JP4829849B2 - Ofdm信号合成用受信装置および中継装置 - Google Patents

Ofdm信号合成用受信装置および中継装置 Download PDF

Info

Publication number
JP4829849B2
JP4829849B2 JP2007200633A JP2007200633A JP4829849B2 JP 4829849 B2 JP4829849 B2 JP 4829849B2 JP 2007200633 A JP2007200633 A JP 2007200633A JP 2007200633 A JP2007200633 A JP 2007200633A JP 4829849 B2 JP4829849 B2 JP 4829849B2
Authority
JP
Japan
Prior art keywords
unit
output
signal
weighting factor
combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007200633A
Other languages
English (en)
Other versions
JP2008148277A (ja
Inventor
知明 竹内
啓之 濱住
一彦 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2007200633A priority Critical patent/JP4829849B2/ja
Publication of JP2008148277A publication Critical patent/JP2008148277A/ja
Application granted granted Critical
Publication of JP4829849B2 publication Critical patent/JP4829849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Description

本発明は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を用いるデジタル放送やデジタル伝送のOFDM信号合成用受信装置および中継装置に関し、特にデジタル放送や無線LANなどにおいて電波を受信する際に問題となるフェージングや干渉波の対策にアダプティブアレーアンテナ技術やダイバーシティ受信技術を適用するOFDM信号合成用受信装置および中継装置に関する。
アダプティブアレー技術を適用するOFDM信号合成用受信装置の例については、例えば特許文献1,2に記載のものがある。
〔OFDM信号用アダプティブアレーの概要〕
まず、OFDM信号用アダプティブアレーの概要について説明する。図5は、アダプティブアレー技術を適用するOFDM信号合成用受信装置の概要を説明する図である。このOFDM信号合成用受信装置101は、FFT(Fast Fourier Transform:高速フーリエ変換)部10−1,iと、重み係数算出部211、参照信号生成部212および減算部213を有する重み係数制御部201と、アレー合成部(キャリヤシンボル合成部)30とを備えている。ここで、FFT部10−1,iは、アレー素子数分のFFT部により構成され、iはその番号の総称を示している(以下同じ)。
以下、OFDM信号合成用受信装置101の動作について詳細に説明する。ただし、アレーアンテナを構成するアレー素子の数をL、任意のアレー素子に付した番号をl(0≦l<L)、OFDM信号を構成するサブキャリヤの総数をK、任意のサブキャリヤに付した番号をk(0≦k<K)とする。
FFT部10は、l番目のアレー素子から出力される受信OFDM信号の有効シンボル期間をFFTすることにより、周波数領域の信号であるキャリヤシンボルxl,kを得る。
l番目のアレー素子から出力された受信OFDM信号のk番目のサブキャリヤに対する重み係数をwl,kとすると、アレー合成部(キャリヤシンボル合成部)30によるk番目のサブキャリヤのアレー合成信号は式(1)で示される。
Figure 0004829849
ここで、y,w,xは、それぞれk番目のサブキャリヤにおけるアレー合成信号、重み係数ベクトル、および入力キャリヤシンボルベクトルであり、以下のように表すことができる。
Figure 0004829849
Figure 0004829849
ここで、上付きの*,T,Hは、それぞれ複素共役、転置、複素共役転置を示す。
また、重み係数wl,kは、式(4)で示される評価関数Jが最小となるように、重み係数制御部201により最適化することによって得ることができる。
Figure 0004829849
ここで、E[・]は期待値演算を、eおよびrはサブキャリヤkにおける誤差および参照信号を示す。
参照信号は、受信側(OFDM信号合成用受信装置101)でも生成可能であることが必要である。例えば、地上デジタルテレビジョン放送の放送方式であるISDB−T(Integrated Services Digital Broadcasting-Terrestrial)方式やDVB−T(Digital Video Broadcasting-Terrestrial)方式においては、図7に示すように基準信号としてSP(Scattered Pilot)信号が挿入されている。図7では、SPを黒丸で、その他のキャリヤシンボルを白抜きの丸で示している。SP信号は、信号生成時における振幅と位相が予め決められた値の信号であり、受信側(OFDM信号合成用受信装置101)においても同じ信号を生成することができるため、これを参照信号として用いることができる。
図6は、アダプティブアレー技術を適用する他のOFDM信号合成用受信装置の概要を説明する図である。このOFDM信号合成用受信装置102は、FFT部10−1,iと、チャネル推定部214−1,i、重み係数算出部215、アレー合成部(チャネル応答合成部)216、参照信号生成部217および減算部218を有する重み係数制御部202と、アレー合成部(キャリヤシンボル合成部)30とを備えている。
チャネル推定部214は、受信したSP信号(以下、受信SP信号という。)を、送信されたSP信号すなわち生成時のSP信号(以下、送信SP信号という。)で除算することによりチャネル応答を求める。重み係数算出部215は、そのチャネル応答を用いて、式(6)で示される評価関数を最小化することによって重み係数を得る。
Figure 0004829849
Figure 0004829849
ここで、ul,kは、l番目のアレー素子のサブキャリヤ番号kにおけるチャネル応答を示し、uは、これを以下のようにベクトル化したチャネル応答ベクトルである。
Figure 0004829849
また、zは、チャネル応答のアレー合成信号である。
〔判定指向型〕
干渉波が希望波と同じISDB−T方式の信号であり、4シンボル毎に同一サブキャリヤに挿入されるSP信号の受信タイミングが希望波と干渉波で近接または一致した場合、SP信号の情報のみに基づいて重み係数を算出すると、希望波と干渉波を区別できなくなり、干渉波を除去するのではなく積極的に受信してしまうことになる。このため、SP信号だけでなく、変調内容が未知であるデータシンボルをしきい値判定し、これにより得られるデータシンボルの真値の推定値(以下、単に判定値という。)も参照信号として利用する必要がある。
このとき、誤差eは次式により定義される。
Figure 0004829849
Figure 0004829849
ただし、dは、k番目のサブキャリヤのキャリヤシンボルのアレー合成信号yをしきい値判定処理することにより得られる判定値である。また、dec(y)はしきい値判定のための関数であり、yに最も近い送信信号を返す。
SP信号を参照信号とする場合(SP参照型)、および判定値を参照信号とする場合(判定指向型)について、それぞれの最適化による重み係数算出手法のブロックダイヤグラムを図10に示す。
〔位相識別〕
一般に、PSKやQAMなどのデジタル変調された信号の信号点は信号空間上において、その位相のみが異なる信号点が複数存在する場合がある。例えばQAMでは各信号点をそれぞれπ/2,π,3π/2位相回転した位置にも同様に信号点が存在するため、判定値には位相に関する不確定性がある。この位相不確定性を解消するため、参照信号に対して、以下のような位相補正を行う必要がある。
全サブキャリヤにおけるチャネル応答は、振幅および位相が既知の送信シンボルであるSP信号を用いたSP参照型チャネル推定を行い、シンボル方向およびサブキャリヤ方向の内挿補間を行うことにより求めることができる。重み係数が評価関数の真の最小値に収束していない場合、以下の式(10)のようにチャネル応答のアレ一合成信号zに対して、exp(jnπ/2)の位相回転が加わっている。
Figure 0004829849
ただし、wk,optはk番目のサブキャリヤにおける最適重みを示す。チャネル応答値を最適重みで合成した結果が所望応答すなわち1+0jとなることから、nはチャネル応答のアレー合成信号zの位相から求められ、図11に示すように、複素平面を4分割し、zの位置からnを決定する。これをNとすれば、位相補正値はexp(−jNπ/2)となる。
したがって、以下の式(11)のように、判定値に対して位相補正値を乗算することにより、真の最適解へ収束させることができる。
Figure 0004829849
ここで、dec(y)はしきい値判定の関数であり、yに最も近い送信信号を返す。
また、zにπ/4位相回転を加え、
Figure 0004829849
とすると、以下の式(13)(14)が得られる。
Figure 0004829849
Figure 0004829849
ただし、Re[・],Im[・]はそれぞれ複素数の実部および虚部を示す。ここで、図11の領域判定について、式(12)の左辺の実部、虚部の符号からNを求めることができる。また、符号のみを求めることができればよいから、式(13)(14)において√2は省略することができる。
Figure 0004829849
尚、このような位相識別処理については、本件特許出願と同一の出願人および発明者によりなされた、本件特許出願時に未公開である特願2006−241767号公報を参照されたい。
特開2003−174427号公報 特開2005−295506号公報
従来のOFDM信号合成用受信装置101,102においては、干渉波を除去するために複数の受信系統間における希望波と干渉波の位相差の違いを利用している。したがって、位相差に違いがない場合には、干渉波を除去することができない。
しかし、希望波および干渉波の到来方向が既知である場合は、受信アンテナとして指向性アンテナを使用し、主アンテナを希望波の到来方向に向け、補助アンテナを干渉波の到来方向に向けることで、それぞれのアンテナから出力される受信信号において干渉D/Uが異なるようすることができる。特に、補助アンテナでは、干渉波成分を大きなU/Dで取り出すことができる。このように、物理アンテナの指向性利得を利用することにより、主アンテナで受信された干渉波成分を、補助アンテナで受信した干渉波成分から生成するレプリカ信号によってキャンセルすることができ、干渉除去が可能となる。
一方、希望波と干渉波のSP受信タイミング差が一致するときなど、干渉波にも希望波と同じ信号成分が含まれている場合、補助アンテナ受信系統の信号において、同一チャネルの干渉成分は小さくなる。したがって、従来のOFDM信号合成用受信装置101,102では、複数の受信信号を同等に取り扱っていることに起因して、希望波の代わりに干渉波を受信するミスキャプチャが生じる可能性があり、希望波が抑圧されてしまうという問題があった。
そこで、本発明はかかる問題を解決するためになされたものであり、その目的は、複数のアンテナから出力される受信信号のそれぞれに含まれる希望波と干渉波の位相差がそれぞれの受信信号間で等しい場合においても、主アンテナ受信信号に含まれる干渉波成分を、それ以外の一つ以上の補助アンテナの受信信号に含まれる干渉波成分から生成するレプリカ信号によりキャンセルし、希望波信号を良好に抽出することが可能なOFDM信号合成用受信装置およびそれを用いて希望波を良好かつ安定に中継する中継装置を提供することにある。
上記課題を解決するため、本発明によるOFDM信号合成用受信装置は、一つの主アンテナおよび一つ以上の補助アンテナのそれぞれをアレー素子として構成されるアレーアンテナによってOFDM波を受信し出力するアレー受信部と、前記アレー受信部の出力するアレー素子数分の受信OFDM信号をFFTにより周波数領域の信号であるキャリヤシンボルに変換して出力するアレー素子数分のFFT部と、前記各FFT部の出力するキャリヤシンボルに対してOFDM信号のサブキャリヤ毎に重み付け合成することでアレー合成信号を生成して出力する第1のキャリヤシンボル合成部と、前記重み付け合成に用いる重み係数を制御する重み係数制御部とを有するOFDM信号合成用受信装置において、前記重み係数制御部は、前記各FFT部の出力するアレー素子数分のキャリヤシンボルから予め決められたシンボル番号およびサブキャリヤ番号によって伝送されるパイロット信号を抽出するアレー素子数分のパイロット抽出部、振幅と位相が既知の送信パイロット信号を生成するパイロット生成部、前記各パイロット抽出部の出力するアレー素子数分の受信パイロット信号を前記パイロット生成部の出力する送信パイロット信号で除算し、各アレー素子および各サブキャリヤにおけるチャネル応答を求めるアレー素子数分のチャネル応答算出部、および、前記各チャネル応答算出部の出力するチャネル応答をシンボル方向およびサブキャリヤ方向に補間し、全サブキャリヤにおけるチャネル応答を求めるアレー素子数分のチャネル応答補間部を有するチャネル推定部と、前記各チャネル推定部の出力するアレー素子数分のチャネル応答をOFDM信号のサブキャリヤ毎に前記重み係数を用いてアレー合成を行うチャネル応答合成部と、所望のチャネル応答を生成する所望応答生成部と、前記チャネル応答合成部の出力するチャネル応答のアレー合成信号と前記所望応答生成部の出力する所望応答から補正すべき位相補正値を求める位相補正値算出部とを備える位相識別部と、前記主アンテナ受信系統におけるFFT部の出力するキャリヤシンボルをOFDM信号のサブキャリヤ毎に前記主アンテナ受信系統におけるチャネル推定部の出力するチャネル応答で除算するチャネル等化部と、前記各FFT部の出力するアレー素子数分のキャリヤシンボルを当該および隣接するサブキャリヤの前記重み係数を用いてアレー合成を行う複数の第2のキャリヤシンボル合成部と、前記複数のキャリヤシンボル合成部の出力する複数のアレー合成信号に対して、前記位相識別部の出力するそれぞれの重み係数に対する位相補正値を乗算する複数の位相補正部と、前記複数の位相補正部の出力する複数の各アレー合成信号からなるベクトルに、予め決められたキャリヤ間平均化行列を乗算し、乗算後のベクトルのそれぞれの成分をキャリヤ間平均化処理後の複数のアレー合成信号として出力するキャリヤ間平均化部と、前記キャリヤ間平均化部の出力する複数のアレー合成信号のそれぞれについて、前記チャネル等化部の出力する主アンテナ受信系統のチャネル等化後のキャリヤシンボルと重み付け合成する複数の重み付け合成部と、前記各重み付け合成部の出力する複数の合成信号をそれぞれしきい値判定して出力する複数のしきい値判定部と、前記各しきい値判定部の出力する判定値から前記各重み付け合成部の出力する合成信号を減算して誤差を算出し、前記複数の誤差と前記各しきい値判定部の出力する複数の判定値とを用いてそれぞれ変調誤差比を算出する複数の変調誤差比算出部と、前記各変調誤差比算出部の出力する複数の変調誤差比のそれぞれに対して予め決められた定数を乗算する複数の乗算部と、前記各乗算部の出力する定数乗算後の変調誤差比の中から最大値を与える前記しきい値判定部の出力する判定値を選択し、参照信号として出力する選択部とを備える参照信号算出部と、前記第1のキャリヤシンボル合成部の出力するアレー合成信号と前記参照信号算出部の出力する参照信号との誤差が最小となるように重み係数の最適化を行う重み係数算出部とを備えることを特徴とする。
また、本発明によるOFDM信号合成用受信装置は、前記重み係数制御部の参照信号算出部が、変調誤差比算出部、乗算部および選択部の代わりに、前記各しきい値判定部の出力する判定値から前記各重み付け合成部の出力する合成信号を減算して誤差を算出する複数の誤差算出部、前記各誤差算出部の出力する複数の誤差のそれぞれに対して予め決められた定数を乗算する複数の乗算部、および、前記各乗算部の出力する定数乗算後の誤差の中から最小値を与える前記しきい値判定部の出力する判定値を選択し、参照信号として出力する選択部を備えることを特徴とする。
また、本発明によるOFDM信号合成用受信装置は、前記重み係数制御部が、重み係数算出部の代わりに、前記各FFT部の出力するアレー素子数分のキャリヤシンボルをOFDM信号のサブキャリヤ毎に前記参照信号算出部の出力する参照信号で除算することにより、チャネル応答を算出する除算部、前記各除算部の出力するアレー素子数分のチャネル応答を前記重み係数を用いてアレー合成処理を行うチャネル応答合成部、所望応答を生成する所望応答生成部、前記所望応答生成部の出力する所望応答から、前記チャネル応答合成部の出力するチャネル応答のアレー合成信号を減じて誤差を算出する誤差算出部、および、前記各除算部の出力するアレー素子数分のチャネル応答値と前記誤差算出部の出力する誤差とを用いて、誤差が最小となるように重み係数の最適化を行う重み係数算出部を備えることを特徴とする。
また、本発明によるOFDM信号合成受信装置は、前記重み係数制御部の重み係数算出部が、前記誤差が最小となるように重み係数の最適化を行い、主アンテナの受信系統における重み係数および補助アンテナの受信系統における重み係数を出力する最適化部と、前記最適化部の出力する主アンテナの受信系統における重み係数について、サブキャリヤ毎のノルムを計算するノルム計算部と、前記ノルム計算部の出力するサブキャリヤ毎の重み係数のノルムについて、全サブキャリヤの平均値を求める平均化部と、前記平均化部の出力する重み係数のノルム平均値に予め決められた定数を乗算し、しきい値を出力する乗算器と、前記ノルム計算部の出力するサブキャリヤ毎の重み係数のノルムと、前記乗算器の出力するしきい値とを比較し、比較結果を出力する比較部と、前記比較部の出力する比較結果により重み係数のノルムがしきい値よりも小さいサブキャリヤについて、前記最適化部の出力する主アンテナの受信系統における重み係数および補助アンテナの受信系統における重み係数のうち、前記サブキャリヤの重み係数を、隣接するサブキャリヤの重み係数、内挿補間した重み係数または予め決められた初期重み係数のうちのいずれかに置き換える重み係数置き換え部とを備えることを特徴とする。
さらに、本発明による中継装置は、前記OFDM信号合成用受信装置を用いることを特徴とする。
以上のように、本発明によれば、複数のアンテナから出力される受信信号のそれぞれに含まれる希望波と干渉波の位相差がそれぞれの受信信号間で等しい場合においても、主アンテナ受信信号に含まれる干渉波成分を、それ以外の一つ以上の補助アンテナの受信信号に含まれる干渉波成分から生成するレプリカ信号によりキャンセルし、希望波信号を良好に抽出することが可能なOFDM信号合成用受信装置およびそれを用いて希望波を良好かつ安定に中継する中継装置を実現することができる。
以下、本発明を実施するための最良の形態について図面を用いて詳細に説明する。
〔実施例1〕
図1は、本発明の実施の形態によるOFDM信号合成用受信装置の第1の構成を示すブロック図である。このOFDM信号合成用受信装置1は、FFT部10−1,i、重み係数制御部21、およびアレー合成部(キャリヤシンボル合成部)30を備えている。また、重み係数制御部21は、重み係数算出部41、減算部42、参照信号算出部50、および位相識別部70を備えている。また、参照信号算出部50は、キャリヤシンボル合成部51、位相補正部52、キャリヤ間平均化部53、チャネル等化部54、重み付け合成部55、しきい値判定部56、変調誤差比算出部57、乗算部58、最大値検出部59−1、および選択部59−2を備え、位相識別部70は、チャネル推定部71−1,i、チャネル応答合成部72、所望応答生成部73、および位相補正値算出部74を備えている。
FFT部10は、アレー素子数分のFFT部から構成され、主アンテナおよび複数の補助アンテナで構成されるアレーアンテナによって受信され出力されたアレー素子数分の各受信OFDM信号をそれぞれ入力し、各受信OFDM信号に対して高速フーリエ変換を行い、周波数領域信号であるキャリヤシンボルを出力する。主アンテナ受信系統のFFT部10−1の出力は5分配され、キャリヤシンボル合成部30、重み係数算出部41、キャリヤシンボル合成部51、チャネル等化部54およびチャネル推定部71−1にそれぞれ入力される。補助アンテナ受信系統のFFT部10−iの出力は4分配され、キャリヤシンボル合成部30、重み係数算出部41、キャリヤシンボル合成部51およびチャネル推定部71−iにそれぞれ入力される。
キャリヤシンボル合成部30は、各FFT部10から入力されるアレー素子数分のキャリヤシンボルと、重み係数算出部41から入力される重み係数とを用いて、OFDM信号のサブキャリヤ毎にアレー合成処理し、アレー合成信号として出力する。キャリヤシンボル合成部30の詳細については後述する。キャリヤシンボル合成部30の出力は2分配され、一方が減算部42に入力され、他方が外部へ供給される。
重み係数制御部21の減算部42は、参照信号算出部50から入力される参照信号から、キャリヤシンボル合成部30から入力されるアレー合成信号を減じ、その結果を誤差信号として出力する。重み係数算出部41は、各FFT部10から入力されるアレー素子数分のキャリヤシンボルと、減算部42から入力される誤差信号とを用いて、当該誤差信号が最小となる重み係数を算出して出力する。重み係数算出部41の出力する重み係数は3分配され、キャリヤシンボル合成部30、キャリヤシンボル合成部51およびチャネル応答合成部72にそれぞれ入力される。
重み係数制御部21の位相識別部70におけるチャネル推定部71は、アレー素子数分のチャネル推定部から構成され、FFT部10から入力されるアレー素子数分のキャリヤシンボルから、OFDM信号の各サブキャリヤにおけるチャネル応答をそれぞれ推定し出力する。チャネル推定部71の詳細については後述する。チャネル応答合成部72は、各チャネル推定部71から入力されるアレー素子数分のOFDM信号の各サブキャリヤにおけるチャネル応答を、重み係数算出部41から入力される重み係数を用いてアレー合成処理し、チャネル応答のアレー合成信号として出力する。チャネル応答合成部72の詳細については後述する。所望応答生成部73は、所望のチャネル応答すなわち1+0jを生成して出力する。位相補正値算出部74は、チャネル応答合成部72から入力されるチャネル応答のアレー合成信号と、所望応答生成部73から入力される所望のチャネル応答とを用いて位相回転角を求め、これを補正するための位相補正値を算出して出力する。
重み係数制御部21の参照信号算出部50におけるチャネル等化部54は、主アンテナ受信系統のFFT部10−1から入力されるキャリヤシンボルを、OFDM信号のサブキャリヤ毎にチャネル推定部71から入力されるチャネル応答で除算することにより、チャネル等化を行い、チャネル等化後のキャリヤシンボルとして出力する。
各FFT部10から出力され、参照信号算出部50に入力されるアレー素子数分のキャリヤシンボルはそれぞれ分配され、複数のキャリヤシンボル合成部51に入力される。複数のキャリヤシンボル合成部51は、OFDM信号のサブキャリヤ毎に、重み係数算出部41から入力される重み係数のうち、当該サブキャリヤまたは隣接する複数のサブキャリヤにおける重み係数を用いて、各FFT部10から入力されるアレー素子数分のキャリヤシンボルをアレー合成処理し、複数のアレー合成信号を出力する。キャリヤシンボル合成部51の詳細については後述する。
複数の位相補正部52は、キャリヤシンボル合成部51から入力される複数のアレー合成信号に、位相識別部70から入力されるOFDM信号のサブキャリヤ毎の位相補正値を乗算し、位相補正処理を行い出力する。キャリヤ間平均化部53は、位相補正部52から入力される複数のアレー合成信号からなるベクトルに対して、予め決められたキャリヤ間平均化行列を乗算し、その結果を出力する。複数の重み付け合成部55は、キャリヤ間平均化部53から入力される複数のアレー合成信号と、チャネル等化部54から入力されるチャネル等化後のキャリヤシンボルとを、重み係数算出部41から入力される誤差によってそれぞれ重み付け合成処理し、出力する。複数の重み付け合成部55の出力は2分配され、一方がしきい値判定部56に、他方が変調誤差比算出部57に入力される。
複数のしきい値判定部56は、重み付け合成部55から入力される複数の重み付け合成信号に対して、しきい値判定処理を行い、入力されるアレー合成信号との誤差が最も小さい既知の理想信号を出力する。複数のしきい値判定部56の出力する理想信号は2分配され、一方が選択部59−2に、他方が変調誤差比算出部57に入力される。複数の変調誤差比算出部57は、しきい値判定部56から入力されるそれぞれの理想信号から、重み付け合成部55から入力されるそれぞれの重み付け合成信号を減算して誤差を算出し、これらの誤差としきい値判定部56から入力されるそれぞれの理想信号とを用いて変調誤差比を算出し、その結果を出力する。複数の乗算部58は、変調誤差比算出部57から入力されるそれぞれの変調誤差比に対して、それぞれ予め決められた定数を乗じて、その結果を出力する。最大値検出部59−1は、乗算部58から入力される複数の変調誤差比のうちの最大値を検出し、その最大値を出力した系統を示す選択制御信号を出力する。選択部59−2は、最大値検出部59−1から入力される変調誤差比の最大値を出力した系統を示す選択制御信号に基づき、その系統のしきい値判定部56から入力される理想信号を選択して参照信号として出力する。
図8は、図1に示したチャネル推定部71の構成を示すブロック図である。このチャネル推定部71は、パイロット抽出部711、パイロット生成部712、除算部713、および補間部714を備えている。
パイロット抽出部711は、FFT部10から入力されるキャリヤシンボルから、予め決められたシンボル番号およびサブキャリヤ番号のキャリヤシンボルとして伝送されるパイロット信号を抽出し、受信パイロット信号として出力する。パイロット生成部712は、予め決められた振幅および位相を持つパイロット信号を生成して出力する。除算部713は、パイロット抽出部711から入力される受信パイロット信号を、パイロット生成部712から入力されるパイロット信号で除算し、パイロット信号が伝送されるサブキャリヤにおけるチャネル応答を求めて出力する。補間部714は、除算部713から入力されるチャネル応答を、シンボル方向およびサブキャリヤ方向に内挿補間し、OFDM信号の全サブキャリヤにおけるチャネル応答を算出して出力する。
図9は、図1に示したアレー合成部であるキャリヤシンボル合成部30、キャリヤシンボル合成部51およびチャネル応答合成部72の構成を示すブロック図である。このアレー合成部は、複素共役部301−1,i、乗算部302−1,i、および加算部303を備えている。尚、後述するチャネル応答合成部45もこのアレー合成部と同一の内部構成を有する。また、キャリヤシンボル合成部30,51が外部からキャリヤシンボルを入力するのに対し、チャネル応答合成部72,45が外部からチャネル応答を入力する。
複素共役部301は、アレー素子数分の複素共役部から構成され、重み係数算出部41から入力されるアレー素子数分の重み係数の複素共役値を生成して出力する。乗算部302は、アレー素子数分の乗算部により構成され、入力されるキャリヤシンボルまたはチャネル応答と、複素共役部301から入力される複素共役値とを乗算して出力する。加算部303は、乗算部302から入力されるアレー素子数分の乗算結果を加算し、アレー合成信号として出力する。
〔実施例2〕
図2は、本発明の実施の形態によるOFDM信号合成用受信装置の第2の構成を示すブロック図である。このOFDM信号合成用受信装置2は、FFT部10−1,i、重み係数制御部22、およびアレー合成部(キャリヤシンボル合成部)30を備えている。また、重み係数制御部22は、重み係数算出部41、減算部42、参照信号算出部60、および位相識別部70を備えている。また、参照信号算出部60は、キャリヤシンボル合成部51、位相補正部52、キャリヤ間平均化部53、チャネル等化部54、重み付け合成部55、しきい値判定部56、誤差算出部61、乗算部58、最小値検出部63、および選択部59−2を備え、位相識別部70は、チャネル推定部71−1,i、チャネル応答合成部72、所望応答生成部73、および位相補正値算出部74を備えている。
図1に示したOFDM信号合成用受信装置1と図2に示すOFDM信号合成用受信装置2とは、FFT部10−1,iおよびアレー合成部(キャリヤシンボル合成部)30の構成が同一であり、重み係数制御部21,22の構成が相違する。OFDM信号合成用受信装置2の重み係数制御部22において、重み係数算出部41、減算部42および位相識別部70の構成が同一であり、参照信号算出部60における誤差算出部61および最小値検出部63以外の構成が同一である。すなわち、図2に示すOFDM信号合成用受信装置2は、OFDM信号合成用受信装置1の変調誤差比算出部57および最大値検出部59−1の代わりに、誤差算出部61および最小値検出部63を備えている点で相違する。以下、図1と同一の構成については説明を省略する。
複数の誤差算出部61は、しきい値判定部56から入力されるそれぞれの理想信号である判定値から、重み付け合成部55から入力されるそれぞれの重み付け合成信号を減算し、誤差信号を生成して出力する。複数の乗算部58は、誤差算出部61から入力されるそれぞれの誤差信号に対して、それぞれ予め決められた定数を乗じて、その結果を出力する。最小値検出部63は、乗算部58から入力される複数の誤差信号のうちの最小値を検出し、その最小値を出力した系統を示す選択制御信号を出力する。
〔実施例3〕
図3は、本発明の実施の形態によるOFDM信号合成用受信装置の第3の構成を示すブロック図である。このOFDM信号合成用受信装置3は、FFT部10−1,i、重み係数制御部23、およびアレー合成部(キャリヤシンボル合成部)30を備えている。また、重み係数制御部23は、重み係数算出部41、減算部42、除算部43−1,i、チャネル応答合成部45、所望応答生成部46、参照信号算出部50、および位相識別部70を備えている。また、参照信号算出部50は、キャリヤシンボル合成部51、位相補正部52、キャリヤ間平均化部53、チャネル等化部54、重み付け合成部55、しきい値判定部56、変調誤差比算出部57、乗算部58、最大値検出部59−1、および選択部59−2を備え、位相識別部70は、チャネル推定部71−1,i、チャネル応答合成部72、所望応答生成部73、および位相補正値算出部74を備えている。
図1に示したOFDM信号合成用受信装置1と図3に示すOFDM信号合成用受信装置3とは、FFT部10−1,iおよびアレー合成部(キャリヤシンボル合成部)30の構成が同一であり、重み係数制御部21,23の構成が相違する。OFDM信号合成用受信装置3の重み係数制御部23において、重み係数算出部41、減算部42、参照信号算出部50および位相識別部70の構成が同一である。すなわち、図3に示すOFDM信号合成用受信装置3は、OFDM信号合成用受信装置1の構成に加えて、除算部43、チャネル応答合成部45および所望応答生成部46を備えている点で相違する。以下、図1と同一の構成については説明を省略する。
除算部43は、アレー素子数分の除算部から構成され、FFT部10から入力されるアレー素子数分のキャリヤシンボルをOFDM信号のサブキャリヤ毎に、参照信号算出部50から入力される参照信号で除算し、チャネル応答を出力する。除算部43の出力は2分配され、一方が重み係数算出部41に、他方がチャネル応答合成部45に入力される。チャネル応答合成部45は、除算部43から入力されるアレー素子数分のチャネル応答を、OFDM信号のサブキャリヤ毎に重み係数算出部41から入力される重み係数を用いてアレー合成し、チャネル応答のアレー合成信号を出力する。所望応答生成部46は、所望のチャネル応答を生成して出力する。減算部42は、所望応答生成部46から入力される所望のチャネル応答から、チャネル応答合成部45から入力されるチャネル応答のアレー合成信号を減算し、誤差信号として出力する。重み係数算出部41は、除算部43から入力されるアレー素子数分のチャネル応答と、減算部42から入力される誤差信号とを用いて、当該誤差信号が最小となる重み係数を算出して出力する。
〔実施例4〕
図4は、本発明の実施の形態によるOFDM信号合成用受信装置の第4の構成を示すブロック図である。このOFDM信号合成用受信装置4は、FFT部10−1,i、重み係数制御部24、およびアレー合成部(キャリヤシンボル合成部)30を備えている。また、重み係数制御部24は、重み係数算出部41、減算部42、除算部43−1,i、チャネル応答合成部45、所望応答生成部46、参照信号算出部60、および位相識別部70を備えている。また、参照信号算出部60は、キャリヤシンボル合成部51、位相補正部52、キャリヤ間平均化部53、チャネル等化部54、重み付け合成部55、しきい値判定部56、誤差算出部61、乗算部58、最小値検出部63、および選択部59−2を備え、位相識別部70は、チャネル推定部71−1,i、チャネル応答合成部72、所望応答生成部73、および位相補正値算出部74を備えている。
図2に示したOFDM信号合成用受信装置2と図4に示すOFDM信号合成用受信装置4とは、FFT部10−1,iおよびアレー合成部(キャリヤシンボル合成部)30の構成が同一であり、重み係数制御部22,24の構成が相違する。OFDM信号合成用受信装置4の重み係数制御部24において、重み係数算出部41、減算部42、参照信号算出部50および位相識別部70の構成が同一である。すなわち、図4に示すOFDM信号合成用受信装置4は、OFDM信号合成用受信装置2の構成に加えて、除算部43、チャネル応答合成部45および所望応答生成部46を備えている点で相違する。
また、図3に示したOFDM信号合成用受信装置3と図4に示すOFDM信号合成用受信装置4とを比較すると、OFDM信号合成用受信装置3は、参照信号算出部50において変調誤差比算出部57および最大値検出部59−1を備えているのに対し、OFDM信号合成用受信装置4は、参照信号算出部60において誤差算出部61および最小値検出部63を備えている点で相違する。OFDM信号合成用受信装置4に備えた除算部43、チャネル応答合成部45および所望応答生成部46は、図3に示したものと同一であり、誤差算出部61および最小値検出部63は、図2に示したものと同一であるので、ここでは説明を省略する。
〔ISDB−T方式を用いた場合〕
以上のように構成されるOFDM信号合成用受信装置1,2,3,4において、ISDB−T方式を用いた場合について詳細に説明する。
〔SP参照型チャネル推定および判定指向型チャネル推定〕
ISDB−T方式において、SPに割り当てられているサブキャリヤは、シンボル番号をi、サブキサリヤ番号をkとすると、
Figure 0004829849
を満足する。ただし、modは剰余を示す。以下、式(16)を満足するi,kをそれぞれi,kとする。
図8に示したチャネル推定部71において、パイロット抽出部(SP抽出部)711で抽出される受信SP信号をxip,kp、パイロット生成部(SP生成部)712で生成されるSP信号(ISDBT変調器において生成され送信されるSP信号(以下、単に送信SP信号という。))をsip,kpとすると、除算部713により算出されるシンボル番号i、サブキャリヤ番号kにおけるチャネル応答uip,kpは、次式で表される。
Figure 0004829849
ここでは、チャネル応答を算出するための基準信号としてISDB−T方式で採用されているSP信号を用いる方法を説明したが、振幅および位相が既知で受信側(OFDM信号合成用受信装置1,2,3,4)で生成可能なシンボルであれば、同様にチャネル応答を算出するための基準信号として利用することができる。
このように、SP信号を参照してチャネル応答を求める場合は、全てのシンボルおよびサブキャリヤにおけるチャネル応答を直接求めることができない。全てのシンボルおよびサブキャリヤにおけるチャネル応答を得るためには、補間部714において、シンボルおよびサブキャリヤ方向について補間処理を行う必要がある。
シンボル方向の補間として、例えば以下に示す最新値保持法や線形補間法を用いることができ、補間部714は、次式により補間処理を行う。
最新値保持法の場合は以下の式を用いる。
Figure 0004829849
線形補間法の場合は以下の式を用いる。
Figure 0004829849
また、サブキャリヤ方向の補間として、例えば以下に示す線形補間法を用いることができ、補間部714は、次式により補間処理を行う。
Figure 0004829849
一方、全てのシンボルおよびサブキャリヤにおけるチャネル応答を直接得る方法として、ISDB−T変調器における信号生成時のデータシンボル(以下、単に送信信号という。)を推定し、SP信号と同様に用いる方法がある。
シンボル番号i、サブキャリヤ番号kにおける受信キャリヤシンボルを式(9)のしきい値判定処理して得られる判定値をdi,k(送信信号の推定値)とすると、チャネル応答は次式により得られる。
Figure 0004829849
〔チャネル等化〕
FFT部10の出力するキャリヤシンボルは、伝送路歪みや復調側(受信側(OFDM信号合成用受信装置1,2,3,4))での処理における誤差を含んでいるため、しきい値判定や復号処理の前に、SP信号を用いて求めたチャネル応答値で除算する必要がある。チャネル等化部54は、このようなチャネル等化処理を次式により行う。
Figure 0004829849
ここで、左辺はチャネル等化後のキャリヤシンボルを示す。
〔キャリヤシンボルの合成およびチャネル応答の合成〕
式(1)の両辺を参照信号rで割ると、次式が得られる。
Figure 0004829849
Figure 0004829849
ここで、yおよびzは、それぞれキャリヤシンボルのアレー合成信号およびチャネル応答のアレー合成信号を示し、w,xおよびuは、それぞれサブキャリヤ番号kについての重み係数ベクトル、受信キャリヤシンボルベクトルおよびチャネル応答ベクトルを示す。
同様に、式(4)の両辺を参照信号rで割ると、次式が得られる。
Figure 0004829849
したがって、受信キャリヤシンボルベクトルxを重み係数ベクトルwを用いてアレー合成した結果yと参照信号rとの間の誤差を最小化する、すなわちy→rとすることは、チャネル応答ベクトルuを重み係数ベクトルwを用いてアレー合成した結果z→1となるように最適化することと等価である。
ここで、図1に示したOFDM信号合成用受信装置1および図2に示したOFDM信号合成用受信装置2では、重み係数算出部41において式(4)の評価関数を最小化するのに対し、図3に示したOFDM信号合成用受信装置3および図4に示したOFDM信号合成用受信装置4では、重み係数算出部41において式(6)の評価関数を最小化する。
〔位相識別部〕
位相識別部70については前述したのでここでは説明を省略する。詳細については、同一の出願人および発明者によりなされた特願2006−241767号公報を参照されたい。
〔参照信号算出部〕
次に、参照信号算出部50,60について説明する。参照信号算出部50,60は、OFDM信号のサブキャリヤ毎に処理を行う。ここでは当該サブキャリヤの番号をkとする。まず、サブキャリヤ番号kについてのキャリヤシンボルベクトルxを、隣接する2m+1個のサブキャリヤについての重み係数を用いてアレー合成処理し、アレー合成信号を生成する。
Figure 0004829849
ここで、l(エル)はk−m≦l≦k+mを満たす任意の整数である。mは十分小さな整数であり、例えば1でもよい。図1〜4の例はm=1の場合を示している。
アレー合成信号に対して、式(27)のように、位相補正値を乗算することにより、位相を確定させる。
Figure 0004829849
また、特に遅延時間の長いマルチパスが受信されるような場合、サブキャリヤ毎に最適な重みが異なるため、2m+1個のアレー合成信号からなるベクトル
Figure 0004829849
に対して、次の式(28)のように、キャリヤ間平均化行列Aを掛ける。
Figure 0004829849
ここで、
Figure 0004829849
Figure 0004829849
である。ここで、
Figure 0004829849
は行列演算後のアレー合成信号である。
キャリヤ間平均化行列Aは、隣接するそれぞれのサブキャリヤに乗じられているチャネル応答の違いを吸収するために乗じられるものであり、例えばm=1のとき、次のようにすればよい。
Figure 0004829849
Aの1行目では、両隣接するサブキャリヤ間の重み係数ベクトルの平均値によるアレー合成信号が得られる。例えば、当該サブキャリヤのみが最適解へ充分収束していない場合に、両隣接するサブキャリヤからの作用により、正しい判定値を得て、収束へ向かわせることができる。また、Aの2行目では、当該サブキャリヤのみの重み係数ベクトルによるアレー合成信号が得られる。これは通常の判定指向型に相当する。Aの3行目では、当該サブキャリヤおよび両隣接するサブキャリヤの重み係数ベクトルを重み付け平均した係数ベクトルによるアレー合成信号が得られる。
次に、キャリヤ間平均化後のアレー合成信号と、主アンテナ受信系統のチャネル等化後のキャリヤシンボルとを重み付け合成する。
Figure 0004829849
ここで、
Figure 0004829849
は主アンテナ受信系統のチャネル等化後のキャリヤシンボルを示す。また、αは、時刻iにおける重み付けの適応係数であり、例えば式(4)の評価関数値を0≦α≦1の範囲になるように定数倍した値とすればよい。
Figure 0004829849
評価関数値が大きく、重み係数が最適解へ収束していない段階では、αは大きな値となり、式(32)において、主アンテナ受信系統のチャネル等化後のキャリヤシンボルに対する重みが大きくなる。これにより、干渉波をミスキャプチャすることを防ぐことができる。重み係数が最適解へ収束し、評価関数値が小さくなる段階は、アレー合成信号において干渉波が除去されていることを意味し、式(32)において干渉波が除去されていない主アンテナ受信系統のチャネル等化後のキャリヤシンボルよりも、干渉波が除去されているアレー合成信号に対する重みが大きくなる。最終的に重み係数が十分収束すれば、アレー合成信号は干渉波が除去され、希望波が抽出されることになる。
次に、重み付け合成後の複数のアレー合成信号
Figure 0004829849
をそれぞれしきい値判定し、式(34)に示す仮の判定値
Figure 0004829849
を生成する。
Figure 0004829849
ここで、dec(y)はしきい値判定の関数であり、yに最も近い送信データを返す。さらにそれぞれについて式(35)を用いて仮の判定値
Figure 0004829849
とアレー合成信号
Figure 0004829849
とのノルム(残留誤差)
Figure 0004829849
をそれぞれ算出する。
Figure 0004829849
ここで、定数βは、それぞれの誤差に対する重み付けをするパラメータである。
最後に、
Figure 0004829849
が最小であるlをjとして選択し、
Figure 0004829849
を参照信号とする。
Figure 0004829849
Figure 0004829849
ここで、図1に示したOFDM信号合成用受信装置1および図3に示したOFDM信号合成用受信装置3では、最大値検出部59−1において変調誤差比の最大値を求めているのに対し、図2に示したOFDM信号合成用受信装置2および図4に示したOFDM信号合成用受信装置4では、最小値検出部63において誤差の最小値を求めている。
変調誤差比(MER:Modulation Error Ratio)は、一般に次式で定義される。詳細については、以下の文献を参照されたい。
ETR290:Measurement guidelines for DVB Systems,ETSI Technical Report,may 1997
Figure 0004829849
Figure 0004829849
ここで、
Figure 0004829849
はキャリヤ番号kにおける受信シンボルを示す。(I,Q)は、式(9)のように、受信シンボルをシンボル判定して得られる既知の送信信号ベクトルの推定値である。(δI,δQ)は、推定送信信号ベクトルと受信シンボルとの誤差ベクトルを示す。
変調誤差比は、一般に式(38)のように、OFDMシンボル毎に全てのデータシンボルについての信号電力および誤差電力の総和の比としているが、それぞれのサブキャリヤについての変調誤差比を考え、ここでは式(40)で定義する。
Figure 0004829849
変調誤差比は、キャリヤシンボルの信号点としての確からしさを示す数値であり、誤差との違いはその信号点電力によって正規化されているか否かにある。
また、誤差は小さい方が信号点として確からしいのに対して、変調誤差比は大きい方が信号点として確からしい。このため、変調誤差比を用いる場合は、複数の変調誤差比のうちの最大値を検出し、最大の変調誤差比を与えるキャリヤシンボルのしきい値判定値を選択すればよい。
また、信号点としての確からしさを比較することが目的であるため、dB変換する必要はない。したがって、仮の判定値
Figure 0004829849
について、判定値としての確からしさを次の式(41)により定義する。
Figure 0004829849
ここで、定数βは、それぞれの変調誤差比に対して重み付けを行うためのパラメータである。
また、Aに式(33)を用いた場合、第2行すなわち当該サブキャリヤにおける重み係数を用いて生成した判定値に対する重みβを大きくすることにより、判定誤り(選択誤り)を少なくすることができる。
MERは、値が大きい方が信号点として確からしいため、複数の重み付けされたMERの最大値を検出し、最大の重み付けされたMERを与えるlをjとし、そのキャリヤシンボルのしきい値判定値を選択する。
Figure 0004829849
Figure 0004829849
〔重み係数算出部〕
次に、重み係数算出部41について説明する。図1に示したOFDM信号合成用受信装置1および図2に示したOFDM信号合成用受信装置2においては、重み係数算出部41が、アレー素子数分のキャリヤシンボルおよび誤差信号を用いて、当該誤差信号が最小となる重み係数を算出する。すなわち、前述の式(4)の評価関数を最小にする重み係数を算出する。また、図3に示したOFDM信号合成用受信装置3および図4に示したOFDM信号合成用受信装置4においては、重み係数算出部41が、アレー素子数分のチャネル応答および誤差信号を用いて、当該誤差信号が最小となる重み係数を算出する。すなわち、前述の式(6)の評価関数を最小にする重み係数を算出する。しかしながら、このように算出された重み係数を用いてアレー合成信号を生成したとしても、一部のサブキャリヤにおいて、希望波の代わりに干渉波を受信するミスキャプチャに伴って希望波が抑圧されてしまう場合がある。すなわち、全てのサブキャリヤにおいて、干渉波をキャンセルして希望波を良好に抽出するのに充分でない場合がある。そこで、以下に説明する重み係数算出部41を用いることにより、確実に干渉波をキャンセルして希望波を抽出する。
図13は、図1および図2に示したOFDM信号合成用受信装置1,2における重み係数算出部41の構成を示す図である。この重み係数算出部41は、最適化部401、ノルム計算部402、平均化部403、乗算部404、比較部405および重み係数置き換え部406を備えている。最適化部401は、各FFT部10から入力されるアレー素子数分のキャリヤシンボルと、減算部42から入力される誤差信号とを用いて、当該誤差信号が最小となる重み係数を算出して出力する。最適化部401の出力する主アンテナ受信系統の重み係数は2分配され、一方が重み係数置き換え部406に、他方がノルム計算部402に入力される。また、最適化部401の出力する補助アンテナ受信系統の重み係数は重み係数置き換え部406に入力される。
ノルム計算部402は、最適化部401から主アンテナ受信系統の重み係数を入力し、サブキャリヤ毎に重み係数のノルムを計算して出力する。ノルム計算部402の出力するサブキャリヤ毎の重み係数のノルムは2分配され、一方が比較部405に、他方が平均化部403に入力される。
平均化部403は、ノルム計算部402からサブキャリヤ毎の重み係数のノルムを入力し、全サブキャリヤの重み係数のノルムについて、その平均値を求めて出力する。乗算部404は、平均化部403から全サブキャリヤの重み係数のノルムにおける平均値を入力し、この平均値と予め決められた定数とを乗算し、乗算結果をしきい値として出力する。
比較部405は、ノルム計算部402により計算されたサブキャリヤ毎の重み係数のノルムと、乗算部404により乗算されたしきい値とをサブキャリヤ毎に比較し、比較結果を出力する。
重み係数置き換え部406は、最適化部401から主アンテナ受信系統および補助アンテナ受信系統のサブキャリヤ毎の重み係数を入力し、比較部405からサブキャリヤ毎の比較結果を入力し、その比較結果が「比較部405において重み係数のノルムがしきい値よりも小さい」サブキャリヤを特定し、最適化部401から入力した主アンテナ受信系統および補助アンテナ受信系統における全サブキャリヤの重み係数のうち、その特定したサブキャリヤの重み係数を所定の重み係数に置き換える。具体的には、そのサブキャリヤの重み係数を、隣接するサブキャリヤの重み係数、その内挿補間により得られた重み係数、または予め決められた初期値としての重み係数に置き換える。このようにして、重み係数置き換え部406は、最適化部401から入力した全系統の全サブキャリヤの重み係数のうちの、比較部405から入力した比較結果が示すサブキャリヤの重み係数を所定の重み係数に置き換えて出力する。
重み係数置き換え部406の出力する重み係数は3分配され、キャリヤシンボル合成部30,51およびチャネル応答合成部72にそれぞれ入力される。尚、図13に示した重み係数算出部41は、入力信号をチャネル応答とすることにより、図3および図4に示したOFDM信号合成用受信装置3,4にも適用することができる。
図14は、干渉波が除去される状態を説明する概念図である。ここでは、主アンテナ受信系統のD/Uが10dB、補助アンテナ受信系統のD/Uが−10dBの場合を示している。図1〜図4のOFDM信号合成用受信装置1〜4に図示しないAGC(Automatic Gain Control)部は、入力信号の電力が予め決められた電力値になるように利得調整を行う。具体的には、AGC部は、主アンテナ受信系統では希望波受信電力を基準にし、補助アンテナ受信系統では干渉波受信電力を基準にしてそれぞれ利得調整を行う。この場合、図14に示すように、主アンテナ受信系統の重み係数を1に、補助アンテナ受信系統の重み係数を−0.1にすることにより、干渉波を理想的に除去することができる。尚、主アンテナ受信系統のD/Uが常に正であることを前提としているため、補助アンテナ受信系統に対する重み係数のノルムは、常に主アンテナ受信系統に対する重み係数のノルムよりも小さい必要がある。
図15は、全てのサブキャリヤにおいて干渉波が除去される状態を説明する図であり、図14の受信条件における最適な重み係数を、複素平面上に表したものである。左側が主アンテナ受信系統の重み係数を表した図であり、右側が補助アンテナ受信系統の重み係数を表した図である。図15に示すように、全サブキャリヤについて位相項も考慮すると、重み係数はある程度一定の振幅を持つ円周上にあると考えられる。また、主アンテナ受信系統の重み係数による円は、補助アンテナ受信系統の重み係数による円よりも外側に存在する(直径が大きい)ことがわかる。
図16は、希望波の代わりに干渉波を受信する(干渉波を希望波とみなす)ミスキャプチャが生じている状態を説明する概念図であり、干渉波を受信して希望波を除去している様子を示している。ここでは、図14と同様に、主アンテナ受信系統のD/Uが10dB、補助アンテナ受信系統のD/Uが−10dBの場合を示している。図16に示すように、主アンテナ受信系統の重み係数を−0.1に、補助アンテナ受信系統の重み係数を1にすることにより、希望波を除去している。この場合、補助アンテナ受信系統に対する重み係数のノルムは、主アンテナ受信系統に対する重み係数のノルムよりも大きい。
図17は、一部のサブキャリヤにおいて、ミスキャプチャが生じている状態を説明する図であり、図16の受信条件における重み係数を、複素平面上に表したものである。左側が主アンテナ受信系統の重み係数を表した図であり、右側が補助アンテナ受信系統の重み係数を表した図である。図17に示すように、主アンテナ受信系統に重み係数の大きさが異なる2つの円が存在し、補助アンテナ受信系統にも2つの円が存在している。ミスキャプチャが生じているサブキャリヤは、主アンテナ受信系統の重み係数のうち直径の小さな円と(左側の図)、補助アンテナ受信系統の重み係数のうち直径が大きな円と(右側の図)に表される。また、主アンテナ受信系統の重み係数のうち直径が大きな円周上にある重み係数は、希望波を受信していることを意味し、直径が小さな円周上にある重み係数は、干渉波を受信していることを意味している。
したがって、主アンテナ受信系統の重み係数が複素平面上において、直径の小さい円周上にある場合、そのサブキャリヤがミスキャプチャを生じていると考えられる。このミスキャプチャを生じているか否かの判断は、主アンテナ受信系統の重み係数のノルムと以下の式で与えられるしきい値との比較により行う。
Figure 0004829849
ここで、wk,0はサブキャリヤ番号kにおける主アンテナ受信系統の重み係数、βは予め決められた定数であり、0<β<1の範囲の実数である。つまり、図13に示した平均化部403および乗算部404は、式(44)のしきい値を算出し、比較部405は、このしきい値を用いてサブキャリヤ毎の比較を行う。
また、図13に示した重み係数置き換え部406は、ミスキャプチャが生じていると判断した場合に(比較部405において重み係数がしきい値よりも小さいサブキャリヤが存在する場合に)、例えば、以下の式のように、そのサブキャリヤの重み係数について、隣接するサブキャリヤの重み係数を用いて内挿補間を行い、そのサブキャリヤの重み係数を置き換える。
Figure 0004829849
また、ミスキャプチャを生じているサブキャリヤに隣接するサブキャリヤもまたミスキャプチャを生じていると判断した場合には(比較部405において重み係数がしきい値よりも小さいサブキャリヤが存在し、それが隣接している場合には)、式(45)における(wk−1+wk+1)/2の代わりに、wk−1、wk+1またはw(初期値)などを用いて、ミスキャプチャが生じない重み係数に置き換える。
このように、図13に示した重み係数算出部41によれば、ミスキャプチャが生じるサブキャリヤの重み係数を、ミスキャプチャが生じない重み係数に置き換えるようにしたから、ミスキャプチャに伴って希望波が抑圧されることがなく、全てのサブキャリヤにおいて、干渉波をキャンセルして希望波を良好に抽出することができる。
〔中継装置〕
図12は、図1〜図4に示したOFDM信号合成用受信装置1,2,3,4を用いた中継装置の構成を示すブロック図である。この中継装置501は、外部の受信アンテナ502、フィーダーケーブル503,512、受信フィルタ504、受信部505、OFDM信号合成用受信装置1,2,3,4のうちのいずれか1つのOFDM信号合成用受信装置、判定器506、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部507、GI付加部508、外部の送信部509、PA510、送信フィルタ511、および送信アンテナ513を備えている。
親局から送信された希望波(OFDM波)は、放送波中継局の中継装置501において、複数の受信アンテナ502によって受信される。複数の受信フィルタ504は、複数の受信アンテナ502からフィーダーケーブル503を通して受信信号を入力し、希望波の周波数帯域外の不要な信号成分を除去する。複数の受信部505は、受信アンテナ502数分の受信フィルタ504の出力信号をそれぞれ入力し、その出力レベルが一定になるようにAGC増幅した後、周波数変換してIF信号を出力する。このIF信号の中心周波数としては、37.15MHzが一般に用いられる。
受信アンテナ502数分の受信部505により出力されたIF信号は、OFDM信号合成用受信装置1,2,3,4に入力される。OFDM信号合成用受信装置1,2,3,4の周波数変換部(図示せず)は、入力されるIF信号を周波数変換し、第2IF信号に変換して出力する。この第2IF信号の中心周波数としては、512/63(8.127689....)MHzが一般に用いられる。A/D変換器(図示せず)は、周波数変換部から第2IF信号を入力し、A/D変換してデジタルIF信号を出力する。直交復調器(図示せず)は、A/D変換器からデジタルIF信号を入力し、直交復調処理し、複素ベースバンド信号に変換して出力する。FFT部は、直交復調器から複素ベースバンド信号を入力し、FFTしてキャリヤシンボルを出力する。そして、FFT部の出力するキャリヤシンボルはアレー合成処理され、入力信号からマルチパス歪み、および希望波と同一周波数帯域内の妨害波を除去して出力する。
判定器506は、OFDM信号合成用受信装置1,2,3,4の出力信号を入力し、OFDM信号のサブキャリヤ毎にしきい値判定処理により、送信シンボルを推定して出力する。IFFT部507は、判定器506からのキャリヤシンボルを入力し、IFFT処理し、時間領域信号に変換する。GI付加部508は、IFFT部507からの時間領域信号を入力し、OFDMシンボルの先頭にGIを付加する。直交変調器(図示せず)は、GI付加部508から入力される複素ベースバンド信号に対して直交変調処理し、デジタルIF信号に変換して出力する。D/A変換器(図示せず)は、直交変調器から入力されるデジタルIF信号を第2IF信号に変換して出力する。周波数変換部(図示せず)は、D/A変換器から入力される第2IF信号をIF信号に変換して出力する。
送信部509は、周波数変換部から入力されるIF信号をRF帯に周波数変換し、一定レベルになるように増幅して出力する。PA510は、送信部509から入力されるRF信号に対し、所望の出力の送信信号を得るために電力増幅して出力する。送信フィルタ511は、PA510から入力される送信信号から、帯域外の不要輻射成分を除去する。送信フィルタ511により帯域外の不要な成分が除去された送信信号は、フィーダーケーブル512を通して送信アンテナ513に供給され電波となって放射される。
尚、図12に示した中継装置501は、判定器506を備えるようにしたが、必ずしも必要ではない。判定器506によるしきい値判定処理は、入力されるキャリヤシンボルに最も近い既知の送信シンボルに置き換える処理である。この処理には干渉除去の残留誤差や素子間で非相関の白色雑音を除去できるという利点があるが、必ずしも必要であるとは限らない。
本発明の実施の形態によるOFDM信号合成用受信装置の第1の構成を示すブロック図である。 本発明の実施の形態によるOFDM信号合成用受信装置の第2の構成を示すブロック図である。 本発明の実施の形態によるOFDM信号合成用受信装置の第3の構成を示すブロック図である。 本発明の実施の形態によるOFDM信号合成用受信装置の第4の構成を示すブロック図である。 OFDM信号合成用受信装置の概要を説明する図である。 他のOFDM信号合成用受信装置の概要を説明する図である。 SPの配置を説明する図である。 チャネル推定部の構成を示す図である。 アレー合成部の構成を示す図である。 最適化による重み係数算出手法を説明する図である。 位相識別アルゴリズムを説明する図である。 図1〜図4のOFDM信号合成用受信装置を用いた中継装置の構成を示す図である。 重み係数算出部の構成を示す図である。 干渉波が除去される状態を説明する概念図である。 干渉波が除去されるときの複素平面上における重み係数を説明する図である。 ミスキャプチャが生じている状態を説明する概念図である。 ミスキャプチャが生じているときの複素平面上における重み係数を説明する図である。
符号の説明
1,2,3,4,101,102 OFDM信号合成用受信装置
10 FFT部
21,22,23,24,201,202 重み係数制御部
30,51 アレー合成部(キャリヤシンボル合成部)
21,121 判定値算出部
41,211,215 重み係数算出部
42,213,218 減算部
43,713 除算部
45,72,216 アレー合成部(チャネル応答合成部)
46,73 所望応答生成部
50,60 参照信号算出部
52 位相補正部
53 キャリヤ間平均化部
54 チャネル等化部
55 重み付け合成部
56 しきい値判定部
57 変調誤差比算出部
58,302 乗算部
59−1 最大値検出部
59−2 選択部
61 誤差算出部
63 最小値検出部
70 位相識別部
71,214 チャネル推定部
74 位相補正値算出部
212,217 参照信号生成部
401 最適化部
402 ノルム計算部
403 平均化部
404 乗算部
405 比較部
406 重み係数置き換え部
301 複素共役部
303 加算部
501 中継装置
502 受信アンテナ
503,512 フィーダーケーブル
504 受信フィルタ
505 受信部
506 判定器
507 IFFT部
508 GI付加部
509 送信部
510 PA
511 送信フィルタ
513 送信アンテナ
711 パイロット抽出部
712 パイロット生成部
714 補間部

Claims (5)

  1. 一つの主アンテナおよび一つ以上の補助アンテナのそれぞれをアレー素子として構成されるアレーアンテナによってOFDM波を受信し出力するアレー受信部と、前記アレー受信部の出力するアレー素子数分の受信OFDM信号をFFTにより周波数領域の信号であるキャリヤシンボルに変換して出力するアレー素子数分のFFT部と、前記各FFT部の出力するキャリヤシンボルに対してOFDM信号のサブキャリヤ毎に重み付け合成することでアレー合成信号を生成して出力する第1のキャリヤシンボル合成部と、前記重み付け合成に用いる重み係数を制御する重み係数制御部とを有するOFDM信号合成用受信装置において、
    前記重み係数制御部は、
    前記各FFT部の出力するアレー素子数分のキャリヤシンボルから予め決められたシンボル番号およびサブキャリヤ番号によって伝送されるパイロット信号を抽出するアレー素子数分のパイロット抽出部、振幅と位相が既知の送信パイロット信号を生成するパイロット生成部、前記各パイロット抽出部の出力するアレー素子数分の受信パイロット信号を前記パイロット生成部の出力する送信パイロット信号で除算し、各アレー素子および各サブキャリヤにおけるチャネル応答を求めるアレー素子数分のチャネル応答算出部、および、前記各チャネル応答算出部の出力するチャネル応答をシンボル方向およびサブキャリヤ方向に補間し、全サブキャリヤにおけるチャネル応答を求めるアレー素子数分のチャネル応答補間部を有するチャネル推定部と、前記各チャネル推定部の出力するアレー素子数分のチャネル応答をOFDM信号のサブキャリヤ毎に前記重み係数を用いてアレー合成を行うチャネル応答合成部と、所望のチャネル応答を生成する所望応答生成部と、前記チャネル応答合成部の出力するチャネル応答のアレー合成信号と前記所望応答生成部の出力する所望応答から補正すべき位相補正値を求める位相補正値算出部とを備える位相識別部と、
    前記主アンテナ受信系統におけるFFT部の出力するキャリヤシンボルをOFDM信号のサブキャリヤ毎に前記主アンテナ受信系統におけるチャネル推定部の出力するチャネル応答で除算するチャネル等化部と、前記各FFT部の出力するアレー素子数分のキャリヤシンボルを当該および隣接するサブキャリヤの前記重み係数を用いてアレー合成を行う複数の第2のキャリヤシンボル合成部と、前記複数のキャリヤシンボル合成部の出力する複数のアレー合成信号に対して、前記位相識別部の出力するそれぞれの重み係数に対する位相補正値を乗算する複数の位相補正部と、前記複数の位相補正部の出力する複数の各アレー合成信号からなるベクトルに、予め決められたキャリヤ間平均化行列を乗算し、乗算後のベクトルのそれぞれの成分をキャリヤ間平均化処理後の複数のアレー合成信号として出力するキャリヤ間平均化部と、前記キャリヤ間平均化部の出力する複数のアレー合成信号のそれぞれについて、前記チャネル等化部の出力する主アンテナ受信系統のチャネル等化後のキャリヤシンボルと重み付け合成する複数の重み付け合成部と、前記各重み付け合成部の出力する複数の合成信号をそれぞれしきい値判定して出力する複数のしきい値判定部と、前記各しきい値判定部の出力する判定値から前記各重み付け合成部の出力する合成信号を減算して誤差を算出し、前記複数の誤差と前記各しきい値判定部の出力する複数の判定値とを用いてそれぞれ変調誤差比を算出する複数の変調誤差比算出部と、前記各変調誤差比算出部の出力する複数の変調誤差比のそれぞれに対して予め決められた定数を乗算する複数の乗算部と、前記各乗算部の出力する定数乗算後の変調誤差比の中から最大値を与える前記しきい値判定部の出力する判定値を選択し、参照信号として出力する選択部とを備える参照信号算出部と、
    前記第1のキャリヤシンボル合成部の出力するアレー合成信号と前記参照信号算出部の出力する参照信号との誤差が最小となるように重み係数の最適化を行う重み係数算出部とを備えることを特徴とするOFDM信号合成用受信装置。
  2. 請求項1に記載のOFDM信号合成用受信装置において、
    前記重み係数制御部の参照信号算出部は、変調誤差比算出部、乗算部および選択部の代わりに、
    前記各しきい値判定部の出力する判定値から前記各重み付け合成部の出力する合成信号を減算して誤差を算出する複数の誤差算出部、前記各誤差算出部の出力する複数の誤差のそれぞれに対して予め決められた定数を乗算する複数の乗算部、および、前記各乗算部の出力する定数乗算後の誤差の中から最小値を与える前記しきい値判定部の出力する判定値を選択し、参照信号として出力する選択部を備えることを特徴とするOFDM信号合成用受信装置。
  3. 請求項1または2に記載のOFDM信号合成用受信装置において、
    前記重み係数制御部は、重み係数算出部の代わりに、
    前記各FFT部の出力するアレー素子数分のキャリヤシンボルをOFDM信号のサブキャリヤ毎に前記参照信号算出部の出力する参照信号で除算することにより、チャネル応答を算出する除算部、前記各除算部の出力するアレー素子数分のチャネル応答を前記重み係数を用いてアレー合成処理を行うチャネル応答合成部、所望応答を生成する所望応答生成部、前記所望応答生成部の出力する所望応答から、前記チャネル応答合成部の出力するチャネル応答のアレー合成信号を減じて誤差を算出する誤差算出部、および、前記各除算部の出力するアレー素子数分のチャネル応答値と前記誤差算出部の出力する誤差とを用いて、誤差が最小となるように重み係数の最適化を行う重み係数算出部を備えることを特徴とするOFDM信号合成用受信装置。
  4. 請求項1から3までのいずれか一項に記載のOFDM信号合成受信装置において、
    前記重み係数制御部の重み係数算出部は、
    前記誤差が最小となるように重み係数の最適化を行い、主アンテナの受信系統における重み係数および補助アンテナの受信系統における重み係数を出力する最適化部と、
    前記最適化部の出力する主アンテナの受信系統における重み係数について、サブキャリヤ毎のノルムを計算するノルム計算部と、
    前記ノルム計算部の出力するサブキャリヤ毎の重み係数のノルムについて、全サブキャリヤの平均値を求める平均化部と、
    前記平均化部の出力する重み係数のノルム平均値に予め決められた定数を乗算し、しきい値を出力する乗算器と、
    前記ノルム計算部の出力するサブキャリヤ毎の重み係数のノルムと、前記乗算器の出力するしきい値とを比較し、比較結果を出力する比較部と、
    前記比較部の出力する比較結果により重み係数のノルムがしきい値よりも小さいサブキャリヤについて、前記最適化部の出力する主アンテナの受信系統における重み係数および補助アンテナの受信系統における重み係数のうち、前記サブキャリヤの重み係数を、隣接するサブキャリヤの重み係数、内挿補間した重み係数または予め決められた初期重み係数のうちのいずれかに置き換える重み係数置き換え部とを備えることを特徴とするOFDM信号合成用受信装置。
  5. 請求項1から4までのいずれか一項に記載のOFDM信号合成用受信装置を用いることを特徴とする中継装置。
JP2007200633A 2006-11-15 2007-08-01 Ofdm信号合成用受信装置および中継装置 Active JP4829849B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200633A JP4829849B2 (ja) 2006-11-15 2007-08-01 Ofdm信号合成用受信装置および中継装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006309367 2006-11-15
JP2006309367 2006-11-15
JP2007200633A JP4829849B2 (ja) 2006-11-15 2007-08-01 Ofdm信号合成用受信装置および中継装置

Publications (2)

Publication Number Publication Date
JP2008148277A JP2008148277A (ja) 2008-06-26
JP4829849B2 true JP4829849B2 (ja) 2011-12-07

Family

ID=39607906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200633A Active JP4829849B2 (ja) 2006-11-15 2007-08-01 Ofdm信号合成用受信装置および中継装置

Country Status (1)

Country Link
JP (1) JP4829849B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203655B1 (en) 2009-07-17 2018-10-17 LG Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system including relay station
JP5235857B2 (ja) * 2009-12-25 2013-07-10 日本放送協会 Ofdm信号合成用受信装置
JP5337746B2 (ja) * 2010-03-08 2013-11-06 日本放送協会 Ofdm信号合成用受信装置及び中継装置
JP5473751B2 (ja) * 2010-04-23 2014-04-16 日本放送協会 Ofdm信号合成用受信装置
JP5846211B2 (ja) * 2011-10-28 2016-01-20 日本電気株式会社 干渉波抑圧装置及び干渉波抑圧方法
JP5782366B2 (ja) 2011-11-18 2015-09-24 ルネサスエレクトロニクス株式会社 受信装置、信号処理装置、信号処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567730B2 (ja) * 1998-03-31 2004-09-22 株式会社豊田中央研究所 アダプティブ受信装置
JP3814182B2 (ja) * 2001-10-17 2006-08-23 国立大学法人 北海道大学 無線装置およびアダプティブアレイ処理方法
JP3759448B2 (ja) * 2001-12-06 2006-03-22 日本放送協会 Ofdm信号合成用受信装置
JP4456497B2 (ja) * 2004-03-09 2010-04-28 日本放送協会 受信装置及び中継装置
JP4266200B2 (ja) * 2004-12-24 2009-05-20 株式会社東芝 Ofdm復調装置

Also Published As

Publication number Publication date
JP2008148277A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5524943B2 (ja) 受信装置
JP4523294B2 (ja) 通信装置
JP5644475B2 (ja) 受信装置
JP4456497B2 (ja) 受信装置及び中継装置
JP2007208967A (ja) 無線通信装置
JP3715282B2 (ja) Ofdm受信装置及びofdm信号の補正方法
JP4829849B2 (ja) Ofdm信号合成用受信装置および中継装置
JP4266201B2 (ja) Ofdmダイバーシチ受信装置
EP1418721B1 (en) System and method for soft slicing outputs from a beamformer
JP6140565B2 (ja) ダイバーシチ受信装置
JP4688761B2 (ja) Ofdm信号合成用受信装置および中継装置
JP4871334B2 (ja) Ofdm信号合成用受信装置
EP1883169A1 (en) Diversity combining method and diversity receiver apparatus
JP5023007B2 (ja) Ofdm信号受信装置および中継装置
JP4886736B2 (ja) Ofdm信号合成用受信装置および中継装置
JP6028572B2 (ja) 受信装置
JP5511433B2 (ja) 受信装置
JP4486008B2 (ja) 受信装置
US8654905B2 (en) Method and apparatus for canceling interference
JP4719102B2 (ja) 伝搬パス推定装置及びパスダイバーシチ受信装置
JP4109530B2 (ja) 回り込みキャンセラ
JP6609855B2 (ja) ダイバーシチ受信装置
JP5023006B2 (ja) Ofdm信号受信装置および中継装置
JP5337746B2 (ja) Ofdm信号合成用受信装置及び中継装置
JP5473751B2 (ja) Ofdm信号合成用受信装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4829849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250