JP4823691B2 - 集塵装置 - Google Patents

集塵装置 Download PDF

Info

Publication number
JP4823691B2
JP4823691B2 JP2005513458A JP2005513458A JP4823691B2 JP 4823691 B2 JP4823691 B2 JP 4823691B2 JP 2005513458 A JP2005513458 A JP 2005513458A JP 2005513458 A JP2005513458 A JP 2005513458A JP 4823691 B2 JP4823691 B2 JP 4823691B2
Authority
JP
Japan
Prior art keywords
gas
flow path
discharge
electrode
filter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005513458A
Other languages
English (en)
Other versions
JPWO2005021161A1 (ja
Inventor
一隆 富松
真之 永田
守男 加賀見
泰念 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Mechatronics Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Mechatronics Systems Ltd filed Critical Mitsubishi Heavy Industries Mechatronics Systems Ltd
Priority to JP2005513458A priority Critical patent/JP4823691B2/ja
Publication of JPWO2005021161A1 publication Critical patent/JPWO2005021161A1/ja
Application granted granted Critical
Publication of JP4823691B2 publication Critical patent/JP4823691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/38Tubular collector electrode

Landscapes

  • Electrostatic Separation (AREA)

Description

本発明は、粒子状物質を含むガスが流れる流路内で、このガスの流れに交差する方向に二次流れをイオン風で発生させ、ガス中の粒子状物質を捕集する集塵装置に関するものである。
ガス中より粒子状物質を捕集、除去する方法として、電気集塵装置は良く知られた方法である。これは、ガス中で行われるコロナ放電によって帯電された粒子状物質が、クーロン力によってガス中に設置された集塵電極上に捕集するものである。
粒子径の大きい粒子は、帯電量も大きいので、集塵電極上にクーロン力によって容易に捕集される。しかし、粒子径の小さい粒子は、帯電し難いためこの粒子に働くクーロン力も弱い。また、粒子径が小さい粒子は、もともとその挙動が気流によって支配される(気流の流線に沿って、気流とともに動く)性質があるため、電気集塵装置による捕集は困難であった。
上記の欠点を補い、粒子径の小さい粒子などの挙動が気流支配であることを利用して粒子捕集性向上を図るべく、コロナ放電を応用した集塵装置(除じん装置)がある。この除じん装置は、粒子状物質を含むガス流れ中に設けられた放電電極と、この放電電極と対向して配置され放電電極との間に高電圧が印加される対向電極(アース電極)とを備える。対向電極には、金網(メッシュ)を用い、対向電極を挟んで放電電極と反対側に、除じんフィルタが設けられるものとして、例えば、特許文献1がある。
放電電極に沿って流れてきたガス中の粒子状物質は、帯電される結果クーロン力により対抗電極に向かって偏るとともに、放電電極に沿って流れてきたガスは、放電電極と対向電極との間に印加された高電圧によって生じるイオン風によってガス流れに沿った流路断面内で変向され、対向電極側に偏る。除じんフィルタを通過するガス流量を調整する抽気手段を調節し、粒子状物質が偏ったガスを除じんフィルタに通過させることで、除じんする。
また、対向電極(アース電極)と除じんフィルタとで構成されるろ過装置に対して放電電極と反対側に閉鎖空間を設けた除じん装置として、例えば、特許文献2がある。この除じん装置は、放電電極に沿って流れてきたガス主ガス中の粒子状物質を帯電させる。その結果、粒子状物質は、クーロン力により対向電極に向かって偏る。放電電極に沿って流れてきたガスは、イオン風によってこのガスの流れ(主ガス流れ)に沿う長手方向の断面内でろ過装置内に流入し、ある時間ろ過装置及び閉鎖空間内に滞留する。そして、ガスは、ろ過装置及び閉鎖空間内に滞留する間に粒子状物質がろ過される。また、この除じん装置は、ガスが流れる流路から新たにろ過装置内に流入してくるガスと入れ代わりに閉鎖空間内のガスが置換されるので、抽気手段が不要である。
電気式フィルタと、ガス通路を横断する向きに配置された複数の鋸歯状板とを有し、その鋸歯状板の各先端部がハウジングの内面に沿って設けられた収集体(フィルタ)に向けられている処理装置として、例えば、特許文献3がある。鋸歯状板は、星形部材からなり、コロナ放電を発生させるだけではなく、局所的な乱流を発生させる。これにより、長手方向(主ガス流れに沿う方向)に微粒子を収集体に向けて加速させる。
特開平2−63560号公報(第2頁左下欄第6行−第3頁右上欄第19行、第1−3図) 特開平2−184357号公報(第3頁右上欄第19行−第4頁右上欄第15行、第1−6図) 特表2003−509615号公報(段落0019−0029、第1図)
上述の3例は、いずれも何らかのクーロン力以外の手段で粒子を集塵部(集塵電極)へ導くことを考えた方法であるが、いずれも主ガス流れに沿った方向で、粒子状物質を主ガスから分離することを志向している。
上述の最初の2例では、抽気の有り、無しにかかわらず、主ガス流れに沿った断面内で、イオン風を利用して、主ガスから粒子状物質を除じんフィルタ部に導く。例えば主ガスの流速が速い場合、主ガスの直線的な流線に打ち勝って、主ガス流れに沿った断面内に二次流れを発生させるためには、極めて大きなイオン風を発生させる必要がある。
即ち、非常に高い電圧を印加して非常に大きなコロナ電流を得ることが必要となる。必要となる印加電圧の値は、電極の構成によって変化するが、いずれにしても印加可能な電圧には限界がある。つまり、発生可能なイオン風の強さにも限界がある。従って、主ガスの流れに沿う断面内における二次流れを利用するこれまでの概念の除じん装置の場合、その原理が有効となる速度領域まで主ガスの流速を速く設定することができず、現実的には低流速域においてのみ成立する方法である。
上述の3例目においては、星形部材で局所的な乱流を発生させることによって二次流れ(主ガス中の粒子を集塵部に導く手段)を誘起する。星形部材は、コロナ放電を利用する電気式フィルタの放射体(放電電極)の役割を果たすものの、二次流れを発生させるために、コロナ放電及びイオン風を利用するという概念については、明記されていない。機械的障害物に伴い発生する局所的乱流によって二次流れを起す場合、イオン風を利用する場合に比べ効果が弱い。また、乱流には規則性がないので、二次流れの利用方法としての有効性は低い。
本発明は、上記に鑑みてなされたものであって、イオン風によって誘起される二次流れを主ガス流速について広範囲にわたって利用し、流路内のガスを対流させ、ガス中に含まれる粒子状物質を効率良く捕集する集塵装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の集塵装置は、粒子状物質を含むガスを流すガス流路と、前記ガス流路に沿って設けられてこのガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有するアース電極と、前記アース電極に隣接して設けられて前記ガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有すると共に内部に流入したガスを前記流路内の前記ガスの流れに沿う方向にガスを通過させる開口率を有する集塵フィルタ層と、前記流路内に先端が前記アース電極と所定間隔離間して設けられる放電電極とを具え、高電圧を印加して前記放電電極と前記アース電極との間に前記放電電極の放電部から前記アース電極へ前記ガスの流れに直交する断面内で先端の両側に前記集塵フィルタ層を繰り返し通過するように循環する二次流れを誘起形成するイオン風を発生させることで前記ガス流路と前記集塵フィルタ層との間でらせん状のガス流れを生成し、前記アース電極は、65%から85%の開口率を有することを特徴とするものである。
また、本発明の集塵装置は、粒子状物質を含むガスを流すガス流路と、前記ガス流路に沿って設けられてこのガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有するアース電極と、前記アース電極に隣接して設けられて前記ガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有すると共に内部に流入したガスを前記流路内の前記ガスの流れに沿う方向にガスを通過させる開口率を有する集塵フィルタ層と、前記流路内に先端が前記アース電極と所定間隔離間して設けられる放電電極とを具え、高電圧を印加して前記放電電極と前記アース電極との間に前記放電電極の放電部から前記アース電極へ前記ガスの流れに直交する断面内で先端の両側に前記集塵フィルタ層を繰り返し通過するように循環する二次流れを誘起形成するイオン風を発生させることで前記ガス流路と前記集塵フィルタ層との間でらせん状のガス流れを生成し、前記集塵フィルタ層は、2から300の圧力損失の抵抗係数を有するものである。
また、本発明の集塵装置によれば、ガス流路に沿ってこのガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有するアース電極を設け、アース電極に隣接してガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有すると共に内部に流入したガスを流路内のガスの流れに沿う方向にガスを通過させる開口率を有する集塵フィルタ層を設け、流路内に先端がアース電極と所定間隔離間して設けられる放電電極を設け、高圧電源により放電電極とアース電極との間に高電圧を印加して放電電極の放電部からアース電極へガスの流れに直交する断面内で先端の両側に前記集塵フィルタ層を繰り返し通過するように循環する二次流れを誘起形成するイオン風を発生させることで、ガス流路と集塵フィルタ層との間でらせん状のガス流れを生成するようにしたので、ガスがガス流路と集塵フィルタ層との間でらせん状に、ガスが循環され帯電された粒子状物質が、たとえその帯電量が少なく静電気的付着力が小さな微細な粒子であっても、集塵フィルタ層に流入して捕集されることとなり、このガス中に含まれる粒子状物質を効率良く捕集することができる。
本発明の集塵装置によれば、アース電極は、65%から85%の開口率を有するので、イオン風を確実に集塵フィルタ層に導入することができ、またイオン風を供給できるコロナ電流を供給できる最小限のアース極の面積を確保することができる。
本発明の集塵装置によれば、集塵フィルタ層は、2から300の圧力損失の抵抗係数を有するので、集塵フィルタ層の圧力損失を適正値に維持することで、高い捕集効率を確保することができる。
以下に、本発明に係る集塵装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
図1は、本発明の実施例1に係る集塵装置の一部を断面として表す斜視図、図2は、図1のII−II断面図である。
実施例1において、図1及び図2に示すように、集塵装置1は、外殻2と、放電極主部3及び放電極放電部4かになる放電電極と、アース電極5と、集塵フィルタ層6と、電源7とを具えている。
外殻2は、円筒状であって、内部に粒子状物質を含むガスを流す流路8を形成する。流路8の中央部には、流路方向に沿って延びる放電極主部3が配置されている。放電極放電部4は、放電極主部3から流路8を横切る方向にアース電極5に向かって延びる刺状に形成されている。
また、放電極放電部4の先端4a同士は、流路8を横切る方向に互いに離れている。具体的には、放電極放電部4の先端4aから対向する集塵極に下した垂線の交点Pと、隣接する放電極放電部4の先端4aから下した垂線の交点Pとの距離Sは、0.8D以上3D以下であることが好ましい。本実施例では、放電極放電部4は、放電極主部3上の同じ位置から放射状に4つ設けられており、さらに放電極主部3上の複数箇所においても同様に設けられている。ここに、距離Sが0.8D以下の場合、相隣接する放電極放電部4同士の干渉でコロナ電流が十分確保できないため、イオン風が十分に生じない。また、イオン風自身も相互干渉により十分機能できない。一方、距離Sが3D以上になると、逆にイオン風が有効に作用しない領域(デッドスペース)が増加することによって、集塵装置1の性能が低下する。
なお、従来の集塵装置は、アース電極の表面でガス中の粒子状物質を集塵するため、アース電極=集塵電極という表現を使用している。これに対して、本実施例では、アース電極と集塵電極とを使い分けている。
実施例1の集塵装置1では、高電圧を放電電極に印加することで、放電極放電部4からアース電極5に向けて飛び出すイオンに誘起されたイオン風が生じる。この場合、アース電極5が開口率の大きな素材で形成されるため、ガス中に含まれる粒子状物質の一部を集塵する機能を有するものの、実際にはガス中に含まれる粒子状物質の大部分は、アース電極5を素通りする。ガス中に含まれる粒子状物質は、ガスとともにアース電極5の外側に配置された集塵フィルタ層6に導かれ、その集塵フィルタ層6で大部分が捕集される。このように集塵装置1は、アース電極5で粒子状物質をガスごと引き付け、集塵フィルタ層6で、粒子状物質を捕集する。従って、ここでは、アース電極5を集塵電極と区別している。
アース電極5は、各放電極放電部4の先端4aから同じ距離Dだけ離れて外殻2の内側に設けられている。アース電極5は、粒子状物質を通過させる開口率を有した導電性のネット、具体的には金網などの導電性素材を使用する。なお、粒子状物質を通過させる充分な開口率を有し、かつ導電性の材質であれば、ワイヤを平織り等に織り込んだ金網、パンチングメタル、あるいはエクスパンデッドメタルを使用することができる。
また、アース電極5は、金網以外に、エッチングで微小な開口を設けた導電性の膜や、電鋳で成形した網状の金属箔でも良い。また、平織り等の金網を使用する場合、局部的に電界が集中しないようにするために、金網を構成するワイヤの太さが細くなりすぎないように選定する。
例えば、ディーゼルエンジンの排ガスに含まれる粒子状物質を回収するために集塵装置1を適用する場合、アース電極5の開口率は、65〜85%前後にすることで、開口率50%の場合に比べて粒子状物質の捕集率が大幅に向上することが実験から分かっている。
アース電極5と外殻2との間には、集塵フィルタ層6を設ける。ガスの流れと直交した断面に二次流れを有効に作用させるため、集塵フィルタ層6は、ガス流れを横切る流路断面に沿う方向に程好い開口率を有するとともに、流路8内のガスの流れに沿う方向にも開口率を有した構造を有している。即ち、流路8内のガスの流れに対して直角方向に二次元的な流れの循環を確保するためには、集塵フィルタ層6に導かれたガスが、流路8内を流れる主ガスと同じ方向に動き得ることも必要である。
そこで、集塵フィルタ層6が主ガスの流れのベクトル方向にも開口率を有することで、粒子状物質を含むガスは、主ガスから集塵フィルタ層6に導かれた二次流れによって、主ガスが流れる流路8と集塵フィルタ層6との間をガスの流れに沿って3次元的にらせん状に回転しながら循環する。そして、その過程で、ガス中に含まれる電荷を有した粒子状物質は、集塵フィルタ層6の中で機械的、あるいは静電気的に集塵されていく。
なお、集塵フィルタ層6は、導電性、非導電性を問わず、ガスが通過可能なポーラスな材料でできており、ガス中に含まれる粒子状物質を捕集する。集塵フィルタ層6の材料としては、積層した金網、ポーラスなセラミックス、グラスファイバ製の充填材など、通気性を有する材料であれば様々な材料を使用することができる。また、対象とするガスの温度や成分等、条件によっては、集塵フィルタ層6として使用される材料の耐熱性を考慮する必要が有るとともに、腐食に対する使用雰囲気等の条件等も集塵フィルタ層6の材質を選定する上で考慮すべきである。
集塵フィルタ層6の厚さは、集塵フィルタ層6の圧損と要求される集塵性能から決定されるべきである。使用する材料の空隙率とも関連するが、ガスが通過する圧損がなるべく低くなることが好ましい。従って、比較的薄いものが用いられる。ただし、主ガスに直交する断面内の二次流れのパターンを有効なものとし、集塵フィルタ層6を設置した部分と主ガスが流れる流路8との対流を効果的なものとするためには、アース電極5と外殻2の距離は、ある程度必要である。
つまり、実施例1では、集塵フィルタ層6がアース電極5と外殻2の間の空間をほぼ充填している状態を例示しているが、使用条件によっては、集塵フィルタ層6の厚さをアース電極5と外殻2の間隔距離より薄く設定すべき場合もある。そのような場合、アース電極5に隣接して配置される集塵フィルタ層6と外殻2との間に空間が存在することも有り得る。
電源7は、一方が放電極主部3に、他方がアース電極5に接続され、放電極放電部4とアース電極5との間に高電圧を印加する。この場合、放電極放電部4側をマイナス極に印加し、アース電極5を接地させている。放電極放電部4がマイナス極に印加されることによって、放電極放電部4の先端4aに生じるコロナ放電の起点の近傍でガスの気体分子がイオン化される。
イオン化された気体分子は、電界によって移動するのに伴って、放電極放電部4の先端4aからアース電極5に向けて周囲のガスも巻き込んで流路8を流れる。この結果、主ガスの流れと直交する断面内にイオン風によってガスの二次流れが形成され、これがアース電極5に吹き付けられる。
従って、流路8を流れるガスは、このイオン風によってアース電極5に向けて加速され、アース電極5を通過して集塵フィルタ層6の内部まで流れ込む。集塵フィルタ層6に流れ込んだガスは、集塵フィルタ層6中を流れる間に粒子状物質が捕集され、隣り合う放電極放電部4によってイオン風が吹き付けられている位置の間の位置から再びアース電極5を通過して流路8の内側に戻る。
主ガスの流れと交差する断面内における放電極放電部4の先端4a同士の距離Sを、流路8に沿う長手方向断面内で隣り合う放電極放電部4の先端4a間の距離に比べて短くすると、主ガスの流れに直交する断面内のイオン風による二次流れは、主ガスの流れに沿う長手方向断面内のイオン風による二次流れに比べてより顕著となる(勢いを増す)。また、放電極放電部4が放電極主部3上に複数箇所設けられているので、集塵装置1の中を流れるガスは、主ガスの流れに直交する各断面におけるイオン風によって流路8を横切る方向に繰り返し集塵フィルタ層6を通過するようにガスを循環させる。この結果、流路8に沿って流れてきたガスは、イオン風で対流させられることによって、流路8内を螺旋状に流れることとなる。
従って、従来と同じ長さの流路8でもガスが集塵フィルタ層で効率的に捕集されるので粒子状物質の捕集効率が良い。つまり、同じ性能の集塵装置1であれば、流路8を短くすることができるので、集塵装置1を小さくすることができる。
このように実施例1の集塵装置1にあっては、主ガスの流れに交差する流路断面内において、主ガス流の影響が少なくイオン風起因の二次流れを発生でき、且つ、それをうまく利用することで著しく集塵性を向上させうることに着目したものである。そして、集塵装置1は、粒子状物質を帯電させて静電気力でアース電極5に捕集するとともに、流路8を流れるガスを、図2に矢印で示すように、イオン風によって対流させ、ガスを集塵フィルタ層6に繰り返し通過させることで、帯電し難い微小粒子径の粒子状物質をもより多く集塵フィルタ層6に捕集することができる。従って、集塵装置1は、粒子状物質を効率良く捕集することができる。
図3は、本発明の実施例2に係る集塵装置の一部を断面として表す斜視図、図4は、図3のIV−IV断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例2において、図3及び図4に示すように、集塵装置1は、複数の放電極主部3を具える。これらの放電極主部3は、流路8を横切る方向に離れて配置され、かつ流路8に沿って延びる。また、これらの放電極主部3は、流路8を横切る方向に1列に並べられている。アース電極5は、これらの放電極主部3が並ぶ列を両側から挟んで平行に配置されている。
放電極放電部4は、各放電極主部3から両側のアース電極5に向かって延びる刺状に形成されており、各放電極主部3上の複数箇所に設けられている。隣り合う放電極主部3に設けられた放電極放電部4の先端4a同士は、流路8を横切る方向に離れて設けられる。具体的には、放電極放電部4の先端4aとアース電極5との距離Dに対して、放電極放電部4の先端4aからアース電極5に下した垂線の交点同士の距離Sが0.8〜3Dとなるように配置することが好ましい。電源7は、各放電極主部3と両側のアース電極5との間に同じ電圧を印加するように設けられている。
以上のように構成された集塵装置1は、粒子状物質を含むガスが流路8内に流れると、実施例1の集塵装置1と同様に、放電極放電部4の先端4aからアース電極5に向かって発生するイオン風によって、流路8を流れるガスを、図4に矢印で示すように、流路8を横切る方向に対流させる。集塵装置1は、繰り返しガスを集塵フィルタ層6に通過させるので、粒子状物質を効率良く捕集することができる。
なお、この実施例2では、集塵フィルタ層6がアース電極5と外殻2との間の全空間を充填している状態を示している。しかし、実施例1における説明と同様の理由によって、使用条件によっては、集塵フィルタ層6の厚さをアース電極5と外殻2との間隔距離より薄く設定する必要がある場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2との間に空間が存在することも有り得る。
図5は、本発明の実施例3に係る集塵装置の一部を断面として表す斜視図、図6は、図5のVI−VI断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例3において、図1及び図2に示すように、集塵装置1は、第2実施例における集塵装置1と同様に、複数の放電極主部3を備える。これらの放電極主部3は、流路8に沿う方向に離れて配置され、かつ流路8を横切る方向に延びている。放電極主部3からアース電極5に向かって延びる放電極放電部4は、各放電極主部3上の複数箇所に設けられている。
同じ放電極主部3上に設けられる放電極放電部4の先端4aからアース電極5に下した垂線の交点同士の距離Sは、放電極放電部4の先端4aとアース電極5との間の距離Dに対して、0.8〜3Dとなるように離れて配置されることが好ましい。
なお、この実施例3では、集塵フィルタ層6がアース電極5と外殻2との間の全空間を充填している状態を示しているが、第1実施例における説明と同様の理由によって、使用条件によって集塵フィルタ層6の厚さをアース電極5と外殻2の間隔距離より薄く設定する必要がある場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2との間に空間が存在することも有り得る。
実施例1、2における集塵装置1の放電極主部3は、流路8の上流側と下流側とにおいてそれぞれ外殻2の外に導出される箇所で支持されていることに対し、実施例3における集塵装置1の各放電極主部3は、流路8を形成する外殻2を貫通する2箇所で絶縁されて支持されている。また、隣り合う放電極主部3に設けられた放電極放電部4同士の位置関係は、流路8方向に揃えられている。
以上のように構成された集塵装置1は、実施例2の集塵装置1と同様に、粒子状物質を含むガスを、図6に矢印で示すように、流路8を横切る方向に対流させる。その結果、ガスは、流路8内を螺旋状に流れる。集塵装置1は、繰り返しガスを集塵フィルタ層6に通過させるので、粒子状物質を効率良く捕集することができる。また、集塵装置1は、放電極放電部4が流路8を横切る方向に延びる放電極主部3上に設けられているので、流路8を横切る方向に放電極放電部4の先端4a同士の距離Sを設定しやすい。さらに、流路8内を流れるガスの流速に応じて、流路8に沿う方向に放電極放電部4の距離を容易に設定しなおすことができる。
図7は、本発明の実施例4に係る集塵装置にて流路を横切る方向の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例4において、図7に示すように、集塵装置1は、流路に沿って延びる放電極主部3を、流路8を横切る方向に離して複数備える。また、集塵装置1の流路8は、平行に配置された集塵フィルタ層6によって流路8が3つのセル9に分割されており、中央のセル9には、3つの放電極主部3が配置され、左右両側のセル9には、放電極主部3が2つずつ配置されている。従って、集塵装置1は、集塵フィルタ層6で流路8が複数のセル9に仕切られており、各セル9には、少なくとも1つの放電極主部3が配置されている状態である。
また、隣り合うセル9の間を仕切る集塵フィルタ層6は、いずれの方向にもガスが通過可能である。つまり、この集塵装置1は、実施例2における集塵装置1の集塵フィルタ層6から内側の部分を、集塵フィルタ層6を挟んで隣り合わせに複数並べて、1つの外殻2で覆った形状に相当する。
隣り合うセル9を仕切る集塵フィルタ層6と放電極放電部4の先端4aとの間には、アース電極5が配置されている。電源7は、各アース電極5と各放電極主部3とのそれぞれに接続され、放電極放電部4からアース電極5に向かってイオン風を発生させる電圧を印加する。
また、隣り合うセル9に配置される放電極放電部4の先端4aが指し示す方向は、流路8を横切る方向へ互いに対向する向きからずれている。具体的には、隣り合うセル9の放電極放電部4の先端4aは、流路8を横切る方向について隣のセル9に配置された放電極放電部4の先端4a同士の間に向けられる。つまり、同じセル9内に配置された放電極放電部4の先端4a同士の距離(ピッチ)Sに対して半ピッチずれた位置に隣のセル9内に配置された放電極放電部4の先端4aが位置する。
同じセル9内において流路8を横切る方向に隣り合う放電極放電部4の先端4aからアース電極5に下ろした垂線の交点同士の距離Sは、他の実施例の場合と同様に、放電極放電部4の先端4aとアース電極5との間の距離Dに対して、0.8〜3Dであることが好ましい。従って、隣り合うセル9にそれぞれ1つずつ放電極主部3がある場合、放電極放電部4の先端4aとアース電極5との間の距離Dと同じか、またはそれ以上、流路8を横切る方向に離れた位置にそれぞれの放電極放電部4の先端4aが向くように配置する。
また、放電極放電部4は、実施例2における放電極放電部4と同様に、同じ放電極主部3上の複数箇所に設けられている。この場合、放電極放電部4は、同じセル9内の隣り合う放電極主部3同士、及び隣り合うセル9内の放電極主部3同士において、流路8に沿う方向に放電極主部3上の位置が揃っている。
以上のように構成された集塵装置1は、粒子状物質を含むガスが流路8に流れると、このガス中の粒子状物質を放電極放電部4の先端4aから発生するコロナ放電により帯電させて、アース電極5に引付ける。また、放電極放電部4の先端4aからアース電極5に向けて発生するイオン風によって、ガスをアース電極5に向けて加速する。流路8を横切る方向に加速されたガスは、アース電極5を通過し、集塵フィルタ層6に流入する。隣り合うセル9を分割している集塵フィルタ層6は、いずれの方向にもガスを通過させるので、集塵フィルタ層6に進入したガスは、そのまま隣のセル9内に流入する。
ガスが流入してきた側のセル9では、ガスが流入してきた位置からずれた位置、すなわち隣のセル9の放電極放電部4と対向する位置からずれた位置、もしくは隣のセル9の放電極放電部4がある位置の間に向けて放電極放電部4が設けられている。そして、ガスが流入してきた側のセル9の放電極放電部4からも同様にイオン風が発生している。このイオン風によって、隣のセル9からガスが流入してきた位置からずれた位置、もしくはガスが流入してきた位置の間から隣のセル9へガスが流出する。
つまり、放電極放電部4が発生するイオン風によって、図7にて矢印で示すように、隣り合うセル9同士の間でガスが循環される。このように、ガスが流路8を横切る方向に循環されることで、ガスが集塵フィルタ層6を繰り返し通過するようになるので、静電気力でアース電極5に引付けられない粒子状物質であっても、捕集される率が向上する。また、一方のセル9から他方のセル9にガスが流れる位置が交互に設けられるので、効率良くガスの流れを循環、攪拌することができ、ガス中に含まれる粒子状物質を集塵フィルタ層6に通過させる確率が高い。つまり、粒子状物質を効率良く捕集することができる。
なお、この実施例4では、左右端部のセル9の外殻2側に配置された集塵フィルタ層6がアース電極5と外殻2の間の全空間を充填している状態を示している。しかし、他の実施例における説明と同様の理由によって、使用条件によって集塵フィルタ層6の厚さをアース電極5と外殻2との間隔距離より薄く設定する場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2の間に空間が存在することも有り得る。
図8は、本発明の実施例5に係る集塵装置にて流路を横切る方向の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例5において、図8に示すように、集塵装置1は、上述した実施例4における集塵装置1と放電極主部3の配置が異なる。つまり、この集塵装置1の放電極主部3は、実施例3における集塵装置1の放電極主部3と同じ向きに設けられている。そして、各セル9における各放電極放電部4の配置及び隣り合うセル9同士における放電極放電部4の相対的な配列は、実施例4における集塵装置1と同じである。
従って、この集塵装置1は、実施例3における集塵装置1が有する効果と実施例4における集塵装置1が有する効果との両方の効果を有する。
図9は、本発明の実施例6に係る集塵装置にて流路を横切る方向の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例6において、図9に示すように、左右端部のセル9の外殻2側に配置された集塵フィルタ層6がアース電極5と外殻2との間の全空間を充填している状態を示している。しかし、実施例1における説明と同様の理由によって、使用条件によって集塵フィルタ層6の厚さをアース電極5と外殻2の間隔距離より薄く設定すべき場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2との間に空間が存在することも有り得る。
本実施例の集塵装置1において、集塵装置1は、流路8を集塵フィルタ層6で格子状に仕切り、複数のセル9を形成している。各セル9には、1つの放電極主部3がそれぞれ配置されている。放電極放電部4は、隣り合うセル9に配置された放電極放電部4と対向しないように設けられている。つまり、放電極放電部4は、隣り合う一方のセル9から他方のセル9に向かって延びる刺状に各放電極主部3に設けられている。そして、ガスが流れ込んで来る方位のセル9に対して90°方位の異なる別の隣り合うセル9に向けて、放電極放電部4が設けられている。また、各放電極主部3及びアース電極5には、電源が接続され、放電極放電部4からアース電極5に向けてイオン風を発生させる電圧が印加される。
このように構成された集塵装置1は、集塵フィルタ層6で流路8を格子状に仕切って複数のセル9を形成し、隣り合うセル9に配置される放電極放電部4の先端4aが対向しないように配置されており、ガスが流入してきたセル9と90°方位の異なる別の隣り合うセル9に向けてガスを流出するように、流路8を横切る方向にガスをイオン風で循環させる。外殻2と接する位置に配置されたセル9から外殻2に向かってイオン風で加速されたガスは、外殻2に沿って設けられる集塵フィルタ層6に進入し、集塵フィルタ層6の中を通過してイオン風が吹き付けられていない部位から流路内に戻るように循環する。従って、イオン風を効率良く利用して流路断面内全体にわたってガスを効率良くかつ満遍なく流路8を横切る方向に循環させることができる。
なお、本実施例では、左右及び上下端部のセル9の外殻2側に設置された集塵フィルタ層6がアース電極5と外殻2の間の全空間を充填している状態を示している。しかし、実施例1における説明と同様の理由によって、使用条件によっては、集塵フィルタ層5の厚さをアース電極5と外殻2の間隔距離より薄く設定すべき場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2の間に空間が存在することも有り得る。
図10は、本発明の実施例7に係る集塵装置にて流路を横切る方向の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例7において、図10に示すように、集塵装置1は、実施例6における集塵装置1のセル9の配置を六角格子状、いわゆるハニカム状に置換えたものである。各セル9には、流路8に沿う方向に1つの放電極主部3が設けられている。放電極放電部4は、各放電極主部3から流路8を横切る方向に延びる刺状に形成されており、先端4aが120°毎に離れる3方向に向けて設けられている。つまり、セル9を構成する6つの面に対して1つ置きの3つの面に向かって延びるように放電極放電部4が配置されている。
放電極放電部4は、流路8に沿って放電極主部3上の複数箇所に設けられている。放電極放電部4の先端4a同士の距離Sは、流路8を横切る方向に比べて流路8に沿う方向に短くなるように設けると、流路8内のガスが流路8を横切る方向に積極的に対流されるようになる。また、隣り合うセル9同士の放電極放電部4の先端4aは、互いに対向しないように配置される。各放電極主部3及びアース電極5には、電源が接続され、放電極放電部4からアース電極5に向かってイオン風を発生させる電圧が印加される。
このように構成された集塵装置1の流路8にガスが流れると、放電極放電部4の先端4aから発生するイオン風によってガスは、放電極放電部4の先端4aが向く方向に隣り合うセル9に向かって加速される。加速されたガスは、アース電極5及び集塵フィルタ層6を通過し、隣のセル9に流れ込む。隣のセル9から流れ込んできたガスは、流れ込んできたセル9の方位と60°方位の異なる別の隣り合うセル9に向かって延びる放電極放電部4が発生するイオン風によって、放電極放電部4の延びる方向に加速され、ガスが流れ込んできたセル9の方位と60°方位の異なる別の隣り合うセル9に流出させられる。また、外殻2と接する位置に配置されるセル9から外殻2に向かって加速されたガスは、外殻2に沿って設けられた集塵フィルタ層6に進入し、集塵フィルタ層6の中を通過してイオン風が吹き付けられていない位置から流路8に戻るように対流・循環する。
このように、実施例7における集塵装置1は、実施例6における集塵装置1に比べて、より多くの循環流を形成することができる。従って、集塵装置1は、ガスに含まれる粒子状物質を効率良く捕集することができる。
なお、この実施例7において、外殻2に隣接して設置された集塵フィルタ層6がアース電極5と外殻2の間の全空間を充填している状態を示しているが、実施例1における説明と同様の理由によって、集塵フィルタ層6の厚さをアース電極5と外殻2の間隔距離より薄く設定すべき場合もある。そのような場合は、アース電極5に隣接して配置される集塵フィルタ層6と外殻2の間に空間が存在することも有り得る。
また、実施例6では、各セル9の断面が正方形の場合を例示し、実施例7では、各セル9の断面が六角形の場合を例示しているが、セル9の断面形状は、これらに限定されるものではない。さらに、これらの実施例において、各セル9毎に1本の放電極主部3を配した例を示しているが、放電極主部3の数は各セル9毎に1本に限定されるものではない。例えば、実施例4または実施例5のように、矩形断面の各セル9に複数の主電源3を配置する組み合わせも、本発明の範囲内である。
なお、各実施例におけるアース電極5は、イオン風を発生させたい方向に位置する部分のみに配置するようにしても良い。つまり、実施例6及び実施例7における集塵装置1のアース電極5は、放電極主部3を囲うように設けなくても、放電極放電部4が向けられた集塵フィルタ層6と放電極放電部4との間にのみ配置し、隣り合うセル9からガスが流れ込んでくる範囲に配置されていなくても良い。
また、各実施例の説明では、集塵装置1で捕集した粒子状物質を系外(装置外)へ除去する方法については触れていないが、捕集した粒子状物質が、例えばカーボンのような可燃性物質であれば、集塵フィルタ層6にヒータを組み合わせ、粒子状物質を完全燃焼させることによって除去するなどの手段を用いることが可能である。また、粒子状物質を従来の湿式EPのような手段、例えば水などを用い、集塵フィルタ層6を清浄化する手段と組み合わせて粒子状物質を系外に可能であることはいうまでもない。
図11から図13は、本発明の第8実施例に係る集塵装置における放電電極とアース電極と集塵フィルタ層の配置関係の一例を表す概略図、図14は、アース極の開口率に対する集塵性指数比を表すグラフ、図15は、集塵フィルタ層における圧力損失の抵抗係数に対する集塵性指数比を表すグラフ、図16は、集塵フィルタ層における圧力損失の抵抗係数に対する集塵性指数比を表すグラフである。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
本発明の集塵装置は、上述した各実施例で説明したように、主ガスの流れに交差する流路断面内において、主ガス流の影響が少なくイオン風に起因の二次流れを発生できることに着目したものであり、粒子状物質を帯電させて静電気力でアース電極に捕集すると共に、流路を流れるガスをイオン風によって対流させ、ガスが3次元的にらせん状に回転することで集塵フィルタ層に対して繰り返し通過し、帯電し難い微小粒子径の粒子状物質をより多く集塵フィルタ層に捕集することができるものである。
この場合、放電電極に対してアース電極及び集塵フィルタ層の開口率(空隙率、圧力損失)が大きな影響を与えるものとなっている。実施例8では、アース電極及び集塵フィルタ層の構成を明確にする。
まず、放電電極とアース電極と集塵フィルタ層との配置関係について説明する。図11に示す例では、2つの集塵フィルタ層6が隣り合うように配置され、その各表面にアース電極5が設けられており、この各アース電極5に対して、先端4aが所定距離だけ離れて放電極放電部4が配置されている。そして、左右の放電極放電部4の先端4aが指し示す方向は、流路8を横切る方向へ互いに対向する向きからずれている。なお、放電極放電部4の先端4aからアース電極5に下ろした垂線の交点同士の距離は上述した各実施例の場合と同様にすることが好ましい。
従って、粒子状物質を含むガスが流路8に流れると、このガス中の粒子状物質を放電極放電部4の先端4aから発生するコロナ放電により帯電させてアース電極5に引付ける。また、放電極放電部4の先端4aからアース電極5に向けて発生するイオン風によって、ガスをアース電極5に向けて加速する。一方の流路8を横切る方向に加速されたガスは、アース電極5及び集塵フィルタ層6を通過し、他方の流路8に流れ込む。ガスが流入してきた他方の流路8では、ガスが流入してきた位置からずれた位置に放電極放電部4が設けられており、この放電極放電部4からも同様にイオン風が発生し、加速されたガスがアース電極5及び集塵フィルタ層6を通過して一方の流路8に流れ込む。即ち、各放電極放電部4が発生するイオン風によって、隣り合う流路8同士の間でガスが循環され、3次元的にらせん状に回転しながら移動することで、このガスが集塵フィルタ層6を繰り返し通過することとなり、ここで粒子状物質が確実に捕集される。
また、図12に示す例では、2つの集塵フィルタ層6が隣り合うように配置され、その各表面にアース電極5が設けられ、この各アース電極5に対して、先端4aが所定距離だけ離れて放電極放電部4が配置されている。そして、左右の放電極放電部4の先端4aが指し示す方向は、流路8を横切る方向へ互いに対向している。
従って、粒子状物質を含むガスが流路8に流れると、コロナ放電によりガス中の粒子状物質が帯電し、且つ、イオン風によってガスがアース電極5に向けて加速する。一方の流路8を横切る方向に加速されたガスは、アース電極5を通過して集塵フィルタ層6に流れ込む。他方の流路8では、一方の流路8の放電極放電部4に対向して放電極放電部4が設けられており、この放電極放電部4からも同様にイオン風が発生し、加速されたガスがアース電極5を通過して集塵フィルタ層6に流れ込む。即ち、各放電極放電部4が発生するイオン風によって、ガスが各流路8毎に3次元的にらせん状に回転しながら移動することで、このガスが集塵フィルタ層6を繰り返し通過することとなり、ここで粒子状物質が確実に捕集される。
また、図13に示す例では、2つの集塵フィルタ層6が隣り合うように配置され、その各表面にアース電極5が設けられ、この各アース電極5に対して、先端4aが所定距離だけ離れて放電極放電部4が配置されている。そして、左右の集塵フィルタ層6の間に仕切板10が設けられている。
従って、粒子状物質を含むガスが流路8に流れると、コロナ放電によりガス中の粒子状物質が帯電し、且つ、イオン風によってガスがアース電極5に向けて加速する。各流路8を横切る方向に加速されたガスは、アース電極5を通過して集塵フィルタ層6に流れ込むこととなり、各放電極放電部4が発生するイオン風によって、ガスが各流路8毎に3次元的にらせん状に回転しながら移動することで、このガスが集塵フィルタ層6を繰り返し通過することとなり、ここで粒子状物質が確実に捕集される。
このように放電極放電部4がとアース電極5と集塵フィルタ層6との配置関係は、多数考えられるものであり、上述した例以外にも、隣り合う2つの集塵フィルタ層6を一体に構成したり、集塵フィルタ層6と仕切板10とを密着させたり、隙間を設けたりしても良いものであり、これらに限定されるものではない。
このように構成させた集塵装置にて、アース電極5の開口率を、65%〜85%に設定することが望ましい。ここで、集塵装置における集塵効率ηはよく知られた下記のドイチェの数式により算出することができる。なお、wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
η=1−exp(−w×f)
この数式から集塵性指数wが大きいほど集塵効率ηが高くなることがわかる。
図14に表すグラフは、アース極の開口率に対する集塵性指数の比を表すものであり、アース極の開口率を変化させたときの集塵性指数比の変化度合を実験により求めたものである。従って、図14のグラフに示すように、300より高い集塵性指数比を確保することができる領域は、アース電極の開口率が65%〜85%となる領域となっている。この場合、アース電極の開口率が65%より低いと、ガス中の粒子状物質を確実にイオン風とともに集塵フィルタ層へ導くことができなくなり、イオン風を有効に利用することができず、大きな性能向上が期待できない。逆に、アース電極の開口率が85%より高いと、たとえば金網で構成する場合には、細い線径のワイヤが間引き去れて配置されるため、イオン風が供給可能な十分な電流が流れることなく、その表面電位が上昇して火花放電にいたるため、性能上の制約が生じる。なお、図14に表すグラフにて、集塵性指数比は、基準値として従来の構造、すなわち鉄板のアース電極の集塵性指数を100とした相対比較を示しているため、開口率が0%のときに指数が100を示している。
この場合、アース電極5の開口率を集塵フィルタ層6の開口率より大きく設定することが望ましい。即ち、アース電極5は、放電極放電部4からのコロナ放電を受けて粒子状物質を帯電させて引付けるためのものであり、一方、集塵フィルタ層6は帯電した粒子状物質を捕集するためのものであり、アース電極5には、できるだけ粒子状物質が集塵フィルタ層に導入することができるようにする必要がある。但し、集塵フィルタ層6は、積層した金網やポーラスなセラミックスなどにより構成されており、開口率に代えて空隙率で表すほうが適正であり、この場合、アース電極5の空隙率を集塵フィルタ層6の空隙率より大きく設定すればよい。
また、上述した集塵装置にて、集塵フィルタ層6における圧力損失の抵抗係数を、2〜300に設定することが望ましい。ここで、前述したように、集塵装置における集塵効率ηは下記数式により算出することができる。
η=1−exp(−w×f)
この数式から集塵性指数wが大きいほど集塵効率ηが高くなることがわかる。
また、集塵層フィルタにおける圧力損失ΔPは下記数式により算出することができる圧力損失係数を適正化することで、高い集塵性を確保することができる。ここで、ξは、圧力損失の抵抗係数、γは、ガスの比重、Vは、集塵フィルタ層の通過流速、gは、重力である。
ΔP=ξ×γ×V2/2g
なお、圧力損失の抵抗係数ξは、圧力損失ΔPをmmaqとして算出したデータである。
図15及び図16のグラフは、集塵フィルタ層における圧力損失の抵抗係数に対する集塵性指数比であり、図15は粒子状物質としてフライアッシュダストを用い、図16は粒子状物質としてディーゼル排ガスダストを用いた場合のデータであり、上述した圧力損失ΔPの数式に基いて、圧力損失の抵抗係数を変化させたときの集塵性指数比の変化度合を実験により求めたものである。従って、図15及び図16のグラフに示すように、高い集塵性指数比を確保することができる領域は、圧力損失の抵抗係数が2〜300となる領域となっている。
即ち、圧力損失係数が少ない場合には、イオン風による2次流れにより誘起されたガスはフィルタ層に十分導入することができ、本来の目的は達成可能であるが、フィルタ層の空隙率が極端に大きすぎるため、すなわちフィルタ層としては空隙が大きすぎるため、粒子状物質が十分に捕集されないまま再びガスに戻されるため、十分な効率が達成できない。また、逆に圧力損失係数が大きい場合には、イオン風による2次流れにより誘起されたガスはフィルタ層に十分導入することができないため、十分な効率が達成できない。
なお、図15及び図16に表すグラフにて、集塵性指数比は、基準値として、鉄板のアース電極の集塵性指数を100とした相対比較を示している。この場合、圧力損失の抵抗係数は無限大であるが、圧力損失の抵抗係数を100000としたときに、集塵性指数比を100としている。
以上のように、本発明に係る集塵装置は、ガス中の粒子状物質を帯電させると共にイオン風によって主ガス流れに沿ってガス通路と集塵フィルタ層の間を循環させ、ガスを集塵フィルタ層に対して繰り返し通過させながら粒子状物質を捕集するものであり、ガス中の微粒子を効率的に捕集する集塵装置に有用であり、特に、微細な粒子上物質を含むガスを取り扱う処理に適している。
図1は、本発明の第1実施例に係る集塵装置の一部を断面として表す斜視図である。 図2は、図1のII−II断面図である。 図3は、本発明の第2実施例に係る集塵装置の一部を断面として表す斜視図である。 図4は、図3のIV−IV断面図である。 図5は、本発明の第3実施例に係る集塵装置の一部を断面として表す斜視図である。 図6は、図5のVI−VI断面図である。 図7は、本発明の第4実施例に係る集塵装置にて流路を横切る方向の断面図である。 図8は、本発明の第5実施例に係る集塵装置にて流路を横切る方向の断面図である。 図9は、本発明の第6実施例に係る集塵装置にて流路を横切る方向の断面図である。 図10は、本発明の第7実施例に係る集塵装置にて流路を横切る方向の断面図である。 図11は、本発明の第8実施例に係る集塵装置における放電電極とアース電極と集塵フィルタ層の配置関係の一例を表す概略図である。 図12は、本発明の第8実施例に係る集塵装置における放電電極とアース電極と集塵フィルタ層の配置関係の一例を表す概略図である。 図13は、本発明の第8実施例に係る集塵装置における放電電極とアース電極と集塵フィルタ層の配置関係の一例を表す概略図である。 図14は、アース極の開口率に対する集塵性指数比を表すグラフである。 図15は、集塵フィルタ層における圧力損失の抵抗係数に対する集塵性指数比を表すグラフである。 図16は、集塵フィルタ層における圧力損失の抵抗係数に対する集塵性指数比を表すグラフである。
符号の説明
1 集塵装置
2 外殻
3 放電極主部(放電電極)
4 放電極放電部(放電電極)
4a 先端
5 アース電極
6 集塵フィルタ層
7 電源
8 流路
9 セル
D 放電電極の先端とアース電極との距離
S 隣り合う放電電極の先端同士のアース電極に沿う展開長さ

Claims (2)

  1. 粒子状物質を含むガスを流すガス流路と、
    前記ガス流路に沿って設けられてこのガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有するアース電極と、
    前記アース電極に隣接して設けられて前記ガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有すると共に内部に流入したガスを前記流路内の前記ガスの流れに沿う方向にガスを通過させる開口率を有する集塵フィルタ層と、
    前記流路内に先端が前記アース電極と所定間隔離間して設けられる放電電極とを具え、 高電圧を印加して前記放電電極と前記アース電極との間に前記放電電極の放電部から前記アース電極へ前記ガスの流れに直交する断面内で先端の両側に前記集塵フィルタ層を繰り返し通過するように循環する二次流れを誘起形成するイオン風を発生させることで前記ガス流路と前記集塵フィルタ層との間でらせん状のガス流れを生成し、
    前記アース電極は、65%から85%の開口率を有することを特徴とする集塵装置。
  2. 粒子状物質を含むガスを流すガス流路と、
    前記ガス流路に沿って設けられてこのガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有するアース電極と、
    前記アース電極に隣接して設けられて前記ガスの流れと交差する流路断面内に沿ってガスを通過させる開口率を有すると共に内部に流入したガスを前記流路内の前記ガスの流れに沿う方向にガスを通過させる開口率を有する集塵フィルタ層と、
    前記流路内に先端が前記アース電極と所定間隔離間して設けられる放電電極とを具え、
    高電圧を印加して前記放電電極と前記アース電極との間に前記放電電極の放電部から前記アース電極へ前記ガスの流れに直交する断面内で先端の両側に前記集塵フィルタ層を繰り返し通過するように循環する二次流れを誘起形成するイオン風を発生させることで前記ガス流路と前記集塵フィルタ層との間でらせん状のガス流れを生成し、
    前記集塵フィルタ層は、2から300の圧力損失の抵抗係数を有することを特徴とする集塵装置。
JP2005513458A 2003-08-29 2004-08-26 集塵装置 Active JP4823691B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513458A JP4823691B2 (ja) 2003-08-29 2004-08-26 集塵装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003209808 2003-08-29
JP2003209808 2003-08-29
JP2005513458A JP4823691B2 (ja) 2003-08-29 2004-08-26 集塵装置
PCT/JP2004/012288 WO2005021161A1 (ja) 2003-08-29 2004-08-26 集塵装置

Publications (2)

Publication Number Publication Date
JPWO2005021161A1 JPWO2005021161A1 (ja) 2006-10-26
JP4823691B2 true JP4823691B2 (ja) 2011-11-24

Family

ID=34263973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513458A Active JP4823691B2 (ja) 2003-08-29 2004-08-26 集塵装置

Country Status (9)

Country Link
US (1) US7316735B2 (ja)
EP (1) EP1658901B1 (ja)
JP (1) JP4823691B2 (ja)
KR (1) KR100750510B1 (ja)
CN (1) CN1791468B (ja)
DK (1) DK1658901T3 (ja)
HK (1) HK1090874A1 (ja)
TW (1) TWI246438B (ja)
WO (1) WO2005021161A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210283621A1 (en) * 2018-08-01 2021-09-16 Mitsubishi Power Environmental Solutions, Ltd. Electrostatic precipitator
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750510B1 (ko) * 2003-08-29 2007-08-20 미츠비시 쥬고교 가부시키가이샤 집진 장치
GB0616916D0 (en) * 2006-08-26 2006-10-04 Secr Defence An electrostatic precipitator
US7559976B2 (en) * 2006-10-24 2009-07-14 Henry Krigmont Multi-stage collector for multi-pollutant control
JP4873564B2 (ja) * 2007-03-29 2012-02-08 トヨタ自動車株式会社 排ガス浄化装置
DE102007025416B3 (de) * 2007-05-31 2008-10-23 Marcel Op De Laak Verfahren und Vorrichtung zum Abscheiden von Verunreinigungen aus einem Gasstrom
KR100905024B1 (ko) * 2007-09-14 2009-06-30 최운선 집진부와 이를 구비한 전기집진장치
US7582145B2 (en) * 2007-12-17 2009-09-01 Krigmont Henry V Space efficient hybrid collector
US7582144B2 (en) * 2007-12-17 2009-09-01 Henry Krigmont Space efficient hybrid air purifier
CN101978116A (zh) * 2007-12-17 2011-02-16 代尔夫特科技大学 电场用于移除气态流体中的微滴
KR101450551B1 (ko) * 2008-02-21 2014-10-15 엘지전자 주식회사 조리기기의 냄새제거장치 및 상기 냄새제거장치를 포함하는조리기기.
US20090249952A1 (en) * 2008-04-03 2009-10-08 Corning Incorporated Method and system for sorption of liquid or vapor phase trace contaminants from a fluid stream containing an electrically charged particulate
US7597750B1 (en) * 2008-05-12 2009-10-06 Henry Krigmont Hybrid wet electrostatic collector
DE102008059113A1 (de) * 2008-11-26 2010-05-27 Eads Deutschland Gmbh Vorrichtung zur Sammlung von stark elektronenaffinen Partikeln
DE102011053578A1 (de) * 2011-09-13 2013-03-14 Woco Industrietechnik Gmbh Gegenelektrode und Vorrichtung zum Abscheiden von Verunreinigungen mit einer solchen Gegenelektrode
KR101287915B1 (ko) * 2011-09-14 2013-07-18 주식회사 리트코 허니컴대전부를 갖는 양방향 유도전압 정전필터
KR101199552B1 (ko) * 2011-11-04 2012-11-12 서울특별시도시철도공사 허니컴대전부를 갖는 유도전압 전기집진장치
KR101199554B1 (ko) * 2011-11-04 2012-11-12 서울특별시도시철도공사 멀티크로스핀 이오나이저를 이용한 유도전압 전기집진장치
JP6028348B2 (ja) * 2012-03-14 2016-11-16 富士電機株式会社 電気集塵装置
KR102076660B1 (ko) * 2012-06-21 2020-02-12 엘지전자 주식회사 공기 조화기 및 그 제어방법
WO2014122756A1 (ja) 2013-02-07 2014-08-14 三菱重工メカトロシステムズ株式会社 集塵装置、集塵装置の電極選定方法及び集塵方法
TWI579052B (zh) * 2013-06-20 2017-04-21 Electrostatic dust collector and air cleaning equipment to prevent contamination of the electrode
FR3010642B1 (fr) * 2013-09-13 2015-10-09 Commissariat Energie Atomique Collecteur electrostatique
WO2015082522A1 (de) * 2013-12-04 2015-06-11 Thomas Mayer Druckluft-aufbereitungskammer
FR3019474B1 (fr) * 2014-04-07 2019-08-02 Daniel Teboul Dispositif de filtration
CN103996976A (zh) * 2014-04-30 2014-08-20 上海育丰电器发展有限公司 一种负离子发生器
US20170198926A1 (en) * 2014-10-03 2017-07-13 Mitsubishi Electric Corporation Humidity control apparatus
DE102014225203A1 (de) * 2014-12-09 2016-06-09 Sms Elex Ag Elektrofilter zum Reinigen von Gas
US10933430B2 (en) * 2015-03-19 2021-03-02 Woco Industrietechnik Gmbh Device and method for separating off contaminants
KR101790842B1 (ko) * 2015-06-16 2017-11-21 한국기계연구원 폭발성 배기가스 입자의 정전 제거 장치 및 이를 이용한 폭발성 배기가스 입자의 정전 제거 방법
KR20170051893A (ko) * 2015-11-03 2017-05-12 현대자동차주식회사 전기식 집진필터
CN105498968A (zh) * 2015-12-07 2016-04-20 北京国能中电节能环保技术有限责任公司 一种平齿湿式电除尘器中的阴极线
KR102165516B1 (ko) 2015-12-08 2020-10-14 주식회사 엔아이티코리아 링 커넥터 구조의 집진 셀 구조체 및 링 커넥터 구조의 집진 전극의 제조 방법
US10256389B1 (en) * 2016-01-06 2019-04-09 Andrey Zykin LS grid core LED connector system and manufacturing method
CN105841226A (zh) * 2016-01-07 2016-08-10 浙江欧莱科机电制造有限公司 一种具有臭氧装置的空气处理器
US10399091B2 (en) 2016-01-08 2019-09-03 Korea Institute Of Machinery & Materials Electrostatic precipitation device for removing particles in explosive gases
KR101973018B1 (ko) * 2016-11-29 2019-04-26 한국기계연구원 폭발성 배기가스 입자의 정전 제거 장치
CN105727676B (zh) * 2016-04-12 2018-03-06 昆明理工大学 一种电磁协同电滤除尘的方法及装置
US20170354980A1 (en) 2016-06-14 2017-12-14 Pacific Air Filtration Holdings, LLC Collecting electrode
US10882053B2 (en) 2016-06-14 2021-01-05 Agentis Air Llc Electrostatic air filter
CN106000643A (zh) * 2016-07-11 2016-10-12 天津华派集装箱制造有限公司 一种用于除尘的高压静电吸附器
US10828646B2 (en) * 2016-07-18 2020-11-10 Agentis Air Llc Electrostatic air filter
EP3504007B1 (en) * 2016-08-26 2022-01-12 Plasma Shield Limited A gas purifying apparatus
US20180200671A1 (en) * 2017-01-13 2018-07-19 EnviroEnergy Solutions, Inc. WET ELECTROSTATIC GAS CLEANING SYSTEM WITH NON-THERMAL PLASMA FOR NOx REDUCTION IN EXHAUST
US10744456B2 (en) * 2017-01-13 2020-08-18 EnviroEnergy Solutions, Inc. Wet electrostatic gas cleaning system with non-thermal plasma for NOx reduction in exhaust
US10864526B2 (en) * 2017-05-03 2020-12-15 Airgard, Inc. Electrode for electrostatic precipitator gas scrubbing apparatus
US10518271B2 (en) * 2017-06-02 2019-12-31 Genano Oy Device and method for separating materials
FR3082760A1 (fr) * 2018-06-22 2019-12-27 Daniel Teboul Dispositif de purification d'un milieu gazeux charge de particules
TWI686238B (zh) * 2018-08-01 2020-03-01 日商三菱日立電力系統環保股份有限公司 電氣集塵裝置
KR102137879B1 (ko) * 2018-09-05 2020-07-28 한국기계연구원 폭발성 배기가스 입자의 정전 제거 장치
US10792673B2 (en) 2018-12-13 2020-10-06 Agentis Air Llc Electrostatic air cleaner
US10875034B2 (en) 2018-12-13 2020-12-29 Agentis Air Llc Electrostatic precipitator
KR102245787B1 (ko) * 2019-06-03 2021-04-29 한국기계연구원 폭발성 배기가스 입자의 정전 제거 장치
IL298904A (en) * 2020-06-11 2023-02-01 Edwards Ltd electrostatic precipitator
KR102431135B1 (ko) * 2020-10-27 2022-08-10 주식회사 셈스 마찰전기에 기초한 나노 와이어를 이용한 공기 중 병원체 제거 장치
CN217109926U (zh) * 2021-05-12 2022-08-02 微喂苍穹(上海)健康科技有限公司 一段式空气消毒装置
CN114159990A (zh) * 2021-12-03 2022-03-11 河海大学 一种用于物料中碳纤维分散的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119355A (ja) * 1981-12-30 1983-07-15 Ono Kagaku Kikai Kk 電気集じん装置
JPH02184357A (ja) * 1989-01-12 1990-07-18 Mitsubishi Heavy Ind Ltd 除じん装置
JPH0537352U (ja) * 1991-10-25 1993-05-21 テイアツク株式会社 静電式空気清浄装置
JP2001038243A (ja) * 1999-08-02 2001-02-13 Nippon Mesh Kogyo Kk 電気集塵装置
JP2002126573A (ja) * 2000-10-26 2002-05-08 Ohm Denki Kk 電気集塵装置
JP2003509615A (ja) * 1999-09-14 2003-03-11 トゥブール,ダニエル 内燃機関を備える発動機の排気ガス処理装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US512265A (en) * 1894-01-09 Emile andreoli
US1605648A (en) * 1921-03-07 1926-11-02 Milton W Cooke Art of separating suspended matter from gases
US2195431A (en) * 1935-10-09 1940-04-02 Koppers Co Inc Gas treating apparatus
US2505907A (en) * 1946-10-31 1950-05-02 Research Corp Discharge electrode
US3257779A (en) * 1961-09-15 1966-06-28 Strubler Gordon Electrostatic agglomerator having an improved discharge electrode structure
US3421050A (en) * 1965-04-23 1969-01-07 Transcontinental Gas Pipeline Method of and apparatus for suspending particles in a conduit
DE2134576C3 (de) * 1971-07-10 1975-10-30 Metallgesellschaft Ag, 6000 Frankfurt Röhre n-NaBelektroabscheider
CH629684A5 (de) * 1977-05-12 1982-05-14 Manfred R Burger Verfahren und elektrostatische filtervorrichtung zur reinigung von gasen.
US4357151A (en) * 1981-02-25 1982-11-02 American Precision Industries Inc. Electrostatically augmented cartridge type dust collector and method
US4969328A (en) * 1986-10-21 1990-11-13 Kammel Refaat A Diesel engine exhaust oxidizer
JPH0263560A (ja) 1988-08-30 1990-03-02 Mitsubishi Heavy Ind Ltd 除じん装置
JP2995935B2 (ja) 1991-08-02 1999-12-27 日本電気株式会社 Cmlゲート回路
JPH05154409A (ja) * 1991-12-10 1993-06-22 Toshiba Corp 電気集塵機
US5254155A (en) * 1992-04-27 1993-10-19 Mensi Fred E Wet electrostatic ionizing element and cooperating honeycomb passage ways
US5474599A (en) * 1992-08-11 1995-12-12 United Air Specialists, Inc. Apparatus for electrostatically cleaning particulates from air
US6004375A (en) * 1994-01-13 1999-12-21 Gutsch; Andreas Process and apparatus to treat gasborne particles
KR100423862B1 (ko) * 1995-08-08 2004-06-12 갤럭시 유겐 가이샤 전기집진장치
JP3191264B2 (ja) * 1997-02-27 2001-07-23 ギャラクシー有限会社 電気集塵装置および焼却炉
FI108992B (fi) * 1998-05-26 2002-05-15 Metso Paper Inc Menetelmä ja laite hiukkasten erottamiseksi ilmavirrasta
US6224653B1 (en) * 1998-12-29 2001-05-01 Pulsatron Technology Corporation Electrostatic method and means for removing contaminants from gases
FI118152B (fi) * 1999-03-05 2007-07-31 Veikko Ilmari Ilmasti Menetelmä ja laite hiukkas- ja/tai pisaramuodossa olevien materiaalien erottamiseksi kaasuvirtauksesta
US6193782B1 (en) * 1999-03-30 2001-02-27 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators and method
US6294003B1 (en) * 1999-03-30 2001-09-25 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators
US6656248B2 (en) * 2001-10-03 2003-12-02 Moira Ltd. Method and apparatus to clean air
KR100750510B1 (ko) * 2003-08-29 2007-08-20 미츠비시 쥬고교 가부시키가이샤 집진 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119355A (ja) * 1981-12-30 1983-07-15 Ono Kagaku Kikai Kk 電気集じん装置
JPH02184357A (ja) * 1989-01-12 1990-07-18 Mitsubishi Heavy Ind Ltd 除じん装置
JPH0537352U (ja) * 1991-10-25 1993-05-21 テイアツク株式会社 静電式空気清浄装置
JP2001038243A (ja) * 1999-08-02 2001-02-13 Nippon Mesh Kogyo Kk 電気集塵装置
JP2003509615A (ja) * 1999-09-14 2003-03-11 トゥブール,ダニエル 内燃機関を備える発動機の排気ガス処理装置
JP2002126573A (ja) * 2000-10-26 2002-05-08 Ohm Denki Kk 電気集塵装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
US20210283621A1 (en) * 2018-08-01 2021-09-16 Mitsubishi Power Environmental Solutions, Ltd. Electrostatic precipitator

Also Published As

Publication number Publication date
WO2005021161A1 (ja) 2005-03-10
CN1791468B (zh) 2012-02-08
JPWO2005021161A1 (ja) 2006-10-26
DK1658901T3 (en) 2017-04-03
US7316735B2 (en) 2008-01-08
EP1658901A4 (en) 2009-02-25
EP1658901A1 (en) 2006-05-24
TW200518842A (en) 2005-06-16
HK1090874A1 (en) 2007-01-05
EP1658901B1 (en) 2017-03-01
CN1791468A (zh) 2006-06-21
TWI246438B (en) 2006-01-01
KR20050114263A (ko) 2005-12-05
KR100750510B1 (ko) 2007-08-20
US20060278082A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4823691B2 (ja) 集塵装置
JP6947830B2 (ja) 空気清浄に用いられる双極イオン発生器及び該双極イオン発生器を使用したサーキュラーディフューザー
JP6862207B2 (ja) 電気集塵装置及び湿式電気集塵装置
JP2010069360A (ja) 電気集塵装置
JP6210159B2 (ja) 粒子荷電装置
JP2016511691A (ja) 燃焼ガス、排出ガス、その他のための微粒子濾過装置と関連の出力回路
US20110308775A1 (en) Electrohydrodynamic device with flow heated ozone reducing material
KR20170097390A (ko) 초음파 인가를 통한 유해나노입자 제거장치
JP2009112916A (ja) 排ガス浄化装置
RU2765787C1 (ru) Электропылеуловитель
Niewulis et al. Influence of electrode geometric arrangement on the operation of narrow circular electrostatic precipitator
JP6953605B2 (ja) 電気集塵装置
KR101180038B1 (ko) 멀티힐릭스핀 이오나이저를 갖는 허니컴 집진부를 포함한 전기집진장치
RU2181466C1 (ru) Ионный вентилятор-фильтр
US20070145166A1 (en) Device and method for transport and cleaning of air
JP6684986B2 (ja) 電気集塵装置
US20160312809A1 (en) System and method for an electrostatic bypass
JP6671905B2 (ja) 集塵装置および空気調和装置
Zhang et al. Numerical simulation of the enhancing effect of micro–nano protrusions on electrostatic fog harvesting
Sayem et al. Performance assessment of an electrostatic precipitator of a coal-fired power plant—A case study for collecting smaller particles
JP7358216B2 (ja) 電気集塵装置
JPS6138642A (ja) 集塵装置
Iváncsy Investigation of Three Types of Collecting Plates for a Single-Stage ESP
EP3801915A1 (en) An electrostatic precipitator and a supply air device
Wen High-efficiency electrostatic precipitators

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350