JP4828152B2 - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP4828152B2
JP4828152B2 JP2005123541A JP2005123541A JP4828152B2 JP 4828152 B2 JP4828152 B2 JP 4828152B2 JP 2005123541 A JP2005123541 A JP 2005123541A JP 2005123541 A JP2005123541 A JP 2005123541A JP 4828152 B2 JP4828152 B2 JP 4828152B2
Authority
JP
Japan
Prior art keywords
sewage
organic polymer
flocculant
treatment
polymer flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005123541A
Other languages
Japanese (ja)
Other versions
JP2006297299A (en
Inventor
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2005123541A priority Critical patent/JP4828152B2/en
Publication of JP2006297299A publication Critical patent/JP2006297299A/en
Application granted granted Critical
Publication of JP4828152B2 publication Critical patent/JP4828152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、下水の処理方法に関する。   The present invention relates to a method for treating sewage.

下水は、通常、一次処理と呼ばれる最初沈殿池での自然沈降により、粒子の粗い懸濁物質(SS)を除去した後、二次処理と呼ばれる活性汚泥処理等の生物処理により、有機物を除去し、浄化される。
自然沈降による一次処理では、(i)広大な敷地面積が必要である、(ii)一次処理された処理水における濁度、COD(化学的酸素要求量)等の除去率は30%程度に留まり二次処理への負担が大きく、二次処理で膨大なエネルギーが消費される、という問題がある。
近年、下水処理の効率を向上させる高度な処理システムの一つの方法として、一次処理において凝集処理を行う方法が検討されている。
Sewage usually removes organic matter by biological treatment such as activated sludge treatment called secondary treatment after removing coarse suspended particles (SS) by natural sedimentation in the first sedimentation basin called primary treatment. To be purified.
In the primary treatment by natural sedimentation, (i) a large site area is required, (ii) the removal rate of turbidity, COD (chemical oxygen demand), etc. in the treated water is only about 30%. There is a problem that the burden on the secondary processing is large and enormous energy is consumed in the secondary processing.
In recent years, as one method of an advanced treatment system that improves the efficiency of sewage treatment, a method of performing an agglomeration treatment in a primary treatment has been studied.

下水の凝集処理の場合、通常、無機凝集剤を加え懸濁物質を凝結させた後、有機高分子凝集剤を加え、橋架け効果により大きな凝集フロックを生成させ、これを沈降(または浮上)させ、凝集汚泥として分離することにより行われる。
有機高分子凝集剤には、大別してアニオン・ノニオン系、カチオン系、両性系の3種類がある。
In the case of sewage flocculation treatment, an inorganic flocculant is usually added to agglomerate suspended solids, and then an organic polymer flocculant is added to generate a large flocculated floc due to the bridging effect, which is allowed to settle (or float). It is performed by separating as agglomerated sludge.
Organic polymer flocculants are roughly classified into three types: anionic / nonionic, cationic and amphoteric.

下水の一次処理における凝集処理の方法としては、下水に無機凝集剤を添加した後、さらにアニオン系有機高分子凝集剤を添加し、懸濁物質を凝集させ、凝集汚泥として分離する方法が、数多くの文献に記載されている(例えば非特許文献1、2、特許文献1参照)。さらに、アニオン系有機高分子凝集剤を用いて分離された凝集汚泥は脱水性が悪いという理由で、両性系有機高分子凝集剤を添加し、懸濁物質を凝集させ、凝集汚泥を分離する方法が提案されている(例えば、特許文献2参照)。   There are many methods for agglomeration treatment in the primary treatment of sewage, after adding an inorganic flocculant to the sewage, further adding an anionic organic polymer flocculant to agglomerate the suspended material and separate it as agglomerated sludge. (See, for example, Non-Patent Documents 1 and 2 and Patent Document 1). Furthermore, because the agglomerated sludge separated using an anionic organic polymer flocculant has poor dewaterability, the amphoteric organic polymer flocculant is added to agglomerate suspended substances and the agglomerated sludge is separated. Has been proposed (see, for example, Patent Document 2).

しかし、何れの方法も、無機凝集剤の添加量が多いため、多量の凝集汚泥が発生し、凝集汚泥の処理コストが高くなり、しかも、一次処理された処理水の水質も満足されるものではない。また、カチオン系有機高分子凝集剤を用いる方法が、特許文献2に比較例として例示されているが、凝集性が劣り、処理水の濁度が劣ると記載されている。
以上、下水の一次処理において、凝集汚泥の発生量が少なく、かつ良好な水質の処理水を得る方法はなかった。
吉野正章、他3名,「前凝集と担体を用いた下水の高度処理システム」,第39回下水道研究発表会講演集,社団法人日本下水道協会,2002年,p.578−580 木下巌、他4名,「前凝集処理を用いた活性汚泥処理法の窒素除去特性に関する研究」,第35回下水道研究発表会講演集,社団法人日本下水道協会,1998年, p.597−599 特開平3−98699号公報 特開平7−328644号公報
However, in any of the methods, since the amount of the inorganic flocculant added is large, a large amount of the coagulated sludge is generated, the treatment cost of the coagulated sludge is increased, and the quality of the treated water subjected to the primary treatment is not satisfactory. Absent. Moreover, although the method using a cationic organic polymer flocculant is illustrated as a comparative example in Patent Document 2, it is described that the cohesiveness is inferior and the turbidity of treated water is inferior.
As described above, in the primary treatment of sewage, there was no method for obtaining treated water with a small amount of agglomerated sludge and good water quality.
Masaaki Yoshino and three others, “Advanced Sewage Treatment System Using Pre-flocculation and Support”, Proceedings of the 39th Sewerage Research Conference, Japan Sewerage Association, 2002, p. 578-580 Kaoru Kinoshita and 4 others, “Study on nitrogen removal characteristics of activated sludge treatment using pre-coagulation”, The 35th Sewerage Research Conference Lecture, Japan Sewerage Association, 1998, p. 597-599 Japanese Patent Laid-Open No. 3-98699 JP-A-7-328644

本発明の目的は、下水の一次処理において凝集汚泥の発生量が少なく、かつ良好な水質の処理水を得ることができる下水の処理方法を提供することにある。   The objective of this invention is providing the processing method of the sewage which can obtain the processed water of few generation | occurrence | production amounts of agglomerated sludge in the primary treatment of sewage, and favorable water quality.

本発明の下水の処理方法は、下水のコロイド値が正の値にならない量の無機凝集剤を下水に添加した後、さらに、ジアルキルアミノエチルアクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、ジアルキルアミノエチルメタクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、およびポリビニルアミジンからなる群から選ばれるカチオン系有機高分子凝集剤を添加して凝集処理することを特徴とする。
さらに、無機凝集剤の添加量は、無機凝集剤を加えた後のコロイド荷電の中和度(N)が10〜100%になる範囲が好ましい。
The sewage treatment method of the present invention further comprises a structural unit derived from a quaternary ammonium salt of a dialkylaminoethyl acrylate after adding an amount of an inorganic flocculant that does not give a positive colloid value to the sewage. Characterized by adding a polymer, a polymer having a structural unit derived from a quaternary ammonium salt of dialkylaminoethyl methacrylates, and a cationic organic polymer flocculant selected from the group consisting of polyvinylamidine. To do.
Furthermore, the amount of the inorganic flocculant added is preferably in the range where the degree of neutralization (N) of the colloidal charge after adding the inorganic flocculant is 10 to 100%.

本発明の下水の処理方法によれば、下水の一次処理において、無機凝集剤の添加量が低減することにより凝集汚泥の発生量が少なく、かつ濁度、COD等が大幅に低減された良好な水質の処理水を得ることができる。   According to the sewage treatment method of the present invention, in the primary treatment of sewage, the amount of the coagulating sludge is reduced by reducing the amount of inorganic flocculant added, and the turbidity, COD, etc. are greatly reduced. Treated water with quality can be obtained.

本発明は、下水のコロイド値が正の値にならない量の無機凝集剤を下水に添加した後、さらにカチオン系有機高分子凝集剤を添加して凝集処理する方法である。   The present invention is a method in which an inorganic flocculant in an amount such that the colloid value of sewage does not become a positive value is added to the sewage, and then a cationic organic polymer flocculant is further added to perform the flocculation treatment.

無機凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸バンド、塩化第二鉄、ポリ硫酸鉄等が挙げられる。   Examples of the inorganic flocculant include PAC (polyaluminum chloride), sulfuric acid band, ferric chloride, and polyiron sulfate.

通常、下水中には濁度、CODの要因となるSS、コロイド粒子、溶解性有機物等が含まれているため、下水のコロイド値はマイナスを示し、その荷電量は−0.1〜0meq/Lの場合が多い。
無機凝集剤を添加することにより、下水のマイナス荷電は中和され、コロイド値は0に近づく。さらに、コロイド粒子、溶解性有機物等に起因するコロイド荷電が充分に中和され過剰になると、コロイド値は正の値になるプロフィールを示す。
無機凝集剤を加えた後のコロイド荷電の中和度(N)は、下記のように算出し、本発明においては該中和度(N)が10〜100%になる量の無機凝集剤を添加することが好ましい。
Usually, sewage contains SS, colloidal particles, soluble organic matter, etc. that cause turbidity and COD, so the colloidal value of sewage shows a negative value, and its charge amount is -0.1 to 0 meq / Often L.
By adding an inorganic flocculant, the negative charge of sewage is neutralized and the colloidal value approaches zero. Furthermore, when the colloidal charge resulting from colloidal particles, soluble organic matter, etc. is sufficiently neutralized and excessive, the colloid value shows a profile that becomes a positive value.
The neutralization degree (N) of the colloidal charge after adding the inorganic flocculant is calculated as follows. In the present invention, an amount of the inorganic flocculant that makes the neutralization degree (N) 10 to 100% is calculated. It is preferable to add.

Figure 0004828152
Figure 0004828152

下水のコロイド値は、コロイド滴定法によって測定される。具体的には、以下の手順にて測定される。
(1)200mlのトールビーカーに下水10mlを採取し、純水を100ml加える。
(2)さらに1/200NのMgch(メチルグリコールキトサン)溶液を2ml加え、攪拌する。
(3)さらに指示薬としてトルイジンブルーを1〜2滴加える。
(4)攪拌しながら1/400NのPVSK(ポリビニル硫酸カリウム)溶液にて滴定し、液の色が青からピンクに変わる滴定量(B ml)を測定する。
(5)同様に純水100mlのみを、1/400NのPVSK溶液にて滴定し、ブランクの滴定量(A ml)を測定する。
(6)下記式でコロイド値(meq/L)を計算する。
The colloidal value of sewage is measured by a colloid titration method. Specifically, it is measured by the following procedure.
(1) Collect 10 ml of sewage in a 200 ml tall beaker and add 100 ml of pure water.
(2) Further, add 2 ml of 1 / 200N Mgch (methyl glycol chitosan) solution and stir.
(3) Add 1-2 drops of toluidine blue as an indicator.
(4) Titrate with 1 / 400N PVSK (Polyvinyl Potassium Sulphate) solution while stirring and measure the titration (B ml) at which the color of the liquid changes from blue to pink.
(5) Similarly, only 100 ml of pure water is titrated with a 1 / 400N PVSK solution, and a blank titration (A ml) is measured.
(6) The colloid value (meq / L) is calculated by the following formula.

Figure 0004828152
Figure 0004828152

無機凝集剤と下水との反応は、充分に行うことが好ましい。したがって、無機凝集剤を下水に添加し、20秒以上混合・反応させた後、カチオン系有機高分子凝集剤を添加することが好ましく、30秒〜5分経過した後、カチオン系有機高分子凝集剤を添加することがより好ましい。反応時間が不充分な場合、濁度、CODの除去性能が低下する。
無機凝集剤を下水に添加した際は、充分に撹拌することが好ましい。撹拌方法としては、機械攪拌、ライン混合等、乱流状態を作り出す方法であればよく、機械攪拌が好ましい。
It is preferable to sufficiently perform the reaction between the inorganic flocculant and sewage. Therefore, it is preferable to add an inorganic flocculant to sewage, mix and react for 20 seconds or more, and then add a cationic organic polymer flocculant. After 30 seconds to 5 minutes, the cationic organic polymer flocculant is added. It is more preferable to add an agent. If the reaction time is insufficient, the turbidity and COD removal performance will decrease.
When the inorganic flocculant is added to the sewage, it is preferable to sufficiently stir. The stirring method may be any method that creates a turbulent state such as mechanical stirring or line mixing, and mechanical stirring is preferable.

カチオン系有機高分子凝集剤としては、市販されている有機高分子凝集剤を用いればよい。なお、無機凝集剤を添加した後のコロイド値により、最適なカチオン系有機高分子凝集剤の種類は若干異なり、コロイド荷電が中和され、コロイド値が0に近づくほど弱カチオン系の有機高分子凝集剤が適し、荷電未中和でコロイド値のマイナスが多いほど強カチオン系の有機高分子凝集剤が適する傾向がある。   A commercially available organic polymer flocculant may be used as the cationic organic polymer flocculant. Depending on the colloid value after addition of the inorganic flocculant, the type of the optimum cationic organic polymer flocculant is slightly different, the colloidal charge is neutralized, and the weaker the cationic organic polymer as the colloid value approaches 0 A flocculant is suitable, and the more the negative value of the colloidal value is obtained when the charge is unneutralized, the stronger the cationic organic polymer flocculant tends to be suitable.

カチオン系有機高分子凝集剤としては、例えば、ジアルキルアミノエチルアクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、ジアルキルアミノエチルメタクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、アクリルアミド重合体のマンニッヒ変性物、ポリビニルアミン、ポリビニルアミジン等が挙げられる。カチオン系有機高分子凝集剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Examples of the cationic organic polymer flocculant include a polymer having a structural unit derived from a quaternary ammonium salt of a dialkylaminoethyl acrylate, and a polymer having a structural unit derived from a quaternary ammonium salt of a dialkylaminoethyl methacrylate. Examples thereof include Mannich modified products of merging polymer and acrylamide polymer, polyvinylamine, and polyvinylamidine. A cationic organic polymer flocculant may be used individually by 1 type, and 2 or more types may be mixed and used for it.

カチオン系有機高分子凝集剤としては、カチオン性モノマーに由来する構成単位として、下記式(a)で表される構成単位(a)および/または下記式(b)で表される構成単位(b)を有する重合体(I)が好ましい。   As the cationic organic polymer flocculant, as the structural unit derived from the cationic monomer, the structural unit (a) represented by the following formula (a) and / or the structural unit represented by the following formula (b) (b ) Is preferred.

Figure 0004828152
Figure 0004828152

(式(a)中、R1 は、炭化水素基であり、R2 およびR3 は、炭素数1〜4のアルキル基であり、 R2 およびR3 は、それぞれ同一であっても、異なってもよく、(X1-は、陰イオンである。) (In Formula (a), R 1 is a hydrocarbon group, R 2 and R 3 are alkyl groups having 1 to 4 carbon atoms, and R 2 and R 3 are the same or different, respectively. (X 1 ) is an anion.)

Figure 0004828152
Figure 0004828152

(式(b)中、 R4 は、炭化水素基であり、R5 およびR6 は、炭素数1〜4のアルキル基であり、 R5 およびR6 は、それぞれ同一であっても、異なってもよく、(X2-は、陰イオンである。) (In formula (b), R 4 is a hydrocarbon group, R 5 and R 6 are alkyl groups having 1 to 4 carbon atoms, and R 5 and R 6 are the same or different. (X 2 ) is an anion.)

重合体(I)は、ノニオン性モノマーに由来する構成単位を有していてもよい。ノニオン性モノマーとしては、アクリルアミド、メタクリルアミド等が挙げられる。
重合体(I)におけるカチオン性モノマーに由来する構成単位とノニオン性モノマーに由来する構成単位の組成比(カチオン性モノマーに由来する構成単位/ノニオン性モノマー由来する構成単位)は、100/0〜5/95(質量比)が好ましく、100/0〜10/90(質量比)がより好ましい。
The polymer (I) may have a structural unit derived from a nonionic monomer. Examples of nonionic monomers include acrylamide and methacrylamide.
The composition ratio (the structural unit derived from the cationic monomer / the structural unit derived from the nonionic monomer) of the structural unit derived from the cationic monomer and the structural unit derived from the nonionic monomer in the polymer (I) is 100/0. 5/95 (mass ratio) is preferable, and 100/0 to 10/90 (mass ratio) is more preferable.

カチオン系有機高分子凝集剤は、1N硝酸ナトリウム水溶液中、温度30℃で測定した固有粘度が5dl/g以上であることが好ましく、12〜18dl/gであることがさらに好ましい。固有粘度が5dl/g未満では、凝集力が弱くなり処理水の水質が若干低下する。該固有粘度は、カチオン系有機高分子凝集剤の分子量と相関関係があり、分子量の指標となる。   The cationic organic polymer flocculant preferably has an intrinsic viscosity measured in a 1N sodium nitrate aqueous solution at a temperature of 30 ° C. of 5 dl / g or more, more preferably 12 to 18 dl / g. When the intrinsic viscosity is less than 5 dl / g, the cohesive force becomes weak and the quality of the treated water is slightly lowered. The intrinsic viscosity has a correlation with the molecular weight of the cationic organic polymer flocculant and is an index of the molecular weight.

カチオン系有機高分子凝集剤は、沈殿重合法、塊状重合法、分散重合法、水溶液重合法等の公知の重合法により製造される。
カチオン系有機高分子凝集剤の形態としては、粉末、液体、エマルジョン、ディスパージョン等が挙げられる。
カチオン系有機高分子凝集剤には、水溶液の劣化防止のため、固体酸等の添加物を添加してもよい。固体酸としては、スルファミン酸、酸性亜硫酸ソーダ等が挙げられる。
The cationic organic polymer flocculant is produced by a known polymerization method such as a precipitation polymerization method, a bulk polymerization method, a dispersion polymerization method, or an aqueous solution polymerization method.
Examples of the form of the cationic organic polymer flocculant include powder, liquid, emulsion, dispersion and the like.
An additive such as a solid acid may be added to the cationic organic polymer flocculant in order to prevent deterioration of the aqueous solution. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.

〔作用〕
本発明の作用機構は以下のように推定される。
通常、下水中には濁度、CODの要因となるSS、コロイド粒子、溶解性有機物等が含まれるため、下水のコロイド値はマイナスを示す。
本発明者は、特許文献2の追試をするとともに、無機凝集剤の添加量と下水性状の変化、並びに凝集に適した有機高分子凝集剤の種類について詳細に検討した。
下水に無機凝集剤を添加すると、下水中のマイナス荷電を持つコロイド粒子および溶解性有機物等が凝結し、高分子凝集剤により粗大なフロックを形成して凝集分離することにより濁度、CODを低下させることができる。
無機凝集剤を用いて良好な効果を得るためには、充分な量の無機凝集剤を添加して、コロイド粒子および溶解性有機物と反応させる必要があり、結果として下水のコロイド値はプラスになっていることが判った。
その結果、粗大なフロックを形成するにはアニオン系または両性系有機高分子凝集剤が適し、カチオン系有機高分子凝集剤では凝集不良となり、粗大なフロックにならなかった。
また、無機凝集剤による凝結処理には限界があり、無機凝集剤の添加量を増やしても処理水のCOD除去率は50からせいぜい60%程度にしかならなかった。
[Action]
The operation mechanism of the present invention is estimated as follows.
Usually, since sewage contains turbidity, SS that causes COD, colloidal particles, soluble organic matter, and the like, the colloidal value of sewage is negative.
The present inventor made a supplementary examination of Patent Document 2 and examined in detail the amount of inorganic flocculant added, changes in the sewage state, and types of organic polymer flocculants suitable for flocculation.
When an inorganic flocculant is added to sewage, colloidal particles with negative charge and soluble organic matter in the sewage condense, forming coarse flocs with the polymer flocculant, and aggregating and separating to lower turbidity and COD. Can be made.
In order to obtain a good effect using the inorganic flocculant, it is necessary to add a sufficient amount of the inorganic flocculant to react with the colloidal particles and the soluble organic matter, resulting in a positive sewage colloidal value. I found out.
As a result, anionic or amphoteric organic polymer flocculants were suitable for forming coarse flocs, and cationic organic polymer flocculants resulted in poor aggregation and did not form coarse flocs.
Moreover, there is a limit to the coagulation treatment with the inorganic flocculant, and even if the amount of the inorganic flocculant added is increased, the COD removal rate of the treated water is only 50 to about 60% at most.

しかし、カチオン系有機高分子凝集剤を用いた場合、たとえ凝集フロックが小さくとも、充分に静置すれば、上澄み液の濁度、CODは充分に低下することが判った。アニオン系有機高分子凝集剤は、凝結した凝集フロックを凝集させることが主な効果であるが、カチオン系有機高分子凝集剤は、さらに無機凝集剤では反応しない成分とも反応し、濁度、CODを低下させていると考えられる。
カチオン系有機高分子凝集剤を用い、凝集状況が良好で、かつ良好な処理水質が得られる無機凝集剤添加量について調査した。また、特定の無機凝集剤の添加範囲でカチオン系有機高分子凝集剤を用い、凝集処理することにより、大幅な処理水質の向上が図ることができると考え処理方法について検討した。
その結果、コロイド値が正の値(プラス)にならない特定の添加量範囲の無機凝集剤を下水に添加した後、さらにカチオン系有機高分子凝集剤を添加して凝集処理することにより、粗大なフロックを形成させ、かつ無機凝集剤とアニオン系有機高分子凝集剤または両性系有機高分子凝集剤との組み合わせに比較して、大幅に濁度、COD値を低下させることができる本発明に到達した。
However, it was found that when a cationic organic polymer flocculant is used, even if the flocs flocs are small, the turbidity and COD of the supernatant liquid are sufficiently lowered if they are allowed to stand sufficiently. The main effect of anionic organic polymer flocculants is to agglomerate the aggregated flocs. However, cationic organic polymer flocculants also react with components that do not react with inorganic flocculants. Is thought to have decreased.
A cationic organic polymer flocculant was used to investigate the amount of inorganic flocculant added, in which the flocculation condition was good and good treated water quality was obtained. In addition, the treatment method was examined by considering that the treatment water quality can be significantly improved by agglomeration treatment using a cationic organic polymer flocculant within a specific inorganic flocculant addition range.
As a result, after adding an inorganic flocculant in a specific addition amount range in which the colloidal value does not become a positive value (plus) to the sewage, a cationic organic polymer flocculant is further added to perform the agglomeration treatment, resulting in coarse particles. Reached the present invention that can form flocs and can significantly reduce turbidity and COD value compared to the combination of inorganic flocculant and anionic organic polymer flocculant or amphoteric organic polymer flocculant did.

本発明の下水の処理方法は、従来の方法に比べ、無機凝集剤の添加量を大幅に削減できることから、凝集汚泥の発生量が少なく汚泥の処理コストを低下できる。また、PAC、硫酸バンド等のアルミニウム系の無機凝集剤を用いた凝集汚泥は、嫌気性消化に対し、阻害あると報告されている(廣田淳一、他2名,「前凝集沈殿汚泥の嫌気性消化特性」,第36回下水道研究発表会講演集,社団法人日本下水道協会,1999年,p.761−763)が、無機凝集剤としてPACを用いた場合でも、本発明の下水の処理方法により発生した凝集汚泥は、無機凝集剤の添加量が少ないため、凝集汚泥中に含まれるアルミニウム含有量が少なく、嫌気性消化処理においても悪影響がない。   The sewage treatment method of the present invention can significantly reduce the amount of the inorganic flocculant added compared to the conventional method, so that the amount of flocculated sludge generated is small and the sludge treatment cost can be reduced. In addition, agglomerated sludge using aluminum-based inorganic flocculants such as PAC and sulfuric acid band has been reported to be an obstacle to anaerobic digestion (Shinichi Hamada and two others, “anaerobic of preaggregated sedimented sludge” Digestion Characteristics ”, Proceedings of the 36th Sewerage Research Presentation, Japan Sewerage Association, 1999, p. 761-763), even when PAC is used as an inorganic flocculant, The generated agglomerated sludge has a small content of aluminum contained in the agglomerated sludge because the amount of the inorganic aggregating agent added is small, and there is no adverse effect even in the anaerobic digestion treatment.

以下、本発明を実施例および比較例によってさらに詳細に説明するが、これらは本発明を何ら限定するものではない。
実施例において、高分子凝集剤は、表1に示す重合体を水に溶解して、0.1〜0.3質量%の水溶液として使用した。無機凝集剤は水で10倍に希釈して使用した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, these do not limit this invention at all.
In Examples, the polymer flocculant was used as an aqueous solution of 0.1 to 0.3% by mass by dissolving the polymer shown in Table 1 in water. The inorganic flocculant was diluted 10 times with water and used.

Figure 0004828152
Figure 0004828152

実施例における各測定方法は、以下の通りである。
(高分子凝集剤の固有粘度)
固有粘度は、1N硝酸ナトリウム水溶液中、温度30℃の条件で、ウベローデ希釈型毛細管粘度計を用い、定法に基づき測定した。(高分子学会編,「新版高分子辞典」,朝倉書店,p.107)
Each measuring method in an Example is as follows.
(Intrinsic viscosity of polymer flocculant)
Intrinsic viscosity was measured based on a conventional method using a Ubbelohde dilution type capillary viscometer in a 1N sodium nitrate aqueous solution at a temperature of 30 ° C. (Edited by the Society of Polymer Science, “New Edition Polymer Dictionary”, Asakura Shoten, p. 107)

(下水のコロイド荷電量)
下水のコロイド荷電量は、上述のコロイド滴定法によって測定した。
(凝集フロックの平均粒径)
凝集フロックの平均粒径は、目視により測定した。
(Colloid charge of sewage)
The colloidal charge amount of sewage was measured by the colloid titration method described above.
(Average particle size of agglomerated floc)
The average particle size of the aggregated floc was measured visually.

(濁度の測定)
濁度は、JIS K 0101に基づき測定した。
(CODの測定)
CODは、JIS K 0102−17に基づき測定した。
(Measurement of turbidity)
Turbidity was measured based on JIS K 0101.
(Measurement of COD)
COD was measured based on JIS K 0102-17.

〔実施例1〜10〕
M下水処理場における最初沈殿池への流入下水を採取し凝集試験を実施した。
下水の性状はpH=6.5、SS=222mg/L、濁度=157NTU、COD=362mg/L、コロイド値=−0.05meq/Lであった。
まず、500mlのビーカーに下水を500ml採取し、無機凝集剤としてPACを30mg/L添加し、150rpmの回転数で1分間攪拌、混合した。PAC添加後のコロイド値は−0.03mg/L、コロイド荷電の中和度は40%であった。
ついで、表2に示す種類のカチオン系有機高分子凝集剤を表2に示す量添加し、さらに同様の条件で3分間攪拌し凝集フロックを形成させた。
2分間静置後、表面から5cmの深さより処理水を採取し、濁度、CODを測定し、処理効果を確認した。結果を表2に示す。
[Examples 1 to 10]
The inflow sewage into the first sedimentation basin at M sewage treatment plant was collected and a coagulation test was conducted.
The properties of sewage were pH = 6.5, SS = 222 mg / L, turbidity = 157 NTU, COD = 362 mg / L, colloid value = −0.05 meq / L.
First, 500 ml of sewage was collected in a 500 ml beaker, 30 mg / L of PAC was added as an inorganic flocculant, and the mixture was stirred and mixed for 1 minute at a rotation speed of 150 rpm. The colloid value after the addition of PAC was -0.03 mg / L, and the degree of neutralization of the colloid charge was 40%.
Next, a cationic organic polymer flocculant of the type shown in Table 2 was added in the amount shown in Table 2, and the mixture was further stirred for 3 minutes under the same conditions to form an aggregated floc.
After standing for 2 minutes, treated water was collected from a depth of 5 cm from the surface, and turbidity and COD were measured to confirm the treatment effect. The results are shown in Table 2.

いずれの実施例もPAC添加量30mg/Lで良好な凝集性能を示し、濁度除去率、COD除去率とも良好な結果が得られた。
後述の比較例1、2で用いられるアニオン系、両性系有機高分子凝集剤に比べ良好な結果であった。
All the examples showed good aggregation performance at a PAC addition amount of 30 mg / L, and good results were obtained for both the turbidity removal rate and the COD removal rate.
The results were better than those of the anionic and amphoteric organic polymer flocculants used in Comparative Examples 1 and 2 described later.

〔比較例1、2〕
表2に示す条件にて実施例1〜10と同様にして凝集試験を実施した。結果を表2に示す。
有機高分子凝集剤としてアニオン系または両性系有機高分子凝集剤を用いて凝集試験を行ったところ、処理水の濁度、COD除去率とも実施例1〜10に比較して大幅に劣る結果であった。
[Comparative Examples 1 and 2]
The aggregation test was performed in the same manner as in Examples 1 to 10 under the conditions shown in Table 2. The results are shown in Table 2.
When an aggregation test was performed using an anionic or amphoteric organic polymer flocculant as the organic polymer flocculant, the turbidity of the treated water and the COD removal rate were significantly inferior compared to Examples 1-10. there were.

Figure 0004828152
Figure 0004828152

〔実施例11、12〕
H下水処理場における最初沈殿池への流入下水を採取し凝集試験を実施した。
下水の性状はpH=6.8、SS=204mg/L、濁度=133NTU、COD=158mg/L、コロイド値=−0.06meq/Lであった。
他は実施例1〜10と同様に実施した。下水のコロイド値が表3に示す値となる量のPACを添加し、カチオン系有機高分子凝集剤K5により凝集処理を行った。結果を表3に示す。
濁度除去率87%以上、COD除去率70%以上と良好な結果が得られた。
[Examples 11 and 12]
The inflow sewage to the first sedimentation basin in the H sewage treatment plant was collected and a coagulation test was conducted.
The properties of sewage were pH = 6.8, SS = 204 mg / L, turbidity = 133 NTU, COD = 158 mg / L, colloid value = −0.06 meq / L.
Others were carried out in the same manner as in Examples 1-10. PAC was added in such an amount that the sewage colloid value was as shown in Table 3, and agglomeration treatment was performed using a cationic organic polymer flocculant K5. The results are shown in Table 3.
Good results were obtained with a turbidity removal rate of 87% or more and a COD removal rate of 70% or more.

〔実施例13〕
表3に示す条件にて実施例11と同様にして凝集試験を実施した。結果を表3に示す。 無機凝集剤として鉄系のポリ硫酸鉄を用いた場合でも、PAC同様、濁度除去率88.9%、COD除去率71.6%と良好な結果が得られた。
Example 13
The aggregation test was performed in the same manner as in Example 11 under the conditions shown in Table 3. The results are shown in Table 3. Even when iron-based polyiron sulfate was used as the inorganic flocculant, as with PAC, good results were obtained with a turbidity removal rate of 88.9% and a COD removal rate of 71.6%.

〔実施例14〕
表3に示す条件にて実施例11と同様にして凝集試験を実施した。結果を表3に示す。
カチオン系有機高分子凝集剤K5とK7を50/50(質量比)で混合したものを用いた場合でも、濁度除去率88.0%、COD除去率71.8%と良好な結果が得られた。
Example 14
The aggregation test was performed in the same manner as in Example 11 under the conditions shown in Table 3. The results are shown in Table 3.
Even when a mixture of cationic organic polymer flocculants K5 and K7 at 50/50 (mass ratio) is used, good results are obtained with a turbidity removal rate of 88.0% and a COD removal rate of 71.8%. It was.

〔比較例3〕
無機高分子凝集剤をまったく添加せず、カチオン系有機高分子凝集剤K5単独で凝集処理を行った。結果を表3に示す。
凝集フロックは生成するものの、濁度除去率63.8%、COD除去率53.1%となり、実施例11〜14に比較して大幅に劣る結果であった。
[Comparative Example 3]
The inorganic polymer flocculant was not added at all, and the agglomeration treatment was performed with the cationic organic polymer flocculant K5 alone. The results are shown in Table 3.
Although agglomeration flocs were generated, the turbidity removal rate was 63.8% and the COD removal rate was 53.1%, which was significantly inferior to Examples 11-14.

〔比較例4〕
PACを200mg/L添加し、下水のコロイド値が0.02meq/Lとプラス荷電になる条件で、カチオン系有機高分子凝集剤K5を用い凝集処理を行った。結果を表3に示す。
特許文献2に記載された結果と同様、この条件では凝集フロックは1mm以下と小さく不良であった。また、処理水の濁度除去率71.1%、COD除去率59.4%となり、実施例11〜14に比較して大幅に劣る結果であった。
[Comparative Example 4]
Agglomeration was performed using cationic organic polymer flocculant K5 under the condition that PAC was added at 200 mg / L and the colloid value of sewage became a positive charge of 0.02 meq / L. The results are shown in Table 3.
Similar to the results described in Patent Document 2, the aggregated flocs were as small as 1 mm or less under these conditions and were poor. In addition, the turbidity removal rate of the treated water was 71.1% and the COD removal rate was 59.4%, which was significantly inferior to Examples 11-14.

〔比較例5〕
比較例4と同様にPACを200mg/L添加し、下水のコロイド値が0.02meq/Lとプラス荷電になる条件で、有機高分子凝集剤としてアニオン系有機高分子凝集剤A1を用い、凝集試験を行った。結果を表3に示す。
下水のコロイド物質が充分に荷電中和された本条件では、特許文献1等に記載されている結果と同様に良好な凝集フロックを生成した。しかし、濁度除去率84.2%、COD除去率60.6%となり、実施例11〜14に比較して大幅に劣る結果であった。
[Comparative Example 5]
In the same manner as in Comparative Example 4, PAC was added at 200 mg / L, and an anionic organic polymer flocculant A1 was used as the organic polymer flocculant under the condition that the colloid value of sewage was a positive charge of 0.02 meq / L. A test was conducted. The results are shown in Table 3.
Under these conditions where the sewage colloidal material was sufficiently charged and neutralized, good coagulation flocs were produced as in the results described in Patent Document 1 and the like. However, the turbidity removal rate was 84.2% and the COD removal rate was 60.6%, which was significantly inferior to Examples 11-14.

Figure 0004828152
Figure 0004828152

〔実施例15〜17〕
N下水処理場における最初沈殿池への流入下水を採取し凝集試験を実施した。
下水の性状はpH=7.1、SS=651mg/L、濁度=568NTU、COD=243mg/L、コロイド値=−0.12meq/Lであった。
他は実施例1〜10と同様に実施した。結果を表4示す。
[Examples 15 to 17]
The inflow sewage to the first sedimentation basin in N sewage treatment plant was collected and a coagulation test was conducted.
The properties of sewage were pH = 7.1, SS = 651 mg / L, turbidity = 568 NTU, COD = 243 mg / L, colloid value = −0.12 meq / L.
Others were carried out in the same manner as in Examples 1-10. Table 4 shows the results.

実施例15においては、PACを30mg/L添加した。下水のコロイド値は−0.10meq/L(コロイド荷電の中和度:16.7%)となり、強カチオン系の有機高分子凝集剤であるK1が最も良好な凝集フロックを生成した。処理水も濁度除去率94.1%、COD除去率70.7%と良好な結果であった。
実施例16においては、PACを50mg/L添加した。下水のコロイド荷電量は−0.05meq/L(コロイド荷電の中和度:58.3%)となり、中カチオン系の有機高分子凝集剤であるK3が最も良好な凝集フロックを生成した。処理水も濁度除去率92.8%、COD除去率71.5%と良好な結果であった。
実施例17においては、PACを100mg/L添加した。下水のコロイド荷電量は−0.02meq/L(コロイド荷電の中和度:83.3%)となり、弱カチオン系の有機高分子凝集剤であるK5が最も良好な凝集フロックを生成した。処理水も濁度除去率95.8%、COD除去率73.8%と良好な結果であった。
In Example 15, 30 mg / L of PAC was added. The colloidal value of sewage was -0.10 meq / L (neutralization degree of colloidal charge: 16.7%), and K1 which is a strong cationic organic polymer flocculant produced the best aggregated floc. The treated water also had good results with a turbidity removal rate of 94.1% and a COD removal rate of 70.7%.
In Example 16, 50 mg / L of PAC was added. The colloidal charge amount of sewage was -0.05 meq / L (neutralization degree of colloidal charge: 58.3%), and K3, which is a medium cationic organic polymer flocculant, produced the best aggregated floc. The treated water also had good results with a turbidity removal rate of 92.8% and a COD removal rate of 71.5%.
In Example 17, 100 mg / L of PAC was added. The colloidal charge amount of sewage was -0.02 meq / L (neutralization degree of colloidal charge: 83.3%), and K5, which is a weak cationic organic polymer flocculant, produced the best aggregated floc. The treated water also had good results with a turbidity removal rate of 95.8% and a COD removal rate of 73.8%.

〔比較例6〕
実施例15〜17で用いたものと同一の下水を用い、有機高分子凝集剤としてアニオン系有機高分子凝集剤であるA1を用い凝集試験を行った。結果を表4に示す。
PAC添加量300mg/L、下水のコロイド荷電量が0.03meq/Lとプラス荷電になる条件で良好な凝集フロックを生成したが、濁度除去率86.1%、COD除去率54.3%となり、実施例15〜17に比較してPAC添加量も多く、処理水質も劣位であった。
[Comparative Example 6]
The same sewage as that used in Examples 15 to 17 was used, and an aggregation test was performed using A1 which is an anionic organic polymer flocculant as the organic polymer flocculant. The results are shown in Table 4.
Good aggregation flocs were generated under the conditions that the PAC addition amount was 300 mg / L and the sewage colloidal charge amount was positive charge of 0.03 meq / L, but the turbidity removal rate was 86.1% and the COD removal rate was 54.3%. Thus, the amount of PAC added was larger than in Examples 15 to 17, and the quality of the treated water was inferior.

Figure 0004828152
Figure 0004828152

〔実施例18〜20〕
実施例11〜14と同一の下水を用い、無機凝集剤添加後の攪拌混合時間(反応時間)を変更した以外は、実施例11〜14と同様に実施した。結果を表5に示す。
実施例18はPAC添加後30秒、実施例19は300秒間攪拌混合した後、カチオン系有機高分子凝集剤K5により凝集処理を行った。濁度除去率86%以上、COD除去率70%以上と良好な結果が得られた。また、PAC添加後に反応時間を充分取った実施例19の方が良好な結果が得られた。
実施例20は、PAC添加後15秒間攪拌混合した後、カチオン系有機高分子凝集剤K5により凝集処理を行った。凝集フロックが不均一で、濁度除去率76.9%、COD除去率61.5%となり、実施例18、19より若干劣る結果であった。
[Examples 18 to 20]
It implemented similarly to Examples 11-14 except having changed the stirring mixing time (reaction time) after inorganic flocculant addition using the same sewage as Examples 11-14. The results are shown in Table 5.
Example 18 was agitated and mixed for 30 seconds after PAC addition, and Example 19 was agitated and mixed for 300 seconds, followed by agglomeration treatment with cationic organic polymer flocculant K5. Good results were obtained with a turbidity removal rate of 86% or more and a COD removal rate of 70% or more. In addition, better results were obtained in Example 19 in which a sufficient reaction time was taken after the addition of PAC.
In Example 20, after PAC addition, the mixture was stirred and mixed for 15 seconds, and then agglomeration treatment was performed using a cationic organic polymer flocculant K5. The aggregation flocs were non-uniform, the turbidity removal rate was 76.9%, and the COD removal rate was 61.5%, which was slightly inferior to Examples 18 and 19.

Figure 0004828152
Figure 0004828152

本発明の下水の処理方法は、下水の凝集処理に好適であり、一次処理施設の水質向上、処理コストの抑制に効果的である。   The sewage treatment method of the present invention is suitable for sewage coagulation treatment, and is effective in improving the water quality of the primary treatment facility and suppressing treatment costs.

Claims (2)

下水のコロイド値が正の値にならない量の無機凝集剤を下水に添加した後、
さらに、ジアルキルアミノエチルアクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、ジアルキルアミノエチルメタクリレート類の4級アンモニウム塩に由来する構成単位を有する重合体、およびポリビニルアミジンからなる群から選ばれるカチオン系有機高分子凝集剤を添加して凝集処理する下水の処理方法。
After adding an amount of inorganic flocculant that does not make the colloidal value of sewage positive,
Further, a polymer having a structural unit derived from a quaternary ammonium salt of a dialkylaminoethyl acrylate, a polymer having a structural unit derived from a quaternary ammonium salt of a dialkylaminoethyl methacrylate, and a polyvinylamidine are selected. A sewage treatment method comprising adding a cationic organic polymer flocculant to agglomerate.
無機凝集剤を加えた後のコロイド荷電の中和度(N)が10〜100%である請求項1記載の下水の処理方法。
The method for treating sewage according to claim 1, wherein the neutralization degree (N) of the colloidal charge after adding the inorganic flocculant is 10 to 100%.
JP2005123541A 2005-04-21 2005-04-21 Sewage treatment method Active JP4828152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123541A JP4828152B2 (en) 2005-04-21 2005-04-21 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123541A JP4828152B2 (en) 2005-04-21 2005-04-21 Sewage treatment method

Publications (2)

Publication Number Publication Date
JP2006297299A JP2006297299A (en) 2006-11-02
JP4828152B2 true JP4828152B2 (en) 2011-11-30

Family

ID=37466028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123541A Active JP4828152B2 (en) 2005-04-21 2005-04-21 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP4828152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512068B2 (en) 2006-03-24 2014-06-04 三菱レイヨン株式会社 Water treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129200A (en) * 1983-12-15 1985-07-10 Kurita Water Ind Ltd Dehydrating method of sludge
JPH06239B2 (en) * 1988-12-29 1994-01-05 栗田工業株式会社 Dewatering method of organic sludge
JP3924011B2 (en) * 1994-02-07 2007-06-06 ダイヤニトリックス株式会社 Dewatering method for sewage digested sludge
JP2002079005A (en) * 2000-09-07 2002-03-19 Japan Organo Co Ltd Organic polymer flocculant for water-purification and aggregation processing method
JP4225844B2 (en) * 2003-06-12 2009-02-18 株式会社環境技術開発 Muddy water treatment method

Also Published As

Publication number Publication date
JP2006297299A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP5621260B2 (en) Wastewater coagulation method
JP5621254B2 (en) Oil-containing wastewater treatment method
JP5621256B2 (en) Wastewater coagulation method
JP6068112B2 (en) Aggregation / sedimentation agent for suspended matter and method for removing suspended matter from wastewater using the same
JP5659487B2 (en) Wastewater coagulation method
JP5172372B2 (en) Sludge dewatering method
JP5042057B2 (en) Sludge dewatering method
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
WO2019077835A1 (en) Flocculation device and flocculation treatment method
JP4684980B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP2011131165A (en) Treatment method for inorganic substance-suspended waste water
JP4828152B2 (en) Sewage treatment method
JP2008006382A (en) Method of treating oil-containing waste water
JP6085990B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP2011167656A (en) Treatment method of inorganic material-suspended waste water
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP2668711B2 (en) Paper and pulp wastewater coagulation treatment method
JPH06335605A (en) Treating agent for inorganic fine particle containing waste water and teatment of waste water
JP2010274244A (en) Method for clarifying treatment of steel production waste water
JP4619978B2 (en) Nickel-containing wastewater treatment method
JP6387337B2 (en) Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment
JP2003033604A (en) Waste water treatment agent
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment
JP7117101B2 (en) Water treatment method and device
JP3225266B2 (en) Algae-containing water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250