JP4824937B2 - Arrangement method of electrical wiring pair or electrode pair - Google Patents

Arrangement method of electrical wiring pair or electrode pair Download PDF

Info

Publication number
JP4824937B2
JP4824937B2 JP2005071459A JP2005071459A JP4824937B2 JP 4824937 B2 JP4824937 B2 JP 4824937B2 JP 2005071459 A JP2005071459 A JP 2005071459A JP 2005071459 A JP2005071459 A JP 2005071459A JP 4824937 B2 JP4824937 B2 JP 4824937B2
Authority
JP
Japan
Prior art keywords
copper
electrode
electrodes
anode
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005071459A
Other languages
Japanese (ja)
Other versions
JP2006253586A (en
Inventor
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005071459A priority Critical patent/JP4824937B2/en
Publication of JP2006253586A publication Critical patent/JP2006253586A/en
Application granted granted Critical
Publication of JP4824937B2 publication Critical patent/JP4824937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、電気配線対あるいは電極対の配置方法に関し、詳細には、直流用の電気配線対あるいは電極対において電流リークによる配線劣化を抑制する電気配線対あるいは電極対の配置方法に関するものである。   The present invention relates to a method for arranging an electric wiring pair or an electrode pair, and more particularly to a method for arranging an electric wiring pair or an electrode pair for suppressing deterioration of wiring due to current leakage in a DC electric wiring pair or electrode pair. .

電子機器、電子部品などには電流を目的の機器に流すために多くの電気配線が使用されており、配線材料として高い電気導電率や熱伝導率を有する銅合金が一般的に利用されている。そして、これらの配線が樹脂やセラミックなどの被覆をされることなく使われることがある。例えば、民生用コンセントの受け刃部分やプラグ、各種電気製品の電線と電線をつなぐ電極、車載の金属導体接続片、あるいは電子機器用プリント基板などがその代表例である。このように配線用金属が空気中に露出する部分では、空気中の水分が配線に結露するなどして配線用金属の劣化を引き起こすことがある。特に、配線と配線が隣接し、なおかつ、配線間に加わる電位差が高い場合には配線間に電流リークが生じ、やがては絶縁破壊などの深刻な劣化をひきおこすことになる。これは電子機器や電気機器の正常な動作を妨げるだけでなく、やがては発熱による火災をも引き起こすこともある。   Many electrical wirings are used for electronic devices, electronic parts, etc. in order to flow current to the target device, and copper alloys having high electrical conductivity and thermal conductivity are generally used as wiring materials. . These wirings may be used without being coated with a resin or ceramic. Typical examples include consumer blade receptacles and plugs, electrodes of various electrical products, electrodes for connecting electric wires, in-vehicle metal conductor connection pieces, printed boards for electronic devices, and the like. As described above, in the portion where the wiring metal is exposed to the air, moisture in the air may be condensed on the wiring and the wiring metal may be deteriorated. In particular, when the wirings are adjacent to each other and the potential difference applied between the wirings is high, current leakage occurs between the wirings, which eventually causes serious deterioration such as dielectric breakdown. This not only interferes with the normal operation of electronic and electrical equipment, but may eventually cause a fire due to heat generation.

従来から、このような電流リークを抑制する方法は配線間の間隔を十分開けることが効果的であることはわかっているが、近年の電子機器や電気回路の小型化、高集積化に伴なって配線間の間隔は短くなる一方である。   Conventionally, it has been known that such a method for suppressing current leakage is effective in sufficiently spacing between wirings. However, with recent downsizing and higher integration of electronic devices and electric circuits. As a result, the distance between wirings is becoming shorter.

また、配線表面を空気に触れないように樹脂やセラミックで覆うことも有効な手段である。例えば、プリント配線などでは、特開平6−13749号公報(特許文献1)に、銅箔の表面にニッケル、モリブデン、コバルトからなる三元合金被覆層を形成して、電流リークにつながるマイグレーション耐性を向上させる方法が開示されている。もっとも、これらの手段はコストがかさむうえに、隙間やピンホールが発生して、やがては電流リークが発生してしまうこともある。また、電気導電体接続片や電極などでは、配線を形成した後に電線やコネクタなどを接続したり、あるいは電極に電線やコネクタを何度も付け替えることが必要であるためその場合は配線の上を被覆することはできない。したがって、電気導電体接続片や電極を被覆することなく、耐電流リーク性を向上させることが望まれる。
特開平6−13749号公報
It is also an effective means to cover the wiring surface with resin or ceramic so as not to come into contact with air. For example, in printed wiring, Japanese Patent Application Laid-Open No. 6-13749 (Patent Document 1) forms a ternary alloy coating layer made of nickel, molybdenum, and cobalt on the surface of a copper foil to provide migration resistance that leads to current leakage. A method for improving is disclosed. However, these means are costly, and gaps and pinholes may occur, and current leakage may eventually occur. Also, for electrical conductor connection pieces and electrodes, it is necessary to connect wires and connectors after forming the wires, or to change the wires and connectors to the electrodes many times. It cannot be coated. Therefore, it is desired to improve the current leakage resistance without covering the electrical conductor connecting pieces and the electrodes.
JP-A-6-13749

本発明は、上記の事情を基になしたものであって、その目的は、表面被覆などの処理を施すことなく耐電流リーク性にすぐれる電気配線対あるいは電極対の配置方法を提供しようとするものである。   The present invention is based on the above circumstances, and an object of the present invention is to provide a method for arranging an electric wiring pair or an electrode pair having excellent current leakage resistance without performing a surface coating or the like. To do.

上記の目的を達成するために、本発明(請求項1)に係る電気配線対あるいは電極対の配置方法は、電気配線間あるいは電極間の電圧差(Vh)が2V以上800V以下の範囲で使用される電気配線対あるいは電極対の配置方法であって、前記電気配線対あるいは電極対における電圧が高いほうの配線あるいは電極がAlを75質量%(以下単に%と記す)以上含有するアルミニウム基合金からなり、電圧が低いほうの配線あるいは電極が銅を95%以上含有する銅基合金からなり、前記アルミニウム基合金には銅、マンガン、マグネシウム、亜鉛、チタンが5%以下、シリコンが15%以下添加され、前記銅基合金には錫、鉄、クロム、ニッケル、マグネシウム、シリコン、ジルコニウム、チタンが5%以下添加され、且つ、電気配線間あるいは電極間の間隔(H:mm)と電圧差(Vh:V)との関係が次式:0.05Vh+19>H>0.0016Vh+0.01を満たす範囲内とするものである。 In order to achieve the above object, the electrical wiring pair or electrode pair arranging method according to the present invention (Claim 1) is used in the range where the voltage difference (Vh) between the electrical wirings or between the electrodes is 2V or more and 800V or less. An aluminum-based alloy in which the wiring or electrode having a higher voltage in the electrical wiring pair or electrode pair contains 75 mass% (hereinafter simply referred to as%) of Al or more. The lower voltage wiring or electrode is made of a copper-based alloy containing 95% or more of copper, and the aluminum-based alloy includes copper, manganese, magnesium, zinc, titanium of 5% or less, and silicon of 15% or less. is added, the said copper base alloy of tin, iron, chromium, nickel, magnesium, silicon, zirconium, is added titanium than 5%, and, among the electric wiring Oh There is the spacing between the electrodes (H: mm) and the voltage difference (Vh: V) relationship with the following formula: 0.05Vh + 19> are those in a range that satisfies H> 0.0016Vh + 0.01.

本発明に係る電気配線対あるいは電極対の配置方法によれば、隣接する直流配線および電極においてリーク電流を抑制することができ、表面被覆などの処理を施すことなく耐電流リーク性を向上させることができる。   According to the arrangement method of the electrical wiring pair or the electrode pair according to the present invention, the leakage current can be suppressed in the adjacent DC wiring and the electrode, and the current leakage resistance can be improved without performing the surface coating or the like. Can do.

本発明者は、上記の従来技術における課題を見出した後、この課題を解決するため調査、研究を行ってきた。以下、その調査、研究を踏まえ本発明について詳細を説明する。まず、純銅で構成される隣接する電気配線に対して、異なる電位を加えて電流リークが発生する条件を調査した。その結果、配線の高電位側からの銅の溶出が電流リークを促進する原因であることがわかった。なお、この調査は、図1に示すように構成してリーク電流を測定した。すなわち、陽極1と陰極2のそれぞれの電極に電線3を取付け、その電極を所望間隔Hを保持するようにMCナイロン(登録商標)板4の上に配置して試験部材5とし、この試験部材5の電線3に電源6、電流計7を接続してリーク電流を測定した。   The present inventor has conducted research and research in order to solve this problem after finding out the problem in the above-described prior art. Hereinafter, the present invention will be described in detail based on the investigation and research. First, the conditions under which current leakage occurs by applying different potentials to adjacent electrical wirings made of pure copper were investigated. As a result, it was found that elution of copper from the high potential side of the wiring was the cause of promoting current leakage. This investigation was configured as shown in FIG. 1 and the leakage current was measured. That is, the electric wires 3 are attached to the respective electrodes of the anode 1 and the cathode 2, and the electrodes are arranged on the MC nylon (registered trademark) plate 4 so as to maintain a desired distance H, thereby forming the test member 5. A power source 6 and an ammeter 7 were connected to the electric wire 3 of 5, and the leakage current was measured.

例えば、厚さ1mmのタフピッチ銅電極2枚に電線を取付け、電極の間隔Hを1.5mmに保持するようにMCナイロン(登録商標)基板上に設置する。さらに、電極間に電気伝導率10μS/cmのイオン交換水10μlを滴下して、電極間に直流50Vを印加する。この場合、数分以内に電極間に1mA以上の電流リークが発生する。電圧の低い側(陰極)から黒色の樹枝上物質(デンドライト)が成長して電極間を短絡するようになる。やがて電極間の水分はジュール熱で蒸発して枯渇する。さらに、黒色物質は酸化第二銅(CuO)や酸化第一銅(CuO)であり、これらの銅酸化物は半導体特性を有しているため、水分が蒸発後も電極間には数〜数十μA程度の電流リークが生じるようになる。このような現象を繰り返すとやがては顕著な水分の付着がなくても電極間の絶縁抵抗が低下して常時数mA以上の電流リークが生じるようになる。このように、電極からの銅の溶出と銅酸化物生成がリーク促進の大きな原因である。 For example, electric wires are attached to two tough pitch copper electrodes having a thickness of 1 mm, and are placed on an MC nylon (registered trademark) substrate so that the distance H between the electrodes is maintained at 1.5 mm. Further, 10 μl of ion exchange water having an electric conductivity of 10 μS / cm is dropped between the electrodes, and a direct current of 50 V is applied between the electrodes. In this case, a current leakage of 1 mA or more occurs between the electrodes within several minutes. Black dendritic material grows from the low voltage side (cathode) and short-circuits between the electrodes. Eventually, the moisture between the electrodes evaporates due to Joule heat and is depleted. Further, the black material is cupric oxide (CuO) or cuprous oxide (Cu 2 O), and these copper oxides have semiconductor characteristics. A current leak of about tens of μA occurs. When such a phenomenon is repeated, the insulation resistance between the electrodes decreases and current leakage of several mA or more always occurs even if there is no noticeable moisture adhesion. Thus, elution of copper from the electrode and copper oxide generation are major causes of leakage promotion.

つぎに、陽極を銅電極、陰極をカーボン電極にした実験を行なった。その結果、陰極からのデンドライトの成長が認められ、水分蒸発後の電流リークも認められた。逆に、陽極をカーボン電極に、陰極を銅電極にした場合、陰極側からのデンドライト成長はおこらず、顕著な電流リークも認められなかった。このことから陽極からの銅の溶出が電流リークを促進していることは明らかである。   Next, an experiment was conducted in which the anode was a copper electrode and the cathode was a carbon electrode. As a result, dendrite growth from the cathode was observed, and current leakage after water evaporation was also observed. Conversely, when the anode was a carbon electrode and the cathode was a copper electrode, dendrite growth from the cathode side did not occur and no significant current leakage was observed. From this, it is clear that elution of copper from the anode promotes current leakage.

デンドライトの成長は陽極から溶出した銅の陰極への移行、すなわちイオンマイグレーション現象であり、特に銀や鉛を陽極に使った場合に顕著であり、金や錫においても多少発生する。各種金属を用いてのデンドライト成長現象を調査した実験では、銀では銅に比べて非常に激しいイオンマイグレーション現象が生じ、一方、金や錫、ニッケルにおいてもイオンマイグレーションが確認できるものの銅よりははるかに穏やかな現象である。また、アルミニウム、チタンにおいてはほとんど観察されなかった。   Dendritic growth is a migration of copper eluted from the anode to the cathode, that is, an ion migration phenomenon, which is particularly noticeable when silver or lead is used for the anode, and also occurs somewhat in gold and tin. In an experiment investigating the dendrite growth phenomenon using various metals, the ion migration phenomenon is much more intense in silver than in copper, while the ion migration can be confirmed in gold, tin, and nickel. It is a calm phenomenon. Further, it was hardly observed in aluminum and titanium.

さて、上述のように、アルミニウムやチタンを電極として用いれば銅電極や銀電極のような激しいデンドライト成長を伴う電流リークが生じないことがわかったが、アルミニウムやチタンを実際に電極として用いるためにはいくつかの制約がある。   Now, as described above, it has been found that if aluminum or titanium is used as an electrode, current leakage with intense dendrite growth like a copper electrode or a silver electrode does not occur, but in order to actually use aluminum or titanium as an electrode. Has some limitations.

すなわち、電気回路や電子回路の配線には電流を流すという目的があり、そのためには金属の電気抵抗が低いことが必須である。電気抵抗が低い金属は、銀、銅、金、アルミニウムであり、それぞれ電気抵抗率は1.6×10−6Ωcm、1.7×10−6Ωcm、2.3×10−6Ωcm、2.7×10−6Ωcmである。チタンの電気抵抗率は55×10−6Ωcmである。配線の電気抵抗率が高いと配線部分で電力を消費して配線での発熱を引き起こすので、省電力、機器の発熱防止の観点から配線の電気抵抗が低い銅や銀が好ましい。さらに、配線で発熱した熱を逃がすという観点から配線金属の熱伝導性が高いほうがよい。熱伝導率が高い金属は銀、銅、金、アルミニウムであり、それぞれ429W/mK、401W/mK、317W/mK、237W/mKである。チタンは21.9W/mKである。このように、回路全体の電気抵抗を低下させ、なおかつ熱伝導性を維持するという目的を兼ね備えて配線材料を構成するためには銀や銅を使うことが望ましい。 In other words, there is a purpose of passing a current through the wiring of an electric circuit or an electronic circuit. For that purpose, it is essential that the electric resistance of the metal is low. The metals having low electrical resistance are silver, copper, gold, and aluminum, and the electrical resistivity is 1.6 × 10 −6 Ωcm, 1.7 × 10 −6 Ωcm, 2.3 × 10 −6 Ωcm, 2 0.7 × 10 −6 Ωcm. The electrical resistivity of titanium is 55 × 10 −6 Ωcm. If the electrical resistivity of the wiring is high, power is consumed in the wiring portion to cause heat generation in the wiring. Therefore, copper or silver having low electrical resistance of the wiring is preferable from the viewpoint of power saving and prevention of heat generation of the device. Furthermore, it is better that the thermal conductivity of the wiring metal is higher from the viewpoint of releasing the heat generated by the wiring. Metals having high thermal conductivity are silver, copper, gold, and aluminum, which are 429 W / mK, 401 W / mK, 317 W / mK, and 237 W / mK, respectively. Titanium is 21.9 W / mK. Thus, it is desirable to use silver or copper in order to configure the wiring material with the purpose of reducing the electrical resistance of the entire circuit and maintaining the thermal conductivity.

しかし、配線や電極が隣接していて、かつ隣接した配線や電極間に高い電位差が発生し、かつ、空気中に露出している部分に配線あるいは電極を形成する場合には、銀や銅電極では空気中の水分の付着が促進要因となってマイグレーションによるデンドライト成長や電流リークが生じやすい。   However, when wiring or electrodes are adjacent to each other and a high potential difference is generated between the adjacent wirings or electrodes and the wirings or electrodes are formed in portions exposed to the air, a silver or copper electrode Then, adhesion of moisture in the air is an acceleration factor, and dendrite growth and current leakage are likely to occur due to migration.

このように、導電性と熱伝導性、リーク性を両立させるのは難しい。そこで、マイグレーションによるデンドライトの成長を抑制して電流リークを低減し、なおかつ回路全体の電気抵抗を低下させて熱伝導性を維持するには、配線あるいは電極の高電位部分にのみアルミニウム基合金を使い、低電位部分は、特に限定するものではないが、銅基合金あるいは金を使うことがよいと考えられる。   Thus, it is difficult to achieve both conductivity, thermal conductivity, and leakage. Therefore, to suppress dendrite growth due to migration, reduce current leakage, and lower the electrical resistance of the entire circuit and maintain thermal conductivity, aluminum-based alloys are used only in the high-potential portion of the wiring or electrode. The low potential portion is not particularly limited, but it is considered preferable to use a copper-based alloy or gold.

また、一般に、銅には優れたばね特性があるので、電極としてばね特性が求められる材料には銅あるいは銅合金が最適であるが、アルミニウムにはばね特性がないためこのような用途にはアルミニウム単独で電極として使うことは難しい。そこで、電極として使う場合、デンドライト抑制の観点から陽極には固定式のアルミニウム電極を、陰極にはばね特性を有した銅電極を使うことも有効であると考えられる。   In general, copper has excellent spring characteristics, so copper or copper alloy is the best material for which spring characteristics are required as an electrode. However, aluminum does not have spring characteristics, so aluminum alone is not suitable for such applications. It is difficult to use as an electrode. Therefore, when used as an electrode, it is considered effective to use a fixed aluminum electrode for the anode and a copper electrode having spring characteristics for the cathode from the viewpoint of dendrite suppression.

ところで、配線や電極にアルミニウムを使用した場合、電極間に結露水などの純水に近い水分とは異なって、酸性度の高い酸性水などが付着した場合アルミニウムの溶出が懸念される。しかし、この場合も、水分が付着しているときのアルミニウム成分溶出は避けられないものの水分が乾燥したあとは絶縁性のアルミナが残るので、水分が乾燥した後の電流リークは起こらない。銅基合金の場合、半導体性のCuOあるいはCuOが水分乾燥後も電極間に残るため、水分乾燥後の電流リークが発生して、これが問題となる。この意味からも陽極にアルミニウム基合金を使うことは有効である。 By the way, when aluminum is used for the wiring and the electrodes, unlike the water close to pure water such as condensed water between the electrodes, there is a concern about the elution of aluminum when highly acidic water is attached. However, in this case as well, elution of the aluminum component when moisture is attached is inevitable, but since the insulating alumina remains after the moisture is dried, current leakage does not occur after the moisture is dried. In the case of a copper-based alloy, semiconducting Cu 2 O or CuO remains between the electrodes even after moisture drying, causing current leakage after moisture drying, which is a problem. From this point of view, it is effective to use an aluminum-based alloy for the anode.

なお、特に導電性や熱伝導性あるいはばね特性が問題とならない場合には、陰極にもアルミニウム基合金を使うこともできる。   It should be noted that an aluminum-based alloy can also be used for the cathode when conductivity, thermal conductivity, or spring characteristics are not a problem.

さて、上述したように、本発明では陽極にアルミ基合金材を用いることが肝要となるが、陽極と陰極間の電流リーク量は配線や電極間に加わる電圧差や、配線間隔あるいは電極間隔の長さに依存して異なってくると考えられる。そこで、どのような電圧差あるいは配線(電極)間隔であれば配線(電極)として有効に機能するかを陽極にアルミ基合金電極、陰極に銅基合金電極を用いた場合を例に調査した。   As described above, in the present invention, it is important to use an aluminum-based alloy material for the anode. However, the amount of current leakage between the anode and the cathode is the voltage difference applied between the wiring and the electrode, the wiring spacing or the electrode spacing. It will be different depending on the length. Therefore, the case of using an aluminum-based alloy electrode as the anode and a copper-based alloy electrode as the cathode was investigated as an example to determine what voltage difference or wiring (electrode) interval would function effectively as the wiring (electrode).

その結果、隣接する配線間あるいは電極間の電位差が2V以上800V以下の範囲であって、かつ、電圧が高いほうの配線材料あるいは電極(陽極)がアルミ基合金であれば、電圧が低いほうの配線材料あるいは電極(陰極)との間隔Hが次式:0.05Vh+19>H>0.0016Vh+0.01を満たす範囲内である場合にリークを抑制するのに有効であることを実験的に確認した。   As a result, if the potential difference between adjacent wires or electrodes is in the range of 2V to 800V and the higher voltage wiring material or electrode (anode) is an aluminum-based alloy, the lower voltage It has been experimentally confirmed that it is effective for suppressing leakage when the distance H between the wiring material and the electrode (cathode) is within a range satisfying the following formula: 0.05Vh + 19> H> 0.0016Vh + 0.01. .

すなわち、電圧が2V未満では両極とも銅電極を用いた場合でも顕著なデンドライト成長や水分蒸発後の電流リークは発生しない。水の電気分解に必要な電圧が1.4Vであり、その程度以下の電圧では水中に水素イオンが生成せず銅の陽極からの溶出を顕著には促進しない。つまり、デンドライト成長を伴う電流リーク現象は2V以上の電圧印加で発生する。また、電圧が2V以上になると銅電極ではデンドライト成長が確認され、陽極をアルミニウム配線(電極)にすると抑制される。   That is, when the voltage is less than 2 V, no significant dendrite growth or current leakage after water evaporation occurs even when copper electrodes are used for both electrodes. The voltage required for the electrolysis of water is 1.4 V, and at a voltage below that level, hydrogen ions are not generated in the water and the elution from the copper anode is not significantly promoted. That is, the current leak phenomenon accompanied by dendrite growth occurs when a voltage of 2 V or more is applied. Further, when the voltage is 2 V or more, dendrite growth is confirmed on the copper electrode, and is suppressed when the anode is made of aluminum wiring (electrode).

また、電極間隔Hがあまりにも短い場合には水分蒸発時に電極間にアークが発生することがあり、電極の破損や基板樹脂の溶損が生じるためあまり電極間隔が短い場合は陽極にアルミニウムをつかっても効果はない。特に800V以上では十分に電極間隔Hを保たないとアークが飛んで危険である。電極間隔が十分長い場合には、リークは生じにくくなり陽極に銅電極を用いてもリークは生じにくくなるので、陽極をアルミニウム電極にする必要性は低下する。そこで、陽極を銅基合金に代えてアルミ基合金を使うことによって電流リーク抑制に効果がある電極間隔を評価した。配線間あるいは電極間の電位差をVhとし、配線あるいは電極間隔をH(図1参照)とすると、この間隔Hが次式:0.05Vh+19>H>0.0016Vh+0.01を満たす範囲内であれば陽極をアルミニウムにすることが有効である。つまり、電極間隔が短い場合はアークが飛んで効果がないことを示し、距離が長い場合は電極をアルミニウムにする効果が少ないことを示している。   Also, if the electrode spacing H is too short, an arc may occur between the electrodes when the moisture evaporates, causing electrode breakage or substrate resin melting. If the electrode spacing is too short, use aluminum for the anode. But it has no effect. In particular, when the voltage is 800 V or more, an arc may fly if the electrode spacing H is not sufficiently maintained. When the electrode interval is sufficiently long, leakage hardly occurs, and even if a copper electrode is used for the anode, the leakage is hardly generated, so that the necessity of using the anode as an aluminum electrode is reduced. Therefore, an electrode interval effective for suppressing current leakage was evaluated by using an aluminum-based alloy instead of a copper-based alloy for the anode. If the potential difference between the wirings or between the electrodes is Vh and the wiring or electrode spacing is H (see FIG. 1), this spacing H is within a range satisfying the following formula: 0.05Vh + 19> H> 0.0016Vh + 0.01. It is effective to use aluminum for the anode. That is, when the electrode interval is short, it indicates that the arc is blown and there is no effect, and when the distance is long, the effect of making the electrode aluminum is small.

電極として使うことができる陽極用材料はアルミニウム基合金であり、電気抵抗率が極端に下がらない程度に添加物を加えることができる。このとき、銀や鉛は水分存在下の電圧印加でアルミニウム合金から溶出しやすいため使わないことが望ましい。また、銅、マンガン、マグネシウム、亜鉛、チタンは5%以下、シリコンは15%以下の添加であれば陽極用材料として問題なく使用できる。   The anode material that can be used as an electrode is an aluminum-based alloy, and additives can be added to such an extent that the electrical resistivity does not extremely decrease. At this time, it is desirable not to use silver or lead because they are easily eluted from the aluminum alloy when a voltage is applied in the presence of moisture. Further, copper, manganese, magnesium, zinc and titanium can be used as a material for an anode without any problem if added at 5% or less and silicon at 15% or less.

また、陰極用材料としては、特に限定するものではないが、銅基合金を用いることができ、この場合、導電率があまり下がると配線として銅を使うメリットが減少するため、一般的に銅に添加する錫、鉄、クロム、ニッケル、マグネシウム、シリコン、ジルコニウム、チタンを5%以下添加したものが好ましい。黄銅、あるいは真鍮として知られるCu−Zn合金は、通常30〜40%Znを含有しており、極めてアークが発生しやすくなっているため、20V以上の電圧印加状態で使うことは望ましくないが、アークが発生しにくい条件、例えば電極間隔を10mm以上に設定する場合には600Vあるいは800Vで使っても特に問題がない。   In addition, the cathode material is not particularly limited, but a copper-based alloy can be used. In this case, if the conductivity is lowered too much, the merit of using copper as a wiring is reduced. What added 5% or less of tin, iron, chromium, nickel, magnesium, a silicon | silicone, a zirconium, and titanium to add is preferable. A Cu-Zn alloy known as brass or brass usually contains 30 to 40% Zn and is very easy to generate an arc, so it is not desirable to use it in a voltage applied state of 20 V or more. There is no particular problem even if it is used at 600V or 800V under conditions where arcing is difficult to occur, for example, when the electrode spacing is set to 10 mm or more.

以下、本発明の実施例及び比較例について説明する。なお、実施例及び比較例は、図1のように構成してリーク電流を測定した。また、比較例6と実施例4を除く例の銅試験片はタフピッチ銅を用い、実施例4と比較例10を除く例のアルミニウム試験片はJIS1000系のアルミニウム合金(合金番号1100)を用いた。   Examples of the present invention and comparative examples will be described below. The examples and comparative examples were configured as shown in FIG. 1 and the leakage current was measured. Moreover, the copper test piece of the example except the comparative example 6 and Example 4 used tough pitch copper, and the aluminum test piece of the example except Example 4 and the comparative example 10 used JIS1000 series aluminum alloy (alloy number 1100). .

実施例1
厚さ1mmのアルミニウム試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔が1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、直流電源装置(高砂製作所製)を用いて両極間に50Vの直流電圧を印加した。電極間にかかる電圧及び配線に流れる電流をテスター(HIOKI製)で測定した。その結果、30分の試験時間中デンドライトの成長や0.1mA以上の電流リークは観察できなかった。水分の蒸発もおこらず、30分間電極間に水分が滞留したままの状態を保った。
Example 1
After an aluminum test piece having a thickness of 1 mm is used as an anode and a copper test piece having a thickness of 1 mm is used as a cathode, the distance between the anode and the cathode is adjusted to be 1.5 mm on an MC nylon (registered trademark) plate. After adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 50 V was applied between both electrodes using a DC power supply (manufactured by Takasago Seisakusho). The voltage applied between the electrodes and the current flowing through the wiring were measured with a tester (manufactured by HIOKI). As a result, dendrite growth and current leakage of 0.1 mA or more could not be observed during the test time of 30 minutes. Water did not evaporate and the state where water remained between the electrodes for 30 minutes was maintained.

比較例1
厚さ1mmの銅試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に50Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧印加後から電流がリークしはじめ、黒色のデンドライトが成長するとともにリーク電流が増加した。やがて、水分が蒸発してリーク電流が減少していった。最大リーク電流は25mAであり、最大の電流リークまでの通電時間は100秒であった。このような現象となった理由は、陽極を銅としたためと考える。
Comparative Example 1
A 1 mm thick copper test piece was used as an anode, and a 1 mm thick copper test piece was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Then, after adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 50 V is applied between both electrodes in the same manner as in Example 1, and the voltage applied between the electrodes and the current flowing through the wiring are Measured with a tester. As a result, current began to leak after voltage application, and black dendrite grew and the leakage current increased. Eventually, the water evaporated and the leakage current decreased. The maximum leakage current was 25 mA, and the energization time until the maximum current leakage was 100 seconds. The reason for this phenomenon is that the anode is made of copper.

比較例2
厚さ1mmの銀試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に50Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧印加後22秒後に、50mAのリーク電流が流れ、やがて水分が蒸発した。このような現象となった理由は、陽極を銀としたためと考える。
Comparative Example 2
A silver test piece having a thickness of 1 mm was used as an anode and a copper test piece having a thickness of 1 mm was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Then, after adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 50 V is applied between both electrodes in the same manner as in Example 1, and the voltage applied between the electrodes and the current flowing through the wiring are Measured with a tester. As a result, a leak current of 50 mA flowed 22 seconds after the voltage application, and eventually the water evaporated. The reason for this phenomenon is that the anode is made of silver.

比較例3
厚さ1mmの銅試験片を陽極とし、厚さ1mmのアルミニウム試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に50Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧印加後180秒後に、26mAのリーク電流が流れやがて、水分が蒸発した。このような現象となった理由は、陽極を銅としたためと考える。
Comparative Example 3
A 1 mm-thick copper test piece was used as the anode, and a 1 mm-thick aluminum test piece was used as the cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Then, after adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 50 V is applied between both electrodes in the same manner as in Example 1, and the voltage applied between the electrodes and the current flowing through the wiring are Measured with a tester. As a result, a leakage current of 26 mA flowed 180 seconds after the voltage application, and the water evaporated. The reason for this phenomenon is that the anode is made of copper.

比較例4
厚さ1mmの銅試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に600Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧を加えるとリーク電流が28秒後に最大48mAとなり、その後水分が蒸発してリーク電流が低下するとともに水分がなくなった。このような現象となった理由は、陽極を銅とし、さらに両極間の電圧を600Vと高めたためと考える。
Comparative Example 4
A 1 mm thick copper test piece was used as an anode, and a 1 mm thick copper test piece was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Thereafter, 10 μl of ion exchange water having a conductivity of 10 μS / cm is added between the electrodes, and then a DC voltage of 600 V is applied between the two electrodes in the same manner as in Example 1 above. Measured with a tester. As a result, when a voltage was applied, the leak current reached a maximum of 48 mA after 28 seconds, and then the water evaporated, the leak current decreased and the water disappeared. The reason for this phenomenon is considered to be that the anode was made of copper and the voltage between both electrodes was further increased to 600V.

実施例2
厚さ1mmのアルミニウム試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に600Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、通電開始後、リーク電流が流れ15秒後に最大リーク電流は3mA流れたが、30秒後にリーク電流は0.1mA以下となり、水分の蒸発もおこらず、その後30分間電極間に水分が滞留したままの状態をたもった。このような現象となった理由は、電圧が600Vと高いために通電直後に水分の分極にともなう若干の電流が流れたものの、陽極がアルミニウムでありリーク電流の増加が認められず電極からの金属溶出が抑えられたためであると考える。
Example 2
An aluminum test piece with a thickness of 1 mm was used as an anode, and a copper test piece with a thickness of 1 mm was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Thereafter, 10 μl of ion exchange water having a conductivity of 10 μS / cm is added between the electrodes, and then a DC voltage of 600 V is applied between the two electrodes in the same manner as in Example 1 above. Measured with a tester. As a result, after the energization started, the leakage current flowed, and the maximum leakage current flowed 3 mA after 15 seconds. However, after 30 seconds, the leakage current became 0.1 mA or less, and the water did not evaporate. The state that stayed was kept. The reason for this phenomenon was that although the voltage was as high as 600 V, a slight current flowed due to moisture polarization immediately after energization, but the anode was made of aluminum and no increase in leakage current was observed. This is thought to be because elution was suppressed.

比較例5
厚さ1mmの銅試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.0mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に12Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧を加えるとリーク電流が480秒後に最大82mAとなり、その後水分が蒸発してリーク電流が低下するとともに水分がなくなった。このような現象となった理由は、比較例2と同様、陽極を銅としたためと考える。
Comparative Example 5
A 1 mm thick copper test piece was used as an anode and a 1 mm thick copper test piece was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.0 mm. Thereafter, 10 μl of ion exchange water having a conductivity of 10 μS / cm is added between the electrodes, and then a DC voltage of 12 V is applied between both electrodes in the same manner as in Example 1 above. Measured with a tester. As a result, when a voltage was applied, the leak current reached a maximum of 82 mA after 480 seconds, and then the moisture evaporated to reduce the leak current and remove the moisture. The reason for this phenomenon is thought to be that the anode was copper, as in Comparative Example 2.

実施例3
厚さ1mmのアルミニウム試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔が1.0mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に12Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、30分の試験時間中デンドライトの成長や0.1mA以上の電流リークは観察されなかった。
Example 3
After an aluminum test piece having a thickness of 1 mm is used as an anode and a copper test piece having a thickness of 1 mm is used as a cathode, the distance between the anode and the cathode is adjusted to 1.0 mm on an MC nylon (registered trademark) plate and installed. After adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 12 V is applied between both electrodes in the same manner as in Example 1 above, and the voltage applied between the electrodes and the current flowing through the wiring are tested. Measured with As a result, no dendrite growth or current leakage of 0.1 mA or more was observed during the test time of 30 minutes.

比較例6
真空蒸着法により、コーニング社製#1737ガラス上に純銅を厚さ1μm蒸着した。このとき、ステンレス製のメタルマスクを設置して陽極と陰極の間隔Hが0.15mmとなるようにして10mm角の電極形状を形成した。陽極と陰極の間に、導電率10μS/cmのイオン交換水を1μl添加したのち、上記実施例1と同要領で両極間に3Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧を加えるとリーク電流が960秒後に最大39mAとなり、その後水分が蒸発してリーク電流が低下するとともに水分がなくなった。このような現象となった理由は、比較例2や5と同様、陽極を銅としたためと考える。
Comparative Example 6
Pure copper was deposited to a thickness of 1 μm on Corning # 1737 glass by a vacuum deposition method. At this time, a stainless steel metal mask was installed to form a 10 mm square electrode shape so that the distance H between the anode and the cathode was 0.15 mm. After adding 1 μl of ion-exchanged water having a conductivity of 10 μS / cm between the anode and the cathode, a DC voltage of 3 V is applied between the two electrodes in the same manner as in Example 1, and the voltage flows between the electrodes and the wiring. The current was measured with a tester. As a result, when a voltage was applied, the leak current reached a maximum of 39 mA after 960 seconds, and then the moisture evaporated to reduce the leak current and remove the moisture. The reason for this phenomenon is thought to be that the anode was copper, as in Comparative Examples 2 and 5.

実施例4
真空蒸着装置よって、コーニング社製#0050ガラス上にステンレスマスクを用いて、陽極用として純アルミニウムを厚さ1μm、10mm角の形状で真空蒸着した。つづけて、陽極と陰極の間隔Hが0.15mmとなるようにあらたなメタルマスクを用いて陰極用として銅を厚さ1μm、10mm角の形状で蒸着した。この陽極と陰極の間に、導電率10μS/cmのイオン交換水を1μl添加したのち、上記実施例1と同要領で両極間に3Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、0.1mA以上のリーク電流は観察されなかった。
Example 4
Using a stainless steel mask on a Corning # 0050 glass, pure aluminum was vacuum-deposited in a shape of 1 μm thick and 10 mm square with a vacuum deposition apparatus. Subsequently, copper was deposited in a shape of 1 μm thick and 10 mm square using a new metal mask so that the distance H between the anode and the cathode was 0.15 mm. After adding 1 μl of ion-exchanged water having a conductivity of 10 μS / cm between the anode and the cathode, a DC voltage of 3 V is applied between both electrodes in the same manner as in Example 1 above, and the voltage and wiring applied between the electrodes are applied. The flowing current was measured with a tester. As a result, a leakage current of 0.1 mA or more was not observed.

比較例7
厚さ1mmのアルミニウム試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に850Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧を加えると電極間にアークが発生し、リーク電流最大1A流れて、瞬時に水分が蒸発した。このような現象となった理由は、電圧が800V以上では、アーキングが発生しやすいため、陽極をアルミニウムにしても効果が少ないためである。
Comparative Example 7
An aluminum test piece with a thickness of 1 mm was used as an anode, and a copper test piece with a thickness of 1 mm was used as a cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 1.5 mm. Then, after adding 10 μl of ion exchange water having a conductivity of 10 μS / cm between the electrodes, a 850 V DC voltage was applied between both electrodes in the same manner as in Example 1 above, and the voltage applied between the electrodes and the current flowing through the wiring were Measured with a tester. As a result, when a voltage was applied, an arc was generated between the electrodes, a leakage current of 1 A maximum flowed, and moisture was instantly evaporated. The reason for this phenomenon is that arcing is likely to occur when the voltage is 800 V or higher, and even if the anode is made of aluminum, the effect is small.

比較例8
厚さ1mmのアルミニウム試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが0.9mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に600Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、電圧を加えると電極間にアークが発生し、最大1Aのリーク電流が流れて、瞬時に水分が蒸発した。このような現象となった理由は、電極間隔Hが0.0016Vh+0.01(=0.97mm)よりも短い場合には、アーキングが発生しやすいため、陽極をアルミニウムにしても効果が少ないためである。
Comparative Example 8
An aluminum test piece having a thickness of 1 mm was used as the anode, and a copper test piece having a thickness of 1 mm was used as the cathode, and the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 0.9 mm. Thereafter, 10 μl of ion exchange water having a conductivity of 10 μS / cm is added between the electrodes, and then a DC voltage of 600 V is applied between the two electrodes in the same manner as in Example 1 above. Measured with a tester. As a result, when a voltage was applied, an arc was generated between the electrodes, a leak current of 1 A at maximum flowed, and moisture was instantly evaporated. The reason for this phenomenon is that when the electrode spacing H is shorter than 0.0016 Vh + 0.01 (= 0.97 mm), arcing is likely to occur, and even if the anode is made of aluminum, the effect is small. is there.

比較例9
厚さ1mmの銅試験片を陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが50mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に600Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、30分以上リーク電流は流れなかった。このような現象となった理由は、電極間隔Hが0.05Vh+19(=49mm)より長い場合には、陽極を銅にしてもリーク電流は流れず大きな問題はないためで、陽極をアルミニウムにする必要性が認められない。
Comparative Example 9
After the copper test piece having a thickness of 1 mm was used as an anode and the copper test piece having a thickness of 1 mm was used as a cathode, the MC was installed on an MC nylon (registered trademark) plate so that the distance H between the anode and the cathode was 50 mm. After adding 10 μl of ion-exchanged water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 600 V is applied between both electrodes in the same manner as in Example 1 above, and the voltage applied between the electrodes and the current flowing through the wiring are measured with a tester. It was measured. As a result, no leakage current flowed for 30 minutes or more. The reason for this phenomenon is that when the electrode interval H is longer than 0.05 Vh + 19 (= 49 mm), there is no significant problem even if the anode is made of copper and no leakage current flows, so the anode is made of aluminum. Necessity is not recognized.

実施例5
ボタン溶解炉でそれぞれ銅(Cu)を4%,マンガン(Mn)を1.2%,シリコン(Si)を12%,マグネシウム(Mg)を2%含むアルミニウム合金を4種類作成して厚さ1mmの試験片を作成して陽極とし、厚さ1mmの銅試験片を陰極として、MCナイロン(登録商標)板上に陽極と陰極の間隔Hが1.5mmとなるように調整して設置した後、電極間に導電率10μS/cmのイオン交換水を10μl添加したのち、上記実施例1と同要領で両極間に600Vの直流電圧を印加し、電極間にかかる電圧及び配線に流れる電流をテスターで測定した。その結果、30分以上リーク電流は流れなかった。このような現象となった理由は、上記実施例2と同じ理由による。
Example 5
Four types of aluminum alloys containing 4% copper (Cu), 1.2% manganese (Mn), 12% silicon (Si), and 2% magnesium (Mg) were prepared in a button melting furnace, and the thickness was 1mm. After preparing the test piece as an anode and using a copper test piece having a thickness of 1 mm as a cathode, and adjusting and installing on the MC nylon (registered trademark) plate so that the distance H between the anode and the cathode is 1.5 mm. After adding 10 μl of ion exchange water having a conductivity of 10 μS / cm between the electrodes, a DC voltage of 600 V was applied between both electrodes in the same manner as in Example 1 above, and the voltage applied between the electrodes and the current flowing through the wiring were measured. Measured with As a result, no leakage current flowed for 30 minutes or more. The reason for this phenomenon is the same as in Example 2 above.

耐電流リーク性を調べるために用いた試験装置の模式図である。It is a schematic diagram of the test apparatus used in order to investigate withstand current leak resistance.

符号の説明Explanation of symbols

1:陽極 2:陰極 3:電線
4:MCナイロン板 5:試験部材 6:電源
7:電流計(テスター) H:電極間の間隔
1: Anode 2: Cathode 3: Electric wire 4: MC nylon plate 5: Test member 6: Power supply 7: Ammeter (tester) H: Spacing between electrodes

Claims (1)

電気配線間あるいは電極間の電圧差(Vh)が2V以上800V以下の範囲で使用される電気配線対あるいは電極対の配置方法であって、前記電気配線対あるいは電極対における電圧が高いほうの配線あるいは電極がAlを75質量%(以下単に%と記す)以上含有するアルミニウム基合金からなり、電圧が低いほうの配線あるいは電極が銅を95%以上含有する銅基合金からなり、前記アルミニウム基合金には銅、マンガン、マグネシウム、亜鉛、チタンが5%以下、シリコンが15%以下添加され、前記銅基合金には錫、鉄、クロム、ニッケル、マグネシウム、シリコン、ジルコニウム、チタンが5%以下添加され、且つ、電気配線間あるいは電極間の間隔(H:mm)と電圧差(Vh:V)との関係が下記式を満たす範囲内であることを特徴とする電気配線対あるいは電極対の配置方法。
式:0.05Vh+19>H>0.0016Vh+0.01
An electrical wiring pair or electrode pair arrangement method used in a range where a voltage difference (Vh) between electrical wirings or between electrodes is 2 V or more and 800 V or less, wherein a wiring having a higher voltage in the electrical wiring pair or electrode pair. Alternatively, the electrode is made of an aluminum-based alloy containing 75% by mass or more of Al (hereinafter simply referred to as “%”), and the lower voltage wiring or electrode is made of a copper- based alloy containing 95% or more of copper. Copper, Manganese, Magnesium, Zinc and Titanium are added at 5% or less and Silicon is added at 15% or less. Tin, Iron, Chromium, Nickel, Magnesium, Silicon, Zirconium and Titanium are added to the copper base alloy at 5% or less. it is, and the spacing between between electrical wiring or an electrode (H: mm) and the voltage difference: that the relationship between (Vh V) is within a range satisfying the following formula Method of arranging the electric wire pair or electrode pair, wherein.
Formula: 0.05Vh + 19>H> 0.0016Vh + 0.01
JP2005071459A 2005-03-14 2005-03-14 Arrangement method of electrical wiring pair or electrode pair Expired - Fee Related JP4824937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071459A JP4824937B2 (en) 2005-03-14 2005-03-14 Arrangement method of electrical wiring pair or electrode pair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071459A JP4824937B2 (en) 2005-03-14 2005-03-14 Arrangement method of electrical wiring pair or electrode pair

Publications (2)

Publication Number Publication Date
JP2006253586A JP2006253586A (en) 2006-09-21
JP4824937B2 true JP4824937B2 (en) 2011-11-30

Family

ID=37093708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071459A Expired - Fee Related JP4824937B2 (en) 2005-03-14 2005-03-14 Arrangement method of electrical wiring pair or electrode pair

Country Status (1)

Country Link
JP (1) JP4824937B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511570A (en) * 1991-07-01 1993-01-22 Toshiba Corp Image forming device
JP3777856B2 (en) * 1998-11-20 2006-05-24 松下電器産業株式会社 Electronic components for surface mounting
JP3695307B2 (en) * 2000-10-25 2005-09-14 セイコーエプソン株式会社 Wiring board, display device, semiconductor chip and electronic device
JP3835333B2 (en) * 2002-04-04 2006-10-18 松下電器産業株式会社 Inspection method and inspection device for printed wiring board
JP4118202B2 (en) * 2002-10-21 2008-07-16 株式会社リコー Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006253586A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4600282B2 (en) Conductive paste
TWI362046B (en) Flat cable
Lee et al. Electrochemical migration characteristics of eutectic SnPb solder alloy in printed circuit board
TW200945376A (en) Plated flat conductor and flexible flat cable therewith
CN103081262A (en) Overvoltage protection component, and overvoltage protection material for overvoltage protection component
JP2014053551A (en) Ceramic electronic component
WO2013161125A1 (en) Plated terminal for connector
TW201250968A (en) Semiconductor device apply to copper plating process
JP2014170874A (en) Ceramic multilayer electronic component
Jung et al. Effect of ionization characteristics on electrochemical migration lifetimes of Sn-3.0 Ag-0.5 Cu solder in NaCl and Na 2 SO 4 solutions
JP5505142B2 (en) Fuse and manufacturing method thereof
JP4824937B2 (en) Arrangement method of electrical wiring pair or electrode pair
JP2010287844A (en) Power module
WO2015025347A1 (en) Electronic circuit board, semiconductor device using same, and manufacturing method for same
CN112423465B (en) Heat-conducting substrate
JP2005005054A (en) Conductive paste
Vu Silver migration–The mechanism and effects on thick-film conductors
JP2722401B2 (en) Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance
KR100913309B1 (en) Metal electric circuit
JP2003123541A (en) Bus bar
US10236094B2 (en) Method of manufacturing an electrode for a surge arrester, electrode and surge arrester
KR102291298B1 (en) Electric Bus bar and its manufacturing method
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable
CN117337475A (en) Graphene-copper coated electrical contacts
JP2001273816A (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Ref document number: 4824937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees