JP4824516B2 - Method for producing catalyst for removing nitrogen oxides in exhaust gas - Google Patents

Method for producing catalyst for removing nitrogen oxides in exhaust gas Download PDF

Info

Publication number
JP4824516B2
JP4824516B2 JP2006264883A JP2006264883A JP4824516B2 JP 4824516 B2 JP4824516 B2 JP 4824516B2 JP 2006264883 A JP2006264883 A JP 2006264883A JP 2006264883 A JP2006264883 A JP 2006264883A JP 4824516 B2 JP4824516 B2 JP 4824516B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
molded body
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006264883A
Other languages
Japanese (ja)
Other versions
JP2007014960A (en
Inventor
泰良 加藤
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006264883A priority Critical patent/JP4824516B2/en
Publication of JP2007014960A publication Critical patent/JP2007014960A/en
Application granted granted Critical
Publication of JP4824516B2 publication Critical patent/JP4824516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排ガス中の窒素酸化物除去用触媒の製造方法に係り、特に排ガス中のSO2 をSO3 に酸化する活性を抑制した高活性な窒素酸化物除去用触媒の製造方法に関する。 The present invention relates to a method for producing a catalyst for removing nitrogen oxides in exhaust gas, and more particularly, to a method for producing a highly active catalyst for removing nitrogen oxides that suppresses the activity of oxidizing SO 2 in exhaust gas to SO 3 .

発電所、各種工場、自動車などから排出される排ガス中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3 )を還元剤とした選択的接触還元による排ガス脱硝法が、火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)またはタングステン(W)を活性成分にした酸化チタン(TiO2 )系触媒が使用されており、特に活性成分の1つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから、現在の脱硝触媒の主流になっている(特開昭50−128681号公報等)。その製造法にはあらかじめ酸化チタン原料とW、Mo、V原料とを混練して得たペーストを、または必要に応じてこれをさらに焼成・粉砕した後、水とともに混練してペースト状にしたものをハニカム状に押出成形する方法や、金属またはセラミックス製基板に塗布して板状触媒にする方法が広く用いられてきた。
特公昭60−3856号公報 特公昭61−28377号公報
NOx in exhaust gas discharged from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, selective contact using ammonia (NH 3 ) as a reducing agent The exhaust gas denitration method by reduction is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. Particularly, one containing vanadium as an active component is active. In addition to being high, the deterioration due to impurities contained in the exhaust gas is small, and since it can be used at a lower temperature, it has become the mainstream of current denitration catalysts (Japanese Patent Laid-Open No. 50-128681 etc.). The manufacturing method includes a paste obtained by previously kneading a titanium oxide raw material and a W, Mo, V raw material, or, if necessary, further firing and pulverizing, and then kneading with water to make a paste. A method of extruding the catalyst in a honeycomb shape and a method of applying it to a metal or ceramic substrate to form a plate catalyst have been widely used.
Japanese Patent Publication No. 60-3856 Japanese Patent Publication No. 61-28377

上記従来触媒は、前述したようにあらかじめ触媒成分を調製し、これをハニカム状や板状に成形するため次のような多くの問題を有している。   As described above, the conventional catalyst has many problems as described below because a catalyst component is prepared in advance and formed into a honeycomb or plate shape.

第1は、触媒成分自体を成形して形状を保持させるため、実用的な強度を維持しようとするとハニカム触媒のセル壁、または板状触媒の厚みを小さくすることが不可能である。このため近年の省資源、省エネルギーの時流に対応することが難しくなっている。   First, since the catalyst component itself is molded to maintain its shape, it is impossible to reduce the thickness of the cell walls of the honeycomb catalyst or the thickness of the plate-like catalyst in order to maintain practical strength. For this reason, it is difficult to cope with the recent trend of resource saving and energy saving.

第2の問題は、第1の問題とも関連するが、触媒成分の使用量を一定以下に下げられないため、排ガスの浄化に使用した場合、排ガス中に含まれるSO2 がSO3 に酸化する副反応を一定以下にできない。SO3 はSO2 に較べ大気に放出された場合の毒性が高い上、脱硫装置で除去されにくいため、上記SO2 の酸化活性が高い点は改善されるべき大きな課題である。 The second problem is related to the first problem, but since the amount of the catalyst component used cannot be reduced below a certain level, SO 2 contained in the exhaust gas is oxidized to SO 3 when used for exhaust gas purification. Side reactions cannot be reduced below a certain level. Since SO 3 is more toxic when released into the atmosphere than SO 2 and is difficult to be removed by a desulfurization apparatus, the high oxidation activity of SO 2 is a major issue to be improved.

さらに第3の問題として、近年事業用ボイラなどの排ガスではNOxの排出量を現在のレベルより低下するために大量の脱硝触媒を使用することが多くなる傾向にある。このような装置に従来技術の触媒を適用すると一層SO2 の酸化割合が著しく高くなり、環境面だけでなく脱硝装置後流機器にも悪影響を引き起こす。 In addition, as a third problem, in recent years, exhaust gases such as business boilers tend to use a large amount of a denitration catalyst in order to reduce the NOx emission amount from the current level. When the prior art catalyst is applied to such an apparatus, the oxidation rate of SO 2 is further increased, which adversely affects not only the environment but also downstream equipment of the denitration apparatus.

上記したように触媒成分をハニカム/板状に成形して用いる触媒では、触媒原料使用量を一定以上低下しにくいだけでなく、脱硝活性を維持しようとするとSO2 酸化活性を低く抑えることが難しいという問題があった。 As described above, in the catalyst used by forming the catalyst component into a honeycomb / plate shape, it is difficult not only to reduce the amount of catalyst raw material used more than a certain level, but also to keep the SO 2 oxidation activity low when trying to maintain the denitration activity. There was a problem.

本発明の目的は、上記した従来触媒の問題点をなくし、高い脱硝活性と低いSO2 酸化活性を両立させた触媒と、この触媒を得るための経済的に優れた触媒製造方法を提供することにある。 An object of the present invention is to provide a catalyst that eliminates the problems of the above-described conventional catalysts and achieves both high denitration activity and low SO 2 oxidation activity, and an economically excellent catalyst production method for obtaining this catalyst. It is in.

上記目的を達成するため本願で特許請求される発明は以下のとおりである。
(1)酸化チタン、酸化モリブデンまたは酸化タングステン、および酸化バナジウムを活性成分とする窒素酸化物除去用触媒の製造方法において、酸化チタンと酸化モリブデン、酸化チタンと酸化タングステン、または酸化チタンと酸化ケイ素を主成分とする湿式板状触媒成形体を形成し、まだ湿った状態の該湿式板状触媒成形体にバナジウム含有触媒成分に水を加えたスラリを一旦弾性を有するローラに付着させた後、該ローラを前記板状触媒湿式成形体表面と接触させて、該成形体表面にスラリを転着した後、乾燥、焼成することを特徴とする排ガス中の窒素酸化物除去用触媒の製造方法。
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) In a method for producing a catalyst for removing nitrogen oxides containing titanium oxide, molybdenum oxide or tungsten oxide, and vanadium oxide as active components, titanium oxide and molybdenum oxide, titanium oxide and tungsten oxide, or titanium oxide and silicon oxide. After forming a wet plate-shaped catalyst molded body having a main component, the slurry obtained by adding water to the vanadium-containing catalyst component to the wet plate-shaped catalyst molded body still wet is once attached to an elastic roller, A method for producing a catalyst for removing nitrogen oxides in exhaust gas , wherein a roller is brought into contact with the surface of the plate-shaped catalyst wet molded body, and slurry is transferred onto the surface of the molded body, followed by drying and firing.

本発明により非常に少ない触媒成分の使用量で活性が高く、実用上好ましくないSO2 酸化率がきわめて低い触媒が実現できる。
これにより、従来触媒では使用量を増して脱硝率を高めようとするとSO2 酸化率も高くなるため、実施できなかったSO2 含有排ガスでの高脱硝率運転が可能になり、環境保全にも大きく貢献することができるようになる。
According to the present invention, it is possible to realize a catalyst having a very low SO 2 oxidation rate which is high in activity and practically unfavorable with a very small amount of the catalyst component used.
Accordingly, since when trying to increase the denitrification rate SO 2 oxidation rate is high by increasing the amount used in conventional catalysts, allows high denitration ratio operation in the SO 2 containing exhaust gas which could not be carried out, also in environmental protection You will be able to contribute greatly.

上記従来技術の問題点は、酸化チタン(TiO2 )、酸化チタンとモリブデン(Mo)酸化物、酸化チタンとタングステン(W)酸化物、またはこれらの酸化物とバナジウム(V)酸化物を主成分とする湿式触媒基材成形体表面に、V含有量の高い触媒成分粉末を担持させた後、乾燥、焼成することにより、解決される。 The problems of the above prior art are mainly composed of titanium oxide (TiO 2 ), titanium oxide and molybdenum (Mo) oxide, titanium oxide and tungsten (W) oxide, or these oxides and vanadium (V) oxide. This is solved by supporting the catalyst component powder having a high V content on the surface of the wet catalyst base molded body, followed by drying and firing.

すなわち、本発明の窒素酸化物除去用触媒は、図1に示すように、TiO2 、TiO2 とMoO3 、TiO2 とWO3 とからなる成形体内部を構成する触媒基材(低V濃度層)2の表面にチタン、タングステンまたはモリブデン、およびバナジウムとからなる触媒成分層(高V濃度層)1を形成し、触媒表面のV含有量を内部に較べ大きく高めたことを特徴とするものである。 That is, as shown in FIG. 1, the catalyst for removing nitrogen oxides of the present invention comprises a catalyst base (low V concentration) that constitutes the inside of a molded body made of TiO 2 , TiO 2 and MoO 3 , TiO 2 and WO 3. Layer) 2 is formed with a catalyst component layer (high V concentration layer) 1 composed of titanium, tungsten or molybdenum and vanadium, and the V content of the catalyst surface is greatly increased compared to the inside. It is.

ここで基材となる内部触媒層は、通常の方法により成形された板状の成形体であり、V含有量が低く抑えられている。また、表面の被覆層はVの含有量の高いTi、W、MoおよびVとからなるV含有量4〜12原子%の触媒成分であり、基材となる板状体が成形された後、粉末状または水を分散媒とするスラリの形で付着させて形成され、その付着量は小さく5〜100g/m2 であり、厚みは0.1mm以下と少量である。 Here, the internal catalyst layer serving as the base material is a plate-like molded body formed by a usual method, and the V content is kept low. Further, the surface coating layer is a catalyst component having a V content of 4 to 12 atomic% consisting of Ti, W, Mo and V having a high V content, and after the plate-like body serving as the substrate is formed, It is formed by adhering in the form of a powder or slurry using water as a dispersion medium, the amount of adhesion being small is 5 to 100 g / m 2 , and the thickness is as small as 0.1 mm or less.

被覆量は、具体的には板状の湿式成形体がまだ湿った状態の時点で、上記高V触媒成分粉末と接することにより付着させるか、成形後湿った状態のものに触媒スラリを塗布、または転着することにより形成することができる。 Specifically, when the plate-like wet molded body is still in a wet state, the coating amount is adhered by contacting the high V catalyst component powder, or a catalyst slurry is applied to a wet state after molding, Alternatively, it can be formed by transfer.

このようにして得られた触媒の全体としてのV含有量は、用いる排ガスの種類による異なるが、SO2 酸化が問題となる場合には0.5wt%以下、望ましくは0.2wt%以下が好結果を与える。また、SO2 を含まずSO2 酸化の問題にならない排ガスでは制限はないが、この場合であっても1wt%以下で充分な性能が得られる。 The total V content of the catalyst thus obtained varies depending on the type of exhaust gas used, but when SO 2 oxidation is a problem, it is preferably 0.5 wt% or less, and preferably 0.2 wt% or less. Give the result. Further, there is no restriction on exhaust gas that does not contain SO 2 and does not cause SO 2 oxidation, but even in this case, sufficient performance can be obtained at 1 wt% or less.

図2は、従来触媒について反応時におけるNOxとSO2 濃度の表面から内部への分布を示したものである。この図から明らかなように、NOxのアンモニアによる還元反応は速いので、触媒表面部で大半が反応してNOxが消失してしまうために、触媒内部はほとんど利用されない。これに対し、SO2 の酸化反応は遅いため触媒表面から内部までSO2 の濃度が変わらず、触媒内部も表面と同等にSO2 の酸化促進に寄与する。このため従来触媒のように表面から内部までが同一組成である触媒では、脱硝活性を高めるため活性成分であるV含有量を増大すると、脱硝活性の増大に較べ触媒内部におけるSO2 酸化活性が著しく増大するという問題を生じる。これはVが脱硝活性成分であると同時にSO2 酸化活性成分でもあることに加え、触媒内部では図2のような濃度分布であることが大きな原因となっている。この点が従来触媒の限界であり、解決すべき問題でもあった。 FIG. 2 shows the distribution of NOx and SO 2 concentrations from the surface to the inside of the conventional catalyst during the reaction. As is clear from this figure, the reduction reaction of NOx with ammonia is fast, so that most of the reaction occurs on the catalyst surface and the NOx disappears, so the inside of the catalyst is hardly utilized. On the other hand, since the oxidation reaction of SO 2 is slow, the concentration of SO 2 does not change from the catalyst surface to the inside, and the inside of the catalyst contributes to the promotion of SO 2 oxidation as well as the surface. For this reason, in the case of a catalyst having the same composition from the surface to the inside as in the case of a conventional catalyst, increasing the V content as an active component in order to increase the denitration activity, the SO 2 oxidation activity inside the catalyst is remarkably higher than the increase in the denitration activity. The problem of increasing. This is mainly due to the fact that V is a denitration active component and at the same time an SO 2 oxidation active component, and also has a concentration distribution as shown in FIG. 2 inside the catalyst. This point is a limitation of the conventional catalyst and also a problem to be solved.

これに対し、図1に示した本発明では必要なVの大半を触媒表面層に集中させたことにより、
(1)NOx濃度の高い表層部で効率よく脱硝反応が進行するため、触媒全体としての活性が向上する。
(2)SO2 の酸化の大半を担う触媒内部のV含有量を非常に小さくできるためSO2 酸化活性が低い触媒になる。
など、従来技術の課題を解消することができる。
さらに、
(3)触媒内部の活性は触媒活性が低くてもよいため、強度に優れる組成とすることにより触媒厚みを小さくし易いだけでなく、薄肉の触媒を調製することができる。
In contrast, in the present invention shown in FIG. 1, most of the necessary V is concentrated on the catalyst surface layer.
(1) Since the denitration reaction proceeds efficiently in the surface layer portion having a high NOx concentration, the activity of the entire catalyst is improved.
(2) SO 2 oxidation activity for the V content of the internal catalyst can be made very small responsible for most of the oxidation of SO 2 is low catalyst.
Thus, the problems of the prior art can be solved.
further,
(3) Since the activity inside the catalyst may be low, not only the catalyst thickness can be easily reduced by making the composition excellent in strength, but also a thin catalyst can be prepared.

この結果、非常に少ない触媒成分量で脱硝活性は従来触媒と同等でSO2 酸化活性の小さい触媒が実現でき、大量に触媒を用いて高脱硝率を得ようとする脱硝装置のSO2 酸化によるSO3 副生を飛躍的に低下せしめることが可能になる。
これに加えて、本発明の触媒に必要な触媒量は前述したように触媒重量で5〜100g/m2 、被覆層は0.1mm以下であるため、湿式成形の後、成形体の持つ水分で触媒粉を表面に付着させるなどの従来の触媒製造法の補助手段程度の設備で達成できることも大きな特徴である。
以下、具体例を用いて本発明を詳細に説明する。
As a result, with a very small amount of catalyst component, a denitration activity is equivalent to that of the conventional catalyst and a catalyst with a small SO 2 oxidation activity can be realized, and by the SO 2 oxidation of a denitration device that attempts to obtain a high denitration rate using a large amount of catalyst. It is possible to drastically reduce the SO 3 byproduct.
In addition, since the catalyst amount necessary for the catalyst of the present invention is 5 to 100 g / m 2 by weight of the catalyst and the coating layer is 0.1 mm or less as described above, the water content of the molded body after wet molding It is also a great feature that it can be achieved with facilities equivalent to the auxiliary means of the conventional catalyst manufacturing method such as attaching catalyst powder to the surface.
Hereinafter, the present invention will be described in detail using specific examples.

参考例
酸化チタン粉末20kgにモリブデン酸アンモニウム((NH4 6 ・Mo7 24・4H2 O)を2.3kg、無機繊維(商品名カオウール)を3.3kgとに水を加えてニーダで混練し、水分32%の基材用ペーストを調製した。
一方、繊維径9μmのEガラス製繊維1400本の捻糸を10本/インチの粗さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニルアルコール1%のスラリを含浸し、150℃で乾燥して剛性を持たせ触媒基材を得た。
Reference Example Titanium oxide powder 20kg, ammonium molybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O) 2.3kg, inorganic fiber (trade name Kao wool) 3.3kg water and kneader. The mixture was kneaded to prepare a base material paste having a moisture content of 32%.
On the other hand, a mesh of 1400 E-glass fibers with a fiber diameter of 9 μm and plain weave with a roughness of 10 / inch is impregnated with a slurry of 40% titania, 20% silica sol, and 1% polyvinyl alcohol at 150 ° C. The catalyst base material was obtained by drying to give rigidity.

上記触媒基材を、成形直後の触媒がいまだ乾燥しないうちに、酸化チタン粉末20kgにモリブデン酸アンモニウム((NH4 6 ・Mo7 24・4H2 O)を2.5kg、メタバナジン酸アンモニウム2.33kg、蓚酸3.0kgを加えた触媒成分粉末を空気流で流動化させた中に入れ、成形体が含む水分をバインダにして触媒粉末を付着させた。その表面をローラで押さえて平坦にした後、乾燥し、続いて500℃で2時間焼成して触媒を得た。そのときの触媒粉末の付着量は約30g/m2 であった。 Before the catalyst immediately after molding, the catalyst base is not dried yet, 20 kg of titanium oxide powder, 2.5 kg of ammonium molybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O), ammonium metavanadate 2 The catalyst component powder to which 33 kg and oxalic acid 3.0 kg were added was fluidized by an air stream, and the catalyst powder was adhered using the moisture contained in the molded body as a binder. The surface was flattened by pressing with a roller, dried, and then calcined at 500 ° C. for 2 hours to obtain a catalyst. At that time, the amount of the catalyst powder deposited was about 30 g / m 2 .

実施例
参考例で用いたV含有触媒成分粉末に同重量の水を加えて高粘度のスラリを得た。このスラリを一旦ゴムローラに薄く添着した後、そのゴムローラを実施例1に用いた湿式板状触媒基材表面上で回転させ、基材表面に薄い触媒成分層を形成した。その後、乾燥し、さらに500℃で2時間焼成して触媒を得た。
このときの触媒添着量は約10g/m2 であった。
実施例および参考例で得られた触媒の脱硝率とSO2 酸化率とを表1および表2の条件で測定し、表3に示した。
Example
The same weight of water was added to the V-containing catalyst component powder used in the Reference Example to obtain a highly viscous slurry. The slurry was once thinly attached to a rubber roller, and then the rubber roller was rotated on the surface of the wet plate catalyst substrate used in Example 1 to form a thin catalyst component layer on the substrate surface. Thereafter, it was dried and further calcined at 500 ° C. for 2 hours to obtain a catalyst.
At this time, the amount of catalyst was about 10 g / m 2 .
The denitration rate and SO 2 oxidation rate of the catalysts obtained in Examples and Reference Examples were measured under the conditions shown in Tables 1 and 2, and are shown in Table 3.

表3から明らかなように、実施例の方法によれば脱硝率が高く、SO2 酸化活性の低い触媒が得られることがわかる。上記実施例では触媒内部が酸化チタンと酸化モリブデンの例を示したが、酸化チタン、酸化モリブデン、酸化タングステンの3成分でも同様の効果が得られた。また、上記実施例では、触媒基材として無機繊維製基材を用いたが、本発明はこれに限定されるものではなく、ステンレス製エクスパンドメタルなどの多孔板を用いることもできる。また、触媒表層部の触媒組成として、酸化チタン、酸化モリブデン、または酸化タングステンおよび酸化バナジウムよりなる3成分系を示したが、上記4つの成分が共存する4成分系についても同様の効果が得られる。また、表層部が酸化チタンと酸化バナジウムの2成分であっても活性の点では問題ないが、汚れた排ガスで使用するには問題がある。


As can be seen from Table 3, according to the method of the example, a catalyst having a high NOx removal rate and a low SO 2 oxidation activity can be obtained. In the above embodiment, an example in which the inside of the catalyst is titanium oxide and molybdenum oxide is shown, but the same effect was obtained with three components of titanium oxide, molybdenum oxide, and tungsten oxide. Moreover, in the said Example, although the base material made from an inorganic fiber was used as a catalyst base material, this invention is not limited to this, Perforated plates, such as a stainless steel expanded metal, can also be used. Further, although the three-component system composed of titanium oxide, molybdenum oxide, or tungsten oxide and vanadium oxide has been shown as the catalyst composition of the catalyst surface layer portion, the same effect can be obtained for the four-component system in which the above four components coexist. . Moreover, even if the surface layer portion is composed of two components of titanium oxide and vanadium oxide, there is no problem in terms of activity, but there is a problem in using it with dirty exhaust gas.


本発明の触媒の概要を示す図。The figure which shows the outline | summary of the catalyst of this invention. 従来触媒の問題点を明らかにするための触媒内部におけるNOxとSO2 の濃度分布を示す図。Diagram showing the concentration distribution of NOx and SO 2 in the catalyst inner to clarify the problems of the conventional catalysts.

符号の説明Explanation of symbols

1…高V濃度層、2…低V濃度層。   1 ... high V concentration layer, 2 ... low V concentration layer.

Claims (1)

酸化チタン、酸化モリブデンまたは酸化タングステン、および酸化バナジウムを活性成分とする窒素酸化物除去用触媒の製造方法において、酸化チタンと酸化モリブデン、酸化チタンと酸化タングステン、または酸化チタンと酸化ケイ素を主成分とする湿式板状触媒成形体を形成し、まだ湿った状態の該湿式板状触媒成形体にバナジウム含有触媒成分に水を加えたスラリを一旦弾性を有するローラに付着させた後、該ローラを前記板状触媒湿式成形体表面と接触させて、該成形体表面にスラリを転着した後、乾燥、焼成することを特徴とする排ガス中の窒素酸化物除去用触媒の製造方法。 In a method for producing a nitrogen oxide removing catalyst containing titanium oxide, molybdenum oxide or tungsten oxide, and vanadium oxide as active components, titanium oxide and molybdenum oxide, titanium oxide and tungsten oxide, or titanium oxide and silicon oxide are the main components. A wet plate-shaped catalyst molded body is formed, and a slurry obtained by adding water to the vanadium-containing catalyst component to the wet plate-shaped catalyst molded body that is still wet is once attached to an elastic roller, and then the roller is A method for producing a catalyst for removing nitrogen oxides in exhaust gas , wherein the catalyst is brought into contact with the surface of a plate-like catalyst wet molded body, and slurry is transferred to the surface of the molded body, followed by drying and firing.
JP2006264883A 2006-09-28 2006-09-28 Method for producing catalyst for removing nitrogen oxides in exhaust gas Expired - Lifetime JP4824516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264883A JP4824516B2 (en) 2006-09-28 2006-09-28 Method for producing catalyst for removing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264883A JP4824516B2 (en) 2006-09-28 2006-09-28 Method for producing catalyst for removing nitrogen oxides in exhaust gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8030807A Division JPH09220468A (en) 1996-02-19 1996-02-19 Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same

Publications (2)

Publication Number Publication Date
JP2007014960A JP2007014960A (en) 2007-01-25
JP4824516B2 true JP4824516B2 (en) 2011-11-30

Family

ID=37752561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264883A Expired - Lifetime JP4824516B2 (en) 2006-09-28 2006-09-28 Method for producing catalyst for removing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JP4824516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065458A (en) * 2017-06-13 2020-04-24 中国石油化工股份有限公司 Vanadium-based catalyst and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701185B2 (en) * 2011-09-09 2015-04-15 三菱重工業株式会社 Method for reducing SO2 oxidation rate increase of denitration catalyst
DE102014005153B4 (en) * 2014-04-08 2023-12-14 Andreas Döring Exhaust gas aftertreatment system and method for exhaust gas aftertreatment
CN104368334B (en) * 2014-09-28 2017-08-15 天河(保定)环境工程有限公司 A kind of denitrating catalyst and preparation method thereof
CN105457627B (en) * 2015-12-09 2018-01-12 武汉理工大学 A kind of glass fabric Supported Manganese base low temperature SCR denitration catalyst and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315837A (en) * 1980-04-16 1982-02-16 Xerox Corporation Composite material for ozone removal
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method
JPS58183946A (en) * 1982-04-20 1983-10-27 Mitsubishi Heavy Ind Ltd Denitration catalyst and preparation thereof
JPS6372342A (en) * 1986-09-13 1988-04-02 Sakai Chem Ind Co Ltd Catalyst for removing nitrogen oxide
JPH0326344A (en) * 1989-06-26 1991-02-04 Babcock Hitachi Kk Production of platelike catalyst for removal of nitrogen oxide
JP3264498B2 (en) * 1991-02-21 2002-03-11 バブコック日立株式会社 Method for producing plate catalyst for removing nitrogen oxides
JPH07232083A (en) * 1994-02-22 1995-09-05 Babcock Hitachi Kk Honeycomb catalyst and its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065458A (en) * 2017-06-13 2020-04-24 中国石油化工股份有限公司 Vanadium-based catalyst and preparation method thereof
CN111065458B (en) * 2017-06-13 2021-08-20 中国石油化工股份有限公司 Vanadium-based catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2007014960A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
WO2008035773A1 (en) Catalyst for oxidation of metal mercury
JP6047477B2 (en) NOx removal catalyst and method for producing the same
KR102090726B1 (en) Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same
JPH105547A (en) Catalyst to remove nitrogen oxide
KR102168261B1 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxides, and exhaust gas purification method
JP2010029782A (en) Method of purifying exhaust gas containing metal mercury and oxidation catalyst for metal mercury in exhaust gas
WO2009107729A1 (en) Catalyst for treating discharge gas
JP6000004B2 (en) Plate-shaped catalyst and method for producing plate-shaped catalyst
JPH105591A (en) Catalyst for cleaning of waste gas and device for cleaning waste gas with same
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP5457129B2 (en) NOx removal catalyst and method for producing the same
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JPH08196904A (en) Nitrogen oxide removing catalyst
JP2014046299A (en) Manufacturing method of denitration catalyst
JP5804836B2 (en) Denitration catalyst for catalytic catalytic reduction
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
US20180243733A1 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term