus and stereolithography method
JP3805749B2 (en) Thin film curing stereolithography equipment
JP4459741B2 (en) Optical 3D modeling method
JP6796572B2 (en) 3D object forming device and its method
JPH04305438A (en) Optical three-dimensional shaping method
JP4433456B2 (en) Optical stereolithography and equipment
JPH06246837A (en) Optically shaping method and device
JPH03281329A (en) Optical three-dimensional shaping
JP4404299B2 (en) Optical stereolithography and equipment
KR102443272B1 (en) 3d printer and 3d printing method using overlapped light irradiation along a specific path
JP4129928B2 (en) Optical 3D modeling equipment
JPH049662B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees