JP4827527B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4827527B2
JP4827527B2 JP2005378745A JP2005378745A JP4827527B2 JP 4827527 B2 JP4827527 B2 JP 4827527B2 JP 2005378745 A JP2005378745 A JP 2005378745A JP 2005378745 A JP2005378745 A JP 2005378745A JP 4827527 B2 JP4827527 B2 JP 4827527B2
Authority
JP
Japan
Prior art keywords
hot water
storage tank
water storage
pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378745A
Other languages
Japanese (ja)
Other versions
JP2007178093A (en
Inventor
庄司 片桐
哲也 北村
忠夫 小池
正則 小曽戸
浩一 木下
大輔 久保井
陵太郎 舘山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Appliances Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Hitachi Appliances Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005378745A priority Critical patent/JP4827527B2/en
Publication of JP2007178093A publication Critical patent/JP2007178093A/en
Application granted granted Critical
Publication of JP4827527B2 publication Critical patent/JP4827527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ熱源を用いるヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater using a heat pump heat source.

給湯機の熱源としてヒートポンプを用いたヒートポンプ式給湯機が知られている。一般に、ヒートポンプ給湯機は、給水を加熱するヒートポンプ回路と、このヒートポンプ回路で加熱された湯を貯えておく貯湯タンクを備えている。   A heat pump type water heater using a heat pump as a heat source of a water heater is known. In general, a heat pump water heater includes a heat pump circuit that heats water and a hot water storage tank that stores hot water heated by the heat pump circuit.

家庭用のヒートポンプ給湯機においては、例えば、電力が安価な夜間にヒートポンプ回路を稼動させ、貯湯タンク内の水を加熱して貯湯タンクに貯えることにより、日中に使用する温水を賄うようにしている。これによれば、夜間はヒートポンプ回路の圧縮機の回転数を低くして高効率の運転を行い、貯湯タンク内の湯を時間をかけて沸き上げる一方、日中は回転数を増加させて沸き増しを行うことで、省エネ運転を実現できる。   In a heat pump water heater for home use, for example, the heat pump circuit is operated at night when electricity is inexpensive, and the water in the hot water storage tank is heated and stored in the hot water storage tank so as to cover the hot water used during the day. Yes. According to this, during the night, the compressor of the heat pump circuit is operated at a low speed for high efficiency, and the hot water in the hot water storage tank is boiled over time. By increasing, energy-saving operation can be realized.

一方、例えば、結婚式場、レストラン、病院、老人ホーム等で使用される業務用のヒートポンプ給湯機においては、日中に限らず夜間の給湯量も多く、大量の給湯量(例えば、3000L/日)が要求される。この場合、例えば、給湯使用量のピーク時に、貯湯タンクの沸き増しが追いつかないことによる湯切れを避けるには、ユーザの要求に応じた仕様で貯湯タンクの容量等を適宜設計する必要がある。そのため、一つの貯湯タンクで給湯をまかなう構成の場合、貯湯タンクが大型化するとともに、設計や製造コストが高価になり、運搬・据付等が不便になるという問題がある。   On the other hand, for example, in business heat pump water heaters used in wedding halls, restaurants, hospitals, nursing homes, etc., there are many hot water supplies at night as well as during the day, and a large amount of hot water supply (for example, 3000 L / day) Is required. In this case, for example, in order to avoid running out of hot water due to the boiling of the hot water storage tank not catching up at the peak of hot water usage, it is necessary to appropriately design the capacity of the hot water storage tank according to the specifications according to the user's request. For this reason, in the case of a configuration in which hot water is supplied by a single hot water storage tank, there is a problem that the hot water storage tank becomes larger, the design and manufacturing costs become expensive, and transportation and installation become inconvenient.

これに対し、貯湯タンクをモジュール化して必要最低限の種類を用意し、ユーザの要望に応じて適宜複数の貯湯タンクを接続し、所望の貯湯量を確保することにより、湯切れの発生を回避する技術が知られている(特許文献1参照)。   On the other hand, hot water storage tanks are modularized and the minimum necessary types are prepared, and multiple hot water storage tanks are connected as required by the user to ensure the desired amount of hot water storage, thereby avoiding the occurrence of hot water shortages. The technique to do is known (refer patent document 1).

特開2005−127640号公報JP 2005-127640 A

ところで、給湯機に要求される能力としては、単に湯切れを防ぐだけでなく、ユーザが使いたいときに使いたいだけの湯量、つまり時間当たりの給湯量を供給する能力が求められる。例えば、業務用の給湯機の場合、レストラン等の混雑時においては、短時間に大量の給湯流量(例えば、50L/min)が要求される。   By the way, the ability required of the water heater is required not only to prevent the hot water from running out, but also to have the ability to supply the amount of hot water that the user wants to use, that is, the amount of hot water supplied per hour. For example, in the case of a commercial water heater, a large amount of hot water flow (for example, 50 L / min) is required in a short time when a restaurant or the like is congested.

これに対し、特許文献1の構成によれば、貯湯量の確保により湯切れを抑制できるが、複数の貯湯タンクを配管で接続することにより、給湯経路の圧力損失が増大する。このため、給湯流量の低下を招き、ユーザの要求を満足できないおそれがある。   On the other hand, according to the configuration of Patent Document 1, hot water shortage can be suppressed by securing the amount of hot water storage, but the pressure loss of the hot water supply path increases by connecting a plurality of hot water storage tanks with pipes. For this reason, the hot water supply flow rate is lowered, and there is a possibility that the user's request cannot be satisfied.

本発明は、給湯流量の低下を抑制するヒートポンプ給湯機を低コストで実現することを課題とする。   This invention makes it a subject to implement | achieve the heat pump water heater which suppresses the fall of the hot water supply flow volume at low cost.

まず、本発明にかかる貯湯タンクとこれに接続される配管の前提構成について説明する。一般に、貯湯タンクは、複数設置する場合に限らず、一つだけで用いる場合も考えられることから、設置数によらず、共通に利用可能な構成とすることが望まれる。   First, the premise structure of the hot water storage tank concerning this invention and piping connected to this is demonstrated. In general, a plurality of hot water storage tanks are not limited to a plurality of hot water storage tanks, and may be used alone. Therefore, it is desirable to have a configuration that can be used in common regardless of the number of hot water storage tanks.

本発明において、貯湯タンクを単数で用いる場合の配管構成は、給水用、給湯用の各1系統と、沸き上げとなる貯湯時に貯湯タンク内の水を抜き出す配管系統、及び加熱された湯を貯湯タンクに戻す配管系統の合計4系統となる。これに対し、例えば、複数の貯湯タンクを直列的に接続して用いる場合、給水用と給湯用の2系統と、貯湯時の2系統は、いずれも両端の貯湯タンクで1系統ずつ分担すればよいため、貯湯タンクどうしを1本の配管で接続すると、すべての貯湯タンクには、余剰の配管系統が生じることになる。   In the present invention, when a single hot water storage tank is used, the piping configuration includes one system for water supply and one for hot water supply, a piping system for extracting water from the hot water storage tank when boiling hot water, and hot water for storing hot water. There are a total of 4 piping systems that return to the tank. On the other hand, for example, when a plurality of hot water storage tanks are connected in series, the two systems for water supply and hot water supply and the two systems for hot water storage are shared by the hot water storage tanks at both ends. For this reason, if the hot water storage tanks are connected by a single pipe, an excessive piping system is generated in all the hot water storage tanks.

そこで、本発明は、ヒートポンプ回路と、このヒートポンプ回路によって加熱された湯を貯留する複数の貯湯タンクとを備え、貯湯タンクは、上部に連結された第1と第2の配管と、下部に連結された第3と第4の配管とを有し、第1と第2の配管及び前記第3と第4の配管は、それぞれ連通可能に形成する。 Therefore, the present invention includes a heat pump circuit and a plurality of hot water storage tanks for storing hot water heated by the heat pump circuit. The hot water storage tank is connected to the first and second pipes connected to the upper part and to the lower part. a third which is a fourth pipe, the first and second pipe and the third fourth pipe, it can form each communication.

このように、同一構成の貯湯タンクをいくつかの配管で接続することにより、所望の貯湯量を得ることができ、低コストで湯切れのない給湯機を実現することができる。ここで、各貯湯タンクは、上部と下部にそれぞれ2系統ずつ配管を備えているが、例えば、各貯湯タンクの第1と第2の配管及び第3と第4の配管のうち少なくとも一方の2系統を連通させ、その連通する2本の配管を給湯経路に配置する。これによれば、貯湯タンクどうしをつなぐ管路の断面積を大きくできるため、その分、圧力損失の増加を抑制し、給湯流量の低下を抑えることができる。   In this way, by connecting hot water storage tanks having the same configuration with several pipes, a desired hot water storage amount can be obtained, and a hot water heater that is low in cost and does not run out of hot water can be realized. Here, each hot water storage tank is provided with two pipes in the upper part and the lower part respectively. For example, at least one of the first and second pipes and the third and fourth pipes of each hot water tank is provided. The system is communicated, and the two pipes that communicate with each other are arranged in the hot water supply path. According to this, since the cross-sectional area of the pipe line connecting the hot water storage tanks can be increased, an increase in pressure loss can be suppressed correspondingly, and a decrease in the hot water supply flow rate can be suppressed.

具体的に、本発明は、水冷媒熱交換器によって給水を加熱するヒートポンプ回路と、水冷媒熱交換器で加熱された湯を貯える二つの貯湯タンクユニットとを備えたヒートポンプ給湯機において、各貯湯タンクユニットは、貯湯タンクと、この貯湯タンクの上部に連結される第1と第2の配管と、下部に連結される第3と第4の配管とを有して形成され、一の貯湯タンクユニットは、第3の配管が給水源に連通されるとともに、第4の配管が水冷媒熱交換器の給水口に連通され、他の貯湯タンクユニットは、第1の配管が水冷媒熱交換器の出湯口に連通されるとともに、第2の配管が給湯端末に連通され、一の貯湯タンクユニットの第1第2の配管及び他の貯湯タンクユニットの第3第4の配管は、それぞれ連通管により連通され、一の貯湯タンクと他の貯湯タンクは、各連通管が接続配管によって接続されるようにする。 Specifically, the present invention relates to a heat pump water heater provided with a heat pump circuit that heats water supply by a water refrigerant heat exchanger and two hot water storage tank units that store hot water heated by the water refrigerant heat exchanger. The tank unit includes a hot water storage tank, first and second pipes connected to the upper part of the hot water storage tank, and third and fourth pipes connected to the lower part. In the unit, the third pipe communicates with the water supply source, the fourth pipe communicates with the water supply port of the water refrigerant heat exchanger, and other hot water storage tank units have the first pipe connected to the water refrigerant heat exchanger. And the second piping is connected to the hot water supply terminal, and the first and second piping of one hot water storage tank unit and the third and fourth piping of the other hot water storage tank unit are respectively Communicating through a communication pipe, Tanks and other hot water storage tank, so that the communicating pipe is connected by a connecting pipe.

この構成によれば、先ず、一の貯湯タンクユニットに第3の配管を通じて給水が行われることにより、その貯湯タンク内に貯えられた湯は、連通する第1と第2の配管を通じて外に押し出され、他の貯湯タンクユニットの連通する第3と第4の配管を介してその貯湯タンク内へ導入される。これにより他の貯湯タンクユニットの貯湯タンク内に貯えられた湯は、第2の配管を通じて押し出され、給湯が行われる。一方、一の貯湯タンクユニットの第4の配管と他の貯湯タンクユニットの第1の配管は、各貯湯タンクユニットの沸き上げの貯湯時に使用される。   According to this configuration, first, water is supplied to one hot water storage tank unit through the third pipe, so that the hot water stored in the hot water storage tank is pushed out through the first and second pipes communicating with each other. Then, it is introduced into the hot water storage tank through third and fourth pipes communicating with other hot water storage tank units. Thereby, the hot water stored in the hot water storage tank of the other hot water storage tank unit is pushed out through the second pipe, and hot water is supplied. On the other hand, the 4th piping of one hot water storage tank unit and the 1st piping of other hot water storage tank units are used at the time of hot water storage of each hot water storage tank unit.

このように、二つの貯湯タンクユニットを接続する経路において、2系統の配管を連通されて用いることにより、圧力損失を低減し、給湯流量の低下を抑えることができる。すなわち、第1と第2の配管及び第3と第4の配管をそれぞれ連通管により連通させ、各連通管を接続配管によって接続することにより、簡単な構成で各配管を連通させることができるため、製造コストが廉価になり、かつ据付作業等が容易になる。 In this way, by connecting and using two pipes in the path connecting the two hot water storage tank units, it is possible to reduce pressure loss and suppress a decrease in hot water supply flow rate. That is, since each of the first and second pipes and the third and fourth pipes are communicated with each other through a communication pipe, and each communication pipe is connected with a connection pipe, each pipe can be communicated with a simple configuration. The manufacturing cost is reduced and the installation work is facilitated.

また、水冷媒熱交換器によって給水を加熱するヒートポンプ回路と、水冷媒熱交換器で加熱された湯を貯える三以上の貯湯タンクユニットとを備えたヒートポンプ給湯機においては、各貯湯タンクユニットは、貯湯タンクと、貯湯タンクの上部に連結される第1と第2の配管と、下部に連結される第3と第4の配管とを有し、一の貯湯タンクユニットの第1第2の配管及び他の貯湯タンクユニットの第3第4の配管は、それぞれ連通管により連通され、一の貯湯タンクユニットと他の貯湯タンクユニットは、各連通管が接続配管によって接続されて直列的に上流端の貯湯タンクから下流端の貯湯タンクへ順次貯湯されるように接続され、下流端の貯湯タンクを有する貯湯タンクユニットは、第3の配管が給水源に連通されるとともに、第4の配管が水冷媒熱交換器の給水口に連通され、上流端の貯湯タンクの貯湯タンクユニットは、第1の配管が水冷媒熱交換器の出湯口に連通されるとともに、第2の配管が給湯端末に連通されているようにしてもよい。 Further, in a heat pump water heater including a heat pump circuit that heats water supply by a water refrigerant heat exchanger and three or more hot water storage tank units that store hot water heated by the water refrigerant heat exchanger, each hot water storage tank unit is and the hot water storage tank, a first and a second pipe connected to the upper portion of the hot water storage tank, and a third and fourth pipe connected to the lower, first and second one of the hot water storage tank unit third and fourth pipes of the piping and other hot water storage tank unit is communicated by each communication pipe, one hot water storage tank unit with other hot water storage tank unit is serially each communicating pipe is connected by a connecting pipe The hot water storage tank unit having a downstream hot water storage tank connected to the hot water storage tank from the upstream end to the downstream hot water storage tank is connected to the water supply source. The hot water storage tank unit of the upstream end hot water storage tank has a first pipe connected to the hot water outlet of the water refrigerant heat exchanger and a second pipe connected to the water refrigerant heat exchanger water supply port. You may make it communicate with the hot water supply terminal.

このように、貯湯タンクユニットを3つ以上接続する場合、上流端の貯湯タンクと下流端の貯湯タンクに挟まれた貯湯タンクは、上下部の各2系統の配管がそれぞれ連通されて構成されるため、貯湯タンクの設置数が増加しても、給湯経路の圧力損失の増加を抑制し、給湯流量の低下を抑えることができる。   As described above, when three or more hot water storage tank units are connected, the hot water storage tank sandwiched between the hot water storage tank at the upstream end and the hot water storage tank at the downstream end is configured such that two pipes in the upper and lower portions are connected to each other. Therefore, even if the number of hot water storage tanks is increased, an increase in pressure loss in the hot water supply path can be suppressed, and a decrease in the hot water supply flow rate can be suppressed.

本発明によれば、給湯流量の低下を抑制するヒートポンプ給湯機を低コストで実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump water heater which suppresses the fall of the hot_water | molten_metal supply flow rate is realizable at low cost.

以下、本発明の第1の実施形態を図面に基づいて説明する。図1は本発明を適用してなるヒートポンプ給湯機において貯湯タンクユニットを二つ備えた構成図である。図2は本発明を適用してなるヒートポンプ給湯機において貯湯タンクユニットを三つ備えた構成図である。図3は本発明のヒートポンプ給湯機に用いる貯湯タンクユニットの構成図である。図4は図3の貯湯タンクユニットを1つ備えたヒートポンプ給湯機の構成図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 is a block diagram showing two heat storage tank units in a heat pump water heater to which the present invention is applied. FIG. 2 is a configuration diagram including three hot water storage tank units in a heat pump water heater to which the present invention is applied. FIG. 3 is a configuration diagram of a hot water storage tank unit used in the heat pump water heater of the present invention. FIG. 4 is a configuration diagram of a heat pump water heater provided with one hot water storage tank unit of FIG.

先ず、本実施形態のヒートポンプ給湯機に使用する貯湯タンクユニットの基本構成について説明する。   First, the basic structure of the hot water storage tank unit used for the heat pump water heater of this embodiment will be described.

本実施形態のヒートポンプ給湯機の貯湯タンクユニット2は、図3に示すように、4本の接続配管を有する貯湯タンク10を容器に内蔵して構成される。貯湯タンク10のタンク上部には、給湯管12と熱源機戻り管14の2系統の配管が接続され、タンク下部には、給水管11と熱源機往き管13の2系統の配管が接続されている。上部と下部の各2系統の配管は、貯湯タンク10の近接する位置に接続される。給湯管12,熱源機戻り管14,給水管11,熱源機往き管13の端部には、接続用端末として、それぞれ端末12a,14a,11a,13aが形成される。これらの端末は、例えば、配管どうしを接続する周知の接続具でもよいし、配管端部に螺刻して形成されるものでもよい。端末12aと端末14a、端末11aと端末13aは、後述するようにそれぞれ連通可能な位置に配置される。   As shown in FIG. 3, the hot water storage tank unit 2 of the heat pump water heater of the present embodiment is configured by incorporating a hot water storage tank 10 having four connection pipes in a container. Two pipes, a hot water supply pipe 12 and a heat source machine return pipe 14, are connected to the upper part of the hot water storage tank 10, and two pipes, a water supply pipe 11 and a heat source machine forward pipe 13, are connected to the lower part of the tank. Yes. The two upper and lower pipes are connected to positions adjacent to the hot water storage tank 10. Terminals 12 a, 14 a, 11 a, and 13 a are formed at the ends of the hot water supply pipe 12, the heat source machine return pipe 14, the water supply pipe 11, and the heat source machine forward pipe 13 as connection terminals, respectively. These terminals may be, for example, a well-known connecting tool for connecting pipes to each other, or may be formed by being screwed into the pipe end. The terminal 12a and the terminal 14a, and the terminal 11a and the terminal 13a are arranged at positions where they can communicate with each other as described later.

次に、このようにして構成される貯湯タンクユニット2を一つ備えたヒートポンプ給湯機の構成について、参考例として図4を用いて説明する。このヒートポンプ給湯機は、熱源機1と貯湯タンクユニット2を接続して構成される。熱源機1は、ヒートポンプサイクル部分と水サイクル部分とを備え、ヒートポンプサイクル部分は、圧縮機3、水と冷媒を熱交換する水冷媒熱交換器4の冷媒配管4a、減圧装置5、蒸発器6を冷媒配管で順次接続する閉回路により構成され、水サイクル部分は、水冷媒熱交換器4の水側配管4b、循環ポンプ7等を冷媒配管で接続して構成される。ヒートポンプサイクル部分では、例えば、CO冷媒を封入し、超臨界サイクルで運転させるようにしてもよい。 Next, the configuration of the heat pump water heater provided with one hot water storage tank unit 2 configured as described above will be described with reference to FIG. 4 as a reference example . This heat pump water heater is configured by connecting a heat source device 1 and a hot water storage tank unit 2. The heat source unit 1 includes a heat pump cycle part and a water cycle part. The heat pump cycle part includes a compressor 3, a refrigerant pipe 4a of a water refrigerant heat exchanger 4 for exchanging heat between water and a refrigerant, a decompression device 5, and an evaporator 6. Are connected by refrigerant piping, and the water cycle portion is constituted by connecting the water side piping 4b of the water refrigerant heat exchanger 4, the circulation pump 7 and the like by refrigerant piping. In the heat pump cycle portion, for example, a CO 2 refrigerant may be sealed and operated in a supercritical cycle.

循環ポンプ7は、水冷媒熱交換器4の水配管4bの吸込み側水配管8の途中に配設される。吸込み側水配管8の端子8bは、接続配管15によって貯湯タンクユニット2の熱源機往き管13と接続される。一方、水配管4bの吐き出し側配管9の端子9bは、接続配管16によって貯湯タンクユニット2の熱源機戻り管14と接続される。このように接続することで、貯湯タンク10内の貯留水を沸き上げる循環加熱回路が形成される。   The circulation pump 7 is disposed in the middle of the suction side water pipe 8 of the water pipe 4 b of the water refrigerant heat exchanger 4. The terminal 8 b of the suction side water pipe 8 is connected to the heat source unit forward pipe 13 of the hot water storage tank unit 2 by the connection pipe 15. On the other hand, the terminal 9 b of the discharge side pipe 9 of the water pipe 4 b is connected to the heat source unit return pipe 14 of the hot water storage tank unit 2 by the connection pipe 16. By connecting in this way, the circulation heating circuit which boils the stored water in the hot water storage tank 10 is formed.

貯湯タンク10には、タンク内の貯留水の水温を検知して、熱源機1の運転開始、停止を制御するセンサ(図示せず)が複数個取り付けられる。給水管11は減圧弁17の二次側端末と接続され、一次側端末には給水源からの給水配管が接続される。一方、給湯管12は給湯端末と連通する給湯配管と接続され、給湯経路が形成される。   A plurality of sensors (not shown) for detecting the temperature of the stored water in the tank and controlling the start and stop of the operation of the heat source unit 1 are attached to the hot water storage tank 10. The water supply pipe 11 is connected to a secondary side terminal of the pressure reducing valve 17, and a water supply pipe from a water supply source is connected to the primary side terminal. On the other hand, the hot water supply pipe 12 is connected to a hot water supply pipe communicating with the hot water supply terminal, and a hot water supply path is formed.

このような構成のヒートポンプ給湯機が設置場所に据え付けられると、給水源の元栓が開かれて、給水が開始される。給水源からの供給水は、減圧弁17で所定の給水圧に調整された後、給水管11を通り貯湯タンク10に流入する。貯湯タンク10に流入した供給水は、熱源機往き管13、接続配管15を経由して熱源機1の水配管4bにも充填され、その後、貯湯タンク10が満水状態となる。   When the heat pump water heater having such a configuration is installed at the installation location, the main plug of the water supply source is opened and water supply is started. The feed water from the feed water source is adjusted to a predetermined feed water pressure by the pressure reducing valve 17 and then flows into the hot water storage tank 10 through the feed water pipe 11. The supply water that has flowed into the hot water storage tank 10 is also filled into the water pipe 4b of the heat source apparatus 1 via the heat source unit forward pipe 13 and the connection pipe 15, and then the hot water storage tank 10 becomes full.

このような状態で、貯湯タンク10内の貯留水が所定の温度以下の場合、熱源機5の圧縮機3が運転を開始し、高温の冷媒が水冷媒熱交換器4の冷媒配管4aを通って循環する。冷媒配管4aで熱交換された冷媒は、減圧装置5で減圧され蒸発器6に入り、空気と熱交換されて蒸発し、再び圧縮機3に戻される。一方、循環ポンプ7も運転を開始し、貯湯タンク10内の貯留水を接続配管15を通じて熱源機1に吸込み、水配管4bを通して循環させる。これにより水冷媒熱交換器4において、冷媒配管4aと水配管4bとの間で熱交換が行われ、高温冷媒により低温の貯留水が所定の温度に加熱される。加熱されて高温となった給湯用水は、接続配管16を通って貯湯タンクユニット2の熱源機戻り管14から貯湯タンク10の上部に戻される。このようにして、貯湯タンク10内の貯留水は上部から高温の湯に置換され、貯湯タンク10内の給湯用水の所定量が所定の温度になった時点で、熱源機1の運転は停止される。なお、この動作は、図示しない制御装置により制御される。   In this state, when the stored water in the hot water storage tank 10 is below a predetermined temperature, the compressor 3 of the heat source unit 5 starts operation, and the high-temperature refrigerant passes through the refrigerant pipe 4a of the water-refrigerant heat exchanger 4. Circulate. The refrigerant heat-exchanged in the refrigerant pipe 4 a is depressurized by the decompression device 5 and enters the evaporator 6, exchanges heat with air and evaporates, and is returned to the compressor 3 again. On the other hand, the circulating pump 7 also starts operation, and the stored water in the hot water storage tank 10 is sucked into the heat source unit 1 through the connection pipe 15 and circulated through the water pipe 4b. Thereby, in the water refrigerant heat exchanger 4, heat exchange is performed between the refrigerant pipe 4a and the water pipe 4b, and the low-temperature stored water is heated to a predetermined temperature by the high-temperature refrigerant. The hot-water supply water heated to a high temperature is returned to the upper part of the hot water storage tank 10 from the heat source unit return pipe 14 of the hot water storage tank unit 2 through the connection pipe 16. In this way, the stored water in the hot water storage tank 10 is replaced with hot water from the top, and when the predetermined amount of hot water in the hot water storage tank 10 reaches a predetermined temperature, the operation of the heat source unit 1 is stopped. The This operation is controlled by a control device (not shown).

貯湯タンク10に貯湯された高温の給湯用水は、ユーザが給湯端末により給湯使用することで、貯湯タンク10内に流入する給水の圧力により貯湯タンク10の上部から押出され、給湯管12に接続された機器外の給湯配管を経由して、給湯端末へ給湯を行なう。   The hot water supply water stored in the hot water storage tank 10 is extruded from the upper part of the hot water storage tank 10 by the pressure of the hot water flowing into the hot water storage tank 10 when the user uses the hot water supply by the hot water supply terminal, and is connected to the hot water supply pipe 12. Hot water is supplied to the hot water supply terminal via the hot water supply pipe outside the equipment.

次に、本発明が適用されるヒートポンプ給湯機の実施形態について説明する。図1に示すように、本実施形態のヒートポンプ給湯機では、図1と同一構造の貯湯タンクユニットを二つ接続することにより、貯湯運転や給湯運転を行うものである。なお、図4と同一の構成要素については、同一の符号を付して説明を省略する。   Next, an embodiment of a heat pump water heater to which the present invention is applied will be described. As shown in FIG. 1, in the heat pump water heater of this embodiment, a hot water storage operation or a hot water supply operation is performed by connecting two hot water storage tank units having the same structure as in FIG. In addition, about the component same as FIG. 4, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態のヒートポンプ給湯機は、熱源機1、第1の貯湯タンクユニット2、第2の貯湯タンクユニット18を備えて構成される。第2の貯湯タンクユニット18は第1の貯湯タンクユニット2と同一構造であり、容器内に内蔵される貯湯タンク19の上部に給湯管21、熱源機戻り管23の2系統の配管が接続され、下部に給水管20、熱源機往き管22の2系統の配管が接続されている。給湯管21,熱源機戻り管23,給水管20,熱源機往き管22の端部には、接続用端末として、それぞれ端末21a,23a,20a,22aが形成されている。   The heat pump water heater according to the present embodiment includes a heat source device 1, a first hot water storage tank unit 2, and a second hot water storage tank unit 18. The second hot water storage tank unit 18 has the same structure as the first hot water storage tank unit 2, and two systems of piping, a hot water supply pipe 21 and a heat source machine return pipe 23, are connected to the upper part of the hot water storage tank 19 built in the container. The two pipes of the water supply pipe 20 and the heat source unit forward pipe 22 are connected to the lower part. Terminals 21 a, 23 a, 20 a, and 22 a are formed as end terminals for the hot water supply pipe 21, the heat source machine return pipe 23, the water supply pipe 20, and the heat source machine forward pipe 22, respectively.

ここで、第1の貯湯タンクユニット2の給湯管12を、接続配管24を介して第2の貯湯タンクユニット18の給水管20と接続し、第1の貯湯タンクユニット2の貯湯タンク10と第2の貯湯タンクユニット18の貯湯タンク19を接続する。そして、貯湯タンク19の上部に接続された給湯管21は、端末21aで給湯配管に接続することで、給湯端末までの給湯経路を形成する。   Here, the hot water supply pipe 12 of the first hot water storage tank unit 2 is connected to the hot water supply pipe 20 of the second hot water storage tank unit 18 via the connection pipe 24, and the hot water storage tank 10 of the first hot water storage tank unit 2 is connected to the first hot water storage tank 10. The hot water storage tank 19 of the second hot water storage tank unit 18 is connected. And the hot water supply pipe | tube 21 connected to the upper part of the hot water storage tank 19 forms the hot water supply path | route to a hot water supply terminal by connecting with the hot water supply piping by the terminal 21a.

一方、第1の貯湯タンクユニット2の熱源機往き管13は、接続配管15により熱源機1の水冷媒熱交換器4の吸込み配管8と接続し、水冷媒熱交換器4の吐き出し側配管9は、接続配管16により第2の貯湯タンクユニット18の熱源機戻り管23と接続することで、2つの貯湯タンクユニット2,18と熱源機1からなる循環経路を形成する。   On the other hand, the heat source unit forward pipe 13 of the first hot water storage tank unit 2 is connected to the suction pipe 8 of the water refrigerant heat exchanger 4 of the heat source unit 1 through the connection pipe 15, and the discharge side pipe 9 of the water refrigerant heat exchanger 4. Is connected to the heat source unit return pipe 23 of the second hot water storage tank unit 18 by the connection pipe 16, thereby forming a circulation path composed of the two hot water storage tank units 2, 18 and the heat source unit 1.

ところで、このように、給湯経路及び循環経路を配管構成する場合、第1の貯湯タンクユニット2の熱源機戻り管14と第2の貯湯タンクユニット18の熱源機往き管22は、配管接続されずに未使用の状態となる。   By the way, when the hot water supply path and the circulation path are configured as described above, the heat source unit return pipe 14 of the first hot water storage tank unit 2 and the heat source unit forward pipe 22 of the second hot water storage tank unit 18 are not connected by piping. Will be unused.

本実施形態では、この未使用の配管を有効に利用するため、図のように、第1の貯湯タンクユニット2内の給湯管12と接続配管24の端末24aとの間に連通管25を接続する。つまり、連通管25の分岐側の一端は給湯管12の端末12aに接続し、分岐側の他端は未使用の熱源機戻り管14の端末14aと接続する。これにより、貯湯タンク10からの給水経路が2系統形成される。一方、接続配管24の端末24bは第2の貯湯タンクユニット18内で連通管26と接続する。この連通管26の分岐側の一端は給水管20の端末20aに接続し、分岐側の他端は未使用の熱源機往き管22の端末22aと接続する。   In the present embodiment, in order to effectively use this unused pipe, a communication pipe 25 is connected between the hot water supply pipe 12 in the first hot water storage tank unit 2 and the terminal 24a of the connection pipe 24 as shown in the figure. To do. That is, one end on the branch side of the communication pipe 25 is connected to the terminal 12a of the hot water supply pipe 12, and the other end on the branch side is connected to the terminal 14a of the unused heat source machine return pipe 14. As a result, two water supply paths from the hot water storage tank 10 are formed. On the other hand, the terminal 24 b of the connection pipe 24 is connected to the communication pipe 26 in the second hot water storage tank unit 18. One end of the branch side of the communication pipe 26 is connected to the terminal 20a of the water supply pipe 20, and the other end of the branch side is connected to the terminal 22a of the unused heat source unit forward pipe 22.

この場合において、本給湯機の施行の際は、二つの連通管の接続を間違えないように、各連通管の形状を相違させるようにしてもよいし、また、どちらにも使用できるように同一形状にしてもよい。   In this case, when the hot water heater is used, the shape of each communication pipe may be different so that the connection of the two communication pipes is not mistaken, and the same so that it can be used for both. You may make it a shape.

このような構成のヒートポンプ給湯機が設置場所に据え付けられると、給水源の元栓が開かれて、給水が開始される。給水源からの給水は、第1の貯湯タンクユニット2内の減圧弁17で所定の給水圧に調整された後、給水管11を通って貯湯タンク10に流入する。貯湯タンク10に流入した供給水は、接続配管24を経由して第2の貯湯タンクユニット18の貯湯タンク19に流入する。さらに供給水は、貯湯タンク10の熱源機往き管13に接続された接続配管15、貯湯タンク19の熱源機戻り管23に接続された接続配管16を順次流れることにより、熱源機1内部の水配管4b内にも充填され、貯湯タンク10,19が満水状態となる。   When the heat pump water heater having such a configuration is installed at the installation location, the main plug of the water supply source is opened and water supply is started. The water supply from the water supply source is adjusted to a predetermined water supply pressure by the pressure reducing valve 17 in the first hot water storage tank unit 2 and then flows into the hot water storage tank 10 through the water supply pipe 11. The supply water that has flowed into the hot water storage tank 10 flows into the hot water storage tank 19 of the second hot water storage tank unit 18 via the connection pipe 24. Furthermore, the supply water sequentially flows through the connection pipe 15 connected to the heat source unit forward pipe 13 of the hot water storage tank 10 and the connection pipe 16 connected to the heat source unit return pipe 23 of the hot water storage tank 19, thereby The piping 4b is also filled, and the hot water storage tanks 10 and 19 become full.

このように、給湯機全体が満水になった状態で熱源機1が運転されると、前述した貯湯タンクの単数接続時と同様、貯留水は、循環ポンプ7によって第1の貯湯タンクユニット2の貯湯タンク10の下部から接続配管15を介して熱源機1に吸込まれ、ヒートポンプサイクルにより所定の温度に加熱される。加熱されて高温となった貯留水は、接続配管16を通り、第2の貯湯タンクユニット18の貯湯タンク19の上部に流入する。貯湯タンク19内の貯留水が上部から順次高温になり最下部まで高温になると、この高温の給湯用水は、接続配管24を介して第1の貯湯タンクユニット2の貯湯タンク10の上部に導かれる。そして、貯湯タンク10の貯留水が上部から順次高温になり貯湯タンク10の下部に設置されるセンサー(図示せず)が所定の温度を検知すると、熱源機1の運転が停止される。   Thus, when the heat source unit 1 is operated in a state where the entire hot water heater is full, the stored water is stored in the first hot water tank unit 2 by the circulation pump 7 as in the case of connecting a single hot water tank. It is sucked into the heat source unit 1 from the lower part of the hot water storage tank 10 through the connection pipe 15 and heated to a predetermined temperature by the heat pump cycle. The stored water heated to a high temperature passes through the connection pipe 16 and flows into the upper part of the hot water storage tank 19 of the second hot water storage tank unit 18. When the stored water in the hot water storage tank 19 gradually increases from the top to the bottom, the hot water for hot water supply is led to the upper part of the hot water storage tank 10 of the first hot water storage tank unit 2 via the connection pipe 24. . And when the stored water of the hot water storage tank 10 becomes high temperature sequentially from the upper part, and the sensor (not shown) installed in the lower part of the hot water storage tank 10 detects predetermined | prescribed temperature, the driving | operation of the heat source machine 1 will be stopped.

次に、このようにして貯湯タンク内に貯留された高温の給湯用水を給湯する場合の給湯用水の流れについて説明する。ユーザが給湯端末で給湯使用すると、給水源の給水圧力、つまり減圧弁17で調整された給水圧力によって給湯機内の給湯用水に流れが生じる。これにより第1の貯湯タンクユニット2では貯湯タンク10内の給湯用水は上部に接続された給湯管12と熱源機戻り管14の双方を通り、連通管25で合流して接続配管24に流れる。これにより給湯経路は貯湯タンクを単体で使用する場合よりも配管1系統分、流路断面積が大きくなるため、配管抵抗による圧力損失が小さくなる。さらに接続配管24を通過した給湯用水は、第2の貯湯タンクユニット18に入り、連通管26によって2系統に分れ、給水管20と熱源機往き管22を通過して貯湯タンク19内に入る。このときも貯湯タンクユニット1の貯湯タンク10と連通管25の間と同様、配管抵抗による圧力損失が小さくなる。   Next, the flow of hot water supply water in the case of supplying hot water for hot water stored in the hot water storage tank in this way will be described. When the user uses hot water at the hot water supply terminal, a flow occurs in the hot water supply water in the water heater due to the water supply pressure of the water supply source, that is, the water supply pressure adjusted by the pressure reducing valve 17. As a result, in the first hot water storage tank unit 2, the hot water supply water in the hot water storage tank 10 passes through both the hot water supply pipe 12 and the heat source unit return pipe 14 connected to the upper part, joins in the communication pipe 25 and flows to the connection pipe 24. As a result, the hot water supply path has a flow passage cross-sectional area that is larger by one pipe than in the case where a hot water storage tank is used alone, and pressure loss due to pipe resistance is reduced. Further, the hot water supply water that has passed through the connection pipe 24 enters the second hot water storage tank unit 18, is divided into two systems by the communication pipe 26, passes through the water supply pipe 20 and the heat source unit forward pipe 22, and enters the hot water storage tank 19. . Also at this time, the pressure loss due to the pipe resistance is reduced as in the case between the hot water storage tank 10 and the communication pipe 25 of the hot water storage tank unit 1.

このようにして、給湯用水は、貯湯タンク19の上部から給湯管21を通り、給湯端末に流れていく。   In this way, the hot water supply water flows from the upper part of the hot water storage tank 19 through the hot water supply pipe 21 to the hot water supply terminal.

すなわち、本実施形態のヒートポンプ給湯機のように、二つの貯湯タンクを直列に接続して配置しても、給湯経路に連通管25,26を設けることにより、流路断面積を大きくできるため、貯湯タンクユニット内の給湯経路の圧力損失、つまり流量損失を低減し、給湯端末における給湯流量の低下を抑制できる。   That is, as in the heat pump water heater of the present embodiment, even if two hot water storage tanks are connected in series, the flow passage cross-sectional area can be increased by providing the communication pipes 25 and 26 in the hot water supply path. The pressure loss of the hot water supply path in the hot water storage tank unit, that is, the flow rate loss can be reduced, and the decrease in the hot water flow rate at the hot water supply terminal can be suppressed.

次に、本発明が適用されるヒートポンプ給湯機の他の実施形態について説明する。図2に示すように、本実施形態のヒートポンプ給湯機では、図3と同一構造の貯湯タンクユニットを三つ接続することにより、貯湯運転、給湯運転を行うものである。なお、図1と同一の構成要素については、同一の符号を付して説明を省略する。   Next, another embodiment of the heat pump water heater to which the present invention is applied will be described. As shown in FIG. 2, in the heat pump water heater of this embodiment, a hot water storage operation and a hot water supply operation are performed by connecting three hot water storage tank units having the same structure as in FIG. In addition, about the component same as FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態のヒートポンプ給湯機は、熱源機1、第1の貯湯タンクユニット2、第2の貯湯タンクユニット18、第3の貯湯タンクユニット31を備えて構成される。第3の貯湯タンクユニット31は、他の貯湯タンクユニットと同一構造であり、内蔵される貯湯タンク32の上部に給湯管33、熱源機戻り管34の2系統の配管が接続され、下部に給水管35、熱源機往き管36の2系統の配管が接続される。給湯管33,熱源機戻り管34,給水管35,熱源機往き管36の端部には、接続用端末として、それぞれ端末33a,34a,35a,36aが形成される。   The heat pump water heater of the present embodiment includes a heat source device 1, a first hot water tank unit 2, a second hot water tank unit 18, and a third hot water tank unit 31. The third hot water storage tank unit 31 has the same structure as the other hot water storage tank units. Two pipes, a hot water supply pipe 33 and a heat source unit return pipe 34, are connected to the upper part of the built-in hot water storage tank 32, and the lower part of the hot water storage tank unit 31 is supplied with water. Two pipes, a pipe 35 and a heat source machine forward pipe 36, are connected. Terminals 33 a, 34 a, 35 a, and 36 a are formed as connection terminals at the ends of the hot water supply pipe 33, the heat source machine return pipe 34, the water supply pipe 35, and the heat source machine forward pipe 36, respectively.

本実施形態では、第3の貯湯タンクユニット31を第1の貯湯タンクユニット2と第2の貯湯タンクユニット18との間に配置し、第1の貯湯タンクユニット2と第3の貯湯タンクユニット31を接続配管24で接続するとともに、第2の貯湯タンクユニット18と第3の貯湯タンクユニット31を接続配管37で接続する。   In the present embodiment, the third hot water storage tank unit 31 is disposed between the first hot water storage tank unit 2 and the second hot water storage tank unit 18, and the first hot water storage tank unit 2 and the third hot water storage tank unit 31. Are connected by a connection pipe 24, and the second hot water storage tank unit 18 and the third hot water storage tank unit 31 are connected by a connection pipe 37.

ここで、接続配管24の端末24aは、上記のように第1の貯湯タンクユニット2内で連通管25と接続し、接続配管24の端末24bは、第3の貯湯タンクユニット31内で連通管38と接続する。連通管38の分岐側の一端は給水管35の端末35aに接続し、分岐側の他端は熱源往き管36の端末36aと接続する。一方、接続配管37の端末37bは、上記のように第2の貯湯タンクユニット2内で連通管26と接続し、接続配管37の端末37aは、第3の貯湯タンクユニット31内で連通管39と接続する。接続配管37の端末37bは、上記のように連通管26と接続する。連通管39の分岐側の一端は給湯管33の端末33aに接続し、分岐側の他端は熱源機戻り管34の端末34aと接続する。   Here, the terminal 24 a of the connection pipe 24 is connected to the communication pipe 25 in the first hot water storage tank unit 2 as described above, and the terminal 24 b of the connection pipe 24 is connected to the communication pipe 25 in the third hot water storage tank unit 31. 38. One end of the branch side of the communication pipe 38 is connected to a terminal 35 a of the water supply pipe 35, and the other end of the branch side is connected to a terminal 36 a of the heat source forward pipe 36. On the other hand, the terminal 37 b of the connection pipe 37 is connected to the communication pipe 26 in the second hot water storage tank unit 2 as described above, and the terminal 37 a of the connection pipe 37 is connected to the communication pipe 39 in the third hot water storage tank unit 31. Connect with. The terminal 37b of the connection pipe 37 is connected to the communication pipe 26 as described above. One end of the communication pipe 39 on the branch side is connected to the terminal 33 a of the hot water supply pipe 33, and the other end on the branch side is connected to the terminal 34 a of the heat source machine return pipe 34.

第1の貯湯タンクユニット2の熱源機往き管13は、接続配管15によって熱源機1の水冷媒熱交換器4の吸込み配管8に接続し、水冷媒熱交換器4の吐き出し側配管9は、接続配管16によって第2の貯湯タンクユニット18の熱源機戻り管23に接続する。そして、第2の貯湯タンクユニット18の連通管26と第3の貯湯タンクユニット31の連通管39、第3の貯湯タンクユニット38と第1の貯湯タンクユニット2の連通管25の間をそれぞれ接続配管で接続することにより、3つの貯湯タンクユニット2,18,31と熱源機1を含む循環経路を形成する。また、給湯経路は、図1と同様、第2の貯湯タンクユニット18の貯湯タンク19の上部に接続された給湯管21が、端末21aで給湯配管に接続されることにより形成される。   The heat source unit forward pipe 13 of the first hot water storage tank unit 2 is connected to the suction pipe 8 of the water refrigerant heat exchanger 4 of the heat source unit 1 by the connection pipe 15, and the discharge side pipe 9 of the water refrigerant heat exchanger 4 is The connecting pipe 16 is connected to the heat source machine return pipe 23 of the second hot water storage tank unit 18. The communication pipe 26 of the second hot water storage tank unit 18 and the communication pipe 39 of the third hot water storage tank unit 31 are connected to each other, and the communication pipe 25 of the third hot water storage tank unit 38 and the communication pipe 25 of the first hot water storage tank unit 2 is connected. By connecting by piping, a circulation path including the three hot water storage tank units 2, 18, 31 and the heat source unit 1 is formed. As in FIG. 1, the hot water supply path is formed by connecting a hot water supply pipe 21 connected to the upper part of the hot water storage tank 19 of the second hot water storage tank unit 18 to the hot water supply pipe at the terminal 21a.

このように構成されるヒートポンプ給湯機において、給水源から給水が開始されると、図1と同様に、供給水は貯湯タンクユニット2,31,18及び熱源機1の水配管4bに流入し、貯湯タンク10,32,19は、順次満水状態となる。そして、給湯機全体が満水になった状態で熱源機1が運転されると、ヒートポンプサイクルにより高温に加熱された給湯用水は、貯湯タンク19,32,10に順次流入し、貯湯タンク10のセンサが所定の温度を検知したところで、熱源機1の運転が停止される。   In the heat pump water heater configured as described above, when water supply is started from the water supply source, the supply water flows into the hot water storage tank units 2, 31, 18 and the water pipe 4 b of the heat source apparatus 1, as in FIG. The hot water storage tanks 10, 32, and 19 are sequentially filled with water. When the heat source device 1 is operated in a state where the entire hot water heater is full, hot water heated to a high temperature by the heat pump cycle sequentially flows into the hot water storage tanks 19, 32, 10, and the hot water storage tank 10 sensor. Detects a predetermined temperature, the operation of the heat source unit 1 is stopped.

この状態において、ユーザが給湯端末で給湯使用すると、給湯機内の給湯用水に流れが生じる。これにより第1の貯湯タンクユニット2では貯湯タンク10内の給湯用水は上部に接続された給湯管12と熱源機戻り管14の双方を通り、連通管25で合流して接続配管24に流れる。さらに接続配管24を通過した給湯用水は、第3の貯湯タンクユニット31に入り、連通管38によって2系統に分れ、給水管35と熱源機往き管36を通過して貯湯タンク32内に入る。貯湯タンク32内の給湯用水は上部に接続された給湯管33と熱源機戻り管34の双方を通り、連通管39で合流して接続配管37に流れる。さらに接続配管37を通過した給湯用水は、第2の貯湯タンクユニット18に入り、連通管26によって2系統に分れ、給水管20と熱源機往き管22を通過して貯湯タンク19内に入る。そして、貯湯タンク19内の給湯用水は上部に接続された給湯管21を通って給湯端末へ流れていく。   In this state, when the user uses hot water at the hot water supply terminal, a flow occurs in the hot water supply water in the water heater. As a result, in the first hot water storage tank unit 2, the hot water supply water in the hot water storage tank 10 passes through both the hot water supply pipe 12 and the heat source unit return pipe 14 connected to the upper part, joins in the communication pipe 25 and flows to the connection pipe 24. Further, the hot water supply water that has passed through the connection pipe 24 enters the third hot water storage tank unit 31, is divided into two systems by the communication pipe 38, passes through the water supply pipe 35 and the heat source unit forward pipe 36, and enters the hot water storage tank 32. . The hot water supply water in the hot water storage tank 32 passes through both the hot water supply pipe 33 and the heat source unit return pipe 34 connected to the upper part, joins at the communication pipe 39 and flows to the connection pipe 37. Further, the hot water supply water that has passed through the connection pipe 37 enters the second hot water storage tank unit 18, is divided into two systems by the communication pipe 26, passes through the water supply pipe 20 and the heat source unit forward pipe 22, and enters the hot water storage tank 19. . And the hot water supply water in the hot water storage tank 19 flows to the hot water supply terminal through the hot water supply pipe 21 connected to the upper part.

本実施形態のように、貯湯タンクを三つ以上接続するヒートポンプ給湯機は、二つの貯湯タンクを接続するヒートポンプ給湯機と同様、2系統の配管を連通管を介して連通させて給湯経路に用いることにより、流路断面積が大きくできるため、各貯湯タンクユニット内の給湯経路の圧力損失、つまり流量損失を低減し、給湯端末における給湯流量の低下を抑制することができる。これにより、例えば、給湯機の給湯ピーク時において、給湯流量の設定範囲を小さく制限する必要がなくなる。また、本実施形態の貯湯タンクユニット31のように、上下の各2系統の配管をそれぞれ連通管で連通させて用いることにより、同一構造の貯湯タンクを4つ以上接続しても、給湯流量の低下を抑制することができる。   As in this embodiment, a heat pump water heater connecting three or more hot water storage tanks is used for a hot water supply path by connecting two pipes via a communication pipe, similar to a heat pump water heater connecting two hot water storage tanks. As a result, the flow passage cross-sectional area can be increased, so that the pressure loss of the hot water supply path in each hot water storage tank unit, that is, the flow rate loss can be reduced, and the decrease in the hot water supply flow rate at the hot water supply terminal can be suppressed. Thereby, for example, it is not necessary to limit the setting range of the hot water flow rate to be small at the hot water supply peak of the water heater. Further, like the hot water storage tank unit 31 of the present embodiment, the upper and lower two systems of pipes are connected to each other through a communication pipe, so that even if four or more hot water storage tanks having the same structure are connected, The decrease can be suppressed.

以上述べたように、上記実施形態によれば、貯湯タンクユニットの構造を簡略化し、かつ同一構造としているため、ユーザ要求に応じた所望の貯湯量を適宜設定することができ、設計の自由度を大きくできる。また、貯湯タンクユニットを同一構造とすることにより、部品の共通化を図ることができ、生産管理、出荷管理、施工時の管理等、各種管理が容易になるため、貯湯タンクユニットの製造コストの低減、製作工程の管理や出荷管理にかかるコストの低減、及び出荷価格の低減を実現できる。   As described above, according to the above-described embodiment, the structure of the hot water storage tank unit is simplified and has the same structure. Therefore, a desired hot water storage amount according to the user request can be set as appropriate, and the degree of freedom in design. Can be increased. In addition, by making the hot water storage tank unit the same structure, it is possible to share parts, and various management such as production management, shipping management, construction management, etc. is facilitated. Reduction, production process management and shipping management cost reduction, and shipping price reduction can be realized.

また、上記実施形態では、貯湯タンクユニットの設置数を増やすことにより、例えば、業務用の給湯機等に要求される大容量の給湯に対応することが可能となり、湯切れを抑制することができる。また、上記実施形態では、複数の貯湯タンクユニットを直列的に接続して使用する際に、連通管を用いて配管系統を連通させることにより、給湯経路の圧力損失の増加を抑制でき、給湯流量が減少することを抑制することができる。従って、給湯流量の不足を補うために給湯機の設置台数を増加させる必要がなく、イニシャルコストの増加を抑えることができる。   Moreover, in the said embodiment, it becomes possible to respond | correspond to the hot water supply of the large capacity | capacitance requested | required, for example by the hot water supply apparatus for business, etc. by increasing the number of installation of the hot water storage tank unit, and can suppress hot water shortage. . Further, in the above embodiment, when a plurality of hot water storage tank units are connected in series and used, the increase in pressure loss in the hot water supply path can be suppressed by communicating the piping system using the communication pipe, and the hot water flow rate Can be reduced. Therefore, it is not necessary to increase the number of water heaters installed to make up for the shortage of hot water flow rate, and the increase in initial cost can be suppressed.

また、給湯流量が減少することを抑制することができるので、必要な量の湯を得るまでの時間が延びることを抑制できる。これにより、給湯ピーク時等における当該時間が延びることを解消し、ユーザ要求を満たすことができる。例えば、風呂を所望の時間内に湯張りするというような要求を満たすことができる。   Moreover, since it can suppress that the hot water supply flow volume decreases, it can suppress that time until obtaining a required quantity of hot water is extended. Thereby, it is possible to eliminate the extension of the time at the hot water supply peak time or the like and satisfy the user request. For example, it is possible to satisfy a demand for filling a bath in a desired time.

また、上記実施形態では、連通管の構造について具体的に限定していないが、2系統の配管を連通させる機能を有するものであれば、特に限定されず、例えば、一体形成されたY字型の配管でもよいし、別体型の配管、フレキシブル配管等を適宜接続して用いるようにしてもよい。   Moreover, in the said embodiment, although it does not specifically limit about the structure of a communicating pipe | tube, if it has a function which connects 2 piping, it will not specifically limit, For example, the Y-shape integrally formed Alternatively, separate pipes, flexible pipes, or the like may be used as appropriate.

本発明を適用してなるヒートポンプ給湯機において貯湯タンクユニットを二つ備えた構成図である。It is a block diagram provided with two hot water storage tank units in the heat pump water heater to which the present invention is applied. 本発明を適用してなるヒートポンプ給湯機において貯湯タンクユニットを三つ備えた構成図である。It is a block diagram provided with three hot water storage tank units in the heat pump water heater to which the present invention is applied. 本発明のヒートポンプ給湯機に用いる貯湯タンクユニットの構成図である。It is a block diagram of the hot water storage tank unit used for the heat pump water heater of this invention. 図3の貯湯タンクユニットを1つ備えたヒートポンプ給湯機の構成図である。It is a block diagram of the heat pump water heater provided with one hot water storage tank unit of FIG.

符号の説明Explanation of symbols

1 熱源機
2 第1の貯湯タンクユニット
3 圧縮機
4 水冷媒熱交換器
7 循環ポンプ
10,19,32 貯湯タンク
11,20,35 給水管
12,21,33 給湯管
13,22,36 熱源機往き管
14,23,34 熱源機戻り管
18 第2の貯湯タンクユニット
25,26,38,39 連通管
DESCRIPTION OF SYMBOLS 1 Heat source machine 2 1st hot water storage tank unit 3 Compressor 4 Water refrigerant | coolant heat exchanger 7 Circulation pump 10, 19, 32 Hot water storage tank 11, 20, 35 Water supply pipe 12, 21, 33 Hot water supply pipe 13, 22, 36 Heat source machine Outward pipe 14, 23, 34 Heat source machine return pipe 18 Second hot water tank unit 25, 26, 38, 39 Communication pipe

Claims (2)

水冷媒熱交換器によって給水を加熱するヒートポンプ回路と、前記水冷媒熱交換器で加熱された湯を貯える二つの貯湯タンクユニットとを備えたヒートポンプ給湯機において、
前記各貯湯タンクユニットは、貯湯タンクと、該貯湯タンクの上部に連結される第1と第2の配管と、下部に連結される第3と第4の配管とを有して形成され、一の前記貯湯タンクユニットは、前記第3の配管が給水源に連通されるとともに、前記第4の配管が前記水冷媒熱交換器の給水口に連通され、他の前記貯湯タンクユニットは、前記第1の配管が前記水冷媒熱交換器の出湯口に連通されるとともに、前記第2の配管が給湯端末に連通され、
一の前記貯湯タンクユニットの前記第1第2の配管及び他の前記貯湯タンクユニットの前記第3第4の配管は、それぞれ連通管により連通され、一の前記貯湯タンクと他の前記貯湯タンクは、前記各連通管が接続配管によって接続されていることを特徴とするヒートポンプ給湯機。
In a heat pump water heater comprising a heat pump circuit that heats feed water by a water refrigerant heat exchanger, and two hot water storage tank units that store hot water heated by the water refrigerant heat exchanger,
Each of the hot water storage tank units includes a hot water storage tank, first and second pipes connected to the upper part of the hot water storage tank, and third and fourth pipes connected to the lower part. In the hot water storage tank unit, the third pipe communicates with a water supply source, the fourth pipe communicates with a water supply port of the water refrigerant heat exchanger, and the other hot water storage tank unit 1 pipe communicates with the hot water outlet of the water-refrigerant heat exchanger, and the second pipe communicates with a hot water supply terminal,
The first and second pipes of one hot water storage tank unit and the third and fourth pipes of another hot water storage tank unit are connected by a communication pipe, respectively, and the one hot water storage tank and the other hot water storage tank The heat pump water heater according to claim 1, wherein each of the communication pipes is connected by a connection pipe .
水冷媒熱交換器によって給水を加熱するヒートポンプ回路と、前記水冷媒熱交換器で加熱された湯を貯える三以上の貯湯タンクユニットとを備えたヒートポンプ給湯機において、
前記各貯湯タンクユニットは、貯湯タンクと、該貯湯タンクの上部に連結される第1と第2の配管と、下部に連結される第3と第4の配管とを有し、一の前記貯湯タンクユニットの前記第1第2の配管及び他の前記貯湯タンクユニットの前記第3第4の配管は、それぞれ連通管により連通され、一の前記貯湯タンクユニットと他の前記貯湯タンクユニットは、前記各連通管が接続配管によって接続されて直列的に上流端の前記貯湯タンクから下流端の前記貯湯タンクへ順次貯湯されるように接続され、
前記下流端の貯湯タンクを有する前記貯湯タンクユニットは、前記第3の配管が給水源に連通されるとともに、前記第4の配管が前記水冷媒熱交換器の給水口に連通され、前記上流端の貯湯タンクの前記貯湯タンクユニットは、前記第1の配管が前記水冷媒熱交換器の出湯口に連通されるとともに、前記第2の配管が給湯端末に連通されていることを特徴とするヒートポンプ給湯機。
In a heat pump water heater comprising a heat pump circuit that heats feed water by a water refrigerant heat exchanger, and three or more hot water storage tank units that store hot water heated by the water refrigerant heat exchanger,
Each of the hot water storage tank units includes a hot water storage tank, first and second pipes connected to the upper part of the hot water storage tank, and third and fourth pipes connected to the lower part. The first and second pipes of the tank unit and the third and fourth pipes of the other hot water storage tank units are communicated with each other by a communication pipe, and one hot water storage tank unit and the other hot water storage tank unit are The communication pipes are connected by connecting pipes and connected in series so that hot water is sequentially stored from the hot water storage tank at the upstream end to the hot water storage tank at the downstream end,
In the hot water storage tank unit having the hot water storage tank at the downstream end, the third pipe communicates with a water supply source, the fourth pipe communicates with a water supply port of the water refrigerant heat exchanger, and the upstream end The hot water storage tank unit of the hot water storage tank has a heat pump characterized in that the first pipe communicates with a hot water outlet of the water-refrigerant heat exchanger and the second pipe communicates with a hot water supply terminal. Water heater.
JP2005378745A 2005-12-28 2005-12-28 Heat pump water heater Expired - Fee Related JP4827527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378745A JP4827527B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378745A JP4827527B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007178093A JP2007178093A (en) 2007-07-12
JP4827527B2 true JP4827527B2 (en) 2011-11-30

Family

ID=38303457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378745A Expired - Fee Related JP4827527B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4827527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359265B2 (en) * 2008-12-26 2013-12-04 ダイキン工業株式会社 Water heater and air vent method for water heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005158B2 (en) * 1994-06-17 2000-01-31 東芝機器株式会社 Electric water heater
JPH0933105A (en) * 1995-07-20 1997-02-07 Miura Co Ltd Hot-water supplying system for hot-water boiler
JP3801098B2 (en) * 2002-06-03 2006-07-26 三菱電機株式会社 Water heater and valve unit used for this water heater
JP4047792B2 (en) * 2003-10-24 2008-02-13 東芝キヤリア株式会社 Heat pump water heater
JP2005188809A (en) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd Heat pump water heater
JP4114930B2 (en) * 2004-01-22 2008-07-09 東芝機器株式会社 Heat pump water heater / heater

Also Published As

Publication number Publication date
JP2007178093A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
CN102563845B (en) Combined quick-heating heat exchanger
JP5441440B2 (en) Water heater
JP2009092323A (en) Heat pump water heater
JP2007327728A (en) Heat pump hot-water supply system
CN210801683U (en) Multi-split system
JP4124258B2 (en) Heat pump water heater
CN105202756A (en) Integral-type heat-pump water heater and yielding water temperature control method
JP4818780B2 (en) Water heater
CN110701789A (en) Heat pump water heater
JP2012097972A (en) Hot water supply system
CN103547870B (en) Hot water supply system
JP4827527B2 (en) Heat pump water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP4528226B2 (en) Hybrid hot water supply system
JP2007147107A (en) Hot-water storage type hot-water supply device
JP4877580B2 (en) Hot water storage water heater
JP4830779B2 (en) Hot water system
JP2011169584A (en) Heat pump water heater
CN206001687U (en) A kind of heat storage electric boiler system
CN211084437U (en) Heat pump water heater
JP2005076975A (en) Hot water supply system
JP4164441B2 (en) Hot water system
JP4101190B2 (en) Hot water storage water heater
JP2008256322A (en) Hot water storage type water heater
CN217907344U (en) Step-by-step heating drinking water equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees