JP4826986B2 - Seismic sliding base construction method and equipment - Google Patents

Seismic sliding base construction method and equipment Download PDF

Info

Publication number
JP4826986B2
JP4826986B2 JP2010073215A JP2010073215A JP4826986B2 JP 4826986 B2 JP4826986 B2 JP 4826986B2 JP 2010073215 A JP2010073215 A JP 2010073215A JP 2010073215 A JP2010073215 A JP 2010073215A JP 4826986 B2 JP4826986 B2 JP 4826986B2
Authority
JP
Japan
Prior art keywords
foundation
sliding
sliding plate
receiving
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010073215A
Other languages
Japanese (ja)
Other versions
JP2010248894A (en
Inventor
巌 柳瀬
Original Assignee
巌 柳瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巌 柳瀬 filed Critical 巌 柳瀬
Priority to JP2010073215A priority Critical patent/JP4826986B2/en
Publication of JP2010248894A publication Critical patent/JP2010248894A/en
Application granted granted Critical
Publication of JP4826986B2 publication Critical patent/JP4826986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

この発明は、地震に際し、構造物の震動を緩和し、構造物の破壊を可及的に防止することを目的とした避震滑動基礎構法及び装置に関する。またこの構法による装置は強風に際して、滑動を阻止することができる。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic sliding foundation method and apparatus for the purpose of reducing the vibration of a structure and preventing the destruction of the structure as much as possible in the event of an earthquake. In addition, the apparatus according to this construction method can prevent sliding in a strong wind.

従来耐震又は免震構造体としては、構造物と支持基礎との間に震動吸収構造物(例えば補強されたゴム材、又はスプリングその他)を介装した耐震構造が知られている。   As a conventional earthquake-resistant or seismic isolation structure, an earthquake-resistant structure in which a vibration absorbing structure (for example, a reinforced rubber material or a spring or the like) is interposed between a structure and a support foundation is known.

また出願人は先に上部本基礎と、下部受基礎の間へ上下滑動板を介装した避震滑動基礎構造を提案した。   In addition, the applicant previously proposed a seismic sliding foundation structure with upper and lower sliding plates interposed between the upper main foundation and the lower receiving foundation.

特開2000−257080号公報JP 2000-257080 A 実用新案登録第3111620号公報Utility Model Registration No. 3111620

従来の構造物は大地震によって破壊しない堅固な基礎を地盤上に構築し、該基礎上へ、大地震によっても破壊しない構造物を構築し、前記基礎と前記構造物とを堅固に連結する構法を採用していた。従って大地震(震度6強)においては、前記基礎と地盤と、構造物とは一体的に震動していたので、構造物も震度6強で震動し、構造物は破壊を免れても、構造物内の家具その他は、震度6強に対抗し切れず破壊し、多大の損害を受けている問題点があった。前記のように耐震構造でない一般家屋は、震度5以上の震動に際し、多大の損害(倒壊)を受けている。   A conventional structure is a construction method in which a solid foundation that is not destroyed by a large earthquake is constructed on the ground, a structure that is not destroyed by a large earthquake is constructed on the foundation, and the foundation and the structure are firmly connected. Was adopted. Therefore, in the case of a large earthquake (seismic intensity 6 strong), the foundation, ground, and structure vibrated integrally, so that the structure also vibrated with strong seismic intensity 6 and the structure was free from destruction. The furniture and other items in the object were not able to compete with a seismic intensity of 6 or more and were destroyed and suffered a great deal of damage. As described above, ordinary houses that are not earthquake-resistant structures have suffered a great deal of damage (collapse) when the seismic intensity is 5 or more.

また従来地上に載置しただけの犬小屋又は物置小屋などは、震度6強の大地震に際し、小屋の位置の移動は認められるが、小屋自体の破損は皆無であった。従来古い民家又は社、寺等の大型家屋の伝統的工法においては、建物の基礎は大きな自然石を据えて、その自然石の上に柱の下端面を当接支持しただけの基礎構造であった。従って大地震に際して、地盤は震度6強の大震動を生じても、柱に支持された建物全体は、前記自然石と柱下端面とによって震動の縁が切れている為に、震度5弱程度の震動に減衰し、建物全体は殆ど損害を受けない事実があった。   In addition, doghouses or storage sheds that have only been placed on the ground were allowed to move their sheds in the event of a strong earthquake with a seismic intensity of 6, but there was no damage to the huts themselves. Traditionally, in traditional methods for old houses, large houses such as shrines, temples, etc., the foundation of the building is a foundation structure in which a large natural stone is placed and the lower end of the pillar is abutted and supported on the natural stone. It was. Therefore, even in the case of a large earthquake, even if the ground generates a strong ground motion with a seismic intensity of 6 or higher, the entire building supported by the pillar is cut off by the natural stone and the bottom end surface of the pillar, so the seismic intensity is less than 5 There was a fact that the whole building was hardly damaged.

従来公然と推進されている地震対策としては次の3つが知られているが、夫々特徴と問題点がある。   There are three known earthquake countermeasures that have been publicly promoted in the past, but each has its own features and problems.

(1)耐震構法
この構法は、現行の主要な地震対策として実施されているものであり、建造物に一定量の筋違又は合板により補強された耐力壁を確保して建造を剛強にし、震度6強の地震に耐え得るようにしたものである。然しこの構法では、震動が緩和されないので、屋内事故や恐怖感は軽減されない。また、建造物の窓等の開口部が制限されるので、居住性も若干拘束される。但し、既設建造物の耐震補強はこの構法に準じて施工されている。
(1) Seismic construction method This construction method is currently implemented as a major earthquake countermeasure. The construction structure is made strong by securing a bearing wall reinforced with a certain amount of streaks or plywood, and the seismic intensity. It is designed to withstand 6 strong earthquakes. However, this construction method does not relieve vibrations, so indoor accidents and fears are not reduced. Moreover, since the opening part of the window etc. of a building is restrict | limited, habitability is also restrained a little. However, seismic reinforcement of existing buildings is carried out according to this construction method.

(2)免震構法
この構法は、建造物の構造体と基礎との間に設けられた免震装置により、地震動を吸収して建造物の震動を軽減するものであり、位置の自己復元機能もあるが、この装置の耐久性と維持管理に問題があると共に、工期も長く工事費も高価となる。従って、住宅等比較的低価格の建造物には適されていない。
(2) Seismic isolation system This system uses a seismic isolation device installed between the structure of the building and the foundation to absorb the earthquake motion and reduce the vibration of the building. However, there are problems in durability and maintenance of this device, and the construction period is long and the construction cost is expensive. Therefore, it is not suitable for a relatively low price building such as a house.

(3)制震構造
この構造は、建造物の構造体の要所に防震用金具を取り付けるもので、その弾力により構造体を柔軟にし、震度6強の地震に耐え得るようにしたものであると共に、震動も緩和されるので、屋内事故も抑止される。然し、これには用具の耐久性と維持管理に問題があるが、住宅等の建造物には対応可能である。
(3) Seismic control structure This structure attaches seismic-proof metal fittings to the key points of the structure of the building, and its structure makes it flexible and can withstand earthquakes with a seismic intensity of 6 or higher. At the same time, the vibration is also reduced, so indoor accidents are also suppressed. However, this has problems in the durability and maintenance of the tools, but can be applied to buildings such as houses.

この発明の概要を説明する。従来から基礎は地盤に固着し、一体として構築されてきた。これを上部の本基礎と、下部の受基礎に分離してその間に滑動層を設けた点が従来知られていない新規な基礎である。前記滑動層とは、本基礎の下部に固定した上部滑動板と、受基礎の上面に固定された下部滑動板により構成されており、その接触面における滑動により地震動を緩和するものである。また滑動板には、その耐久性、強度及び滑り性能が実証されている陶板、硝子板及びステンレス鋼板を素材とした成型品を用いる。これらの摩擦係数は、乾燥時と吸湿時で異なる。この構法は次の4つに集約される。   An outline of the present invention will be described. Conventionally, the foundation has been fixed to the ground and has been constructed as one piece. This is a new foundation that has not been known so far in that it is divided into an upper main foundation and a lower receiving foundation and a sliding layer is provided between them. The sliding layer is composed of an upper sliding plate fixed to the lower portion of the foundation and a lower sliding plate fixed to the upper surface of the receiving foundation, and mitigates earthquake motion by sliding on the contact surface. In addition, a molded product made of a ceramic plate, a glass plate and a stainless steel plate, whose durability, strength and sliding performance have been demonstrated, is used for the sliding plate. These friction coefficients are different between drying and moisture absorption. This construction method is summarized into the following four.

(1)避震滑動基礎構法
この構法を、住宅を主目的にして用いた場合には、基礎の高さ(1階床高)を地上約50cmと想定する。この建造物は、木造、鉄骨造、RC造、組積造の各種があり、地震の加速度を150ガルに緩和することができる。洪水の床下浸水は被害皆無であり、台風などの時に風速30m以上と予告された場合のみ滑動阻止手段を行う。前記基礎を蓄熱体として使用することができる。
(1) Seismic sliding base construction method When this construction method is used mainly for houses, the height of the foundation (floor height on the first floor) is assumed to be about 50 cm above the ground. There are various types of buildings such as wooden structures, steel structures, RC structures, and masonry structures, and the acceleration of the earthquake can be reduced to 150 gal. Flood underfloor flooding is not damaged, and only when it is predicted that the wind speed is 30m or more during a typhoon or the like, the slip prevention means is used. The foundation can be used as a heat storage body.

(2)避震滑動床板構法
いわゆる新設及び既設の建造物の床面の積載物及び設置物に対する防震に用い、地震の加速度を150ガルに緩和することができる。またこの構法は、展示台、陳列台、貨物台、医療機器台、機械設備台及び操作室などに有効である。
(2) Seismic sliding floor plate construction method It can be used for seismic protection against loads and installations on the floor surface of so-called new and existing buildings, and the acceleration of the earthquake can be reduced to 150 gal. This construction method is effective for an exhibition stand, a display stand, a cargo stand, a medical equipment stand, a machine equipment stand, an operation room, and the like.

(3)避震湛水滑動基礎構法
一階床面の使用を主要目的とするので、床高を低くするとともに、床面振動の緩和軽減を必要とする場合、建造物の基礎外周部の制動溝に湛水して対処するものである。この構法によれば、湛水の潤滑性により、滑動層の摩擦限界が低下し、地震加速度を120ガルに緩和する。前記湛水の水位変化は、通水管により緩和することができる。従って、店舗、工場、倉庫その他の人及び車の出入りする施設に好適である。
(3) Seismic Flooding Sliding Foundation Construction Since the main purpose is to use the floor of the first floor, if the floor height is to be lowered and relaxation of the floor vibration is required, braking of the outer periphery of the foundation of the building We deal with flooding in the ditch. According to this construction method, the friction limit of the sliding layer is lowered due to the lubricity of the brine, and the earthquake acceleration is reduced to 120 gal. The water level change of the flood water can be mitigated by a water pipe. Therefore, it is suitable for stores, factories, warehouses and other facilities where people and vehicles go in and out.

(4)避震貯水滑動基礎構法
現在、大規模の重量建造物は、基礎を地中深く剛強な基礎を構築することが主流であるが、本構法は、建造物の周囲を貯水池として本構法の基礎を構築するものであるから、恰も水に浮かぶ船が地震の影響を受けないと同様になり、水の浮力により重量が軽減された上にその潤滑により、滑動層の摩擦限界が低下するので、地震加速度が100ガル程度となり、建造物及び建造物内の物品は損壊しない。
(4) Seismic storage water slide foundation construction Currently, large-scale heavy buildings are mainly built with deep foundations and strong foundations, but this construction method uses the surroundings of the building as a reservoir. Since the ship that floats in the water is not affected by the earthquake, the weight of the ship is reduced by the buoyancy of the water, and the lubrication reduces the friction limit of the sliding layer. Therefore, the earthquake acceleration is about 100 gal, and the building and the articles in the building are not damaged.

前記における周辺の水は、雑排水に利用されるとともに、防火用水、冷却用水、雑用水として活用することができるとともに、貯水池とすれば庭としての景観を保つこともできる。   The surrounding water can be used as miscellaneous drainage, and can be used as fire prevention water, cooling water, miscellaneous water, and can also be used as a reservoir to maintain a landscape as a garden.

(5)地震に対する緩和は次のようになる。 (5) Mitigation against earthquakes is as follows.

(イ)地震発生→摩擦限界を超えると滑動開始→摩擦抵抗により制動→停止となり、最大150ガル程度に止まる。 (A) Earthquake occurrence → When the friction limit is exceeded, sliding starts → braking due to frictional resistance → stops, and stops at a maximum of about 150 gal.

(ロ)地震発生→水により摩擦限界低下→滑動開始→徐々に制動→100ガル程度になり、物品の破損などは大幅に阻止される。 (B) The occurrence of an earthquake → the friction limit decreases due to water → sliding starts → gradual braking → about 100 gal, and damage to articles is greatly prevented.

前記(1)〜(5)のように、この発明によれば、地震加速度の著しい低下により地震被害を大幅に低減させることができるので、いわゆる震度6強以上というような強震が震度5弱以下という程度となり、被害が殆どなくなり、又は軽微な被害となり、それだけ修復も早くなるものと期待される。   As described in the above (1) to (5), according to the present invention, earthquake damage can be greatly reduced by a significant decrease in earthquake acceleration. Therefore, a strong earthquake such as a so-called seismic intensity of 6 or more is less than seismic intensity of 5 or less. It is expected that the damage will be almost eliminated or minor damage, and the repair will be accelerated accordingly.

この発明は、所定用地を例えば1m掘り下げ、その底部を整地し、通常の要領により地盤工事を行う。例えば、砂利、礫などを20cm程敷き詰めた後、その上にならしコンクリート又はモルタルを敷設し、その上に鉄筋を配して、厚さ20cm程度の鉄筋コンクリート盤を構築して、受基礎とする。   In the present invention, a predetermined site is dug down, for example, by 1 m, the bottom is leveled, and ground work is performed according to a normal procedure. For example, after laying about 20cm of gravel, gravel, etc., laying a conditioned concrete or mortar on top of it, placing a reinforcing bar on it, constructing a reinforced concrete board about 20cm thick, and using it as a receiving foundation .

前記受基礎の外周には、厚さ30cm程度の鉄筋コンクリート製の周壁を周繞設置する。前記受基礎(特に溝部分)と周壁とは、水密処理し、水洩れしないように施工する。前記受基礎の周壁と本基礎の側壁との間の滑動溝底以外の表面を水平面に形成した後、前記受基礎の水平面上へ、滑面を上向きにして下部滑動板を敷設固定する。前記下部滑動板の上面に、滑面を下向きにして上部滑動板を敷設し、該上部滑動板上へ補強鉄筋等を設置した後、コンクリートを打設して、例えば30cm〜50cm厚さの本基礎を構築する。前記本基礎の上面上に、通常の要領により建造物を構築する。従って、前記受基礎上へ、前記本基礎が滑動板を介して滑動自在に載置されている。   A peripheral wall made of reinforced concrete having a thickness of about 30 cm is installed around the outer periphery of the receiving foundation. The receiving foundation (particularly the groove portion) and the peripheral wall are watertight and are constructed so as not to leak water. After a surface other than the sliding groove bottom between the peripheral wall of the receiving foundation and the side wall of the main foundation is formed on a horizontal plane, a lower sliding plate is laid and fixed on the horizontal plane of the receiving foundation with the sliding surface facing upward. An upper sliding plate is laid on the upper surface of the lower sliding plate with the sliding surface facing downward, a reinforcing steel bar is placed on the upper sliding plate, concrete is placed, and a 30 cm to 50 cm thick book, for example, Build the foundation. On the upper surface of the foundation, a building is constructed according to a normal procedure. Therefore, the main foundation is slidably mounted on the receiving foundation via the sliding plate.

前記本基礎の内側下部には(本基礎を50cmとすれば、下から10cm〜20cmの位置)、前記対向滑動溝間を結ぶ通水孔(直径5cm〜10cm)を縦横に設けて、本基礎の滑動時に前記滑動溝内の水位が過度に上昇しないように配慮してある。前記滑動溝の幅は30cm〜40cm、水深は40cm〜50cm程度とする。前記寸法に特別の限定はないが、本基礎の移動に際し、十分の緩衝作用があることが望ましい。   On the inside lower part of the main foundation (position of 10 cm to 20 cm from the bottom if the main foundation is 50 cm), water passage holes (diameter 5 cm to 10 cm) connecting the opposing sliding grooves are provided vertically and horizontally, Consideration is given so that the water level in the sliding groove does not rise excessively during sliding. The width of the sliding groove is about 30 cm to 40 cm, and the water depth is about 40 cm to 50 cm. Although there is no particular limitation on the dimensions, it is desirable that there is sufficient buffering action when moving the foundation.

この発明は、受基礎の周囲に滑動溝を設け、該滑動溝底以外の受基礎の表面を平面とし、この表面に滑動層を設け、滑動層の上部へ本基礎を設け、該本基礎の上部へ通常の要領により構造物(以下「建物」という)を建造する。   According to the present invention, a sliding groove is provided around the receiving foundation, the surface of the receiving foundation other than the bottom of the sliding groove is a flat surface, a sliding layer is provided on the surface, the main foundation is provided above the sliding layer, A structure (hereinafter referred to as “building”) is constructed at the top in the usual manner.

前記における滑動溝底は、本基礎の側面側から滑動面(受基礎の滑動面と同一高さ)、制動面(滑動面から1度〜3度の上り傾斜とする)停止面(制動面から更に2度〜5度程度のより傾斜増とする)のほぼ3等分の面としてある。従って、本基礎がどの方向へ移動しても、本来の摩擦力+制動力が加わり、本基礎の移動を有効に阻止することができる。前記傾斜度は、求める制動力により適宜定めることができる。   The bottom of the sliding groove is a sliding surface (same height as the sliding surface of the receiving foundation) from the side surface side of the main foundation, a braking surface (with an upward inclination of 1 to 3 degrees from the sliding surface) and a stop surface (from the braking surface). Furthermore, it is a surface approximately equivalent to three equal parts of 2 to 5 degrees. Therefore, regardless of the direction in which the main foundation moves, the original frictional force + braking force is applied, and the movement of the basic foundation can be effectively prevented. The inclination can be determined as appropriate according to the required braking force.

前記における滑動層は、受基礎表面に固定した滑動板と、本基礎の下面に固定した滑動板とを当接してなり、両滑動板の接触面で滑動する。前記滑動板としては、ステンレス鋼板、硝子板又は陶板を使用することができる。   The sliding layer is formed by abutting a sliding plate fixed to the receiving base surface and a sliding plate fixed to the lower surface of the main base, and slides on the contact surfaces of both sliding plates. As the sliding plate, a stainless steel plate, a glass plate, or a ceramic plate can be used.

前記ステンレス鋼板の場合には、例えば厚さ0.4mm、幅22.5cm、長さ割付寸法を用い、同一寸法のセメント平板(厚さ8mm)に固定して用いる。   In the case of the stainless steel plate, for example, a thickness of 0.4 mm, a width of 22.5 cm, and a length allocation dimension are used, and they are fixed to a cement flat plate (thickness of 8 mm) having the same dimensions.

次に陶板の場合には、規格(45cm×45cm×1.5cm)の陶製平板で、表面(滑動面)のみ釉薬焼付けとし、裏面は素地のまま、格子状に目地を付ける。   Next, in the case of a ceramic plate, a standard (45 cm × 45 cm × 1.5 cm) ceramic flat plate is used, and only the front surface (sliding surface) is glazed, and the back surface is left uncoated, and joints are formed in a lattice shape.

また硝子板の場合には、規格(45cm×45cm×0.2cm)に、厚さ8mmのセメント板を接着固定して用いる。   In the case of a glass plate, a cement plate having a thickness of 8 mm is adhered and fixed to a standard (45 cm × 45 cm × 0.2 cm).

前記滑動板の寸法は一例であって、これに限定するものでなく、適宜の寸法を用いるが、大地震に際し、滑動すること、及び破損しないこと、並びに滑動して不安定にならないことが必要である。特に微小滑動(例えば1cm〜5cm)に際し旧位置へ復帰させない場合においても滑動面が正常(建設時の条件どおり)に保持されていることが好ましい。   The size of the sliding plate is an example, and is not limited to this, and an appropriate size is used. However, it is necessary that the sliding plate does not slide and does not break during a large earthquake and does not slide and become unstable. It is. In particular, it is preferable that the sliding surface is kept normal (according to the conditions at the time of construction) even in the case of not returning to the old position at the time of minute sliding (for example, 1 cm to 5 cm).

前記条件を保持する為に、各建物に対して加えられる外力を予め算定し、滑動面の強度を、前記算定値に耐え得るように選定する必要がある。前記滑動板の寸法は、通常の建物が滑動した場合に十分耐え得る材質と寸法を示すものである。前記加えられる荷重計算式の一例を示すと、表1のとおりである。前記ステンレス鋼板の場合には、側面と平行な凹凸条を設ける場合もある。   In order to maintain the above conditions, it is necessary to calculate in advance the external force applied to each building, and to select the strength of the sliding surface so that it can withstand the calculated value. The size of the sliding plate indicates a material and a size that can withstand enough when a normal building slides. An example of the applied load calculation formula is shown in Table 1. In the case of the stainless steel plate, there may be provided an uneven strip parallel to the side surface.

Figure 0004826986
Figure 0004826986

次に具体的計算例を示すと、次のとおりである。   Next, a specific calculation example is as follows.

(建物概要)
図1参照
木造鋼板葺2階建
床面積 53m
延面積 106m
別壁面積 190m
内壁面積 86m
受風面積 40m
前記における荷重計算は表2のとおりである。
(Building overview)
See Fig. 1 Wooden steel plate 2 stories Floor area 53m 2
Total area 106m 2
Separate wall area 190m 2
Inner wall area 86m 2
Wind receiving area 40m 2
The load calculation in the above is as shown in Table 2.

Figure 0004826986
Figure 0004826986

(対地圧力)
基礎重量 本 2400×0.4=960kg/m
受 2400×0.2=480kg/m
f=499+960+480=1939kg/m<2.0t/m
これは極めて少なく平均している上、全体の重心も低いので、安心している。
(Ground pressure)
Basic weight book 2400 × 0.4 = 960 kg / m 2
2400 × 0.2 = 480 kg / m 2
f = 499 + 960 + 480 = 1939 kg / m 2 <2.0 t / m 2
I am relieved because this averages very little and the overall center of gravity is low.

(滑動板)
ステンレス鋼板(SUS304、0.5m/m、厚さ4mm)を使用する。
(Sliding plate)
A stainless steel plate (SUS304, 0.5 m / m, thickness 4 mm) is used.

摩擦係数 乾燥状態 静止時 0.15 運転時 0.05
摩擦限界(499+960)×0.15=219kg/m
(地震)
α 地震加速度
g 重力加速度(980cm/sec
W 重量
法定算式 P=W×0.2 P=(499+960)×0.2=292kg/m
加速度算式 P=W×α/g W=(499+960)=1459kg
震度5弱 α=150ガル P=1459×150/980=223kg/m
震度5強 α=250ガル P=1459×250/980=372kg/m
震度6 α=400ガル P=1459×400/980=596kg/m
この結果、地震加速度150ガル以下の衝撃は摩擦限界内であるので、本基礎及び建物に震動を与えるが、この限界を超えた衝撃により本基礎は滑動を始める。然し滑動は制動溝における摩擦抵抗により抑制の上、停止される。
Coefficient of friction Dry state Rest 0.15 Operation 0.05
Friction limit (499 + 960) × 0.15 = 219 kg / m 2
(earthquake)
α Seismic acceleration g Gravitational acceleration (980 cm / sec 2 )
W Weight Legal Formula P = W × 0.2 P = (499 + 960) × 0.2 = 292 kg / m 2
Acceleration formula P = W × α / g W = (499 + 960) = 1559 kg
Seismic intensity 5 weak α = 150 gal P = 1559 × 150/980 = 223 kg / m 2
Seismic intensity 5 strong α = 250 gal P = 1559 × 250/980 = 372 kg / m 2
Seismic intensity 6 α = 400 gal P = 1559 × 400/980 = 596 kg / m 2
As a result, since an impact with an earthquake acceleration of 150 gal or less is within the friction limit, the foundation and the building are vibrated, but the foundation starts to slide due to the impact exceeding the limit. However, the sliding is stopped after being suppressed by the frictional resistance in the braking groove.

この発明の装置は、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に制動装置を設置したことを特徴とする避震滑動基礎装置であり、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高く緩傾斜面を形成する制動装置を設置したことを特徴とする避震滑動基礎装置である。   The apparatus according to the present invention fixes the lower sliding plate with the sliding surface facing upward on the horizontally finished upper surface of the receiving base, and the upper sliding plate is slidable on the upper surface of the lower sliding plate with the sliding surface facing downward. The base is constructed on the top of the upper sliding plate, a predetermined structure is constructed on the base, and a braking device is installed between the base and the receiving base. The lower sliding plate is fixed to the upper surface of the receiving foundation with the sliding surface facing upward, and the upper sliding plate with the sliding surface facing downward on the upper surface of the lower sliding plate. Are slidably contacted, a base is constructed on the top of the upper sliding plate, a predetermined structure is constructed on the base, and the receiving base is placed between the base and the receiving base. An outer peripheral portion provided with an abutment surface that is slidable during an earthquake of the foundation, and the corresponding contact surface is A 避震 slide basis apparatus being characterized in that established a braking device for forming a high gradually inclined surface side.

また、他の装置は、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部へ所定間隔で周側壁を設置して、所定幅の環状溝を設け、該環状溝に所定水位の水を収容し、前記本基礎振動の緩衝作用付与の制動装置を設置したことを特徴とする避震滑動基礎装置であり、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の単数又は複数個所に円錐状の突起を設けるとともに、該突起を中心として所定直径の制動域を設け、該制動域の外側へ滑動域を設け、前記制動域は前記滑動域より表面傾斜を大きくして緩衝作用付与の制動装置を設置したことを特徴とする避震滑動基礎装置である。   In addition, other devices fix the lower sliding plate with the sliding surface facing upward on the horizontal finished upper surface of the receiving base, and slide the upper sliding plate on the upper surface of the lower sliding plate with the sliding surface facing downward. Freely abut, build the foundation on top of the upper sliding plate, build a predetermined structure on the foundation, and to the outer periphery of the receiving foundation between the foundation and the receiving foundation A side wall is provided at a predetermined interval, an annular groove having a predetermined width is provided, water of a predetermined water level is accommodated in the annular groove, and a braking device for imparting a buffering action to the basic vibration is installed. This is a seismic sliding foundation device. The lower sliding plate is fixed to the upper surface of the receiving foundation with the sliding surface facing upward, and the upper sliding plate is slid on the upper surface of the lower sliding plate with the sliding surface facing downward. Freely abut, build the foundation on top of the upper sliding plate, and place a predetermined structure on the foundation. Constructing an object, providing conical protrusions at one or more locations of the receiving foundation between the main foundation and the receiving foundation, providing a braking area of a predetermined diameter around the protrusion, A seismic-sliding basic device characterized in that a sliding region is provided on the outside, and a braking device imparting a buffering action is provided with the braking region having a surface inclination larger than that of the sliding region.

更に、他の装置は、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高く緩傾斜面を形成するとともに、前記受基礎の外周部へ所定間隔で周側壁を設置して、所定幅の環状溝を設け、該環状溝に所定水位の水を収容し、前記本基礎振動の緩衝作用付与の制動装置を設置したことを特徴とする避震滑動基礎装置であり、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高く緩傾斜面を形成するとともに、前記受基礎の単数又は複数個所に円錐状の突起を設けるとともに、該突起を中心として所定直径の制動域を設け、該制動域の外側へ滑動域を設け、前記制動域は前記滑動域より表面傾斜を大きくして緩衝作用付与の制動装置を設置したことを特徴とする避震滑動基礎装置であり、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部へ所定間隔で周側壁を設置して、所定幅の環状溝を設け、該環状溝に所定水位の水を収容し、前記本基礎振動の緩衝作用を付与するとともに、前記受基礎の単数又は複数個所に円錐状の突起を設けるとともに、該突起を中心として所定直径の制動域を設け、該制動域の外側へ滑動域を設け、前記制動域は前記滑動域より表面傾斜を大きくして緩衝作用付与の制動装置を設置したことを特徴とする避震滑動基礎装置である。 In addition, another device fixes the lower sliding plate with the sliding surface facing upward on the horizontally finished upper surface of the receiving base, and slides the upper sliding plate with the sliding surface facing downward on the upper surface of the lower sliding plate. Freely abut, construct the foundation on the upper sliding plate, construct a predetermined structure on the foundation, and at the outer periphery of the receiving foundation between the foundation and the receiving foundation The base has a sliding surface that can slide in the event of an earthquake, and the corresponding contact surface forms a gently sloping surface with a high outside, and peripheral walls are installed at predetermined intervals on the outer periphery of the receiving foundation. An anti-skid sliding foundation device comprising an annular groove having a predetermined width, containing water of a predetermined water level in the annular groove, and provided with a braking device for imparting a buffering action to the basic vibration. The lower sliding plate is fixed to the top surface of the lower sliding plate with the sliding surface facing upward. The upper sliding plate is slidably abutted on the surface with the sliding surface facing downward, and the foundation is constructed on the upper portion of the upper sliding plate, and a predetermined structure is constructed on the foundation. Between the main foundation and the receiving foundation, an outer peripheral portion of the receiving foundation, provided with a contact surface that is slidable at the time of the earthquake of the main foundation, the corresponding contacting surface forms a gently inclined surface with a high outside, A conical protrusion is provided at one or a plurality of locations of the receiving base, a braking area having a predetermined diameter is provided around the protrusion, a sliding area is provided outside the braking area, and the braking area is a surface from the sliding area. This is a seismic sliding base device characterized in that a braking device with a buffering action is installed with an increased inclination, and a lower sliding plate is fixed to the upper surface of the receiving base with the sliding surface facing upward, Place the upper sliding plate on the upper surface of the lower sliding plate with the sliding surface facing downward. The base is constructed so as to move freely, and the base is constructed on the top of the upper sliding plate, and a predetermined structure is constructed on the base. The outer periphery of the base is between the base and the base. A circumferential wall is installed at a predetermined interval, an annular groove having a predetermined width is provided, water of a predetermined water level is accommodated in the annular groove, a buffer action of the basic vibration is provided, and one or a plurality of the receiving foundations are provided. A conical protrusion is provided at a location, a braking area having a predetermined diameter is provided around the protrusion, a sliding area is provided outside the braking area, and the braking area has a surface inclination larger than that of the sliding area to provide a buffering action. It is a seismic sliding base device characterized by installing a braking device.

前記のように、本基礎の移動制約によって制動され、震動は減衰されるので、震度6強の大地震であっても震度5弱の震度となり、建物及び調度品の破壊を未然に防止することができる。   As mentioned above, the vibration is attenuated by the movement restriction of the foundation, and the vibration is attenuated. Therefore, even a large earthquake with a seismic intensity of 6 or higher has a seismic intensity of a seismic intensity of 5 or less, and prevents the destruction of buildings and furniture. Can do.

前記滑動面からの傾斜度1度〜3度は、建造物の種類、重量により異なるが、要は大地震の際の災害を可及的に少なくすることであり、建造物の種類、構造、重量、大きさ、材質などに鑑み、実験を経て適宜定める。   The inclination of 1 to 3 degrees from the sliding surface varies depending on the type and weight of the building, but the main point is to reduce the disaster in the event of a large earthquake as much as possible. In view of weight, size, material, etc., it is determined appropriately through experiments.

この発明は、突発的に生じる地震であっても自動的に対応し、強震(例えば震度6強)であっても、建物には中震以下(例えば震度5弱)の影響力に抑制することができる。   The present invention automatically responds to sudden earthquakes and suppresses the influence of buildings below the middle earthquake (for example, seismic intensity 5 lower) on the building, even for strong earthquakes (for example, seismic intensity 6+). Can do.

また風圧に対しては、風速30mまでは滑動を生じないが(計算上)、風速30m以上になると、建物が滑動しないような措置をする必要がある(例えば滑動。溝内へ阻止駒を収容する)。台風の場合には事前に正確な予報があるから、十分な対応時間があり対応措置に失敗するおそれはない。予め阻止駒を準備しておけば容易に対処できる。   The wind pressure does not slide up to 30m (calculation), but when the wind speed exceeds 30m, it is necessary to take measures to prevent the building from sliding (for example, sliding. To do). In the case of a typhoon, there is an accurate forecast in advance, so there is no risk that the response measures will fail due to sufficient response time. If a blocking piece is prepared in advance, it can be easily dealt with.

本基礎を蓄熱方式に構成すれば、夏季、冬季の冷暖房費を節減することができる効果がある。   If this foundation is configured as a heat storage system, there is an effect of reducing the heating and cooling costs in summer and winter.

また一般建物以外の建造物、例えば水槽、油槽、穀槽、各種機械設備の架台及び地上置物(例えば石碑、灯篭、記念碑、石像、銅像など)に応用すれば、強震に対してこれを減衰させ、破壊を未然に防止することができる効果がある。また、原子力発電設備などのような特別防護を要する構造物にあっては、溝幅を大幅に拡大(例えば1m〜10m)することにより耐震制御を確実にする効果がある。溝幅を拡大すると、建造物は恰も湖中の浮島のようになり、制震効果が大きい。また地震の振幅の関係を考慮し、溝の深さを決めれば更に有効である。   Also, if applied to structures other than general buildings, such as water tanks, oil tanks, grain tanks, frame of various machinery and equipment (such as stone monuments, lanterns, monuments, stone statues, bronze statues, etc.), they are attenuated against strong earthquakes. And the effect of preventing destruction in advance. In addition, in a structure requiring special protection such as a nuclear power generation facility, there is an effect of ensuring seismic control by greatly expanding the groove width (for example, 1 m to 10 m). When the groove width is enlarged, the structure becomes like a floating island in the lake, and the vibration control effect is great. It is more effective to determine the depth of the groove in consideration of the relationship of the earthquake amplitude.

然して工事が単純であるから、滑動層を作る為の労力、時間は比較的少なく、工期、工費を著しく増大させるおそれはない。   However, since the construction is simple, the labor and time for forming the sliding layer are relatively small, and there is no possibility of significantly increasing the construction period and construction cost.

またこの発明は、従来知られている免震構法と比較(表3)しても、明らかに優れている。   In addition, the present invention is clearly superior to the conventionally known seismic isolation method (Table 3).

Figure 0004826986
Figure 0004826986

センサーなどを使用することなく、そのまま自動的に対応できると共に、全荷重が本基礎により支持されているので、局所的に応力が集中するおそれがなく、滑動に際しても各所均等圧力のもとに作用するので、局部的に破損を招くおそれがない。従来の免震又は耐震構造は、複数の支持部(例えば柱)によって支持されているので、万一1つの支持部が破壊すると、その荷重は付近の支持部で分散支持されるが、不均等に分散すると一部へ過大な荷重が掛かり、遂には連鎖破壊を生じるに至ることがある。   Without using sensors, etc., it can be automatically handled as it is, and since all loads are supported by this foundation, there is no risk of local concentration of stress, and even when sliding, it works under equal pressure at various places. Therefore, there is no possibility of causing local damage. Since conventional seismic isolation or seismic structures are supported by multiple support parts (for example, columns), if one support part breaks, the load is distributed and supported by nearby support parts. When dispersed in the, excessive load will be applied to some parts, eventually leading to chain breakage.

このように、従来の免震などは破壊の連鎖を生じるおそれがあるが、この発明の場合には前記のような破壊の連鎖を生じる余地は全くないなどの効果もある。   In this way, conventional seismic isolation may cause a chain of destruction, but in the case of the present invention, there is an effect that there is no room for such a chain of destruction.

(a)この発明を実施した建物の一部を省略した断面図、(b)同じく一部を省略した平面図。(A) Sectional drawing which abbreviate | omitted a part of building which implemented this invention, (b) The top view which abbreviate | omitted a part similarly. この発明の構法の順序を示す図であって、(a)縦掘りの一部を省略した断面拡大図、(b)同じく受基礎、本基礎の一部を省略した断面拡大図、(c)同じく建物を建てた一部を省略した断面拡大図。It is a figure which shows the order of the construction method of this invention, Comprising: (a) The cross-sectional enlarged view which abbreviate | omitted a part of vertical digging, (b) The cross-sectional enlarged view which abbreviate | omitted a receiving foundation and a part of this foundation similarly, (c) The cross-sectional enlarged view which abbreviate | omitted the part which built the building similarly. (a)同じく他の実施例の一部を省略した拡大断面図、(b)同じく一部を省略した平面拡大図、(c)同じく滑動層の一部断面拡大図。(A) The expanded sectional view which abbreviate | omitted a part of other Example similarly, (b) The plane enlarged view which abbreviate | omitted a part, (c) The partial cross-sectional enlarged view of a sliding layer similarly. 同じく他の実施例(水を用いない)の一部断面拡大図。Similarly, the partial cross section enlarged view of other Examples (it does not use water). (a)同じく一部を省略した平面図、(b)同じく一部を省略した断面図、(c)同じく隅部の一部を拡大した平面拡大図、(d)同じく一部(c)図の断面拡大図。(A) The top view which abbreviate | omitted one part, (b) The cross-sectional view which a part abbreviate | omitted, (c) The enlarged plan view which expanded a part of the corner part similarly, (d) The same part (c) figure FIG. (a)同じく一部を省略した平面図、(b)同じく一部を省略した断面図。(A) The top view which abbreviate | omitted one part, (b) The sectional view which a part abbreviate | omitted. (a)同じく制動部(円形)を示す一部を省略した平面拡大図、(b)同じく一部を省略した拡大断面図、(c)同じく制動部(平行系)の一部を省略した平面拡大図、(d)同じく一部を省略した断面拡大図。(A) The plane enlarged view which abbreviate | omitted a part which shows a braking part (circle) similarly, (b) The enlarged sectional view which abbreviate | omitted a part, (c) The plane which abbreviate | omitted a part of the braking part (parallel system) Enlarged view, (d) An enlarged cross-sectional view with a part omitted. (a)同じく正方形としたステンレス鋼板の一部を省略した拡大平面図、(b)同じく一部を省略した拡大正面図、(c)同じく矩形としたステンレス鋼板の一部を省略した拡大平面図、(d)同じく一部を省略した拡大正面図。(A) An enlarged plan view in which a part of the stainless steel plate that is also square is omitted, (b) An enlarged front view that is also omitted in part, (c) An enlarged plan view in which a part of the stainless steel plate that is also rectangular is omitted (D) The enlarged front view which abbreviate | omitted a part similarly. (a)同じく正方形ガラス板の一部を省略した平面図、(b)同じく正面図、(c)同じく矩形ガラス板の一部を省略した平面図、(d)同じく矩形ガラス板の一部を省略した正面図。(A) A plan view in which a part of the square glass plate is omitted, (b) a front view in the same manner, (c) a plan view in which a part of the rectangular glass plate is also omitted, and (d) a part of the rectangular glass plate in the same manner. A front view omitted. (a)同じく正方形の陶板の一部を省略した平面図、(b)同じく一部を省略した正面図、(c)同じく矩形の陶板の一部を省略した平面図、(d)同じく一部を省略した正面図。(A) A plan view with a part of a square ceramic plate omitted, (b) A front view with a part omitted, (c) A plan view with a part of a rectangular ceramic plate omitted, (d) A part with the same The front view which omitted. (a)同じく長方形滑動板のセット例を示す平面図、(b)同じく上部板の正面図、(c)同じく下部板の正面図。(A) The top view which similarly shows the example of a set of a rectangular sliding board, (b) The front view of an upper board similarly, (c) The front view of a lower board similarly. (a)同じく長方形滑動板のセット例を示す平面図、(b)同じく上部板の正面図、(c)同じく下部板の正面図。(A) The top view which similarly shows the example of a set of a rectangular sliding board, (b) The front view of an upper board similarly, (c) The front view of a lower board similarly. (a)同じく正方形滑動板のセット例を示す平面図、(b)同じく上部板の正面図、(c)同じく下部板の正面図。(A) The top view which similarly shows the example of a set of a square sliding board, (b) The front view of an upper board similarly, (c) The front view of a lower board similarly. (a)同じく避震滑動地上型基礎の外部制動溝の一部を省略した縦断面図、(b)同じく一部を省略した平面図、(c)同じく他の実施例の一部を省略した断面図、(d)同じく一部を省略した平面図。(A) Longitudinal sectional view in which a part of the external braking groove of the seismic sliding ground type foundation is omitted, (b) A plan view in which a part is also omitted, (c) In the same manner, a part of other examples is omitted. Sectional drawing, (d) The top view which abbreviate | omitted one part. (a)同じく避震滑動地上型基礎の内部制動溝の一部を省略した縦断面図、(b)同じく一部を省略した平面図。(A) The longitudinal cross-sectional view which abbreviate | omitted a part of the internal braking groove of the earthquake-proof sliding ground type | mold foundation similarly, (b) The top view which abbreviate | omitted a part. (a)同じく滑動溝幅を大きくした実施例の一部省略し、一部断面した平面説明図、(b)同じく一部断面説明図。(A) The plane explanatory drawing which a part of the Example which enlarged the sliding groove width was abbreviate | omitted, and partially cut, (b) Partial cross-sectional explanatory drawing. 同じく地震と溝内の水の動きの説明図(イ、ロ、ハ、ニ、ホ、ヘ、ト)。Similarly, an illustration of the earthquake and the movement of water in the ditch (I, B, C, D, E, H, G). (a)同じく一部を省略した平面図、(b)同じく一部を省略した一部断面拡大図、(c)同じく一部を省略した平面図。(A) The top view which abbreviate | omitted a part, (b) The partially expanded sectional view which abbreviated a part, (c) The top view which abbreviated a part. (a)同じく一部を省略した平面図、(b)同じく一部を省略した断面拡大図、(c)同じく制動溝の一部平面図、(d)同じく配管ピットの平面図。(A) The top view which abbreviate | omitted one part, (b) The cross-sectional enlarged view which a part abbreviate | omitted, (c) The same partial plan view of a braking groove, (d) The same top view of a piping pit. (a)同じく一部を省略した平面図、(b)同じく一部を省略した断面拡大図、(c)同じく一部を省略した制動部の平面図。(A) The top view which abbreviate | omitted one part, (b) The cross-sectional enlarged view which a part abbreviate | omitted, (c) The top view of the braking part which a part abbreviate | omitted. (a)同じく一部を省略した平面図、(b)同じく一部を省略した断面拡大図、(c)同じく他の実施例の制動部のない部分の一部断面拡大図、(d)同じく一部を省略した制動部の平面図。(A) The top view which abbreviate | omitted a part, (b) The cross-sectional enlarged view which abbreviate | omitted a part, (c) The partial cross-sectional enlarged view of a part without the braking part of another Example, (d) The top view of the braking part which abbreviate | omitted one part. (a)同じく蓄熱基礎の実施例の一部を省略した横断平面図、(b)同じく一部を省略した断面図、(c)同じく一部を省略した断面拡大図。(A) The cross-sectional top view which abbreviate | omitted a part of the Example of a thermal storage foundation similarly, (b) The cross-sectional view which abbreviate | omitted a part, (c) The cross-sectional enlarged view which abbreviate | omitted a part. 同じく(a)、(b)、(c)はこの発明の使用例を示す斜視図であって、(a)陳列台、(b)展示台(c)医療機台、(d)貨物台。Similarly, (a), (b), and (c) are perspective views showing an example of use of the present invention, (a) a display stand, (b) an exhibition stand, (c) a medical equipment stand, and (d) a cargo stand. (a)同じくこの発明の建物の位置復元を図るジャッキの一部を省略した拡大平面図、(b)同じく一部を省略した拡大正面図。(A) The enlarged plan view which abbreviate | omitted a part of the jack which aims at the position restoration of the building of this invention similarly, (b) The enlarged front view which abbreviate | omitted a part.

この発明は、建物の建設と、滑動の復元作業の為の余地を考慮して用地を決定し、所定地を整地の上総掘すると共に、掘削底(地盤)強度の調査を行い、必要に応じて土質改良又は杭打等の補強工事を実施し、建物荷重及び本基礎荷重を支持し得る地盤を整備し、ついで設計に基づき地下排水管等の埋設を行い、例えば栗石敷設の上展圧し、その上に均しの捨コンクリートを打設する。上記は地盤整備の従来法を用いるので、前記地盤整備の方法と異なっても、この発明に属するものである。   This invention decides the site in consideration of the room for the construction of the building and the restoration work of the slide, and digs the predetermined land on the leveling ground, and investigates the excavation bottom (ground) strength, and if necessary Soil improvement or piling and other reinforcement work will be carried out, the ground that can support the building load and the foundation load will be maintained, underground drainage pipes etc. will be buried based on the design, for example, Kuriishi laying on top Place a leveling concrete on it. Since the above uses the conventional method of ground maintenance, it belongs to the present invention even if it differs from the ground maintenance method.

前記捨コンクリート上へ、厚さ20cmの鉄筋コンクリートの受基礎を設ける。前記受基礎の外周上部へ厚さ20cmの鉄筋コンクリート製の側壁を周繞設置する。前記側壁の内側であって、受基礎上へ滑動溝幅(例えば30cm〜40cm)をおいて表面を堅モルタルにより完全水平(平面)に仕上げ、この平面上へ下部滑動板の割付を設計図に基づいて行う。ついで、下部滑動板上へ上部滑動板を重ね合わせる。   A reinforced concrete receiving foundation having a thickness of 20 cm is provided on the discarded concrete. A side wall made of reinforced concrete having a thickness of 20 cm is installed around the outer periphery of the receiving base. Inside the side wall, the sliding groove width (for example, 30 cm to 40 cm) is placed on the receiving base, and the surface is finished with a solid mortar to be completely horizontal (planar), and the layout of the lower sliding plate on this plane is shown in the design drawing. Based on. Next, the upper sliding plate is overlaid on the lower sliding plate.

前記上部滑動板上へ鉄筋コンクリート製の本基礎(厚さ40cm)を設ける。この本基礎を設けることにより、前記側壁との間に滑動溝が構成される。当然のこと乍ら滑動溝内の水位は、前記本基礎の上面より下位にあるようにする。ついで前記本基礎上へ、通常の要領により建物を建設すると共に、滑動溝内へ適量の水を注入すれば、この発明の構法を終了する。前記において滑動溝底は、側壁側を高くして、本体基礎の抵抗を大きくし、滑動阻止できるようにしてある。   A main foundation (thickness 40 cm) made of reinforced concrete is provided on the upper sliding plate. By providing this book foundation, a sliding groove is formed between the side walls. Of course, the water level in the sliding groove should be lower than the upper surface of the foundation. Then, if a building is constructed on the foundation according to the normal procedure and an appropriate amount of water is injected into the sliding groove, the construction method of the present invention is completed. In the above, the bottom of the sliding groove is raised on the side wall side to increase the resistance of the main body foundation and prevent sliding.

従って本基礎は、滑動抵抗と、前記滑動溝底の抵抗によって滑動の緩和と阻止とが連続的に行われ、結果的に震度6強の震度は震度5弱の影響力となり、震度6強の激震であっても震度5弱程度の中震以下に低下して防震、制震の目的を達成し、建物を防護し、内容家具などの破損を防止することになる。   Therefore, in this foundation, the sliding resistance and the sliding groove bottom resistance are continuously reduced and prevented, and as a result, the seismic intensity with a seismic intensity of 6 or higher becomes an influence with a seismic intensity of 5 or lower. Even in the case of a severe earthquake, the seismic intensity will be lowered to less than 5 or less to achieve the purpose of anti-seismic and seismic control, protect the building, and prevent the contents furniture from being damaged.

この発明の実施例を図1,2,3に基づいて説明する。この発明は、建物等(地上構造物、塔、碑、その他設置物を含む)を地上に構築する際、耐震又は免震その他大地震対策として用いる構法である。従って地盤の状態によって、地盤の造成については異なるが、地盤上の構法に関しては従来構法と同一である。   An embodiment of the present invention will be described with reference to FIGS. The present invention is a construction method used for earthquake resistance or seismic isolation and other large earthquake countermeasures when building a building or the like (including ground structures, towers, monuments, and other installations) on the ground. Therefore, although the construction of the ground differs depending on the condition of the ground, the construction method on the ground is the same as the conventional construction method.

また高層又は超高層については、各種変更があると思われるが、一般木造家屋又は中層構造物(5〜6階建鉄筋、鉄骨コンクリート構造物)については、ほぼ同一構法を採用することができる。次に、各種構造物(以下「建物」という)を構築する際の構法を説明する。前記における地盤の構築は従来法によるので、詳細な説明を省略する。   Moreover, although it seems that there are various changes for the high-rise or super-high rise, almost the same construction method can be adopted for general wooden houses or medium-rise structures (5 to 6 story rebars, steel concrete structures). Next, a construction method for constructing various structures (hereinafter referred to as “buildings”) will be described. Since the construction of the ground in the above is based on a conventional method, detailed description is omitted.

(1)地業の作業
用地は滑動と復元作業の為の余地を考慮して若干広く決定する(例えば、通常用地の外側へ少なくとも1m幅を加えた用地とする)。先ず前記決定した用地1を整地し、その内側(滑動溝の外壁の外側を目途とする)を深さ1m位総掘する(基礎穴2)。地盤の悪い場合(建物の重量に耐え得るか否かで決める)には、更に20cm位掘り下げる。この掘り下げ部分(図2(a))へ砂利、栗石3を詰めた上に捨てコンクリート4を打設する(図2(b))。また、地盤が特に悪い場合にはコンクリート基礎杭を打設する。
(1) Groundwork work The site is decided slightly wider in consideration of the room for sliding and restoration work (for example, at least 1 m width is added to the outside of the normal site). First, the determined site 1 is leveled, and the inner side (with the outside of the outer wall of the sliding groove as a target) is dug about 1 m deep (base hole 2). If the ground is bad (determining whether it can withstand the weight of the building), dig further about 20 cm. On this digging portion (FIG. 2 (a)), gravel and chestnut 3 are stuffed and discarded concrete 4 is placed (FIG. 2 (b)). If the ground is particularly bad, concrete foundation piles will be placed.

(2)受基礎構築
前記捨てコンクリート4の上面をほぼ平面に均した後、底面と、周辺側面に所要の補強配筋し(通常の地盤を構築する要領、建物の荷重により配筋量を決める。総て設計書による)、型枠建込の上コンクリートを打設する。これにより周側壁5と基礎6を構築する。次に型枠を除去した後、基礎6の内側の受基礎7の滑動面対応上面7aの表面に堅練りモルタル10を薄く塗り(例えば1cm)完全水平面に仕上げる。前記仕上げ面に下部滑動板8,8をその滑動面を上向きにして、前記水平上へ割付固定する。前記捨てコンクリート4は、各栗石3の間にも入り込み、一体的盤状となるようにする。
(2) Receiving foundation construction After the top surface of the abandoned concrete 4 is leveled to a substantially flat surface, the necessary reinforcement reinforcement is placed on the bottom surface and the surrounding side surface (how to construct a normal ground, the amount of reinforcement is determined by the building load) (Consult all the design documents) and cast concrete on the formwork. Thereby, the peripheral side wall 5 and the foundation 6 are constructed. Next, after removing the formwork, the mortar 10 is thinly coated (for example, 1 cm) on the surface of the sliding surface corresponding upper surface 7a of the receiving base 7 inside the base 6, and finished to a complete horizontal surface. The lower sliding plates 8, 8 are allocated and fixed on the finished surface with the sliding surface facing upward. The discarded concrete 4 also enters between the chestnuts 3 so as to form an integral board.

(3)滑動層
前記下部滑動板8は、モルタル10により、受基礎7上へ固定する。前記下部滑動板8上へ上部滑動板9を滑動面を下にして重ねると共に、各目地をシールし、前記滑動面上へ配筋すると共に、モルタル10aを置いて配筋と上部滑動板9とを一体化することにより下部滑動板8と上部滑動板9により滑動層を完成する。前記目地は、各滑動板の当接部にできる。
(3) Sliding layer The lower sliding plate 8 is fixed onto the receiving base 7 with a mortar 10. The upper sliding plate 9 is stacked on the lower sliding plate 8 with the sliding surface facing down, the joints are sealed, and the reinforcing bars are placed on the sliding surface, and the mortar 10a is placed and the reinforcing bar and the upper sliding plate 9 are arranged. Is integrated with the lower sliding plate 8 and the upper sliding plate 9 to complete the sliding layer. The joint can be a contact portion of each sliding plate.

(4)制動溝の構成
前記周側壁5と、制動層外周壁との間の滑動溝底11上面は、滑動層側から滑動壁11a、制動壁11b(若干例えば2度〜3度上向傾斜)及び停止壁11cと、段階的に急になる上向傾斜底とする(図2(b)、(c))。
(4) Configuration of braking groove The upper surface of the sliding groove bottom 11 between the peripheral side wall 5 and the outer peripheral wall of the braking layer is inclined upward from the sliding layer side by a sliding wall 11a and a braking wall 11b (for example, 2 to 3 degrees upward slightly). ) And the stop wall 11c, and an upwardly inclined bottom that becomes steep in steps (FIGS. 2B and 2C).

前記のように、滑動溝底11に制動を設けない時には、本基礎と、受基礎の間へ設ける。このような時には、本基礎構築時に行うことになる。また蓄熱する時には本基礎内に空洞を設け、この空洞に栗石などの蓄熱体を充填し、前記空洞内へ熱気又は冷気の吹き込みパイプと、給気パイプを連結し、熱気又は冷気を吹き込んで蓄熱し、これを給気パイプにより必要な場所へ供給すれば、冷暖房の補助として使用することができる(この点は実施例8で説明する)。   As described above, when braking is not provided on the sliding groove bottom 11, it is provided between the base and the receiving base. In such a case, it will be performed at the time of this foundation construction. In addition, when storing heat, a hollow is provided in the foundation, and a heat storage body such as chestnut is filled in the cavity, and a hot or cold air blowing pipe and a supply pipe are connected to the hollow, and hot or cold air is blown to store the heat. And if this is supplied to a required place with an air supply pipe, it can be used as auxiliary | assistant of air conditioning (this point is demonstrated in Example 8).

(5)本基礎の構築
前記上部滑動板の上面周縁へ型枠を建て込み、底面及び側面へ所定の配筋をした後、周側壁5のコンクリート面より若干低い面まで打設する(例えば配管12、13の施工高さまで)。前記コンクリートの硬化をまって、上層部に配筋を行い所定の高さまでコンクリートを打設した上に(周側壁5の上面よりも高く)、モルタルにより上面仕上げし、本基礎15とする(図4)。
(5) Construction of this foundation After a formwork is built around the upper surface periphery of the upper sliding plate and predetermined reinforcement is placed on the bottom and side surfaces, it is placed to a surface slightly lower than the concrete surface of the peripheral side wall 5 (for example, piping) 12 to 13 construction height). After the concrete is hardened, the upper layer is laid and the concrete is cast to a predetermined height (higher than the upper surface of the peripheral side wall 5), and the upper surface is finished with mortar to form the main foundation 15 (see FIG. 4).

前記本基礎15の下部には通水用の配管12,13を縦横に設けると共に、必要なアンカーボルト(例えば建物との緊結用)を埋設する。前記配管12、13は前後左右の周側壁の内側の水位が振動時に異常に高くなるのを防止するために設ける。   Pipes 12 and 13 for water flow are provided vertically and horizontally at the lower part of the main foundation 15, and necessary anchor bolts (for example, for fastening with a building) are embedded. The pipes 12 and 13 are provided to prevent the water levels inside the front, rear, left and right peripheral side walls from becoming abnormally high during vibration.

前記本基礎15の周壁、側壁の周壁及び滑動溝底には夫々防水処理を施し、滑動溝2内で水洩れを起こさないように配慮する。また滑動溝2には溢水管、排水管(図示なし)その他通常の設備を付設して、滑動溝のデメリット(溢水、乾水、落下防止その他)を未然に防止する。   The peripheral wall of the base 15, the peripheral wall of the side wall, and the bottom of the sliding groove are waterproofed so as not to cause water leakage in the sliding groove 2. Also, the sliding groove 2 is provided with an overflow pipe, a drain pipe (not shown) and other ordinary equipment to prevent the disadvantages of the sliding groove (overflow, dry water, fall prevention, etc.).

前記上下部滑動板の材質としては、ステンレス板16、陶板17、ガラス板18などが用いられ、ステンレス板16及びガラス板18には、剛性付与の為にモルタル板19を併設するのが普通である(図8、9)。   As the material of the upper and lower sliding plates, a stainless plate 16, a ceramic plate 17, a glass plate 18 and the like are used, and the stainless plate 16 and the glass plate 18 are usually provided with a mortar plate 19 for providing rigidity. Yes (Figs. 8 and 9).

前記実施例において、地震の結果本基礎が滑動し、その滑動量が修正を要する程の量(例えば4cm〜10cm)になった時には、図24に示すように、予め設置したジャッキ29に加圧油を注入し、ロッド28を矢示31のように押し出して、本基礎15を旧位置の方向に移動させる。前記押し出しに要する力は、予め計算できるので、ジャッキ29の能力を勘案し、適所へ複数台設置すれば目的を容易に達成することができる。   In the above embodiment, when the foundation slides as a result of an earthquake and the amount of sliding becomes an amount that needs to be corrected (for example, 4 cm to 10 cm), as shown in FIG. Oil is injected and the rod 28 is pushed out as indicated by an arrow 31 to move the base 15 toward the old position. Since the force required for the extrusion can be calculated in advance, the object can be easily achieved by installing a plurality of units at appropriate positions in consideration of the capability of the jack 29.

尤も前記滑動量の修正は、何年又は何十年に一度であるから、前記ジャッキの設置場所のみ用意し、修正すべき滑動量は専門業者に依頼することになる。   However, since the amount of sliding is corrected every year or every decade, only the place where the jack is installed is prepared, and the amount of sliding to be corrected is requested to a specialist.

この発明の他の実施例を図3に基づいて説明する。この実施例は、鉄筋コンクリート造建物について、この発明の水を利用した避震滑動基礎構法である。次の条件で設定した。   Another embodiment of the present invention will be described with reference to FIG. This embodiment is a seismic sliding foundation method using water of the present invention for a reinforced concrete building. Set under the following conditions.

建物 鉄筋コンクリート造4階建
建積面積 100m
延面積 400m
貯水池水量 800m
貯水池水量 2110t
貯水池水深 3.5m
前記実施例は、図3(a)に示すような池30を総掘りし、ついで池底30aに地盤を築いた後(従来構法による)、地盤上及び側壁上に一定厚さ(例えば5cm〜10cm)のコンクリート32を打設し、その表面に防水モルタル層を設ける。前記池30の中央部へ、面積100mの建物用地を決めて、該用地表面に硬モルタル層33(防水モルタル兼用)の正確な水平面を設けた後、下部滑動板8を滑動面を上にして敷設する(敷設は他の実施例で説明図11、12、13)。次に、滑動板8上へ、滑動面を下にした滑動板9を載置して位置決めした後、前記滑動板9上へ接着用モルタル35を敷設し、該接着用モルタル35の上部へ鉄筋を配し、これに本基礎用のコンクリート34を打設する(例えば厚さ30cm)。前記建物用地の周外側の表面には、前記滑動板9が移動した場合に、これを制動又は制止すべく、建物側から滑動壁に制動壁及び停止壁を設けることは前記実施例1と同様である(滑動壁は図8、9、10で説明)。図4は、滑動溝に水を入れない乾式(砂利36を入れる)を示す。図4の場合でも滑動溝底11によって制動される。
Building Reinforced concrete 4 stories Building area 100m 2
Total area 400m 2
Reservoir water volume 800m 2
Reservoir volume 2110t
Reservoir depth 3.5m
In the embodiment, after digging up the pond 30 as shown in FIG. 3A and then building the ground on the pond bottom 30a (according to the conventional construction method), a certain thickness (for example, 5 cm to 5 cm) 10 cm) of concrete 32 is placed, and a waterproof mortar layer is provided on the surface thereof. A building site with an area of 100 m 2 is determined at the center of the pond 30 and an accurate horizontal surface of the hard mortar layer 33 (also used as waterproof mortar) is provided on the surface of the pond 30, and then the lower sliding plate 8 is placed with the sliding surface up. (Laying is explained in other embodiments in FIGS. 11, 12, and 13). Next, after placing and positioning the sliding plate 9 with the sliding surface down on the sliding plate 8, an adhesive mortar 35 is laid on the sliding plate 9, and a reinforcing bar is placed on the adhesive mortar 35. The foundation concrete 34 is placed on this (for example, 30 cm thick). As in the first embodiment, a sliding wall and a stop wall are provided on the sliding wall from the building side to brake or stop the sliding plate 9 when the sliding plate 9 moves on the outer surface of the building site. (The sliding wall is described with reference to FIGS. 8, 9, and 10). FIG. 4 shows a dry type in which water is not put into the sliding groove (with gravel 36). Even in the case of FIG. 4, braking is performed by the sliding groove bottom 11.

前記滑動壁、制動壁などは、建物の外側へ設ける場合(図4、5)と、図7のように建物直下の内側へ設ける場合とある。何れにしても、滑動層が矢示37又は38のように摺動することによって、抵抗が増加し、その摩擦抵抗により遂には停止するように設計されている。   The sliding wall, the braking wall, and the like are provided outside the building (FIGS. 4 and 5) and inside the building directly below as shown in FIG. In any case, the sliding layer is designed to slide as indicated by an arrow 37 or 38 so that the resistance increases and finally stops due to the frictional resistance.

この実施例は、滑動板に関するものである。図8(a)は450mm×450mmのステンレス板16(厚さ0.4mm)に厚さ8mmのモルタル板19を裏打して用いる。また図8(c)は、600mm×300mmのステンレス板16(厚さ0.4mm)に厚さ8mmの硅カル平板19aを裏打したものである。   This embodiment relates to a sliding plate. In FIG. 8A, a 450 mm × 450 mm stainless steel plate 16 (thickness 0.4 mm) is used by backing a mortar plate 19 having a thickness of 8 mm. FIG. 8C shows a 600 mm × 300 mm stainless steel plate 16 (0.4 mm thick) lined with a 8 mm thick hook plate 19a.

次に図9(a)は、ガラス板18で、450mm×450mm(厚さ3mm)に厚さ8mmの硅カル板19aを裏打したものであり、図9(c)は600mm×300mm(厚さ3mm)に厚さ8mmの硅カル板19aを裏打ちしたものである。   Next, FIG. 9A is a glass plate 18 that is 450 mm × 450 mm (thickness 3 mm) and is lined with a 8 mm thick hook plate 19a. FIG. 9C is 600 mm × 300 mm (thickness). 3 mm) is backed by a scissor plate 19 a having a thickness of 8 mm.

また図10(a)、(b)は、陶板17で450mm×450mm(厚さ15mm)の表面に釉薬17aを施して焼成したものであり、図10(c)、(d)は陶板17で600mm×300mm(厚さ150mm)の表面に釉薬17aを施して焼成したものである。   10 (a) and 10 (b) show the surface of 450 mm × 450 mm (thickness 15 mm) applied to the surface of the ceramic plate 17 and fired with the glaze 17a. FIGS. 10 (c) and 10 (d) are the ceramic plate 17. The surface of 600 mm × 300 mm (thickness 150 mm) is applied with glaze 17a and fired.

前記実施例は各材料により正方形及び矩形の滑動板の一例であって、このような寸法に特定されたものではなく、自由に選定できる。   The said Example is an example of a square and a rectangular sliding board with each material, Comprising: It is not specified to such a dimension, It can select freely.

この発明の制動の実施例を図5、7に基づいて説明する。図7(a)は、受基礎28の中央部に停止突起25を設けると共に、前記停止突起25を中心として、所定直径の制動域26を設け、前記制動域26の外側へ、所定直径の滑動域27を設けた制御装置である。このように、円形配置すれば地震の方向が矢示37、38その他の方向で不規則であっても、確実に対処することができる(全方位であるから)。図中24は空間、29は本基礎である。   An embodiment of braking according to the present invention will be described with reference to FIGS. In FIG. 7A, a stop protrusion 25 is provided at the center of the receiving base 28, a brake area 26 having a predetermined diameter is provided around the stop protrusion 25, and a slide having a predetermined diameter is moved to the outside of the brake area 26. This is a control device provided with an area 27. In this way, if the circular arrangement is used, even if the direction of the earthquake is irregular in the directions indicated by arrows 37, 38, etc., it can be dealt with reliably (because it is omnidirectional). In the figure, 24 is a space and 29 is the basics.

次に図7(c)、(d)は側縁と平行な停止突起を停止域40とし、その外側に制動域41を設け、その外側に滑動域42を設けたもので、図中39は空間である。この場合には、各域は平行に設けられた実施例である。   Next, FIGS. 7C and 7D show a stop projection parallel to the side edge as a stop region 40, a brake region 41 provided outside thereof, and a slide region 42 provided outside thereof, and 39 in the figure It is space. In this case, each area is an embodiment provided in parallel.

また図5(c)は、本基礎29の外側滑動溝底43上に停止域44、制動域45、滑動域46を設ける。   Further, in FIG. 5C, a stop area 44, a braking area 45, and a sliding area 46 are provided on the outer sliding groove bottom 43 of the foundation 29.

この発明の実施例を図11、12、13に基づいて説明すると、図11(a)は、長尺滑動板62を配置したもので、上下に配置する際、上部滑動板62aを矢示64の方向へ平行して設置すれば、下部滑動板62bは矢示66の方向へ重ね、結局上下部滑動板62a、62bは、交叉して配置される。このようにすれば各滑動板62a、62bの受圧条件が均等になる。   An embodiment of the present invention will be described with reference to FIGS. 11, 12, and 13. FIG. 11 (a) shows an arrangement in which a long sliding plate 62 is arranged. The lower sliding plate 62b is overlapped in the direction of the arrow 66, and the upper and lower sliding plates 62a and 62b are arranged so as to cross each other. In this way, the pressure receiving conditions of the sliding plates 62a and 62b are equalized.

次に図12(a)は、長方形の滑動板63を互いに滑動できるように配置したものである。また図13(a)は、各方形滑動板68、68aを互いに1/2ずらして配置したものである。これにより各部の目地部の条件相違が補完され、恰も一枚で構成されたものと近似したものとなる。   Next, FIG. 12A shows an arrangement in which the rectangular sliding plates 63 are slidable with respect to each other. FIG. 13A shows the rectangular sliding plates 68 and 68a that are shifted from each other by 1/2. As a result, the difference in the conditions of the joints of each part is complemented, and the bag is approximated to a single piece.

この発明の実施例を図14、15に基づいて説明する。図14(a)は、本造2階建69に、外部制動溝70を設けたものである。この場合には、制動溝70に制動源を設置し、水なしのものである。次に図14(c)は、本造2階建69の本基礎69aと、受基礎69bの間の滑動層72内に制動装置72aを設けた場合がある。図中79は台風時の滑動阻止ブロックである。   An embodiment of the present invention will be described with reference to FIGS. FIG. 14A shows an example in which an external braking groove 70 is provided in a two-story building 69. In this case, a braking source is installed in the braking groove 70 and there is no water. Next, FIG.14 (c) may provide the braking device 72a in the sliding layer 72 between the main foundation 69a of the main building 2 stories 69, and the receiving foundation 69b. In the figure, reference numeral 79 denotes a slip prevention block during a typhoon.

また図15(a)は、鉄筋コンクリート建73に用い、滑動溝74に水を入れた場合である。図中75は受基礎、76は本基礎、77は滑動層、78は通水パイプである。制動作用は前記実施例4と同一である(図示なし)。   FIG. 15A shows a case where water is poured into the sliding groove 74 for the reinforced concrete building 73. In the figure, 75 is a receiving foundation, 76 is a main foundation, 77 is a sliding layer, and 78 is a water flow pipe. The braking action is the same as in the fourth embodiment (not shown).

この発明における貯水池(各実施例の溝に相当する)と、水深の実施例を図16について説明すると共に、地震の振幅と振動状態を図17について説明する。   A reservoir (corresponding to a groove in each embodiment) and an embodiment of water depth according to the present invention will be described with reference to FIG. 16, and the amplitude and vibration state of the earthquake will be described with reference to FIG.

貯水池80の中央部へ建造物81を建設する場合に、建造物81の周囲には、湛水しているので、水の浮力によって滑動面における重量が軽減される。この浮力は、本基礎82の水深(水に浸されている深さd)によって定まる。 When the building 81 is constructed at the center of the reservoir 80, the surroundings of the building 81 are flooded, so the weight on the sliding surface is reduced by the buoyancy of water. This buoyancy is determined by the water depth of the foundation 82 (depth d 1 immersed in water).

前記のように、湛水した場合には、水による潤滑効果と、水の浮力による総重量の軽減による相乗効果により、大地震(震度6強)の場合にも震度5弱以下に緩和される。図中82は滑動層、83は通水パイプである。   As described above, in the case of flooding, due to the synergistic effect of the lubrication effect by water and the reduction of the total weight by the buoyancy of water, the seismic intensity is reduced to less than 5 even in the case of a large earthquake (seismic intensity 6+). . In the figure, 82 is a sliding layer and 83 is a water flow pipe.

前記における地震地の水の動きを、図17に基づいて説明すると、(イ)は震動が摩擦限界以下であって、建造物81は移動していない。(ロ)は摩擦限界以上の震度であるけれども、建造物81が滑動しない場合の水の変動を示す(図中xは基礎不動を示す。以下同じ)。次に(ハ)は建造物81が矢示84の方向へ滑動した場合の水面の変化を示す。また(ニ)、(ホ)は滑動しない場合を示し、(ヘ)は矢示85の方向へ滑動する場合を示し、(ト)は滑動しない場合を示す。図中86は受基礎、87は本基礎である。   The movement of the water in the earthquake area will be described with reference to FIG. 17. In (A), the vibration is below the friction limit, and the building 81 is not moving. (B) shows the fluctuation of water when the building 81 does not slide, although the seismic intensity is not less than the friction limit (x in the figure indicates basic immobility, the same applies hereinafter). Next, (c) shows the change in the water surface when the building 81 slides in the direction of arrow 84. Further, (d) and (e) indicate a case where the sliding does not occur, (f) indicates a case where the sliding is performed in the direction of the arrow 85, and (g) indicates a case where the sliding does not occur. In the figure, 86 is a receiving base and 87 is a main base.

前記において、水面の変動は鎖線で示し、半水面は実線で示した。   In the above description, the fluctuation of the water surface is indicated by a chain line, and the half water surface is indicated by a solid line.

前記図17において示したように、大震度の際に、滑動しないと(ロ)、(ホ)のように、水面傾斜が大きくなり、滑動により(ハ)、(ヘ)のように水面の傾斜が小さくなるので、地震の影響力が消滅されることが判る。   As shown in FIG. 17, if the surface does not slide in the case of a large seismic intensity, the water surface inclination will increase as shown in (b) and (e), and the water surface will incline like (c) and (f) due to the sliding. It can be seen that the influence of the earthquake disappears.

前記実施例において、地震により生ずるあらゆる変動が、地震の周期内に収束して原状に復することが求められる。そこで、建造物の側面と、貯水池の縁部との幅を、その水深と同等とすることを基準とする。このようにすれば、地震により生じる水面の上下変動は、振幅と同じとなると共に、水圧の変動も少ないので、水面の安定に要する時間が短くなる。但し、前記は建造物の平面形状が正方形又はこれに近い場合である。従って、建造物の平面形状が長方形、又は無視できない大きな凹凸がある場合又は貯水池として必要な面積が少ない場合は、本基礎内に通水パイプを設けて水流を円滑にし、水平面を得る時間を短縮化するなどの工夫を要する。   In the above embodiment, it is required that all fluctuations caused by the earthquake converge within the period of the earthquake and return to the original state. Therefore, the width of the side surface of the building and the edge of the reservoir is assumed to be equal to the water depth. In this way, the vertical fluctuation of the water surface caused by the earthquake becomes the same as the amplitude, and the fluctuation of the water pressure is small, so the time required for the stabilization of the water surface is shortened. However, the above is the case where the planar shape of the building is square or close to this. Therefore, if the structure of the building is rectangular, or has large irregularities that cannot be ignored, or if the area required for the reservoir is small, a water flow pipe is provided in the foundation to smooth the water flow and reduce the time to obtain the horizontal surface. It needs to be devised.

この発明の実施例を図18、19、20、21に基づいて説明する。図18は軽量鉄骨建造物の一例であって、2〜3階建の場合である。基礎地盤の上に栗石3を敷き詰め、栗石3の上に受基礎86を設け、受基礎86の上に滑動層82を設け、滑動層82の上に本基礎を構築する。前記滑動層82の適所に制動部90を設ける。制動部90は、滑動面と制動面を設けることは従来と同様である。この実施例のように、2〜3階建ての場合には、制動部90を2〜4箇所設ける。この場合の制動部90は制動面が並行しているが、地震の震動方向が不定(判らない)の場合には、平面同心円状の制動面が好ましい。図中81は建造物、91は配管ピットである。   An embodiment of the present invention will be described with reference to FIGS. FIG. 18 shows an example of a lightweight steel structure, which is a case of 2 to 3 stories. Kuriishi 3 is spread on the foundation ground, a receiving foundation 86 is provided on the chestnut 3, a sliding layer 82 is provided on the receiving foundation 86, and the foundation is constructed on the sliding layer 82. A braking portion 90 is provided at an appropriate position of the sliding layer 82. The braking unit 90 is provided with a sliding surface and a braking surface as in the conventional case. In the case of 2 to 3 stories as in this embodiment, 2 to 4 braking portions 90 are provided. In this case, the braking surface of the braking unit 90 is parallel, but when the vibration direction of the earthquake is indefinite (not known), a planar concentric braking surface is preferable. In the figure, 81 is a building and 91 is a piping pit.

次に図19はRC構造の集合住宅(ラーメン構造)であって、3〜4階建ての例である。この実施例の場合も基本的には、図18と同一であるが、図18の実施例に比し、建物が大きく、かつ高くなるので、基礎は地盤の耐性を考慮しつつ、十分の支持力を得るべくコンクリート杭92を打設する。この場合においても地盤の対性によって、コンクリート杭の直径、本数、密度などを決める必要がある。そこで受基礎86、本基礎87の強度に留意する必要がある。   Next, FIG. 19 shows an example of a 3 to 4-story residential building (ramen structure) having an RC structure. This embodiment is basically the same as FIG. 18, but the building is larger and taller than the embodiment of FIG. 18, so that the foundation is fully supported while considering the resistance of the ground. A concrete pile 92 is laid to obtain force. Even in this case, it is necessary to determine the diameter, number, density, etc. of the concrete piles according to the compatibility of the ground. Therefore, it is necessary to pay attention to the strength of the receiving foundation 86 and the main foundation 87.

また図20の実施例は、重量鉄骨構造物(ラーメン工法)における1〜2階建ての例を示す。この実施例も前記実施例(図19)と同様に、コンクリート杭92を打設した上に、受基礎86を設置し、滑動層82を介して本基礎87を設置する。前記において、本基礎87の外周に突壁93による溝96を設けて、外囲とし、溝96に水を入れる。この点は図2の実施例と同一であって、作用効果も同一である。図中93は柱、94はジャッキ据え付け用のピットであり、内部に制動部90が設けてある。前記ジャッキ据え付け用のピット94にジャッキを据え付けることによって、本基礎のずれ(地震による)を修正することができる。   Moreover, the Example of FIG. 20 shows the example of 1-2 stories in a heavy steel frame structure (ramen method). In this embodiment, similarly to the above-described embodiment (FIG. 19), a concrete pile 92 is placed, a receiving foundation 86 is installed, and a main foundation 87 is installed via a sliding layer 82. In the above, the groove 96 by the protruding wall 93 is provided on the outer periphery of the base 87 to form an outer periphery, and water is put into the groove 96. This point is the same as that of the embodiment of FIG. In the figure, 93 is a pillar, 94 is a pit for installing a jack, and a braking portion 90 is provided inside. By installing the jack in the pit 94 for installing the jack, the deviation of the foundation (due to the earthquake) can be corrected.

また図21の実施例は、煉瓦、石造建物(組積工法)における1〜3階建てのものである。この建物の基礎も基本的に前記各建物で説明したとおりである。即ち、基礎杭92を打設し、その上に栗石3その他を用いて受基礎86を敷設し、その上へ滑動層82を介して本基礎87を設置する。この場合には、本基礎の広さに応じ、複数個の制動部90を設ける。   Further, the embodiment of FIG. 21 is a one- to three-story building in a brick or stone building (masonry construction method). The basics of this building are basically the same as described in each building. That is, a foundation pile 92 is placed, a receiving foundation 86 is laid thereon using Kuriishi 3 or the like, and a main foundation 87 is installed thereon via a sliding layer 82. In this case, a plurality of braking portions 90 are provided according to the size of the foundation.

この発明の他の実施例を図23に基づいて説明する。この実施例は、この発明が建築物以外の構造物についても有用であることを示す一例である。   Another embodiment of the present invention will be described with reference to FIG. This example is an example which shows that this invention is useful also about structures other than a building.

即ち図23において(a)は受基礎100に滑動層101を介して本基礎102を設置し、本基礎102の上部へ陳列台103を設置したものである。   That is, in FIG. 23A, the main base 102 is installed on the receiving base 100 via the sliding layer 101, and the display stand 103 is installed on the upper part of the main base 102.

次に(b)は受基礎100に滑動層101を介して本基礎102を設置し、本基礎102の上部を展示台107として展示台107上に各列陳列物106を陳列したものである。   Next, (b) shows a case where the main foundation 102 is installed on the receiving base 100 via the sliding layer 101, and each display object 106 is displayed on the display stand 107 with the upper portion of the main base 102 as the display stand 107.

また(c)は本基礎102上へ医療機、その他の機械類104を設置するものである。   (C) is to install a medical device and other machinery 104 on the base 102.

更に(d)は受基礎100、滑動層101及び本基礎102をセットとする振動盤であって、各種物品の貨物台105としたものである。   Further, (d) is a vibration plate including the receiving base 100, the sliding layer 101, and the main base 102 as a set, and is a cargo bed 105 for various articles.

前記のように、振動盤108を基本とし、各種物品等の震動を低下させる震動盤とすることができる。   As described above, the vibration plate 108 can be basically used as a vibration plate that reduces the vibration of various articles.

この発明の他の実施例を図22に基づいて、本基礎50を蓄熱用に用いた場合を説明する。本基礎50の中央部には蓄熱室51を設け、各蓄熱室51内を格子状に区切り、多数の部屋とし、この部屋の内へ夫々蓄熱礫52を充填し、各仕切り壁53へ通気孔を設け、前記本基礎50の一側部へ吸入口55(外気)を設け、他側部へ、排出口56を設け、外気を吸入して蓄熱し、ここに空気を通すようにして、この空気により暖房又は冷房したものである。   Another embodiment of the present invention will be described with reference to FIG. 22 when the foundation 50 is used for heat storage. A heat storage chamber 51 is provided in the central portion of the foundation 50, and each of the heat storage chambers 51 is divided into a lattice shape to form a number of rooms, each of which is filled with heat storage gravel 52, and a vent hole is formed in each partition wall 53. A suction port 55 (outside air) is provided on one side of the main base 50, a discharge port 56 is provided on the other side, the outside air is sucked in to store heat, and the air is passed therethrough. Heated or cooled with air.

前記実施例において、例えば夏季に、夜間に冷気を矢示57のように吸気し、各格子状部へ矢示58,59,60,61のように導いて、礫を十分冷却しておき、昼間には、室内空気を吸い込んで蓄熱室で冷却した後、各部屋に給送すれば、部屋内を冷却することができる。   In the embodiment, for example, in summer, cool air is sucked in at night as indicated by arrows 57, and guided to the respective lattice-like portions as indicated by arrows 58, 59, 60, 61, and the gravel is sufficiently cooled, In the daytime, the interior of the room can be cooled by sucking indoor air and cooling it in the heat storage chamber and then feeding it to each room.

また各季は逆に、日中の暖かい空気で蓄熱し、夜間に部屋の空気を蓄熱室に送って加温した後、再び部屋に戻せば、部屋を暖めることができる。   On the contrary, in each season, the room can be warmed by storing heat with warm air during the day, returning the room air to the heat storage room at night, and then returning to the room.

前記のように、本基礎50内で冷却又は加熱した熱により、室内の冷暖房を援助することができる。   As described above, the air cooled or heated in the room can be assisted by the heat cooled or heated in the foundation 50.

1 用地
2 基礎穴
3 栗石
4 コンクリート
5 周側壁
6 基礎
7 受基礎
8,9 滑動板
10 モルタル
11 制動底
12,13 配管
15 本基礎
16 ステンレス板
17 陶板
18 ガラス板
19 モルタル板
24,39 空間
25 停止突起
30 池
32,34 コンクリート
40 停止域
41 制動域
42 滑動域
69 木造2階建
70 外部制動溝
75 受基礎
76 本基礎
77 滑動層
DESCRIPTION OF SYMBOLS 1 Site 2 Foundation hole 3 Chestnut 4 Concrete 5 Circumferential side wall 6 Foundation 7 Receiving foundation 8, 9 Sliding board 10 Mortar 11 Braking bottom 12, 13 Piping 15 Main foundation 16 Stainless steel plate 17 Ceramic plate 18 Glass plate 19 Mortar plate 24, 39 Space 25 Stop protrusion 30 Pond 32, 34 Concrete 40 Stop area 41 Braking area 42 Sliding area 69 Wooden two-story 70 External braking groove 75 Receiving foundation 76 Main foundation 77 Sliding layer

Claims (3)

建物建設用地に地盤を設け、該地盤上に受基礎を設け、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高くした制動壁を形成し、上部滑動板の摺動の際、前記制動壁に乗り上がり抵抗力を生じる制動装置を設置したことを特徴とする避震滑動基礎装置。 A ground is provided on the building construction site, a receiving foundation is provided on the ground, a lower sliding plate is fixed on the upper surface of the receiving foundation with the sliding surface facing upward, and a sliding surface is provided on the upper surface of the lower sliding plate. The upper sliding plate is slidably abutted downward, the main foundation is constructed on the upper sliding plate, a predetermined structure is constructed on the main foundation, the main foundation, and the receiving foundation The outer periphery of the receiving foundation is provided with an abutment surface that can slide on the main foundation in the event of an earthquake, and the corresponding contact surface forms a braking wall with the outer side raised, and the upper sliding plate slides. time, avoid seismic sliding basic device you characterized in that established a braking device resulting in up resistance rides the braking wall. 建物建設用地に地盤を設け、該地盤上に受基礎を設け、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高くした制動壁を形成し、上部滑動板の摺動の際、前記制動壁に乗り上がり抵抗力を生じる制動装置を設置し、前記受基礎の外周部へ所定間隔で周側壁を設置して、所定幅の環状溝を設け、該環状溝に所定水位の水を収容し、前記本基礎へ前記水の流通用の通水孔を設けたことを特徴とする避震滑動基礎装置。 A ground is provided on the building construction site, a receiving foundation is provided on the ground, a lower sliding plate is fixed on the upper surface of the receiving foundation with the sliding surface facing upward, and a sliding surface is provided on the upper surface of the lower sliding plate. The upper sliding plate is slidably abutted downward, the main foundation is constructed on the upper sliding plate, a predetermined structure is constructed on the main foundation, the main foundation, and the receiving foundation The outer periphery of the receiving foundation is provided with an abutment surface that can slide on the main foundation in the event of an earthquake, and the corresponding contact surface forms a braking wall with the outer side raised , and the upper sliding plate slides. In this case, a braking device that climbs on the braking wall and generates resistance force is installed, and a peripheral side wall is provided at a predetermined interval on the outer peripheral portion of the receiving base, and an annular groove having a predetermined width is provided. water were housed, the water passage holes for circulation of the water avoid seismic sliding basic instrumentation you characterized by providing to the underlying . 建物建設用地に地盤を設け、該地盤上に受基礎を設け、受基礎の水平仕上げした上面に、滑動面を上向きにして下部滑動板を固定し、該下部滑動板の上面に、滑動面を下向きにして、上部滑動板を摺動自在に当接し、前記上部滑動板の上部に、本基礎を構築し、該本基礎上へ所定の構造物を構築するとともに、前記本基礎と、受基礎の間に前記受基礎の外周部であって、前記本基礎の地震時の滑動可能な当接面を設け、該当接面は外側を高く緩傾斜面を形成するとともに、前記受基礎の複数個所に円錐状の突起を設けるとともに、該突起を中心として所定直径の制動域を設け、該制動域の外側へ滑動域を設け、前記制動域は前記滑動域より表面傾斜を大きくして緩衝作用付与すると共に、上部滑動板の摺動の際、前記受基礎に設けた緩傾斜面へ、本基礎が移動して抵抗力を生じるようにした制動装置を設置したことを特徴とする請求項1記載の避震滑動基礎装置。 A ground is provided on the building construction site, a receiving foundation is provided on the ground, a lower sliding plate is fixed on the upper surface of the receiving foundation with the sliding surface facing upward, and a sliding surface is provided on the upper surface of the lower sliding plate. The upper sliding plate is slidably abutted downward, the main foundation is constructed on the upper sliding plate, a predetermined structure is constructed on the main foundation, the main foundation, and the receiving foundation a peripheral portion of the receiving foundation during the provided slidable abutment surface during an earthquake of this foundation, with the abutment surface to form a high gradually inclined surface outside, several of the received basic A conical protrusion is provided at a location, a braking area of a predetermined diameter is provided around the protrusion, a sliding area is provided outside the braking area, and the braking area has a surface inclination angle larger than that of the sliding area and is buffered. When the upper sliding plate slides, a gentle slope is provided on the receiving base. To, avoid seismic sliding foundation apparatus according to claim 1, characterized in that the foundation has set up a braking apparatus that produce and movement resistance force.
JP2010073215A 2009-03-27 2010-03-26 Seismic sliding base construction method and equipment Expired - Fee Related JP4826986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073215A JP4826986B2 (en) 2009-03-27 2010-03-26 Seismic sliding base construction method and equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009079936 2009-03-27
JP2009079936 2009-03-27
JP2010073215A JP4826986B2 (en) 2009-03-27 2010-03-26 Seismic sliding base construction method and equipment

Publications (2)

Publication Number Publication Date
JP2010248894A JP2010248894A (en) 2010-11-04
JP4826986B2 true JP4826986B2 (en) 2011-11-30

Family

ID=43311515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073215A Expired - Fee Related JP4826986B2 (en) 2009-03-27 2010-03-26 Seismic sliding base construction method and equipment

Country Status (1)

Country Link
JP (1) JP4826986B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889027B2 (en) * 2012-02-13 2016-03-22 大成建設株式会社 Evacuation road
CN108867969A (en) * 2018-07-24 2018-11-23 南京慢城光电科技有限公司 Dome installation foundation pedestal
CN113722799B (en) * 2021-09-01 2024-02-27 中交第一航务工程勘察设计院有限公司 Line load calculation method for applying liquefied soil layer of seismic field to pile foundation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392244A (en) * 1989-08-31 1991-04-17 Suzuki Motor Corp Tool holder
JP2762128B2 (en) * 1989-09-22 1998-06-04 本田技研工業株式会社 Case reed valve type engine
JPH04111810A (en) * 1990-08-30 1992-04-13 Shimizu Corp Underwater earthquake-isolating method and structure
JPH10219842A (en) * 1997-01-31 1998-08-18 Fujikura Ltd Base isolation device for structure
JP2000257080A (en) * 1999-03-08 2000-09-19 Hazama Gumi Ltd Base isolation structure
JP4874478B2 (en) * 2001-09-19 2012-02-15 積水化学工業株式会社 Seismic isolated building and its construction method
JP2003129692A (en) * 2001-10-23 2003-05-08 Sekisui Chem Co Ltd Base isolating device
JP4220463B2 (en) * 2004-12-28 2009-02-04 キタムラ機械株式会社 Sliding block

Also Published As

Publication number Publication date
JP2010248894A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US5444950A (en) Drainage sysatem for building foundations
US20020139068A1 (en) Wall and sub-floor water drain barrier panel for basement water-control systems
US4336674A (en) Underground structure for residential and business use
US20100183374A1 (en) Flood/wind resistant building
US20120047822A1 (en) Earthquake force absorption system
US20130199113A1 (en) Floatable Constructions
JP4785098B2 (en) Underground heat exchanger buried structure
JP4826986B2 (en) Seismic sliding base construction method and equipment
CN105421477A (en) Construction method for tower crane foundation
CN206233272U (en) A kind of anti-floating of underground building structure
JP2010151351A (en) Underground heat exchanger burying structure
JP4957955B2 (en) Seismic Isolated Building Construction Act
RU2410511C2 (en) House that floats during flood
Potty et al. Assessment of buildings for seismic resistance
JP2013155559A (en) Liquefaction damage reducing structure for construction
RU2440464C1 (en) Anti-heaving foundation of building with basement
JP3407728B2 (en) Seismic reinforcement structure of existing structures
JP3234191U (en) Houses and other buildings that do not surface and flood
JP2009013696A (en) Seismic strengthening method for existing apartment house
RU2206665C1 (en) Spatial foundation platform
JP3319629B2 (en) Underground structure with water storage tank
JP6538551B2 (en) Disaster prevention shelter and construction method of the disaster prevention shelter
JP3069834B2 (en) Basement
RU199103U1 (en) Construction of a foundation slab of honeycomb structures consisting of galvanized profiled sheets and monolithic reinforced concrete floors with natural ventilation in regions with permafrost and subsidence soils
JP3111620U (en) Seismic isolation structure

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees