JP4821640B2 - Cooling device for material to be cooled and steel plate cooled thereby - Google Patents

Cooling device for material to be cooled and steel plate cooled thereby Download PDF

Info

Publication number
JP4821640B2
JP4821640B2 JP2007031106A JP2007031106A JP4821640B2 JP 4821640 B2 JP4821640 B2 JP 4821640B2 JP 2007031106 A JP2007031106 A JP 2007031106A JP 2007031106 A JP2007031106 A JP 2007031106A JP 4821640 B2 JP4821640 B2 JP 4821640B2
Authority
JP
Japan
Prior art keywords
cooled
cooling medium
cooling
width direction
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007031106A
Other languages
Japanese (ja)
Other versions
JP2008194712A (en
Inventor
淳 小瀬川
晶 大西
洋一 原口
宗理 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007031106A priority Critical patent/JP4821640B2/en
Publication of JP2008194712A publication Critical patent/JP2008194712A/en
Application granted granted Critical
Publication of JP4821640B2 publication Critical patent/JP4821640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は、高温の被冷却材の冷却装置およびその冷却装置により冷却された材料に関し、さらに詳しくは、熱間圧延後の鋼板などのように移動ライン上を移動する高温の板状材料を上面から冷却する冷却装置、およびその冷却装置により冷却された鋼板に関する。   The present invention relates to a cooling apparatus for a high-temperature object and a material cooled by the cooling apparatus, and more specifically, a high-temperature plate-like material that moves on a moving line, such as a hot-rolled steel sheet, on the upper surface. The present invention relates to a cooling device that cools from below, and a steel plate cooled by the cooling device.

金属材料または金属製品(以下、総称して「金属材料」とも記す)の製造プロセスにおいては、例えば熱間圧延後の金属材料を冷却する場合のように、高温の材料を強制冷却することにより所望の金属組織や機械的特性を得る工程が多々存在する。金属材料製造プロセスにおける強制冷却は、一般に、被冷却材(冷却されるべき高温の材料)が移動するラインに設置された強制冷却装置内に被冷却材である金属材料を導入し、その表面に冷却水などの冷却媒体を吐出供給することにより行われる。   In a manufacturing process of a metal material or a metal product (hereinafter also collectively referred to as “metal material”), it is desired to forcibly cool a high-temperature material, for example, when cooling a metal material after hot rolling. There are many processes for obtaining the metallographic structure and mechanical properties. In forced cooling in the metal material manufacturing process, generally, a metallic material that is a cooling material is introduced into a forced cooling device installed in a line in which the cooling material (high-temperature material to be cooled) moves, and the surface thereof is introduced. This is performed by discharging and supplying a cooling medium such as cooling water.

被冷却材の強制冷却装置としては、具体的には、ライン上を移動する被冷却材の上方に、その底部に複数の冷却媒体吐出孔を有する冷却媒体収納容器(ヘッダ)を設置し、このヘッダに冷却媒体を供給して、冷却媒体吐出孔から被冷却材に冷却媒体を吐出供給することにより、被冷却材を冷却する方式のものが多く用いられている。   Specifically, as a forced cooling device for a material to be cooled, a cooling medium storage container (header) having a plurality of cooling medium discharge holes at the bottom is installed above the material to be cooled moving on the line. A cooling system is often used which supplies a cooling medium to the header and discharges and supplies the cooling medium from the cooling medium discharge hole to the cooling object.

金属材料に優れた材料特性を付与し、かつ被冷却材である金属材料の移動方向に対して直角方向の材料幅方向の品質変動を抑制するには、冷却媒体による金属材料の冷却能を材料幅方向で均一化することが重要であり、その試みが行われてきた。   In order to give excellent material properties to the metal material and to suppress the quality fluctuation in the material width direction perpendicular to the moving direction of the metal material to be cooled, the cooling ability of the metal material by the cooling medium is used as the material. It is important to make uniform in the width direction, and attempts have been made.

特許文献1には、移動中の金属製品に対してその上方から冷却剤(冷却媒体)を供給する孔を通して冷却剤を供給する冷却剤収納箱(冷却媒体収納容器)を有し、その収納箱は、内部に設けられた隔壁により、金属製品の幅方向中央部に対応する中央室と金属製品の二側域に対応する二側室との少なくとも三室に分割され、その隔壁は冷却剤収納箱内部に金属製品の移動方向に沿って縮小する流路を形成するように配置された冷却装置が開示されている。   Patent Document 1 has a coolant storage box (cooling medium storage container) for supplying coolant through a hole for supplying coolant (cooling medium) from above to a moving metal product, and the storage box Is divided into at least three chambers, a central chamber corresponding to the central portion in the width direction of the metal product, and a two-side chamber corresponding to the two side regions of the metal product, and the partition is inside the coolant storage box. Discloses a cooling device arranged to form a flow path that shrinks along the moving direction of the metal product.

同文献で開示された技術は、冷却剤収納箱の内部に設けられた隔壁を、冷却剤の流路が金属製品の移動方向に向かって縮小するように配置することにより側方部に供給する冷却剤の流量を減少させ、冷却される製品の温度分布の一様化を図るものである。しかしながら、後述するとおり、金属製品の幅方向中央部においては冷却剤が滞留する傾向があることから、幅方向中央部の冷却能が低下し、金属製品の幅方向の温度分布はそれほど均一化されない。   The technology disclosed in this document supplies a partition provided inside the coolant storage box to the side portion by arranging the coolant channel so that the coolant flow path is reduced in the moving direction of the metal product. The flow rate of the coolant is decreased to make the temperature distribution of the product to be cooled uniform. However, as will be described later, since the coolant tends to stay in the center part in the width direction of the metal product, the cooling ability in the center part in the width direction is lowered, and the temperature distribution in the width direction of the metal product is not so uniform. .

また、特許文献2および特許文献3には、鋼板の板幅方向端部の上下表面にマスキング板を配置し、鋼板に冷却水が接触しないように冷却する方法および冷却装置が開示されている。この技術は、鋼板上に噴射された冷却水が鋼板上面を幅方向に流れ落ちることにより板端部の水量密度が増加することに起因する板端部の過冷却の防止を図ったものである。   Patent Document 2 and Patent Document 3 disclose a method and a cooling device in which a masking plate is disposed on the upper and lower surfaces of the plate width direction end of the steel plate so that the cooling water does not contact the steel plate. This technique is intended to prevent overcooling of the plate end due to the fact that the cooling water sprayed onto the steel plate flows down the width of the steel plate in the width direction, thereby increasing the water density at the plate end.

しかし、マスキング板を使用した場合には、供給された冷却水が金属製品の幅方向中央部に留まりやすく、中央部の冷却能が低下して所望の温度分布を安定して得ることが難しい。   However, when a masking plate is used, the supplied cooling water tends to stay in the center part in the width direction of the metal product, and the cooling ability at the center part is lowered, making it difficult to stably obtain a desired temperature distribution.

さらに、特許文献4には、冷却すべき高温鋼材の上面に対向する面に複数のノズル孔が設けられた上部ヘッダ(冷却媒体収納容器)を、高温鋼材(被冷却材)の上面に配置し、ヘッダ内の冷却水をノズル孔から吐出させて鋼材の上面冷却を行うに際し、鋼材上面における冷却水の衝突圧力がノズル孔の直下で4.9kPa以上となるようにヘッダ内の冷却水をノズル孔から吐出させる冷却方法が開示されている。同文献で開示された技術は、冷却水の流れを層流とすることにより吐出直後の冷却水流の拡散による水圧の低下を防止し、鋼材上面の厚い滞留水膜を貫通させて水流を鋼材表面に到達させ、幅方向の均一冷却を図るものである。   Further, in Patent Document 4, an upper header (cooling medium storage container) in which a plurality of nozzle holes are provided on the surface facing the upper surface of the high temperature steel material to be cooled is disposed on the upper surface of the high temperature steel material (material to be cooled). When the cooling water in the header is discharged from the nozzle hole to cool the upper surface of the steel material, the cooling water in the header is nozzled so that the collision pressure of the cooling water on the upper surface of the steel material is 4.9 kPa or more immediately below the nozzle hole. A cooling method for discharging from a hole is disclosed. The technology disclosed in this document prevents a decrease in water pressure due to the diffusion of the cooling water flow immediately after discharge by making the cooling water flow into a laminar flow, and penetrates a thick staying water film on the upper surface of the steel material to make the water flow the surface of the steel material. To achieve uniform cooling in the width direction.

この方法は、広幅の高温鋼材においてもその幅方向を確実に均一に冷却することができる優れた冷却方法であるが、冷却水の流れを層流とするために長いノズル長さを確保しなければならず、ヘッダを大型化せざるを得ないなどの問題がある。   This method is an excellent cooling method that can reliably cool the width direction of a wide range of high-temperature steel materials, but a long nozzle length must be ensured in order to make the flow of cooling water laminar. There is a problem that the header has to be enlarged.

上記のとおり、ライン上を移動する高温の被冷却材の幅方向均一冷却を達成するための効果的な冷却技術については、さらに改善の余地が残されている。   As described above, there is still room for improvement with respect to an effective cooling technique for achieving uniform cooling in the width direction of a high-temperature material to be cooled moving on the line.

特開昭62−253710号公報(特許請求の範囲および2頁右上欄第3行〜3頁左上欄第17行)JP-A-62-253710 (Claims and page 2, upper right column, line 3 to page 3, upper left column, line 17) 特開平7−150229号公報(特許請求の範囲、段落[0010]など)JP-A-7-150229 (Claims, paragraph [0010], etc.) 特開2000−237815号公報(特許請求の範囲、段落[0006]〜[0009]など)JP 2000-237815 A (claims, paragraphs [0006] to [0009], etc.) 特開2004−34109号公報(特許請求の範囲、段落[0013]〜[0020]など)JP 2004-34109 A (claims, paragraphs [0013] to [0020], etc.)

本発明は、上記の問題に鑑みてなされたものであり、その課題は、ライン上を移動する高温の被冷却材の冷却に際して、被冷却材の幅方向中央部における冷却媒体の滞留を解消し、被冷却材を幅方向に均一に冷却することができる被冷却材の冷却装置、およびその冷却装置により冷却された幅方向に均一な温度分布および品質特性を有する鋼板を提供することにある。   The present invention has been made in view of the above problems, and its problem is to eliminate the retention of the cooling medium in the center in the width direction of the material to be cooled when cooling the material to be cooled moving on the line. An object of the present invention is to provide a cooling device for a material to be cooled that can uniformly cool the material to be cooled in the width direction, and a steel sheet having a uniform temperature distribution and quality characteristics in the width direction cooled by the cooling device.

本発明者らは、上述の課題を解決するために、被冷却材を幅方向に均一に冷却することのできる冷却装置について研究を重ね、被冷却材の幅方向中央部における冷却媒体の滞留を解消し、被冷却材を幅方向に均一に冷却するための有効な知見を得て、本発明を完成させた。本発明の要旨は、下記の(1)〜(5)に示される被冷却材の冷却装置、およびそれらの冷却装置を用いて冷却された(6)に示す鋼板にある。   In order to solve the above-mentioned problems, the present inventors have conducted research on a cooling device that can cool the material to be cooled uniformly in the width direction, and the retention of the cooling medium in the central portion in the width direction of the material to be cooled. The present invention has been completed by obtaining effective knowledge for eliminating the material to be cooled uniformly in the width direction. The gist of the present invention resides in a cooling device for a material to be cooled shown in the following (1) to (5) and a steel plate shown in (6) cooled by using those cooling devices.

(1)被冷却材の移動するラインの上方に設置され、ライン上を移動する前記被冷却材に対して冷却媒体収納容器に設けられた複数の孔から冷却媒体を吐出して前記被冷却材を冷却する冷却装置であって、
前記冷却媒体収納容器内は区分壁により被冷却材の幅方向に5個以上の室に区分され、
前記各室に供給される冷却媒体の流量を独立に調整できる流量調整機構が備えられているとともに、
前記区分壁が被冷却材の移動方向に対して傾斜し、かつ隣り合う区分壁が被冷却材の移動方向に対して互いに反対方向に傾斜して配置されていることを特徴とする被冷却材の冷却装置(以下、「第1発明」とも記す)。
(1) The cooling medium is disposed by discharging a cooling medium from a plurality of holes provided in the cooling medium storage container with respect to the cooling medium that is installed above and moves on the line. A cooling device for cooling,
The cooling medium storage container is divided into five or more chambers in the width direction of the material to be cooled by a partition wall,
A flow rate adjustment mechanism capable of independently adjusting the flow rate of the cooling medium supplied to each chamber is provided,
The material to be cooled is characterized in that the partition walls are inclined with respect to the moving direction of the material to be cooled and the adjacent partition walls are inclined in directions opposite to each other with respect to the moving direction of the material to be cooled. Cooling device (hereinafter also referred to as "first invention").

(2)被冷却材の移動するラインの上方に設置され、ライン上を移動する前記被冷却材に対して冷却媒体収納容器に設けられた複数の孔から冷却媒体を吐出して前記被冷却材を冷却する冷却装置であって、
前記冷却媒体収納容器内は区分壁により被冷却材の幅方向に5個以上の奇数個の室に区分され、
前記各室に供給される冷却媒体の流量を独立に調整できる流量調整機構が備えられているとともに、
前記区分壁が被冷却材の移動方向に対して傾斜し、かつ隣り合う区分壁が被冷却材の移動方向に対して互いに反対方向に傾斜して配置されており、
前記冷却媒体収納容器内の中央に位置する室の被冷却材幅方向の長さが被冷却材の移動方向に沿って拡大していることを特徴とする被冷却材の冷却装置(以下、「第2発明」とも記す)。
(2) The material to be cooled is disposed above the line through which the material to be cooled moves and discharges the cooling medium from a plurality of holes provided in the cooling medium storage container with respect to the material to be cooled that moves on the line. A cooling device for cooling,
The inside of the cooling medium storage container is divided into an odd number of chambers of 5 or more in the width direction of the material to be cooled by a partition wall,
A flow rate adjustment mechanism capable of independently adjusting the flow rate of the cooling medium supplied to each chamber is provided,
The partition walls are inclined with respect to the moving direction of the material to be cooled, and the adjacent partition walls are disposed to be inclined in directions opposite to each other with respect to the moving direction of the material to be cooled,
A cooling device for a material to be cooled (hereinafter referred to as “a material to be cooled”) having a length in a width direction of the material to be cooled that extends in a moving direction of the material to be cooled. Also referred to as “second invention”).

(3)前記区分壁により区分された室の数が5個であることを特徴とする前記(1)または(2)に記載の被冷却材の冷却装置(以下、「第3発明」とも記す)。   (3) The cooling device for a material to be cooled according to (1) or (2) (hereinafter also referred to as “third invention”), wherein the number of chambers divided by the dividing wall is five. ).

(4)前記中央に位置する室を挟んで被冷却材幅方向に対称の位置にある室に供給される冷却媒体の合計流量を調整する流量調整機構が備えられていることを特徴とする前記(1)〜(3)のいずれかに記載の被冷却材の冷却装置(以下、「第4発明」とも記す)。   (4) The flow rate adjusting mechanism for adjusting the total flow rate of the cooling medium supplied to the chamber located symmetrically in the width direction of the material to be cooled across the chamber located at the center is provided. The cooling device for a material to be cooled according to any one of (1) to (3) (hereinafter, also referred to as “fourth invention”).

(5)前記被冷却材が熱間圧延された鋼板であることを特徴とする前記(1)〜(4)のいずれかに記載の被冷却材の冷却装置(以下、「第5発明」とも記す)。   (5) The cooling device for a material to be cooled according to any one of (1) to (4) (hereinafter referred to as “fifth invention”), wherein the material to be cooled is a hot-rolled steel plate. Write down).

(6)前記(1)〜(5)のいずれかに記載の被冷却材の冷却装置を用いて冷却したことを特徴とする鋼板(以下、「第6発明」とも記す)。   (6) A steel sheet (hereinafter also referred to as “sixth invention”), which is cooled using the cooling device for a material to be cooled according to any one of (1) to (5).

本発明において、「被冷却材」とは、冷却されるべき高温の材料を意味し、例えば、厚板圧延後の厚鋼板、ホットストリップ(熱間圧延鋼板)などが該当する。   In the present invention, the “material to be cooled” means a high-temperature material to be cooled, for example, a thick steel plate after hot plate rolling, a hot strip (hot rolled steel plate), or the like.

「冷却媒体」とは、被冷却材を冷却するために被冷却材に対して吐出供給される抜熱用流体を意味し、主として水が該当する。冷却媒体中のゴミなどの混入不純物は、冷却媒体を冷却装置に導入するまでに、フィルタなどを用いて除去し、冷却装置の吐出孔の閉塞を防止することが好ましい。   The “cooling medium” means a heat removal fluid that is discharged and supplied to the material to be cooled in order to cool the material to be cooled, and mainly corresponds to water. It is preferable to remove impurities such as dust in the cooling medium by using a filter or the like before the cooling medium is introduced into the cooling device to prevent the discharge holes of the cooling device from being blocked.

本発明の冷却装置は、ライン上を移動する高温の被冷却材に冷却媒体を吐出し、被冷却材の幅方向中央部における冷却媒体の滞留を起こすことなく、被冷却材を幅方向に均一に冷却することができる冷却装置である。また、本発明の冷却装置を用いることにより、幅方向に均一な温度分布および品質特性を有する厚鋼板、熱間熱延鋼板などをはじめとして、材料組織および組織に由来する緒特性の幅方向変動の少ない高性能の金属材料を安定して製造することができる。   The cooling device of the present invention discharges a cooling medium to a high-temperature object to be cooled that moves on the line, and makes the object to be cooled uniform in the width direction without causing retention of the cooling medium in the center part in the width direction of the object to be cooled. It is a cooling device that can cool down. Moreover, by using the cooling device of the present invention, the width direction fluctuation of the material structure and the structure derived from the structure including the hot steel sheet having a uniform temperature distribution and quality characteristics in the width direction, hot hot rolled steel sheet, etc. It is possible to stably produce a high-performance metal material with a small amount.

本発明の範囲を前記のとおり規定した理由および好ましい実施形態につき、さらに詳細に説明する。   The reason why the scope of the present invention is defined as described above and preferred embodiments will be described in more detail.

図1は、本発明に係る被冷却材の冷却装置の一例を示す一部透視の斜視図である。   FIG. 1 is a partially transparent perspective view showing an example of a cooling device for a material to be cooled according to the present invention.

拘束ロール4により拘束されながら、搬送ロール5により図中の矢印Xにて示される方向にライン上を移動する被冷却材3の上方に、冷却装置の冷却媒体収納容器(ヘッダ)1が設置されている。冷却媒体収納容器1の下面11には複数の冷却媒体吐出孔12が設けられており、また、冷却媒体収納容器1内は、区分壁13、14、15および16により、被冷却材3の幅方向に複数の室R1、R2、R3、R4およびR5に区分されている。室R1、R2、R3、R4およびR5には、冷却媒体流量調整機構(流量調整弁)22、23、24、25および26により流量を独立に調整された冷却媒体が、冷却媒体供給配管17、18、19、20および21を通して供給される。供給された冷却媒体は、室R1、R2、R3、R4およびR5の下面に設けられた冷却媒体吐出孔12から被冷却材3の表面に向かって吐出され、被冷却材3を冷却する。   A cooling medium storage container (header) 1 of the cooling device is installed above the material to be cooled 3 that moves on the line in the direction indicated by the arrow X in the figure while being restrained by the restraining roll 4. ing. The lower surface 11 of the cooling medium storage container 1 is provided with a plurality of cooling medium discharge holes 12, and the cooling medium storage container 1 has a width of the material 3 to be cooled by the partition walls 13, 14, 15 and 16. It is divided into a plurality of chambers R1, R2, R3, R4 and R5 in the direction. In the chambers R1, R2, R3, R4, and R5, a cooling medium whose flow rate is independently adjusted by the cooling medium flow rate adjusting mechanisms (flow rate adjusting valves) 22, 23, 24, 25, and 26 is supplied to the cooling medium supply pipe 17, 18, 19, 20 and 21. The supplied cooling medium is discharged toward the surface of the material 3 to be cooled from the cooling medium discharge holes 12 provided in the lower surfaces of the chambers R1, R2, R3, R4, and R5, thereby cooling the material 3 to be cooled.

(1)第1発明
第1発明は、前記のとおり、R1、R2などの各室に供給される冷却媒体の流量を独立に調整できる流量調整機構22、23などが備えられているとともに、区分壁13、14などが被冷却材3の移動方向に対して傾斜し、かつ、区分壁13と14のように隣り合う区分壁が被冷却材3の移動方向Xに対して互いに反対方向に傾斜して配置されている被冷却材3の冷却装置である。
(1) First invention As described above, the first invention is provided with the flow rate adjusting mechanisms 22 and 23 that can independently adjust the flow rate of the cooling medium supplied to each chamber such as R1 and R2, and the like. The walls 13 and 14 are inclined with respect to the moving direction of the material 3 to be cooled, and the adjacent dividing walls such as the dividing walls 13 and 14 are inclined in directions opposite to each other with respect to the moving direction X of the material 3 to be cooled. It is a cooling device of the to-be-cooled material 3 arrange | positioned.

本発明者らは、前記特許文献に開示された冷却装置の問題点を下記のとおり改善することにより、本発明を完成させた。   The present inventors have completed the present invention by improving the problems of the cooling device disclosed in the patent document as follows.

1)冷却媒体収納容器内は区分壁により被冷却材の幅方向に5個以上の室に区分
冷却媒体収納容器内内を被冷却材の幅方向に5個以上の室に区分すると、被冷却材の幅に依存しない適切な冷却を実現できる。すなわち、区分された室数が4個以下になると、被冷却材の幅方向の冷却媒体供給量を適切な分布とすることが難しくなる。以下、具体的に図を用いて説明する。
1) The inside of the cooling medium storage container is divided into five or more chambers in the width direction of the material to be cooled by the dividing wall. When the inside of the cooling medium storage container is divided into five or more chambers in the width direction of the cooling material, Appropriate cooling independent of the width of the material can be realized. That is, when the number of divided chambers is 4 or less, it is difficult to obtain an appropriate distribution of the cooling medium supply amount in the width direction of the material to be cooled. Hereinafter, it demonstrates concretely using figures.

図2は、室数が5個の第1発明または第2発明、もしくは第3発明の冷却装置の平面図および被冷却材幅方向の冷却媒体供給量の模式的分布図である。同図(a)は冷却装置の平面図を示している。同図(a)に示されるとおり、中央室R3の被冷却材幅方向長さは、被冷却材の移動方向Xに沿って拡大しており、側部の室R2およびR4の幅方向長さは、被冷却材の移動方向Xに沿って縮小している。また、R1〜R5の各室に供給される冷却媒体の供給流量は、流量調整機構22〜26によりそれぞれ独立に調整できる。   FIG. 2 is a plan view of the cooling device of the first invention, the second invention, or the third invention having five chambers, and a schematic distribution diagram of the cooling medium supply amount in the width direction of the material to be cooled. FIG. 2A shows a plan view of the cooling device. As shown in FIG. 5A, the width of the central chamber R3 in the width direction of the material to be cooled increases along the moving direction X of the material to be cooled, and the length in the width direction of the side chambers R2 and R4. Is reduced along the moving direction X of the material to be cooled. Moreover, the supply flow rate of the cooling medium supplied to each of the chambers R1 to R5 can be adjusted independently by the flow rate adjusting mechanisms 22 to 26.

同図(b)は被冷却材幅方向における冷却媒体供給量が一定の場合の供給量分布を示している。   FIG. 5B shows a supply amount distribution when the cooling medium supply amount in the width direction of the material to be cooled is constant.

同図(c)は広幅の被冷却材を対象とし、幅方向側部での冷却媒体供給量が低い場合の供給量分布を示す。この冷却媒体供給量分布は、流量調整機構を調整することにより、室R2、R3およびR4のいずれから供給される冷却媒体供給量をも等しくし、かつ、これらの供給量を室R1およびR5のいずれから供給される冷却媒体供給量よりも多くすることにより実現される。同図(d)は広幅の被冷却材を対象とし、幅方向中央部での冷却媒体供給量が低い場合の供給量分布を示す。この冷却媒体供給量分布は、流量調整機構を調整することにより、室R2、R3およびR4のいずれから供給される冷却媒体供給量をも等しくし、かつ、これらの供給量を室R1およびR5のいずれから供給される冷却媒体供給量よりも少なくすることにより実現される。   FIG. 4C shows a supply amount distribution when the coolant to be cooled is wide and the cooling medium supply amount in the width direction side portion is low. This cooling medium supply amount distribution makes the cooling medium supply amount supplied from any of the chambers R2, R3, and R4 equal by adjusting the flow rate adjusting mechanism, and these supply amounts are made equal to those in the chambers R1 and R5. This is realized by increasing the amount of cooling medium supplied from either of them. FIG. 4D shows the supply amount distribution when the cooling medium supply amount is low at the center in the width direction, targeting a wide material to be cooled. This cooling medium supply amount distribution makes the cooling medium supply amount supplied from any of the chambers R2, R3, and R4 equal by adjusting the flow rate adjusting mechanism, and these supply amounts are made equal to those in the chambers R1 and R5. This is realized by reducing the cooling medium supply amount supplied from either of them.

同図(e)は狭幅の被冷却材を対象とし、幅方向側部での冷却媒体供給量が低い場合の供給量分布を示す。この冷却媒体供給量分布は、流量調整機構を調整することにより、室R1、R2、R4およびR5のいずれから供給される冷却媒体供給量をも等しくし、かつ、室R3から供給される冷却媒体供給量よりも少なくすることにより得られる。そして、同図(f)は狭幅の被冷却材を対象とし、幅方向中央部での冷却媒体供給量が低い場合の供給量分布を示す。この冷却媒体供給量分布は、流量調整機構を調整することにより、室R1、R2、R4およびR5のいずれから供給される冷却媒体供給量をも等しくし、かつ、室R3から供給される冷却媒体供給量よりも多くすることにより得られる。   FIG. 5E shows a supply amount distribution when the cooling medium supply amount at the side portion in the width direction is low, targeting a narrow material to be cooled. This cooling medium supply amount distribution makes the cooling medium supply amount supplied from any of the chambers R1, R2, R4, and R5 equal by adjusting the flow rate adjusting mechanism, and the cooling medium supplied from the chamber R3. It is obtained by making it less than the supply amount. FIG. 5F shows the supply amount distribution when the cooling medium supply amount is low at the center portion in the width direction, targeting a narrow material to be cooled. This cooling medium supply amount distribution makes the cooling medium supply amount supplied from any of the chambers R1, R2, R4, and R5 equal by adjusting the flow rate adjusting mechanism, and the cooling medium supplied from the chamber R3. It is obtained by making it larger than the supply amount.

ここで、同図(b)〜(f)の縦軸に記載された「冷却媒体供給量」とは、被冷却材3が冷却装置の入口側ABから出口側CDに向かって矢印Xで示される方向に移動する間に、幅方向の任意位置の被冷却材に対して冷却装置から供給される冷却媒体の全供給量を表す。   Here, the “cooling medium supply amount” described on the vertical axis in FIGS. 5B to 5F is indicated by the arrow X from the inlet side AB of the cooling device 3 toward the outlet side CD. This represents the total supply amount of the cooling medium supplied from the cooling device to the material to be cooled at an arbitrary position in the width direction while moving in the horizontal direction.

2)各室に供給される冷却媒体の流量を独立に調整できる流量調整機構を設置
前記のとおり、被冷却材の幅方向中央部においては冷却媒体が滞留しやすいことから、幅方向中央部の冷却能が低下し、被冷却材の幅方向の温度分布はそれほど均一化されない。ところが、前記特許文献1に開示された技術のように、冷却媒体の流量調整機構(同特許文献の第1図および第2図中の番号22)が1個の場合には、冷却媒体の合計流量しか調整できないので、冷却能の低下しやすい被冷却材の幅方向中央部の冷却媒体の供給量を幅方向側部よりも多くすることは困難である。
2) Installation of a flow rate adjustment mechanism that can independently adjust the flow rate of the cooling medium supplied to each chamber As described above, the cooling medium tends to stay in the central portion in the width direction of the material to be cooled. The cooling capacity is lowered, and the temperature distribution in the width direction of the material to be cooled is not so uniform. However, when the number of cooling medium flow rate adjustment mechanisms (number 22 in FIGS. 1 and 2 of the patent document) is one as in the technique disclosed in Patent Document 1, the total of the cooling medium is used. Since only the flow rate can be adjusted, it is difficult to increase the supply amount of the cooling medium at the center portion in the width direction of the material to be cooled, which is likely to be deteriorated in cooling capacity, compared to the side portion in the width direction.

そこで、冷却媒体収納容器内の、被冷却材の幅方向に区分された各室に供給される冷却媒体の流量を独立に調整できる流量調整機構を設けることにより、冷却媒体の供給流量を幅方向の各室ごとに任意に調整できるようにし、被冷却材の幅方向の均一な冷却を可能とした。   Therefore, by providing a flow rate adjustment mechanism that can independently adjust the flow rate of the cooling medium supplied to each chamber divided in the width direction of the material to be cooled in the cooling medium storage container, the supply flow rate of the cooling medium is changed in the width direction. Each chamber can be arbitrarily adjusted to enable uniform cooling of the material to be cooled in the width direction.

例えば、図2において、被冷却材の幅方向に区分されたR1、R2、R3、R4およびR5の各室の下面に吐出孔が同じ密度で一様に設けられている場合には、流量調整機構による冷却媒体の流量調整と供給量の幅方向分布との関係は、下記のとおりとなる。   For example, in FIG. 2, when the discharge holes are uniformly provided at the same density in the lower surface of each of the chambers R1, R2, R3, R4 and R5 divided in the width direction of the material to be cooled, the flow rate adjustment The relationship between the flow rate adjustment of the cooling medium by the mechanism and the distribution in the width direction of the supply amount is as follows.

すなわち、被冷却材の幅方向各室の下面単位面積当たりの供給流量が同一となるように、流量調整機構22、23、24、25および26により冷却媒体の供給流量を調整したときは、図2(b)に示すように、幅方向の任意位置の被冷却材が冷却装置の入口側ABから出口側CDに向かって移動する間に冷却装置から供給される冷却媒体の全供給量は、被冷却材3の幅方向の全域にわたり一定となる。   That is, when the supply flow rate of the cooling medium is adjusted by the flow rate adjusting mechanisms 22, 23, 24, 25, and 26 so that the supply flow rate per unit area of the lower surface of each chamber in the width direction of the material to be cooled is the same, As shown in 2 (b), the total supply amount of the cooling medium supplied from the cooling device while the material to be cooled at any position in the width direction moves from the inlet side AB to the outlet side CD of the cooling device is: It becomes constant over the entire region in the width direction of the material 3 to be cooled.

また、被冷却材の幅方向側部に位置する室R1およびR5の下面単位面積当たりの供給流量が、幅方向中央部に位置する室R2、R3およびR4の下面単位面積当たりの供給流量に比して少なくなるように、流量調整機構22、23、24、25および26により冷却媒体の流量を調整した場合には、同図(c)に示すとおり、被冷却材3が冷却装置の入口側ABから出口側CDに向かって移動する間に冷却装置から供給される冷却媒体の全供給量は、幅方向中央部で幅広い領域にわたり多い分布となり、幅方向側部で少ない分布となる。   Further, the supply flow rate per lower surface unit area of the chambers R1 and R5 located on the width direction side portion of the material to be cooled is compared with the supply flow rate per lower surface unit area of the chambers R2, R3 and R4 located in the center portion in the width direction. When the flow rate of the cooling medium is adjusted by the flow rate adjusting mechanisms 22, 23, 24, 25, and 26 so as to decrease, the material to be cooled 3 is placed on the inlet side of the cooling device as shown in FIG. The total supply amount of the cooling medium supplied from the cooling device while moving from AB toward the outlet side CD has a large distribution over a wide area at the center in the width direction and a small distribution at the side in the width direction.

これに対して、被冷却材の幅方向側部に位置する室R1およびR5の下面単位面積当たりの供給流量が、幅方向中央部に位置する室R2、R3およびR4の下面単位面積当たりの供給流量に比して多くなるように、流量調整機構22、23および24により冷却媒体の流量を調整した場合には、同図(d)に示すとおり、被冷却材に供給される冷却媒体の全供給量は、幅方向中央部で幅広い領域にわたり少ない分布となり、幅方向側部で多い分布となる。   In contrast, the supply flow rate per unit area of the lower surface of the chambers R1 and R5 located on the side in the width direction of the material to be cooled is the supply per unit area of the lower surface of the chambers R2, R3, and R4 located in the center in the width direction. When the flow rate of the cooling medium is adjusted by the flow rate adjusting mechanisms 22, 23, and 24 so as to be greater than the flow rate, as shown in FIG. The supply amount has a small distribution over a wide area at the center in the width direction, and a large distribution at the side in the width direction.

さらに、被冷却材の幅方向側部近くに位置する室R1、R2、R4およびR5の下面単位面積当たりの供給流量が、幅方向中央部に位置する室R3の下面単位面積当たりの供給流量に比して少なくなるように、流量調整機構22、23、24、25および26により冷却媒体の流量を調整した場合には、同図(e)に示すとおり、被冷却材3が冷却装置の入口側ABから出口側CDに向かって移動する間に冷却装置から供給される冷却媒体の全供給量は、幅方向中央部で多い分布となり、幅方向側部の幅広い領域にわたり少ない分布となる。   Furthermore, the supply flow rate per unit area of the lower surface of the chambers R1, R2, R4 and R5 located near the widthwise side portion of the material to be cooled becomes the supply flow rate per unit area of the lower surface of the chamber R3 located in the center portion in the width direction. When the flow rate of the cooling medium is adjusted by the flow rate adjusting mechanisms 22, 23, 24, 25, and 26 so as to be smaller than that of the cooling medium 3 as shown in FIG. The total supply amount of the cooling medium supplied from the cooling device while moving from the side AB toward the outlet side CD has a large distribution in the center portion in the width direction and a small distribution over a wide region in the width direction side portion.

これに対して、被冷却材の幅方向側部近くに位置する室R1、R2、R4およびR5の下面単位面積当たりの供給流量が、幅方向中央部に位置する室R3の下面単位面積当たりの供給流量に比して多くなるように、流量調整機構22、23、24、25および26により冷却媒体の流量を調整した場合には、同図(f)に示すとおり、被冷却材に供給される冷却媒体の全供給量は、幅方向中央部で少ない分布となり、幅方向側部の幅広い領域にわたり多い分布となる。   On the other hand, the supply flow rate per lower surface unit area of the chambers R1, R2, R4 and R5 located near the width direction side portion of the material to be cooled is smaller than the lower surface unit area of the chamber R3 located in the center portion in the width direction. When the flow rate of the cooling medium is adjusted by the flow rate adjusting mechanisms 22, 23, 24, 25, and 26 so as to be larger than the supply flow rate, as shown in FIG. The total supply amount of the cooling medium has a small distribution at the center portion in the width direction and a large distribution over a wide area on the side portion in the width direction.

ここで、冷却水などの冷却媒体の流量調整は、鋼板などの被冷却材の幅方向の温度分布の測定結果をフィードバックして、流量調整機構22、23、24、25および26の開度を制御するなどの方法により行えばよい。   Here, the flow rate adjustment of the cooling medium such as cooling water is performed by feeding back the measurement result of the temperature distribution in the width direction of the material to be cooled such as a steel plate, and the opening degree of the flow rate adjustment mechanisms 22, 23, 24, 25 and 26. It may be performed by a method such as control.

3)区分壁を被冷却材の移動方向に対して傾斜させ、かつ隣り合う区分壁を被冷却材の移動方向に対して互いに反対方向に傾斜させて配置
区分壁を被冷却材の移動方向に対して傾斜させて配置する理由は、被冷却材幅方向の冷却媒体の供給量の分布を滑らかにするためである。具体的には、例えば前記図2(c)および同図(d)に示されたとおり、幅方向中央部における冷却媒体の供給量と幅方向側部における冷却媒体の供給量とはスロープ状に滑らかに連結された分布となる。
3) Arrange the partition walls so that they are inclined with respect to the moving direction of the material to be cooled, and the adjacent dividing walls are inclined in directions opposite to each other with respect to the moving direction of the material to be cooled. The reason for the inclined arrangement is to smooth the distribution of the supply amount of the cooling medium in the width direction of the material to be cooled. Specifically, for example, as shown in FIG. 2C and FIG. 2D, the supply amount of the cooling medium in the central portion in the width direction and the supply amount of the cooling medium in the side portions in the width direction are sloped. The distribution is smoothly connected.

これに対して、区分壁が被冷却材の移動方向Xに対して傾斜せずに、被冷却材の移動方向と同方向に配置された場合には、区分壁を挟んで冷却媒体の供給量は急激に変化する。例えば、前記図2(a)において、区分壁13および14を被冷却材の移動方向Xに対して傾斜させずに配置した場合は、同図(c)および同図(d)の冷却媒体供給量の幅方向分布は、区分壁を挟んで階段状に変化する分布となる。   On the other hand, when the partition wall is not inclined with respect to the moving direction X of the coolant, but is disposed in the same direction as the moving direction of the coolant, the supply amount of the cooling medium across the partition wall Changes rapidly. For example, in FIG. 2A, when the partition walls 13 and 14 are arranged without being inclined with respect to the moving direction X of the material to be cooled, the cooling medium supply shown in FIG. 2C and FIG. The distribution of the quantity in the width direction is a distribution that changes stepwise across the partition wall.

被冷却材の冷却に際し、被冷却材幅方向の冷却能の急激な変化を避けるためには、被冷却材幅方向の冷却媒体供給量分布は、滑らかな分布が適していることから、上記のとおり区分壁は被冷却材の移動方向に対して傾斜させて配置することとした。   When cooling the material to be cooled, in order to avoid a sudden change in the cooling capacity in the width direction of the material to be cooled, the distribution of the cooling medium in the width direction of the material to be cooled is suitable as a smooth distribution. As described above, the partition wall is inclined with respect to the moving direction of the material to be cooled.

次に、隣り合う区分壁を被冷却材の移動方向に対して互いに反対方向に傾斜して配置させる理由は、区分壁下方の領域の被冷却材に供給される冷却媒体の流量の経時的変化の傾向を同一とするためである。   Next, the reason why the adjacent partition walls are inclined in the opposite directions with respect to the moving direction of the coolant is the change over time in the flow rate of the cooling medium supplied to the coolant in the region below the partition wall. This is to make the same tendency.

前記図2(a)中の番号13、14、15および16で示されたように区分壁が配置されている場合は、被冷却材が冷却装置の入口側ABを通過した直後においては、いずれの区分壁下方の領域の被冷却材にも、主として室R2および室R4からの冷却媒体供給条件により定まる流量の冷却媒体が供給される。そして、その後、被冷却材の移動にともない、被冷却材には主として室R1、R3およびR5からの冷却媒体供給条件により定まる流量の冷却媒体が供給される。   When the partition walls are arranged as indicated by the numbers 13, 14, 15 and 16 in FIG. 2 (a), immediately after the material to be cooled passes through the inlet side AB of the cooling device, A coolant having a flow rate determined mainly by the coolant supply conditions from the chamber R2 and the chamber R4 is also supplied to the material to be cooled in the region below the partition wall. After that, as the material to be cooled moves, the material to be cooled is supplied with a cooling medium having a flow rate determined mainly by the conditions for supplying the cooling medium from the chambers R1, R3, and R5.

これに対して、同図(a)において、例えば、区分壁15が被冷却材の移動方向Xに対して区分壁14と同方向に傾斜して配置されている場合は、被冷却材が冷却装置の入口側ABを通過した直後においては、区分壁15下方の領域の被冷却材には、室R3からの冷却媒体供給条件で定まる流量の冷却媒体が供給される。その後、被冷却材の移動にともなって、室R4からの冷却媒体供給条件で定まる流量の冷却媒体が供給される。したがって、隣り合う区分壁の下方を通過する被冷却材に供給される冷却媒体流量の経時的変化の傾向は互いに逆の傾向となる。   On the other hand, in the same figure (a), for example, when the partition wall 15 is inclined in the same direction as the partition wall 14 with respect to the moving direction X of the coolant, the coolant is cooled. Immediately after passing through the inlet side AB of the apparatus, the coolant in the region below the partition wall 15 is supplied with a cooling medium having a flow rate determined by the cooling medium supply condition from the chamber R3. Thereafter, with the movement of the material to be cooled, a cooling medium having a flow rate determined by the cooling medium supply condition from the chamber R4 is supplied. Therefore, the tendency of the change over time of the flow rate of the cooling medium supplied to the material to be cooled passing under the adjacent partition walls is opposite to each other.

被冷却材を幅方向に均一に冷却するためには、冷却能の増加減少の経時的変化は、被冷却材の幅方向の位置によらずに、同傾向のパターンとする必要があることから、隣り合う区分壁を被冷却材の移動方向に対して互いに反対方向に傾斜して配置することとした。   In order to cool the material to be cooled uniformly in the width direction, the change over time of the increase or decrease in cooling capacity must be a pattern with the same tendency regardless of the position in the width direction of the material to be cooled. The adjacent partition walls are arranged so as to be inclined in directions opposite to each other with respect to the moving direction of the material to be cooled.

4)区分壁の傾斜角度
図3は、冷却媒体収納容器内の区分壁の傾斜角度を説明するための平面図である。同図において、区分壁13は、被冷却材の移動方向Xに対して傾斜させずに配置させた例を、区分壁14は、被冷却材の移動方向Xに対して右回り(時計方向周り)に90°を超え180°未満の傾斜角度θ1だけ傾斜して配置させた例を、そして、区分壁15は、被冷却材の移動方向Xに対して右回り(時計方向周り)に0°を超え90°未満の傾斜角度θ2だけ傾斜して配置させた例を、それぞれ示す。
4) Angle of inclination of partition wall FIG. 3 is a plan view for explaining the angle of inclination of the partition wall in the cooling medium storage container. In the figure, an example in which the partition wall 13 is arranged without being inclined with respect to the moving direction X of the material to be cooled, and the dividing wall 14 is clockwise (clockwise clockwise) with respect to the moving direction X of the material to be cooled. ) And an inclination angle θ1 of more than 90 ° and less than 180 °, and the partition wall 15 is 0 ° clockwise (clockwise) with respect to the moving direction X of the material to be cooled. Each of the examples is arranged so as to be inclined by an inclination angle θ2 of more than 90 ° and less than 90 °.

同図に示されたとおり、任意の区分壁を被冷却材の移動方向Xに対して90°を超え180°未満の傾斜角度で配置した場合は、その区分壁と隣り合う区分壁は、被冷却材の移動方向Xに対して0°を超え90°未満の傾斜角度で配置する。また、任意の区分壁を被冷却材の移動方向Xに対して0°を超え90°未満の傾斜角度で配置した場合には、その区分壁と隣り合う区分壁は、被冷却材の移動方向Xに対して90°を超え180°未満の傾斜角度で配置する。   As shown in the figure, when an arbitrary partition wall is arranged at an inclination angle of more than 90 ° and less than 180 ° with respect to the moving direction X of the coolant, the partition wall adjacent to the partition wall is It arrange | positions with the inclination angle which exceeds 0 degree and is less than 90 degrees with respect to the moving direction X of a coolant. In addition, when an arbitrary partition wall is disposed at an inclination angle greater than 0 ° and less than 90 ° with respect to the moving direction X of the coolant, the partition wall adjacent to the partition wall is in the direction of movement of the coolant. It arrange | positions with the inclination angle which exceeds 90 degrees and less than 180 degrees with respect to X.

現実には、傾斜角度を0°近傍、90°近傍、または180°近傍の値とすることは好ましくなく、30°〜60°の範囲または120°〜150°の範囲とすることが好ましい。   Actually, it is not preferable to set the inclination angle to a value in the vicinity of 0 °, 90 °, or 180 °, and preferably in the range of 30 ° to 60 ° or in the range of 120 ° to 150 °.

(2)第2発明
第2発明は、前記第第1発明において、さらに、冷却媒体収納容器内が、前記図1および図2における室R1、R2、R3などのように、区分壁により、被冷却材の幅方向に奇数個の室に区分され、室R2のように冷却媒体収納容器内の中央に位置する室の被冷却材幅方向の長さが、被冷却材の移動方向Xに沿って拡大している被冷却材の冷却装置である。
(2) Second invention In a second invention according to the first invention, the inside of the cooling medium storage container is further covered by a partition wall such as the chambers R1, R2, R3 in FIGS. The chamber is divided into an odd number of chambers in the width direction of the coolant, and the length in the width direction of the coolant in the chamber located in the center of the cooling medium storage container as in the chamber R2 is along the moving direction X of the coolant. This is a cooling device for a material to be cooled which is expanding.

1)冷却媒体収納容器内を区分壁により被冷却材の幅方向に奇数個の室に区分
冷却媒体収納容器内を被冷却材の幅方向に奇数個の室に区分する理由は、被冷却材への冷却媒体の全供給量を被冷却材の幅方向に対称に分布させ、また、冷却媒体供給流量の経時的変化のパターンを被冷却材の幅方向に対称とするためである。
1) The inside of the cooling medium storage container is divided into an odd number of chambers in the width direction of the material to be cooled by the partition wall. The reason for dividing the inside of the cooling medium storage container into an odd number of chambers in the width direction of the cooling material is This is because the total supply amount of the cooling medium to the cooling medium is distributed symmetrically in the width direction of the material to be cooled, and the pattern of change with time of the cooling medium supply flow rate is made symmetrical in the width direction of the material to be cooled.

冷却水などの冷却媒体を冷却装置から一様に被冷却材に供給して冷却する場合、被冷却材の上面に供給された冷却媒体は、被冷却材の幅方向側部から端部を排出経路(逃げ経路)として流れ去る。しかし、被冷却材の幅方向中央部では、冷却媒体の排出経路が確保されにくいので、冷却媒体が被冷却材の幅方向中央部に滞留することとなる。このようにして滞留した冷却媒体は伝熱抵抗となる境膜を形成し、この境膜が供給されたフレッシュな冷却媒体が被冷却材に接触することを妨げるため、幅方向中央部における伝熱抵抗が増大して冷却能は低下する。   When cooling medium such as cooling water is uniformly supplied from the cooling device to the material to be cooled, the cooling medium supplied to the upper surface of the material to be cooled is discharged from the width direction side of the material to be cooled. It flows away as a route (escape route). However, since the cooling medium discharge path is difficult to be secured at the center in the width direction of the material to be cooled, the cooling medium stays at the center in the width direction of the material to be cooled. The cooling medium staying in this way forms a boundary film that serves as a heat transfer resistance and prevents the fresh cooling medium supplied with this boundary film from coming into contact with the material to be cooled. Resistance increases and cooling capacity decreases.

このような被冷却材の幅方向中央部における冷却能の低下を回避する方法として、冷却媒体収納容器内に区分壁を設けて、収納容器内を奇数個の室に区分し、その中央の室と両側部に位置する室とで被冷却材への冷却媒体供給量を独立に調整する方法が有効である。具体的には、冷却能の低下しやすい中央室からの冷却媒体の吐出供給量を多くし、両側部の室からの冷却媒体吐出供給量を多くすることにより、被冷却材の中央部に吐出供給された冷却媒体が被冷却材の幅方向に排出されやすくなり、冷却媒体の滞留による境膜の形成も起こりにくくなるので好ましい。また、冷却媒体による冷却能は、被冷却材の幅方向に中心対称となるので、冷却が被冷却材の幅方向に非対称となることによる温度分布の不均一を防止できて好ましい。   As a method of avoiding such a decrease in cooling capacity in the center portion in the width direction of the material to be cooled, a partition wall is provided in the cooling medium storage container, and the storage container is partitioned into an odd number of chambers, and the central chamber It is effective to independently adjust the cooling medium supply amount to the material to be cooled between the chambers located on both sides. Specifically, increasing the amount of cooling medium discharged and supplied from the central chamber where cooling capacity is likely to decrease, and increasing the amount of cooling medium discharged and supplied from the chambers on both sides increases the amount of cooling medium discharged to the center of the material to be cooled. It is preferable because the supplied cooling medium is easily discharged in the width direction of the material to be cooled, and the formation of a boundary film due to the retention of the cooling medium is less likely to occur. Moreover, since the cooling ability by the cooling medium is centrosymmetric with respect to the width direction of the material to be cooled, it is preferable to prevent uneven temperature distribution due to asymmetric cooling in the width direction of the material to be cooled.

2)中央室の被冷却材幅方向の長さが被冷却材の移動方向に沿って拡大
中央の室の被冷却材幅方向の長さを被冷却材の移動方向に沿って拡大させる理由を下記に説明する。図4は、冷却媒体収納容器内の区分壁の配置形状の相違を説明するための平面図である。なお、同図では、説明を簡潔にするために中央に位置する室を含め3個の室のみ示した。同図(a)は中央室の被冷却材幅方向の長さが被冷却材の移動方向に沿って拡大する区分壁の配置を、同図(b)は従来技術における区分壁の配置を、それぞれ示す。
2) The length of the central chamber in the width direction of the material to be cooled expands along the direction of movement of the material to be cooled The reason why the length of the central chamber in the width direction of the material to be cooled expands along the direction of movement of the material to be cooled This is explained below. FIG. 4 is a plan view for explaining the difference in the arrangement shape of the partition walls in the cooling medium storage container. In the figure, only three chambers including the chamber located in the center are shown for the sake of brevity. The figure (a) shows the arrangement of the partition walls in which the length of the central chamber in the width direction of the material to be cooled expands along the moving direction of the material to be cooled, and the figure (b) shows the arrangement of the partition walls in the prior art. Each is shown.

同図(a)に示されるとおり、冷却装置の入口側ABでの中央室R2の幅方向長さが同出口側CDでの幅方向長さに比して短い場合には、冷却装置の入口側ABを通過した直後の被冷却材3に対して吐出供給される冷却媒体の量は、被冷却材3の幅方向中央部と側部または端部とで相違する。したがって、中央室R2から被冷却材3へ供給される室下面単位面積当たりの冷却媒体の供給量が側部の室R1およびR3のいずれから被冷却材3に供給される室単位面積当たりの冷却媒体の供給量よりも多い場合には、入口側ABを通過した直後の被冷却材3に供給される冷却媒体の供給量は、被冷却材3の中央部で多く、側部から端部では少なくなる。そして、その後、被冷却材がX方向に移動するにつれて、被冷却材3の側部から端部に対して吐出供給される冷却媒体の供給量は増加する。   As shown in FIG. 5A, when the length in the width direction of the central chamber R2 on the inlet side AB of the cooling device is shorter than the length in the width direction on the outlet side CD, the inlet of the cooling device The amount of the cooling medium discharged and supplied to the material 3 to be cooled immediately after passing through the side AB is different between the central portion in the width direction of the material 3 to be cooled and the side portion or the end portion. Therefore, the cooling medium supply amount per unit area of the lower surface of the chamber supplied from the central chamber R2 to the material 3 to be cooled is the cooling per unit area of the room supplied to the material 3 to be cooled from any of the side chambers R1 and R3. When the supply amount is larger than the supply amount of the medium, the supply amount of the cooling medium supplied to the coolant 3 immediately after passing through the inlet side AB is large in the central portion of the coolant 3 and from the side portion to the end portion. Less. Thereafter, as the material to be cooled moves in the X direction, the supply amount of the cooling medium discharged and supplied from the side portion of the material to be cooled 3 to the end portion increases.

上記のように、冷却初期の冷却媒体の幅方向流量分布が幅方向中央部で多く、側部から端部で少ない分布であり、かつ、側部から端部に供給される冷却媒体の流量が、その後、経時的に増加する場合には、被冷却材3の幅方向中央部に供給された冷却媒体は、側部から端部に向かって排出される経路が確保されるので、幅方向中央部における冷却媒体の滞流量は少なくなる。その結果、中央部における冷却媒体の滞留に起因して伝熱抵抗となる境膜が形成されることは少なくなり、したがって、冷却能の低下は防止される。   As described above, the flow rate distribution of the cooling medium in the initial stage of cooling is large at the center in the width direction and small from side to end, and the flow rate of the cooling medium supplied from the side to the end is low. Then, when it increases over time, the cooling medium supplied to the central portion in the width direction of the material to be cooled 3 is secured in the width direction center because a path is ensured to be discharged from the side portion toward the end portion. The stagnant flow rate of the cooling medium in the section is reduced. As a result, it is less likely that a boundary film serving as heat transfer resistance is formed due to the retention of the cooling medium in the central portion, and therefore, a decrease in cooling capacity is prevented.

これに対して、同図(b)に示されるとおり、冷却装置の入口側ABでの中央室R2の幅方向長さが同出口側CDでの幅方向長さに比して長い場合には、冷却装置の入口側ABを通過した直後の被冷却材3には、その中央部のみならず、側部の一部にも多量の冷却媒体が供給される。その後、被冷却材3がX方向に移動するにつれて、側部から端部において冷却媒体の供給量は減少するものの、既に多量の冷却媒体が側部の一部にも供給されているので、被冷却材3の幅方向中央部に供給された多量の冷却媒体が、側部から端部に向かって排出されるための経路が確保されにくく、中央部における冷却媒体の滞流量は多くなる。したがって、中央部における冷却媒体の滞留に起因して伝熱抵抗となる境膜が形成されやすくなり、その結果、冷却能は低下しやすくなる。   On the other hand, when the width direction length of the central chamber R2 at the inlet side AB of the cooling device is longer than the width direction length at the outlet side CD, as shown in FIG. A large amount of cooling medium is supplied not only to the central part but also to a part of the side part of the material 3 to be cooled immediately after passing through the inlet side AB of the cooling device. Thereafter, as the material to be cooled 3 moves in the X direction, the supply amount of the cooling medium decreases from the side portion to the end portion, but a large amount of the cooling medium is already supplied to a part of the side portion. It is difficult to secure a path for discharging a large amount of the cooling medium supplied to the central part in the width direction of the coolant 3 from the side part toward the end part, and the stagnant flow rate of the cooling medium in the central part increases. Therefore, a boundary film that becomes a heat transfer resistance is likely to be formed due to the retention of the cooling medium in the central portion, and as a result, the cooling capacity tends to be lowered.

上記の理由により、冷却媒体収納容器1の中央の室R2の被冷却材幅方向の長さは被冷却材3の移動方向Xに沿って拡大した形状とすることが好ましい。   For the above reason, it is preferable that the length of the central chamber R2 of the cooling medium storage container 1 in the width direction of the material to be cooled is enlarged along the moving direction X of the material 3 to be cooled.

なお、上記の説明は、冷却装置が、中央に位置する室を含めて3個の室に区分された場合の例について記したが、室の数がさらに増加した場合についても、本発明の同様の効果を奏することはいうまでもない。   In the above description, the cooling device is described as an example in which the cooling device is divided into three chambers including the chamber located in the center. However, the case where the number of chambers further increases is the same as that of the present invention. It goes without saying that the effects of

(3)第3発明
第3発明は、第1発明または第2発明において、区分壁13、14、15などにより区分された室の数が5個である被冷却材の冷却装置である。
(3) Third invention The third invention is a cooling apparatus for a material to be cooled, in the first invention or the second invention, wherein the number of chambers divided by the dividing walls 13, 14, 15 and the like is five.

区分された室数が5個を超えて多くなると、冷却媒体流量調整機構の制御が複雑になるので、制御性の面で好ましくない。区分された室数が5個であると、冷却媒体の流量調整機構の制御が複雑にならない範囲で、かつ、種々の幅を有する被冷却材に対しても、冷却媒体の好ましい幅方向流量分布のもとに、被冷却材を均一に冷却できるからである。   If the number of divided chambers exceeds 5, the control of the cooling medium flow rate adjusting mechanism becomes complicated, which is not preferable in terms of controllability. When the number of the divided chambers is 5, the preferable flow direction distribution of the cooling medium in the cooling medium is within a range in which the control of the flow rate adjusting mechanism of the cooling medium is not complicated, and also for the material to be cooled having various widths. This is because the material to be cooled can be cooled uniformly.

(4)第4発明
第4発明は、第1発明〜第3発明のいずれかの発明において、中央に位置する室を挟んで被冷却材幅方向に対称の位置にある室に供給される冷却媒体の合計流量を調整する流量調整機構が備えられている被冷却材の冷却装置である。
(4) Fourth invention In a fourth invention according to any one of the first to third inventions, cooling supplied to a chamber located symmetrically in the width direction of the material to be cooled across the chamber located in the center. A cooling device for a material to be cooled provided with a flow rate adjusting mechanism for adjusting a total flow rate of a medium.

図5は、室数が5個の第4発明の冷却装置の模式的平面図である。同図の例では、中央に位置する室R3を挟んで対称の位置にあるR1およびR5、ならびにR2およびR4の室に供給される冷却媒体の合計流量を流量調整機構22および23により調整するが、室R3を挟んで対称の位置にある室が複数組存在する冷却装置では、それぞれの組に対して流量調整弁を設け、同様にして対称の位置に存在する各組の室に供給される合計流量を調整すればよい。   FIG. 5 is a schematic plan view of the cooling device of the fourth invention having five chambers. In the example of the figure, the flow rate adjusting mechanisms 22 and 23 adjust the total flow rate of the cooling medium supplied to the chambers R1 and R5, and R2 and R4, which are symmetrical with respect to the center chamber R3. In a cooling device in which a plurality of chambers at symmetrical positions with respect to the chamber R3 are present, a flow rate adjusting valve is provided for each pair, and the chambers are similarly supplied to the chambers at the symmetrical positions. The total flow rate may be adjusted.

通常の被冷却材の冷却においては、被冷却材をその幅方向に中心対称となるように冷却することが多いことから、第4発明の冷却装置を採用することにより、流量調整機構が簡略化され、また流量制御も簡素化される。   In ordinary cooling of the material to be cooled, the material to be cooled is often cooled so as to be centrosymmetric with respect to the width direction thereof, so the flow rate adjusting mechanism is simplified by adopting the cooling device of the fourth invention. In addition, the flow rate control is simplified.

(5)第5発明および第6発明
第5発明は、被冷却材が熱間圧延された鋼板であることを特徴とする第1発明〜第4発明のいずれかの被冷却材の冷却装置であり、第6発明は、第1発明〜第5発明のいずれかの被冷却材の冷却装置を用いて冷却した鋼板である。
(5) 5th invention and 6th invention The 5th invention is a to-be-cooled material cooling device in any one of the 1st invention to the 4th invention, wherein the to-be-cooled material is a hot-rolled steel plate. The sixth invention is a steel plate cooled by using the cooling device for a material to be cooled according to any of the first to fifth inventions.

第1発明〜第4発明のいずれかの被冷却材の冷却装置は、厚板圧延後の厚鋼板の冷却やホットストリップの冷却など、熱間圧延された鋼板の冷却に好適な冷却装置である。また、本発明の冷却装置を用いて冷却された厚鋼板や熱間熱延鋼板などの鋼板は、鋼板の幅方向に均一な温度分布が得られることから、鋼板幅方向の品質特性が均一化され、優れた性能を有する。   The cooling device for a material to be cooled according to any one of the first to fourth inventions is a cooling device suitable for cooling a hot-rolled steel sheet such as cooling a thick steel sheet after hot plate rolling or cooling a hot strip. . In addition, steel plates such as thick steel plates and hot-rolled steel plates cooled using the cooling device of the present invention have a uniform temperature distribution in the width direction of the steel plates, so the quality characteristics in the width direction of the steel plates are uniform. And has excellent performance.

本発明の効果を確認するため、下記の鋼板の冷却試験を行い、その結果を評価した。   In order to confirm the effect of the present invention, the following steel plate cooling test was performed and the results were evaluated.

表1に、試験に使用した冷却装置の冷却水収納容器(ヘッダ)の諸元および冷却水の供給条件を示した。   Table 1 shows the specifications of the cooling water storage container (header) of the cooling device used in the test and the cooling water supply conditions.

Figure 0004821640
Figure 0004821640

同表に示す諸元を有する2種類の冷却水収納容器1をそれぞれ10個準備し、前記図1および図2に示したのと同様の態様で、厚鋼板ライン上に設置した。設置位置は、冷却水収納容器1の下面11が厚板鋼板の上面から300mmの高さとし、ライン方向の冷却水収納容器1の間隔が750mmとなるように連続的に配置した。   Ten two types of cooling water storage containers 1 having the specifications shown in the table were prepared and installed on the thick steel plate line in the same manner as shown in FIGS. The installation position was continuously arranged such that the lower surface 11 of the cooling water storage container 1 was 300 mm high from the upper surface of the thick steel plate, and the interval between the cooling water storage containers 1 in the line direction was 750 mm.

試験番号1および2のいずれの試験に用いた冷却水収納容器1も、その下面11には冷却水の吐出孔12を100個/m2の割合で設け、室数は5個とし、室R3を中央の室として鋼板の幅方向に中心対称となる形状とした。また、いずれの試験に用いた冷却水収納容器も、室R1、R2、R3、R4およびR5の下面の面積が冷却水収納容器の下面の全面積に占める割合を、それぞれ10%、25%、30%、25%および10%となるように区分壁13、14、15および16により内部を区分した。 The cooling water storage container 1 used in any of the test numbers 1 and 2 is also provided with a cooling water discharge hole 12 at a rate of 100 / m 2 on the lower surface 11 thereof, the number of chambers is five, and the chamber R3. The center chamber is symmetrical with respect to the width direction of the steel sheet. In addition, the cooling water storage container used in any of the tests also has a ratio of the area of the lower surface of the chambers R1, R2, R3, R4 and R5 to the total area of the lower surface of the cooling water storage container, 10%, 25%, The interior was partitioned by partition walls 13, 14, 15 and 16 to be 30%, 25% and 10%.

本発明例の試験である試験番号1の試験に用いた冷却水収納容器は、区分壁13および15が鋼板の移動方向Xに対して右回り(時計方向周り)に傾斜角度(θ1)で45°だけ傾斜して配置され、また、区分壁14および16は、同じく傾斜角度(θ2)で135°だけ傾斜して配置されている。つまり、冷却水収納容器内の中央の室の鋼板幅方向の長さが鋼板の移動方向に沿って拡大した形状となっている。   In the cooling water storage container used in the test No. 1 which is the test of the present invention example, the partition walls 13 and 15 are 45 at a tilt angle (θ1) clockwise (clockwise) with respect to the moving direction X of the steel plate. The partition walls 14 and 16 are also inclined by 135 ° at the same inclination angle (θ2). That is, the length of the central chamber in the cooling water storage container in the width direction of the steel plate is enlarged along the moving direction of the steel plate.

これに対して、比較例の試験である試験番号2の試験に用いた冷却水収納容器は、区分壁13および15が鋼板の移動方向Xに対して右回り(時計方向周り)に傾斜角度(θ1)で135°だけ傾斜して配置され、また、区分壁14および16は、同じく傾斜角度(θ2)で45°だけ傾斜して配置されている。すなわち、冷却水収納容器内の中央の室の鋼板幅方向の長さが鋼板の移動方向に沿って縮小した形状となっている。   On the other hand, in the cooling water storage container used in the test of test number 2 which is a test of the comparative example, the partition walls 13 and 15 are inclined clockwise (clockwise) with respect to the moving direction X of the steel plate ( Inclined by 135 ° at θ1), and the partition walls 14 and 16 are similarly inclined by 45 ° at an inclination angle (θ2). That is, the length in the steel plate width direction of the central chamber in the cooling water storage container is reduced along the moving direction of the steel plate.

冷却水収納容器への冷却水の全供給量は、試験番号1および2のいずれについても同量とし、試験番号1では、中央の室R3への供給量が全供給量の50%となり、側部の室R1およびR5への供給量がそれぞれ10%づつ、そして、室R2およびR4への供給量がそれぞれ15%づつとなるように流量調整機構22〜26により流量調整を行った。また、試験番号2では冷却水の全供給量のみを調整した。上記の条件下では、試験番号1において室R3から鋼板に吐出供給された室下面の単位面積あたりの冷却水量は、試験番号2において室R3から鋼板に吐出供給された室下面の単位面積あたりの冷却水量の約1.67倍に相当すると推測される。   The total amount of cooling water supplied to the cooling water storage container is the same for both test numbers 1 and 2, and in test number 1, the amount supplied to the central chamber R3 is 50% of the total amount supplied. The flow rate was adjusted by the flow rate adjusting mechanisms 22 to 26 so that the supply amount to each of the chambers R1 and R5 was 10% each, and the supply amount to the chambers R2 and R4 was 15% each. In test number 2, only the total supply amount of cooling water was adjusted. Under the above conditions, the amount of cooling water per unit area of the chamber lower surface discharged and supplied from the chamber R3 to the steel plate in the test number 1 is the unit per unit area of the chamber lower surface discharged and supplied from the chamber R3 to the steel plate in the test number 2. It is estimated that it corresponds to about 1.67 times the amount of cooling water.

そして、質量%で、C:0.15%、Si:0.20%、Mn:1.00%、sol.Al:0.025%、N:0.001%を含み、残部がFeおよび不純物からなる化学成分組成を有し、圧延終了温度が830℃で仕上げられた厚さ21mm、幅3m、長さ15mの厚鋼板を800℃から450℃まで強制冷却する試験を行い、冷却直後の鋼板の表面温度を測定した。   And by mass%, C: 0.15%, Si: 0.20%, Mn: 1.00%, sol. Al: 0.025%, N: 0.001%, with the balance being a chemical composition composed of Fe and impurities, finished at a rolling end temperature of 830 ° C., 21 mm thick, 3 m wide, 15 m long The thick steel plate was forcibly cooled from 800 ° C. to 450 ° C., and the surface temperature of the steel plate immediately after cooling was measured.

その結果、比較例の試験である試験番号2では、鋼板中央部と、側部〜端部との表面温度の偏差の最大値は75℃であったのに対して、本発明例である試験番号1では、同偏差の最大値は25℃と極めて低い値が得られた。これにより、本発明の冷却装置は、鋼板などの被冷却材の幅方向中央部において、冷却水などの冷却媒体の滞留を起こすことなく、被冷却材を幅方向に均一に冷却する顕著な効果を奏することが確認された。   As a result, in test number 2 which is a test of the comparative example, the maximum value of the surface temperature deviation between the central portion of the steel sheet and the side portion to the end portion was 75 ° C., whereas the test which is an example of the present invention. In No. 1, the maximum value of the deviation was as low as 25 ° C. Thereby, the cooling device of the present invention has a remarkable effect of uniformly cooling the material to be cooled in the width direction without causing the retention of the cooling medium such as cooling water in the center portion in the width direction of the material to be cooled such as a steel plate. It was confirmed that

本発明の冷却装置は、ライン上を移動する高温の被冷却材に冷却媒体を吐出し、被冷却材の幅方向中央部における冷却媒体の滞留を起こすことなく、被冷却材を幅方向に均一に冷却することができる冷却装置である。また、本発明の冷却装置を用いることにより、幅方向に均一な温度分布および品質特性を有する厚鋼板、熱間熱延鋼板などをはじめとして、材料組織および緒特性の幅方向変動の少ない高性能の金属材料を製造することができる。これにより、本発明は、高性能でかつ品質変動の少ない金属板を安定して製造するラインにおいて、その冷却手段として広範に適用できる。   The cooling device of the present invention discharges a cooling medium to a high-temperature object to be cooled that moves on the line, and makes the object to be cooled uniform in the width direction without causing retention of the cooling medium in the center part in the width direction of the object to be cooled. It is a cooling device that can cool down. In addition, by using the cooling device of the present invention, high performance with less fluctuation in the width direction of the material structure and cord characteristics, including thick steel plates and hot hot rolled steel plates having uniform temperature distribution and quality characteristics in the width direction. The metal material can be manufactured. As a result, the present invention can be widely applied as a cooling means in a line for stably producing a metal plate having high performance and little quality fluctuation.

本発明に係る被冷却材の冷却装置の一例を示す一部透視の斜視図である。It is a partially transparent perspective view which shows an example of the cooling device of the to-be-cooled material which concerns on this invention. 室数が5個の第1発明または第2発明、もしくは第3発明の冷却装置の模式的平面図および被冷却材幅方向の冷却媒体供給量の模式的分布図であり、同図(a)は冷却装置の平面図を、同図(b)は被冷却材幅方向における冷却媒体供給量が一定の場合の供給量分布を、同図(c)は広幅の被冷却材を対象とし、幅方向側部での冷却媒体供給量が低い場合の供給量分布を、同図(d)は広幅の被冷却材を対象とし、幅方向中央部での冷却媒体供給量が低い場合の供給量分布を、同図(e)は狭幅の被冷却材を対象とし、幅方向側部での冷却媒体供給量が低い場合の供給量分布を、同図(f)は狭幅の被冷却材を対象とし、幅方向中央部での冷却媒体供給量が低い場合の供給量分布をそれぞれ示す。FIG. 4 is a schematic plan view of the cooling device of the first invention, the second invention, or the third invention having five chambers, and a schematic distribution diagram of the cooling medium supply amount in the width direction of the material to be cooled. FIG. Is a plan view of the cooling device, FIG. 10B is a distribution of the supply amount when the cooling medium supply amount is constant in the width direction of the material to be cooled, and FIG. The supply amount distribution when the cooling medium supply amount at the side in the direction is low. FIG. 4D shows the supply amount distribution when the cooling medium supply amount at the center in the width direction is low. (E) shows a distribution of supply amount in the case where the cooling medium supply amount on the side in the width direction is low, and (f) shows a narrow cooling target material. The supply amount distribution when the cooling medium supply amount at the center in the width direction is low is shown. 冷却媒体収納容器内の区分壁の傾斜角度を説明するための平面図である。It is a top view for demonstrating the inclination-angle of the division wall in a cooling medium storage container. 冷却媒体収納容器内の区分壁の配置の相違を説明するための平面図であり、同図(a)は中央室の被冷却材幅方向の長さが被冷却材の移動方向に沿って拡大する区分壁の配置を、同図(b)は従来技術における区分壁の配置を、それぞれ示す。It is a top view for demonstrating the difference in arrangement | positioning of the division wall in a cooling medium storage container, The figure (a) expands the length of the to-be-cooled material width direction of a center chamber along the moving direction of a to-be-cooled material. FIG. 5B shows the arrangement of the partition walls in the prior art. 室数が5個の第4発明の冷却装置の模式的平面図である。It is a typical top view of the cooling device of the 4th invention with five chambers.

符号の説明Explanation of symbols

1:冷却媒体収納容器(ヘッダ)、 11:冷却媒体収納容器の下面、
12:冷却媒体吐出孔、 13、14、15、16:区分壁、
17、18、19、20、21:冷却媒体供給配管、
22、23、24、25、26:冷却媒体流量調整機構、
R1、R2、R3、R4、R5:室、
3:被冷却材、 4:拘束ロール、 5:搬送ロール、
1: Cooling medium storage container (header), 11: Lower surface of cooling medium storage container,
12: Cooling medium discharge hole 13, 14, 15, 16: Partition wall,
17, 18, 19, 20, 21: cooling medium supply piping,
22, 23, 24, 25, 26: Cooling medium flow rate adjusting mechanism,
R1, R2, R3, R4, R5: chamber,
3: Material to be cooled, 4: Restraint roll, 5: Transport roll,

Claims (6)

被冷却材の移動するラインの上方に設置され、ライン上を移動する前記被冷却材に対して冷却媒体収納容器に設けられた複数の孔から冷却媒体を吐出して前記被冷却材を冷却する冷却装置であって、
前記冷却媒体収納容器内は区分壁により被冷却材の幅方向に5個以上の室に区分され、
前記各室に供給される冷却媒体の流量を独立に調整できる流量調整機構が備えられているとともに、
前記区分壁が被冷却材の移動方向に対して傾斜し、かつ隣り合う区分壁が被冷却材の移動方向に対して互いに反対方向に傾斜して配置されていることを特徴とする被冷却材の冷却装置。
The cooling medium is cooled by discharging a cooling medium from a plurality of holes provided in the cooling medium storage container with respect to the cooling medium that is installed above the line where the cooling medium moves and moves on the line. A cooling device,
The cooling medium storage container is divided into five or more chambers in the width direction of the material to be cooled by a partition wall,
A flow rate adjustment mechanism capable of independently adjusting the flow rate of the cooling medium supplied to each chamber is provided,
The material to be cooled is characterized in that the partition walls are inclined with respect to the moving direction of the material to be cooled and the adjacent partition walls are inclined in directions opposite to each other with respect to the moving direction of the material to be cooled. Cooling system.
被冷却材の移動するラインの上方に設置され、ライン上を移動する前記被冷却材に対して冷却媒体収納容器に設けられた複数の孔から冷却媒体を吐出して前記被冷却材を冷却する冷却装置であって、
前記冷却媒体収納容器内は区分壁により被冷却材の幅方向に5個以上の奇数個の室に区分され、
前記各室に供給される冷却媒体の流量を独立に調整できる流量調整機構が備えられているとともに、
前記区分壁が被冷却材の移動方向に対して傾斜し、かつ隣り合う区分壁が被冷却材の移動方向に対して互いに反対方向に傾斜して配置されており、
前記冷却媒体収納容器内の中央に位置する室の被冷却材幅方向の長さが被冷却材の移動方向に沿って拡大していることを特徴とする被冷却材の冷却装置。
The cooling medium is cooled by discharging a cooling medium from a plurality of holes provided in the cooling medium storage container with respect to the cooling medium that is installed above the line where the cooling medium moves and moves on the line. A cooling device,
The inside of the cooling medium storage container is divided into an odd number of chambers of 5 or more in the width direction of the material to be cooled by a partition wall,
A flow rate adjustment mechanism capable of independently adjusting the flow rate of the cooling medium supplied to each chamber is provided,
The partition walls are inclined with respect to the moving direction of the material to be cooled, and the adjacent partition walls are disposed to be inclined in directions opposite to each other with respect to the moving direction of the material to be cooled,
A cooling device for a material to be cooled, characterized in that the length in the width direction of the material to be cooled of the chamber located at the center in the cooling medium storage container is enlarged along the moving direction of the material to be cooled.
前記区分壁により区分された室の数が5個であることを特徴とする請求項1または2に記載の被冷却材の冷却装置。   The number of chambers divided by the dividing wall is five, the cooling device for a material to be cooled according to claim 1 or 2. 前記中央に位置する室を挟んで被冷却材幅方向に対称の位置にある室に供給される冷却媒体の合計流量を調整する流量調整機構が備えられていることを特徴とする請求項1〜3のいずれかに記載の被冷却材の冷却装置。   2. A flow rate adjusting mechanism for adjusting a total flow rate of a cooling medium supplied to a chamber located symmetrically in the width direction of the material to be cooled across the chamber located at the center is provided. The cooling device for a material to be cooled according to any one of 3. 前記被冷却材が熱間圧延された鋼板であることを特徴とする請求項1〜4のいずれかに記載の被冷却材の冷却装置。   The cooling device for a material to be cooled according to any one of claims 1 to 4, wherein the material to be cooled is a hot-rolled steel plate. 請求項1〜5のいずれかに記載の被冷却材の冷却装置を用いて冷却したことを特徴とする鋼板。   The steel plate cooled using the cooling device of the to-be-cooled material in any one of Claims 1-5.
JP2007031106A 2007-02-09 2007-02-09 Cooling device for material to be cooled and steel plate cooled thereby Expired - Fee Related JP4821640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031106A JP4821640B2 (en) 2007-02-09 2007-02-09 Cooling device for material to be cooled and steel plate cooled thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031106A JP4821640B2 (en) 2007-02-09 2007-02-09 Cooling device for material to be cooled and steel plate cooled thereby

Publications (2)

Publication Number Publication Date
JP2008194712A JP2008194712A (en) 2008-08-28
JP4821640B2 true JP4821640B2 (en) 2011-11-24

Family

ID=39754145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031106A Expired - Fee Related JP4821640B2 (en) 2007-02-09 2007-02-09 Cooling device for material to be cooled and steel plate cooled thereby

Country Status (1)

Country Link
JP (1) JP4821640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143746A (en) * 2013-04-15 2015-12-23 프리메탈스 테크놀로지스 오스트리아 게엠베하 Cooling device with breadth-dependent cooling action
CN110446566A (en) * 2017-04-04 2019-11-12 首要金属科技奥地利有限责任公司 For the scale removal equipment and method to metal tape chemistry de-scaling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867682B1 (en) * 2016-08-05 2018-06-15 주식회사 포스코 Cooling apparatus
DE102018205684A1 (en) 2018-04-13 2019-10-17 Sms Group Gmbh Cooling device and method for its operation
DE102018205685A1 (en) * 2018-04-13 2019-10-17 Sms Group Gmbh Cooling device and method for its operation
CN113042539B (en) * 2021-03-25 2022-10-14 德龙钢铁有限公司 Cooling method for fine control of microstructure of hot-rolled strip steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181913A (en) * 1988-01-12 1989-07-19 Sumitomo Metal Ind Ltd Cooling device for steel plate
JPH03111557U (en) * 1990-02-23 1991-11-14
JP3613133B2 (en) * 2000-05-09 2005-01-26 Jfeスチール株式会社 Hot strip strip cooling system
KR100547477B1 (en) * 2004-06-30 2006-01-31 주식회사 포스코 Cooling header for steel sheet cooling equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143746A (en) * 2013-04-15 2015-12-23 프리메탈스 테크놀로지스 오스트리아 게엠베하 Cooling device with breadth-dependent cooling action
KR102280234B1 (en) 2013-04-15 2021-07-21 프리메탈스 테크놀로지스 오스트리아 게엠베하 Cooling device with breadth-dependent cooling action
CN110446566A (en) * 2017-04-04 2019-11-12 首要金属科技奥地利有限责任公司 For the scale removal equipment and method to metal tape chemistry de-scaling

Also Published As

Publication number Publication date
JP2008194712A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4821640B2 (en) Cooling device for material to be cooled and steel plate cooled thereby
EP2116313B1 (en) Device and method for cooling hot-rolled steel strip
KR101260765B1 (en) evaporator
US8353191B2 (en) Cooling device and cooling method for hot strip
EP1527829A1 (en) Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
EP2540407B1 (en) Steel plate cooling system and steel plate cooling method
JP2007078298A (en) Heat exchanger
WO2017131204A1 (en) Secondary cooling method and secondary cooling device for continuously cast slab
KR20160026750A (en) Evaporator
JP4214134B2 (en) Thick steel plate cooling device
JP2009241114A (en) System for cooling steel plate
JP5597989B2 (en) Bottom surface cooling device for hot-rolled steel strip
JP4337157B2 (en) Steel plate cooling method and apparatus
US20070114012A1 (en) Heat exchanger
EP1889671B1 (en) Cooling apparatus for hot rolled steel strip, manufacturing method for hot rolled steel strip, and production line for hot rolled steel strip
JP5699729B2 (en) Strip glass molding apparatus and molding method
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
JP2001040421A (en) Gas cooling device for metallic strip
JP5741165B2 (en) Thermal steel sheet bottom surface cooling device
JP3867073B2 (en) Cooling apparatus and cooling method for hot rolled steel sheet
JP2011511882A (en) Casting equipment with apparatus for coating on slabs
JP4466500B2 (en) Steel plate cooling equipment
JP3705147B2 (en) High temperature steel sheet cooling device and method
JPH10192951A (en) Method and device for cooling high temp. steel plate
JPH08155527A (en) Cooler for hot rolled metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees