JP4831666B2 - Method for producing levulinic acid ester - Google Patents

Method for producing levulinic acid ester Download PDF

Info

Publication number
JP4831666B2
JP4831666B2 JP2005359705A JP2005359705A JP4831666B2 JP 4831666 B2 JP4831666 B2 JP 4831666B2 JP 2005359705 A JP2005359705 A JP 2005359705A JP 2005359705 A JP2005359705 A JP 2005359705A JP 4831666 B2 JP4831666 B2 JP 4831666B2
Authority
JP
Japan
Prior art keywords
reaction
heteropolyacid
catalyst
levulinic acid
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359705A
Other languages
Japanese (ja)
Other versions
JP2006206579A (en
Inventor
健一 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005359705A priority Critical patent/JP4831666B2/en
Publication of JP2006206579A publication Critical patent/JP2006206579A/en
Application granted granted Critical
Publication of JP4831666B2 publication Critical patent/JP4831666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、炭水化物、例えば糖、でんぷん、セルロースあるいはそれらを含有する混合物、あるいはバイオマス由来のこれらのもの等とアルコールとを触媒の存在下で反応させてレブリン酸エステルを製造する方法に関する。   The present invention relates to a method for producing a levulinic acid ester by reacting a carbohydrate such as sugar, starch, cellulose or a mixture containing them, or those derived from biomass with an alcohol in the presence of a catalyst.

レブリン酸は高分子可塑剤、生理活性物質などの合成中間体として有用なものであって、糖やでんぷん、グルコースなどの炭水化物を原料として製造され、例えば糖を酸触媒の存在下で加熱分解することによる製造法は古くから知られており、その中に触媒として臭化水素酸や塩酸を用いる方法があるが(非特許文献1参照)、これらの酸は揮発性があり、工業的製法においては装置の防食方法が問題となる。
一方、揮発性の無い硫酸を触媒として用いるレブリン酸製造法も知られているが(特許文献1〜3参照)、硫酸触媒では低温での反応速度が遅く、良好な収率でレブリン酸を得るためには160℃以上の高い反応温度が必要である。
Levulinic acid is useful as a synthetic intermediate for polymer plasticizers, physiologically active substances, etc., and is produced from carbohydrates such as sugar, starch and glucose. For example, sugar is decomposed by heating in the presence of an acid catalyst. The production method by this method has been known for a long time, and there is a method using hydrobromic acid or hydrochloric acid as a catalyst (see Non-Patent Document 1), but these acids are volatile and are used in industrial production methods. The problem is the corrosion prevention method of the device.
On the other hand, a levulinic acid production method using non-volatile sulfuric acid as a catalyst is also known (see Patent Documents 1 to 3). However, a sulfuric acid catalyst has a low reaction rate at a low temperature and obtains levulinic acid in a good yield. For this purpose, a high reaction temperature of 160 ° C. or higher is necessary.

T.R.Frost and F.F.Kruth,TAPPI, 34,80(1951)T.A. R. Frost and F. F. Kruth, TAPPI, 34, 80 (1951) 特許第1166813号公報(特許請求の範囲その他)Japanese Patent No. 1166813 (Claims and others) 米国特許第6,064,611号明細書(特許請求の範囲その他)US Pat. No. 6,064,611 (Claims and others) 米国特許第5,608,105号明細書(特許請求の範囲その他)US Pat. No. 5,608,105 (Claims and others)

本発明の課題は、このような事情の下、炭水化物とアルコールを原料とする触媒反応によりレブリン酸エステルを製造するに当たり、触媒として揮発性が無くかつ温和な条件で触媒活性を示すものを用いる方法を提供することにある。   Under such circumstances, the object of the present invention is to use a non-volatile catalyst that exhibits catalytic activity under mild conditions in producing a levulinic acid ester by a catalytic reaction using carbohydrate and alcohol as raw materials. Is to provide.

本発明者らは、上記の優れた特性を有する、触媒反応によるレブリン酸エステルの製造法における触媒について鋭意研究した結果、ヘテロポリ酸を触媒に用いると温和な条件で効率よくレブリン酸エステルが得られることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive research on the catalyst in the method for producing a levulinic acid ester by catalytic reaction having the above-described excellent characteristics, the present inventors can efficiently obtain a levulinic acid ester under mild conditions when a heteropolyacid is used as a catalyst. Based on this finding, the inventors have made the present invention.

すなわち、本発明は、以下のとおりのものである。
(1)炭水化物とアルコールとを触媒の存在下で反応させてレブリン酸エステルを製造する方法において、触媒としてヘテロポリ酸を用いることを特徴とするレブリン酸エステルの製造方法。
(2)ヘテロポリ酸がタングステンをポリ原子とするタングステンヘテロポリ酸である前記(1)記載の製造方法。
(3)タングステンヘテロポリ酸がケイ素をヘテロ原子とするものである前記(2)記載の製造方法。
That is, the present invention is as follows.
(1) A method for producing a levulinic acid ester, wherein a heteropoly acid is used as a catalyst in a method for producing a levulinic acid ester by reacting a carbohydrate and an alcohol in the presence of a catalyst.
(2) The production method according to (1), wherein the heteropolyacid is a tungsten heteropolyacid containing tungsten as a poly atom.
(3) The production method according to the above (2), wherein the tungsten heteropolyacid has silicon as a hetero atom.

本発明方法において原料として用いられる炭水化物については特に制限されず、例えば単糖類、二糖類、オリゴ糖類、多糖類、それらの混合物、さらにはバイオマス由来のこれらのものなどが挙げられ、これらのうち、単糖類としては、例えばグルコース、フルクトース等が、また、多糖類としては、例えばでんぷん、セルロース等が挙げられ、好ましくはグルコース、フルクトース等のヘキソース、中でもフルクトースが用いられる。これらの原料は単独で用いてもよいし、また、2種以上を組み合わせて用いてもよく、また、原料自体が混合物の場合にはそれより単離することなく混合物のまま用いてもよい。   The carbohydrate used as a raw material in the method of the present invention is not particularly limited, and examples thereof include monosaccharides, disaccharides, oligosaccharides, polysaccharides, mixtures thereof, and those derived from biomass, among these, Examples of monosaccharides include glucose and fructose, and examples of polysaccharides include starch and cellulose. Preferably, hexoses such as glucose and fructose are used, among which fructose is used. These raw materials may be used alone or in combination of two or more, and when the raw material itself is a mixture, it may be used as it is without being isolated therefrom.

炭水化物とともに反応に供されるアルコールについては、脂肪族あるいは芳香族の1級、2級あるいは3級アルコールのうち、目的とするエステル基に応じて任意のものを用いることができる。融点が反応温度以上のアルコールについては、他の有機溶媒を用いて液化させて用いてもよい。
アルコールは溶媒としても用いることができる。
As the alcohol used for the reaction together with the carbohydrate, any aliphatic or aromatic primary, secondary or tertiary alcohol can be used depending on the target ester group. About alcohol whose melting | fusing point is more than reaction temperature, you may use it liquefying using another organic solvent.
Alcohol can also be used as a solvent.

本発明方法において触媒として用いられるヘテロポリ酸は、一般式

(式中、Bはポリ酸の骨格となるポリ原子、Aはヘテロ原子、wは水素原子の組成比、xはヘテロ原子の組成比、yはポリ原子の組成比、zは酸素原子の組成比を示す)
で表わされる。
ポリ原子Bとしてはポリ酸を形成することが知られている原子(例えばW、Mo、V、Nbなど)の中から任意に選ぶことができる。ポリ原子Bは単一原子でもよいし、また、一部を他の原子と置換してもよい。
ヘテロ原子Aとしては、ヘテロポリ酸を形成することが知られている原子(例えばSi、P、Ge、B、Asなど)の中から任意に選ぶことができる。ヘテロ原子Aは単一原子でもよいし、また、一部を他の原子と置換してもよい。
ヘテロポリ酸は溶媒に可溶な塩の状態で用いてもよいし、また、溶媒に不溶な塩の状態で用いてもよく、さらにシリカゲルやアルミナなどの担体に固定化した状態で用いてもよい。
ヘテロポリ酸として好ましくは、タングステンをポリ原子とするヘテロポリ酸、例えばHPW1240、HSiW1240、HGeW1240、HBW1240などが挙げられ、中でも特にHSiW1240が用いられる。
ヘテロポリ酸の使用量は、炭水化物に対して0.1〜10モル%の範囲とするのが好ましい。
The heteropolyacid used as a catalyst in the method of the present invention is represented by the general formula H w A x B y O z
(In the formula, B is a poly atom serving as a polyacid skeleton, A is a hetero atom, w is a composition ratio of hydrogen atoms, x is a composition ratio of hetero atoms, y is a composition ratio of poly atoms, and z is a composition of oxygen atoms. Indicates the ratio)
It is represented by
The poly atom B can be arbitrarily selected from atoms known to form a polyacid (for example, W, Mo, V, Nb, etc.). The poly atom B may be a single atom or a part thereof may be substituted with another atom.
The heteroatom A can be arbitrarily selected from atoms known to form a heteropolyacid (for example, Si, P, Ge, B, As, etc.). The heteroatom A may be a single atom, or a part thereof may be substituted with another atom.
The heteropolyacid may be used in the form of a salt soluble in the solvent, may be used in the form of a salt insoluble in the solvent, or may be used in a state immobilized on a carrier such as silica gel or alumina. .
The heteropolyacid is preferably a heteropolyacid having tungsten as a poly atom, such as H 3 PW 12 O 40 , H 4 SiW 12 O 40 , H 4 GeW 12 O 40 , H 5 BW 12 O 40, etc. H 4 SiW 12 O 40 is used.
The amount of the heteropolyacid used is preferably in the range of 0.1 to 10 mol% with respect to the carbohydrate.

本発明方法として好ましくは、触媒量のヘテロポリ酸を含むアルコール中に炭水化物を加え、加熱反応させる方法が挙げられ、反応温度は80℃〜180℃、中でも100℃〜160℃の範囲とするのがよい。反応温度がこれより低いと反応速度が遅くなるし、また、これより高いと反応が過剰に進み、黒色の不溶物が生じる。また、反応は一般的には常圧で行われるが、沸点が好ましい反応温度域よりも低いアルコールが用いられる場合には、オートクレーブなどの耐圧反応容器を用い、加圧下で反応させてもよい。
本発明方法においては、溶媒として上記アルコールを併用してもよいし、本発明を損なわない範囲で、必要に応じ他の適当な溶媒、例えば水や、テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテルや、ベンゼン、トルエン、キシレン等の芳香族炭化水素、クロロホルム、ジクロロメタン等のハロゲン化炭化水素などを用いてもよい。
Preferably, the method of the present invention includes a method in which a carbohydrate is added to an alcohol containing a catalytic amount of a heteropolyacid and subjected to a heat reaction, and the reaction temperature is in the range of 80 ° C to 180 ° C, particularly 100 ° C to 160 ° C. Good. When the reaction temperature is lower than this, the reaction rate becomes slow, and when the reaction temperature is higher than this, the reaction proceeds excessively and black insoluble matter is generated. The reaction is generally carried out at normal pressure, but when an alcohol having a boiling point lower than the preferred reaction temperature range is used, the reaction may be carried out under pressure using a pressure-resistant reaction vessel such as an autoclave.
In the method of the present invention, the above-mentioned alcohol may be used in combination as a solvent, and other suitable solvents such as water, ethers such as tetrahydrofuran, dioxane, diethyl ether, and the like, as long as the present invention is not impaired. Aromatic hydrocarbons such as benzene, toluene and xylene, and halogenated hydrocarbons such as chloroform and dichloromethane may be used.

本発明方法によれば、糖、でんぷん、セルロース等の炭水化物を原料として、従来の触媒よりも温和な条件で効率よくレブリン酸エステルを製造することができる。   According to the method of the present invention, a levulinic acid ester can be efficiently produced using carbohydrates such as sugar, starch and cellulose as raw materials under conditions milder than those of conventional catalysts.

次に、実施例により本発明を実施するための最良の形態をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。   Next, the best mode for carrying out the present invention will be described in more detail by way of examples, but the present invention is not limited to these at all.

内容積25mlのナス型フラスコにブタノール8.0ml、フルクトース2.5mmolおよびHSiW1240・26HOのヘテロポリ酸触媒0.05mmolを加え、還流下5時間加熱反応させた。反応後室温まで冷却し、反応溶液をガスクロマトグラフにより分析した結果、レブリン酸ブチルが収率60モル%で得られていることが確認された。 To an eggplant-shaped flask having an internal volume of 25 ml, 8.0 ml of butanol, 2.5 mmol of fructose and 0.05 mmol of H 4 SiW 12 O 40 · 26H 2 O heteropolyacid catalyst were added, and the mixture was heated and reacted for 5 hours under reflux. After the reaction, the reaction solution was cooled to room temperature, and the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that butyl levulinate was obtained in a yield of 60 mol%.

ヘテロポリ酸触媒をHGeW1240・7HOに代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルが収率55モル%で得られていることが確認された。 As a result of analyzing and analyzing in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with H 4 GeW 12 O 40 · 7H 2 O, it was confirmed that butyl levulinate was obtained in a yield of 55 mol%. It was.

ヘテロポリ酸触媒をHPW1240・4HOに代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルが収率51モル%で得られていることが確認された。 As a result of analyzing and analyzing in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with H 3 PW 12 O 40 · 4H 2 O, it was confirmed that butyl levulinate was obtained in a yield of 51 mol%. It was.

ヘテロポリ酸触媒をHBW1240・33HOに代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルが収率43モル%で得られていることが確認された。 As a result of analyzing and analyzing in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with H 5 BW 12 O 40 · 33H 2 O, it was confirmed that butyl levulinate was obtained in a yield of 43 mol%. It was.

ヘテロポリ酸触媒をHPMo1240・4HOに代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルが収率39モル%で得られていることが確認された。 As a result of performing the reaction and analysis in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with H 3 PMo 12 O 40 · 4H 2 O, it was confirmed that butyl levulinate was obtained in a yield of 39 mol%. It was.

これらの実施例より、同じポリ酸で比較すると、ケイ素をヘテロ元素とするヘテロポリ酸が好ましく(実施例1〜4参照)、同じヘテロ元素で比較すると、タングステン酸が好ましい(実施例3,5参照)ことが分る。   From these examples, when compared with the same polyacid, a heteropolyacid containing silicon as a heteroelement is preferable (see Examples 1 to 4), and when compared with the same heteroelement, tungstic acid is preferable (see Examples 3 and 5). )

内容積50mlのステンレス製オートクレーブにメタノール8.0ml、フルクトース2.5mmolおよびHSiW1240・26HOのヘテロポリ酸触媒0.05mmolを加え、アルゴンで1MPaに加圧し、140℃で15時間加熱反応させた。反応後室温まで冷却し、反応溶液をガスクロマトグラフにより分析した結果、レブリン酸メチルが収率80モル%で得られていることが確認された。 To a stainless steel autoclave with an internal volume of 50 ml, 8.0 ml of methanol, 2.5 mmol of fructose and 0.05 mmol of H 4 SiW 12 O 40 · 26H 2 O heteropolyacid catalyst were added, pressurized to 1 MPa with argon, and 140 ° C. for 15 hours. The reaction was heated. After the reaction, the reaction solution was cooled to room temperature, and the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that methyl levulinate was obtained in a yield of 80 mol%.

反応時間を5時間、反応温度を120℃に代えた以外は実施例6と同様にして反応させ分析した結果、レブリン酸メチルが収率78モル%で得られていることが確認された。   As a result of analyzing and analyzing in the same manner as in Example 6 except that the reaction time was changed to 5 hours and the reaction temperature was changed to 120 ° C., it was confirmed that methyl levulinate was obtained in a yield of 78 mol%.

フルクトースに代えてグルコースを用いた以外は実施例6と同様にして反応させ分析した結果、レブリン酸メチルが収率60モル%で得られていることが確認された。   As a result of performing reaction and analysis in the same manner as in Example 6 except that glucose was used instead of fructose, it was confirmed that methyl levulinate was obtained in a yield of 60 mol%.

フルクトースに代えてでんぷん(とうもろこし由来、純正化学社製)を用いた以外は実施例6と同様にして反応させ分析した結果、レブリン酸メチルが収率40モル%で得られていることが確認された。   As a result of analyzing and analyzing in the same manner as in Example 6 except that starch (derived from corn, manufactured by Junsei Chemical Co., Ltd.) was used instead of fructose, it was confirmed that methyl levulinate was obtained in a yield of 40 mol%. It was.

フルクトースに代えてセルロース(ナカライタスク社製)を用いた以外は実施例6と同様にして反応させ分析した結果、レブリン酸メチルが収率40モル%で得られていることが確認された。   As a result of performing the reaction and analysis in the same manner as in Example 6 except that cellulose (manufactured by Nacalai Task Co.) was used instead of fructose, it was confirmed that methyl levulinate was obtained in a yield of 40 mol%.

比較例1
ヘテロポリ酸触媒を市販の濃硫酸(97質量%濃度)に代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルが収率34モル%で得られていることが確認された。
Comparative Example 1
As a result of performing the reaction and analysis in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with commercially available concentrated sulfuric acid (97 mass% concentration), it was confirmed that butyl levulinate was obtained in a yield of 34 mol%. It was.

比較例2
ヘテロポリ酸触媒をHWOに代えた以外は実施例1と同様にして反応させ分析した結果、レブリン酸ブチルは収率0モル%で全く得られていないことが確認された。
Comparative Example 2
As a result of analyzing the reaction in the same manner as in Example 1 except that the heteropolyacid catalyst was replaced with H 2 WO 4 , it was confirmed that butyl levulinate was not obtained at a yield of 0 mol%.

これら比較例より、従来用いられている硫酸触媒では収率が低く、またヘテロ元素を持たないイソポリ酸では反応が進行しないことが分る。   From these comparative examples, it can be seen that the conventionally used sulfuric acid catalyst has a low yield, and that the reaction does not proceed with an isopolyacid having no hetero element.

本発明は、糖、でんぷん、セルロース等の炭水化物を原料として、従来の触媒よりも温和な条件で効率よくレブリン酸エステルを製造するのに有用であり、原料となる炭水化物としては資源作物から得られる糖やでんぷんの他に、廃棄物から得られる糖やでんぷん、セルロースの利用も可能であるし、また、得られたレブリン酸エステルは、香料、高分子可塑剤、生理活性物質など従来の用途のほかに生分解性高分子モノマーや医薬品中間体としての利用も可能であることから、化学産業の化石資源への依存性を低減させるのに資する。
INDUSTRIAL APPLICABILITY The present invention is useful for efficiently producing a levulinic acid ester using carbohydrates such as sugar, starch and cellulose as raw materials under milder conditions than conventional catalysts, and the carbohydrates used as raw materials are obtained from resource crops. In addition to sugar and starch, sugar, starch, and cellulose obtained from waste can be used, and the obtained levulinic acid ester is used for conventional applications such as fragrances, polymer plasticizers, and physiologically active substances. In addition, it can be used as biodegradable polymer monomers and pharmaceutical intermediates, which contributes to reducing the dependence of the chemical industry on fossil resources.

Claims (3)

炭水化物とアルコールとを触媒の存在下で反応させてレブリン酸エステルを製造する方法において、触媒として 3 PW 12 40 、H 4 SiW 12 40 、H 4 GeW 12 40 、H 5 BW 12 40 およびH 3 PMo 12 40 から選ばれるヘテロポリ酸を用いることを特徴とするレブリン酸エステルの製造方法。 In a method for producing a levulinic acid ester by reacting a carbohydrate and an alcohol in the presence of a catalyst, H 3 PW 12 O 40 , H 4 SiW 12 O 40 , H 4 GeW 12 O 40 , H 5 BW 12 O are used as a catalyst. 40. A method for producing a levulinic acid ester, wherein a heteropolyacid selected from 40 and H 3 PMo 12 O 40 is used. ヘテロポリ酸が 3 PW 12 40 、H 4 SiW 12 40 、H 4 GeW 12 40 およびH 5 BW 12 40 から選ばれるタングステンヘテロポリ酸である請求項1記載の製造方法。 Heteropolyacid H 3 PW 12 O 40, H 4 SiW 12 O 40, H 4 GeW 12 O 40 and H 5 BW 12 The process according to claim 1, wherein O is tungsten heteropoly acid selected from the 40. タングステンヘテロポリ酸が 4 SiW 12 40 である請求項2記載の製造方法。 The production method according to claim 2, wherein the tungsten heteropolyacid is H 4 SiW 12 O 40 .
JP2005359705A 2004-12-28 2005-12-14 Method for producing levulinic acid ester Expired - Fee Related JP4831666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359705A JP4831666B2 (en) 2004-12-28 2005-12-14 Method for producing levulinic acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004380583 2004-12-28
JP2004380583 2004-12-28
JP2005359705A JP4831666B2 (en) 2004-12-28 2005-12-14 Method for producing levulinic acid ester

Publications (2)

Publication Number Publication Date
JP2006206579A JP2006206579A (en) 2006-08-10
JP4831666B2 true JP4831666B2 (en) 2011-12-07

Family

ID=36963805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359705A Expired - Fee Related JP4831666B2 (en) 2004-12-28 2005-12-14 Method for producing levulinic acid ester

Country Status (1)

Country Link
JP (1) JP4831666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399144A (en) * 2011-09-26 2012-04-04 华南理工大学 Method for preparing methyl levulinate through clean conversion of biomass sugar and separating methyl levulinate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877045B2 (en) 2007-04-25 2012-02-15 トヨタ自動車株式会社 Method for decomposing plant fiber materials
JP4240138B1 (en) * 2007-09-05 2009-03-18 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP5114298B2 (en) 2008-06-03 2013-01-09 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP5060397B2 (en) 2008-06-03 2012-10-31 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP4609526B2 (en) 2008-06-03 2011-01-12 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP5366128B2 (en) * 2008-12-19 2013-12-11 独立行政法人産業技術総合研究所 Method for producing levulinic acid ester
NL2005928C2 (en) * 2010-12-28 2012-07-02 Furanix Technologies Bv Process for the conversion of a carbohydrate-containing feedstock.
WO2013078391A1 (en) 2011-11-23 2013-05-30 Segetis, Inc. Process to prepare levulinic acid
US9073841B2 (en) 2012-11-05 2015-07-07 Segetis, Inc. Process to prepare levulinic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587741A (en) * 1978-12-27 1980-07-02 Noguchi Kenkyusho Preparation of levulinic acid
JPS577439A (en) * 1980-06-13 1982-01-14 Asahi Chem Ind Co Ltd Production of levulinic acid or its ester
FR2640263B1 (en) * 1988-12-09 1991-06-14 Organo Synthese Ste Fse PREPARATION OF LEVULINIC ACID
WO2003085071A1 (en) * 2002-04-01 2003-10-16 E.I. Du Pont De Nemours And Company Preparation of levulinic acid esters and formic acid esters from biomass and olefins
JP4025866B2 (en) * 2002-08-27 2007-12-26 独立行政法人森林総合研究所 Effective use of lignocellulose
JP4633339B2 (en) * 2003-05-26 2011-02-16 三洋化成工業株式会社 Method for producing carboxylic acid ester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399144A (en) * 2011-09-26 2012-04-04 华南理工大学 Method for preparing methyl levulinate through clean conversion of biomass sugar and separating methyl levulinate

Also Published As

Publication number Publication date
JP2006206579A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4831666B2 (en) Method for producing levulinic acid ester
Thapa et al. Efficient green catalysis for the conversion of fructose to levulinic acid
JP6253203B2 (en) Method for producing hexamethylenediamine from 5-hydroxymethylfurfural
Qi et al. Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl) furfural and levulinic and formic acids in γ-valerolactone as a green solvent
JP6494795B2 (en) Process for producing ethylene glycol from carbohydrate sources
CN102177146B (en) With metal catalyst reduction HMF ether
US8609895B2 (en) Process for the oxidation of alcohol and/or aldehyde groups
JP2018502919A (en) Process for producing ethylene glycol from carbohydrate sources
RU2701863C2 (en) Method of dehydrating oxygen-containing compounds
Girisuta et al. Levulinic acid from biomass: synthesis and applications
Pramod et al. Bio-based acrylic acid from sugar via propylene glycol and allyl alcohol
Schade et al. Direct catalytic route to biomass-derived 2, 5-furandicarboxylic acid and its use as monomer in a multicomponent polymerization
Gökkaya et al. Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution
Coumans et al. Protection strategies for the conversion of biobased furanics to chemical building blocks
JP5366128B2 (en) Method for producing levulinic acid ester
Li et al. Efficient catalysis of calcium carbide for the synthesis of isophorone from acetone
Kunioka et al. Highly selective synthesis of biomass-based 1, 4-butanediol monomer by alcoholysis of 1, 4-diacetoxybutane derived from furan
Pfab et al. Valorization of humins-extracted 5-methoxymethylfurfural: toward high added value furanics via continuous flow catalytic hydrogenation
CN115417745A (en) Method for synthesizing hydrofluoroolefin
Wang et al. Sustainable production of γ-valerolactone and δ-valerolactone through the coupling of hydrogenation and dehydrogenation
Shen et al. Aqueous carbonylation of furfural-derived 5-bromofuroic acid to 2, 5-furandicarboxylic acid with supported palladium catalyst
CN102256956B (en) Vapor phase decarbonylation process
JPH10265468A (en) Production of 5hydroxymethyl2-furfural
US7960592B1 (en) Production of methyl-vinyl ketone from levulinic acid
WO2016039996A1 (en) Production of levoglucosenone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees