JP4821051B2 - High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness - Google Patents

High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness Download PDF

Info

Publication number
JP4821051B2
JP4821051B2 JP2001121185A JP2001121185A JP4821051B2 JP 4821051 B2 JP4821051 B2 JP 4821051B2 JP 2001121185 A JP2001121185 A JP 2001121185A JP 2001121185 A JP2001121185 A JP 2001121185A JP 4821051 B2 JP4821051 B2 JP 4821051B2
Authority
JP
Japan
Prior art keywords
steel
amount
affected zone
toughness
heat affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001121185A
Other languages
Japanese (ja)
Other versions
JP2002317243A (en
Inventor
治郎 仲道
馨 佐藤
博幸 ▲角▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001121185A priority Critical patent/JP4821051B2/en
Publication of JP2002317243A publication Critical patent/JP2002317243A/en
Application granted granted Critical
Publication of JP4821051B2 publication Critical patent/JP4821051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯槽タンク、船舶、橋梁および建築等の大型溶接鋼構造物に用いられる高張力鋼で、特に入熱が60kJ/cm程度の大入熱溶接熱影響部における低温(−40℃以下)靭性に優れたものに関する。
【0002】
【従来の技術】
近年、鋼構造物は大型化される傾向にあり、施工費を低減させる観点から溶接作業の工数削減、能率向上が可能となる大入熱溶接が適用されるようになってきた。
【0003】
大入熱のエレクトロガス溶接やサブマージアーク溶接を高張力鋼に適用した場合、溶接熱影響部の靭性劣化が問題となり、その原因として、1.オーステナイト結晶粒の粗大化、2.上部ベイナイトの生成、3.島状マルテンサイの生成が挙げられている。
【0004】
特公昭55−26164号公報には、微細なTiNを析出させ、γ結晶粒の粗大化を抑制し、溶接熱影響部靭性を確保する技術が開示されている。しかし、TiNは1400℃を超えると大部分が母材に固溶するため、BOND部の結晶粒は粗大化し、靭性の劣化が避けられない。
【0005】
特開昭61−79745号公報は、Ti酸化物粒子を粒内フェライトの核生成サイトとし、特開平5−287374号公報には、Ca酸化物、Caオキシサルファイドを粒内アシキュラーフェライトの核生成サイトとし、溶接部の組織を微細化して靭性を改善することが記載されている。
【0006】
また、特開平10−183295号公報には、Ti−Al−Ca酸化物を核とし、TiNやMnSを析出させ、γ結晶粒の粗大化を抑制するとともに粒内フェライトの生成を促進し、溶接熱影響部靭性を改善することが記載されている。
【0007】
本技術は、脱酸工程において溶鋼の溶存酸素量をSiで調整した後、Ti,Al,Caの順で脱酸することを特徴としている。
【0008】
しかしながら、特開平5−287374号公報による方法では、Ca酸化物を安定に確保するため、Oを0.0040%以下とし、強脱酸元素のAlを0.007%以下の微小量に制御しなければならない。
【0009】
更に、Ca酸化物を生成させるため、Oが適度に残存するようAl量を調整しなければならず、実機に適用した場合は、Alを含有させることはできない。
【0010】
実質的にAlを含有しない鋼において、更に微細な酸化物を鋼中に均一分散させるには、その脱酸方法や各種元素の添加手順を厳密に制御する必要があり、実操業上、負担が大きい。
【0011】
また、鋼中Al量が少ない場合、一般的な溶接材料では、溶接金属部の靭性劣化の生じることがある。
【0012】
特開平10−183295号公報による方法では、Ti−Al−Ca酸化物やTiN,MnSを効果的に多数を均一微細に分散させるため、Siによる予備脱酸で溶存酸素濃度を20〜80ppmとした溶鋼にTiを添加して脱酸処理し、その後適量のAlやCaを短時間のうちに添加しなければならず、実操業上、困難なことが多い。
【0013】
更に、対象とする溶接部の低温靭性は、−20℃程度に過ぎず、LPGタンク等の低温用構造物には適用できない。
【0014】
【発明が解決しようとする課題】
本発明は、以上の点に鑑みなされたもので、入熱60kJ/cm以上の大入熱溶接溶接部のBOND部で優れた低温靭性(−50℃でのシャルピー吸収エネルギーが50J以上)を有する高張力鋼を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明者等は、入熱60kJ/cm以上による溶接熱影響部、特にBOND部の組織について詳細に検討し、Ti−Ca複合添加及びCaO及びCaS量の最適化により、結晶粒が微細化し、且つ粒内フェライトの形成が促進され、良好な低温靭性の得られることを知見した。
【0016】
本発明は以上の知見を基に更に検討を加えてなされたものであり、すなわち、本発明は、
1.質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2.0%、S:0.001〜0.01%、Ti:0.005〜0.02%、sol.Al:0.015〜0.050%、Ca:0.001〜0.004%、N:0.001〜0.005%、O:0.001〜0.007%を含有し、且つ,CaOとして存在する酸素量の全酸素量に対する割合(X):0.08〜0.25、CaSとして存在する硫黄量の全硫黄量に対する割合(Y):0.1〜0.3を満足する残部実質的に鉄及び不可避不純物よりなる溶接熱影響部の靭性に優れた低温用溶接構造用高張力鋼。
【0017】
但し、X=(CaOとして存在する酸素の量)/(鋼中に含まれる全酸素量)
Y=(CaSとして存在する硫黄の量)/(鋼中に含まれる全硫黄量)
各量は、鋼中含有量(mass%)とする。
【0018】
2.更に,鋼成分として質量%で、Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%、B:0.0003〜0.003%の一種または二種以上を含有することを特徴とする1記載の溶接熱影響部の靭性に優れた低温用溶接構造用高張力鋼。
【0019】
【発明の実施の形態】
以下、本発明における成分限定理由について詳細に説明する。
【0020】
本発明では、溶接熱影響部において、フェライトの核生成を促進し、その組織を微細化させることを特徴とする。
【0021】
適量のフェライト核生成サイトを確保するため、Ca−Al系複合酸化物におけるCaOとCaSの比率を全酸素量、全硫黄量に対するそれぞれの割合として規定する。
【0022】
X{=(CaOとして存在する酸素の量)/(鋼中に含まれる全酸素量)}:0.08〜0.25
Y{=(CaSとして存在する硫黄の量)/(鋼中に含まれる全硫黄量)}:0.1〜0.3
但し、各量は、鋼中含有量(mass%)とする。
【0023】
Xは、(CaOとして存在する酸素の量)/(鋼中に含まれる全酸素量)で、0.08未満では、アルミナの割合が上昇し、フェライト形成は促進されず、一方、0.25を超えると介在物が粗大化し、靭性が低下するため、0.08〜0.25とする。
【0024】
Yは、(CaSとして存在する硫黄の量)/(鋼中に含まれる全硫黄量)で、Xが0.08〜0.25の範囲内において、0.1未満では、固溶Sが増加し、靭性が低下し、0.3を超えるとCaSが粗大化し、フェライト形成が抑制されるため、0.1〜0.3とする。
【0025】
尚、CaOとして存在する酸素量[OasCaO]は、臭素メタノール法または沃素メタノール法によって、鋼中から抽出分離した残渣を、アルカリ溶解処理し、ICP発光分光分析によってCa濃度([Ca]Br-M,ppm)を測定し、Ca濃度からCaOとなる酸素量(OasCaO,ppm)を以下の式により求める。鋼中全酸素量は、不活性ガス溶融−赤外線吸収法によって測定する。
【0026】
[OasCaO]=2.5×[Ca]Br-M
CaSとして存在する硫黄量[SasCaS]は、以下の式による。
【0027】
[SasCaS]=0.8×([Ca]MS−[Ca]Br-M)
但し、Ca濃度([Ca]MS,ppm)は、4%MS系電解抽出法によって、鋼中から抽出分離した残渣を、アルカリ溶解処理し、ICP発光分光分析によって求め、鋼中の全硫黄量は、酸素気流中燃焼ー赤外線吸収法によって測定する。
【0028】
Ca−Al系複合酸化物を構成するCaO,CaSが上記のように規定された場合、溶接熱影響部のBOND部靭性が向上する理由として、析出物の形態がフェライトの核生成サイトに好適となり、フェライトの核生成サイトが増加したためと考えられるが詳細は不明である。
【0029】
また、本酸化物は、熱的に非常に安定で、溶接による影響が少ないため、母材で規定された析出形態が溶接部で損なわれることはなく、その効果を発揮する。
【0030】
上記X,Yを満足する鋼の製造方法は特に限定しないが、Ca添加後、溶鋼処理温度を1620℃から1670℃に上昇させる等、溶鋼温度の調整によることが望ましい。連続鋳造後、スラブをAr3超えの温度で圧延する直接圧延の適用をすることは何等差し支えない。
【0031】
本発明鋼は、上述したCa−Al系複合酸化物によるフェライト核生成を促進し、且つ、大型構造物に適用される低温用溶接構造用高張力鋼材として、必要な機械的特性を満足させるため、以下の成分組成とする。
【0032】

Cは強度を確保するために有効な元素である。その効果を得るため、0.04%以上添加する。一方、0.12%を超えて多量に添加すると、溶接熱影響部部に島状マルテンサイトが生成しやすくなり、靭性が低下し、また溶接性も劣化するため、0.04〜0.12%(0.04%以上、0.12%以下)とする。
【0033】
Si
Siは、強度を確保し、製鋼過程において脱酸剤として必要なため添加する。0.01%未満ではその効果が不十分で、0.01%以上添加する。一方、0.5%を超えて添加すると高炭素島状マルテンサイトが生成し、溶接熱影響部靭性が劣化するため、0.01〜0.5%とする。
【0034】
Mn
Mnは、強度を確保するため添加する。0.5%未満ではその効果が不十分で、0.5%以上添加する。一方、2.0%を超えて添加すると焼入れ性を増大させ、溶接性、溶接熱影響部靭性が劣化するため、0.5〜2.0%とする。
【0035】

Sは、溶接熱影響部においてフェライトの核生成サイトとなるCaSを生成させるため必要である。その効果を得るため、0.001%以上とする。一方、0.01%を超えると、母材および溶接部の靭性が劣化し、また、溶接部の割れ感受性も劣化させるため、0.001〜0.01%とする。
【0036】
Ti
Tiは、溶接熱影響部でγ粒の粗大化を抑制するとともに、Caと複合添加した場合、フェライトの核生成を促進するTiNをCaによるCa−Al複合酸化物を核として生成するため添加する。その効果を得るため、0.005%以上添加する。一方、0.02%を超えると、母材および溶接熱影響部の靭性を劣化させる粗大なTiCが析出するため、0.005〜0.02%とする。
【0037】
sol.Al
Alは脱酸剤および粒内フェライトの析出サイトとなる介在物を生成させるため、添加する。その効果を得るため、0.015%以上添加する。一方、0.050%以上添加すると介在物が粗大となり、靭性が低下するため、0.015〜0.050%とする。
【0038】
Ca
Caは、Ca−Al系複合酸化物を生成し、それを核にCaO(引き続きTiNの析出核となる。)やCaSを析出させ、粒内フェライトを析出させる効果があり、本願発明では重要な元素で必須添加とする。0.001%未満ではその効果が十分得られず、一方、0.004%を超えて添加すると、大型介在物やクラスターが生成し、鋼の清浄度が劣化するため、0.001〜0.004%とする。
【0039】

Nは、TiNを生成し、溶接熱影響部でγ結晶粒の粗大化を抑制すると共に、フェライトの核生成となり、粒内フェライトを析出させるため、0.001%以上とする。一方、0.005%を超えると固溶Nが多くなり、母材、溶接部の靭性を劣化させるため、0.001〜0.005%とする。
【0040】

Oは、TiNやCaSの核生成サイトとなるCa−Al系複合酸化物を生成し、溶接熱影響部の靭性を改善する。その効果を得るため、0.001%以上とする。一方、0.007%を超えると鋼中Oが過剰となり、母材靭性が劣化するため、0.001〜0.007%とする。
【0041】
以上が本発明の基本成分組成であるが、その強度特性を向上させるため更にCu,Ni,Cr,Mo,V,Nb,Bの一種又は二種以上を含有することができる。
【0042】
Cu
Cuは、過剰に添加すると溶接性を損ねると共に、析出硬化により母材や溶接熱影響部の靭性を劣化させるため、0.5%以下とする。
【0043】
Ni
Niは、過剰に添加すると溶接性を損ねると共に、製造原価を上昇させるため、1.0%以下とする。
【0044】
Cr,Mo,V,Nb
Cr,Mo,V,Nbは過剰に添加すると溶接性を損ねると共に、溶接熱影響部の靭性を劣化させるため、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%とする。
【0045】

Bは溶接熱影響部の靭性に有害なフェライトサイドプレートの成長を抑制するとともに、BNとして固溶Nを固定し、溶接熱影響部の靭性劣化を防止する。しかし、過剰な添加は固溶Bを増加させ、溶接性を損ね、溶接熱影響部の焼入れ性を向上し、靭性を劣化させるため、0.0003〜0.003%
とする。
【0046】
尚、本発明では、その作用・効果を損なわない範囲で、微量元素を含有することが可能である。
【0047】
本発明鋼は、所望する母材の機械的特性に応じて、制御圧延、制御冷却、焼入れ焼戻しなど処理が可能で特にその製造方法は規定せず、いずれの方法でも溶接熱影響部の特性が損なわれることはない。
【0048】
【実施例】
表1に示す化学成分の鋼を、溶製後、1150〜1250℃に加熱し、制御圧延後、空冷により、板厚20mmの鋼板とした。
【0049】
得られた鋼板について、母材の強度、靭性を調査すると共に、入熱60kJ/cmのエレクトロガスアーク溶接で継手を製作し、溶接部のシャルピー衝撃試験(切欠き位置:BOND部)を板厚1/4から採取し、試験温度−50℃で衝撃吸収エネルギーを求めた。更に、溶接部再現熱サイクル試験(最高加熱温度1400℃、800〜500℃の冷却時間80sec,板厚20mm,入熱60kJ/cm)を同じく試験温度−50℃で行った。
【0050】
試験結果を表2に示す。本発明鋼のNo.1〜11は、引張強さ500N/mm2,−50℃での吸収エネルギーが200J以上と優れ、溶接部再現熱サイクル試験結果でも50Jが得られている。
【0051】
一方、比較鋼No.12〜15、17,18,22は、成分組成が本発明範囲外であり、母材特性は本発明鋼と同等であるが、溶接部再現熱サイクル試験が40J未満と劣っている。
【0052】
比較鋼No.16は、Ti,Nが、比較鋼No.23は、Sが本発明範囲外であり、母材靭性または溶接部再現熱サイクル試験結果が劣っている。
【0053】
比較鋼No.21は、C量が本発明範囲外で低く、母材強度が低く、比較鋼No.19,20,24〜26は、X,Y値の両者が本発明範囲外で、溶接部再現熱サイクル試験結果に劣っている。
【0054】
【表1】

Figure 0004821051
【0055】
【表2】
Figure 0004821051
【0056】
【発明の効果】
本発明によれば、安価な成分組成で、複雑な製造工程を要さずに低温での大入熱溶接部靭性に優れた溶接構造用鋼が得られ、産業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-tensile steel used for large welded steel structures such as storage tanks, ships, bridges, and buildings, and particularly at a low temperature (−40 ° C. or less) in a large heat input welding heat affected zone having a heat input of about 60 kJ / cm. ) Related to excellent toughness.
[0002]
[Prior art]
In recent years, steel structures tend to be enlarged, and high heat input welding that can reduce the number of welding operations and improve efficiency has been applied from the viewpoint of reducing construction costs.
[0003]
When high heat input electrogas welding or submerged arc welding is applied to high-strength steel, the toughness deterioration of the weld heat affected zone becomes a problem. 1. coarsening of austenite grains; 2. formation of upper bainite; The generation of island martensi is mentioned.
[0004]
Japanese Patent Publication No. 55-26164 discloses a technique for precipitating fine TiN, suppressing the coarsening of γ crystal grains, and ensuring the toughness of the heat affected zone. However, most of TiN exceeds 1400 ° C., so most of it dissolves in the base material, so that the crystal grains in the BOND part become coarse, and deterioration of toughness is inevitable.
[0005]
Japanese Laid-Open Patent Publication No. 61-79745 uses Ti oxide particles as nucleation sites for intragranular ferrite, and Japanese Laid-Open Patent Publication No. 5-287374 discloses nucleation of intragranular acicular ferrite using Ca oxide and Ca oxysulfide. The site describes that the toughness is improved by refining the structure of the weld.
[0006]
Japanese Patent Laid-Open No. 10-183295 discloses Ti—Al—Ca oxide as a nucleus, precipitates TiN and MnS, suppresses the coarsening of γ crystal grains, promotes the formation of intragranular ferrite, and welds. It describes that heat affected zone toughness is improved.
[0007]
This technique is characterized by deoxidizing in the order of Ti, Al, and Ca after adjusting the dissolved oxygen content of molten steel with Si in the deoxidation step.
[0008]
However, in the method according to Japanese Patent Laid-Open No. 5-287374, in order to ensure stable Ca oxide, O is controlled to 0.0040% or less, and Al of the strong deoxidizing element is controlled to a minute amount of 0.007% or less. There must be.
[0009]
Furthermore, in order to produce Ca oxide, the amount of Al must be adjusted so that O remains appropriately, and when applied to an actual machine, Al cannot be contained.
[0010]
In steel that does not substantially contain Al, in order to uniformly disperse finer oxides in the steel, it is necessary to strictly control the deoxidation method and the addition procedure of various elements. large.
[0011]
In addition, when the amount of Al in the steel is small, in general welding materials, the toughness of the weld metal part may be deteriorated.
[0012]
In the method according to Japanese Patent Laid-Open No. 10-183295, in order to disperse many Ti-Al-Ca oxides, TiN, and MnS effectively and uniformly finely, the dissolved oxygen concentration is set to 20 to 80 ppm by preliminary deoxidation with Si. Ti must be added to the molten steel and deoxidized, and then appropriate amounts of Al and Ca must be added within a short time, which is often difficult in actual operation.
[0013]
Furthermore, the low temperature toughness of the target welded portion is only about −20 ° C. and cannot be applied to a low temperature structure such as an LPG tank.
[0014]
[Problems to be solved by the invention]
This invention is made | formed in view of the above point, and has the low temperature toughness (Charpy absorbed energy in -50 degreeC more than 50J) excellent in the BOND part of the high heat input welded part of heat input 60kJ / cm or more. The object is to provide high strength steel.
[0015]
[Means for Solving the Problems]
The present inventors have studied in detail the structure of the weld heat affected zone by heat input of 60 kJ / cm or more, particularly the BOND zone, and the crystal grains are refined by the addition of Ti-Ca composite addition and the optimization of CaO and CaS, It was also found that the formation of intragranular ferrite was promoted and good low temperature toughness was obtained.
[0016]
The present invention has been made on the basis of the above findings and further studies, that is, the present invention,
1. In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, S: 0.001 to 0.01%, Ti: 0.005-0.02%, sol. Al: 0.015-0.050%, Ca: 0.001-0.004%, N: 0.001-0.005%, O: 0.001-0.007%, and CaO The ratio of the amount of oxygen present as the total oxygen amount (X): 0.08 to 0.25, the ratio of the sulfur amount present as CaS to the total sulfur amount (Y): the balance satisfying 0.1 to 0.3 A high-strength steel for welded structures for low-temperature use, which is substantially composed of iron and inevitable impurities and has excellent toughness in the heat affected zone.
[0017]
Where X = (amount of oxygen present as CaO) / (total amount of oxygen contained in the steel)
Y = (amount of sulfur present as CaS) / (total amount of sulfur contained in steel)
Each amount is the steel content (mass%).
[0018]
2. Further, as steel components in mass%, Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% B: High tensile strength steel for welding structure for low temperature excellent in toughness of weld heat affected zone according to 1, characterized by containing one or more of 0.0003 to 0.003%.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limiting the components in the present invention will be described in detail.
[0020]
The present invention is characterized in that nucleation of ferrite is promoted and the structure is refined in the weld heat affected zone.
[0021]
In order to secure an appropriate amount of ferrite nucleation sites, the ratio of CaO and CaS in the Ca-Al composite oxide is defined as the respective ratios with respect to the total oxygen amount and the total sulfur amount.
[0022]
X {= (amount of oxygen present as CaO) / (total amount of oxygen contained in steel)}: 0.08 to 0.25
Y {= (amount of sulfur present as CaS) / (total amount of sulfur contained in steel)}: 0.1 to 0.3
However, each amount is the steel content (mass%).
[0023]
X is (amount of oxygen present as CaO) / (total amount of oxygen contained in the steel). If it is less than 0.08, the proportion of alumina increases and ferrite formation is not promoted, whereas 0.25 If it exceeds 1, inclusions become coarse and the toughness decreases, so 0.08 to 0.25.
[0024]
Y is (amount of sulfur present as CaS) / (total amount of sulfur contained in the steel). When X is in the range of 0.08 to 0.25, and less than 0.1, solid solution S increases. However, if the toughness decreases and exceeds 0.3, CaS becomes coarse and ferrite formation is suppressed, so 0.1 to 0.3.
[0025]
The amount of oxygen present as CaO [OasCaO] is determined by subjecting the residue extracted and separated from the steel by the bromine methanol method or iodine methanol method to alkali dissolution treatment, and then analyzing the Ca concentration ([Ca] Br-M , Ppm), and the amount of oxygen (OasCaO, ppm) that becomes CaO is determined from the Ca concentration by the following formula. The total amount of oxygen in the steel is measured by an inert gas melting-infrared absorption method.
[0026]
[OasCaO] = 2.5 × [Ca] Br-M
The amount of sulfur existing as CaS [SasCaS] is according to the following equation.
[0027]
[SasCaS] = 0.8 × ([Ca] MS− [Ca] Br—M)
However, the Ca concentration ([Ca] MS, ppm) is obtained by subjecting the residue extracted and separated from the steel by the 4% MS electrolytic extraction method to alkali dissolution treatment and ICP emission spectroscopic analysis. Is measured by combustion in an oxygen stream-infrared absorption method.
[0028]
When the CaO and CaS constituting the Ca-Al composite oxide are defined as described above, the reason why the BOND toughness of the weld heat affected zone is improved is that the precipitate form is suitable for the ferrite nucleation site. This is probably due to an increase in ferrite nucleation sites, but details are unknown.
[0029]
Moreover, since this oxide is thermally stable and has little influence by welding, the precipitation form prescribed | regulated with the base material is not impaired by a welding part, but the effect is exhibited.
[0030]
Although the manufacturing method of the steel which satisfies the said X and Y is not specifically limited, It is desirable to adjust molten steel temperature, such as raising molten steel processing temperature from 1620 degreeC to 1670 degreeC after Ca addition. After continuous casting, there is no problem in applying direct rolling in which the slab is rolled at a temperature exceeding Ar3.
[0031]
The steel of the present invention promotes ferrite nucleation by the above-described Ca—Al-based composite oxide and satisfies the necessary mechanical properties as a high-strength steel material for low-temperature welded structures applied to large structures. The following component composition is used.
[0032]
C
C is an effective element for ensuring strength. In order to obtain the effect, 0.04% or more is added. On the other hand, if it is added in a large amount exceeding 0.12%, island martensite is likely to be generated in the weld heat affected zone, the toughness is lowered, and the weldability is also deteriorated. % (0.04% or more and 0.12% or less).
[0033]
Si
Si is added because it ensures strength and is necessary as a deoxidizer in the steelmaking process. If it is less than 0.01%, the effect is insufficient, and 0.01% or more is added. On the other hand, if added over 0.5%, high carbon island martensite is generated and the weld heat affected zone toughness deteriorates, so the content is made 0.01 to 0.5%.
[0034]
Mn
Mn is added to ensure strength. If it is less than 0.5%, the effect is insufficient, and 0.5% or more is added. On the other hand, if added over 2.0%, the hardenability is increased and the weldability and weld heat affected zone toughness deteriorate, so 0.5 to 2.0%.
[0035]
S
S is necessary for generating CaS which becomes a nucleation site of ferrite in the weld heat affected zone. In order to acquire the effect, it is made 0.001% or more. On the other hand, if it exceeds 0.01%, the toughness of the base material and the welded portion deteriorates, and the cracking susceptibility of the welded portion also deteriorates, so 0.001 to 0.01%.
[0036]
Ti
Ti is added in order to suppress the coarsening of γ grains in the weld heat-affected zone and to generate TiN that promotes nucleation of ferrite with Ca—Al composite oxide as a nucleus when added in combination with Ca. . In order to obtain the effect, 0.005% or more is added. On the other hand, if it exceeds 0.02%, coarse TiC that deteriorates the toughness of the base metal and the weld heat-affected zone is precipitated, so 0.005 to 0.02%.
[0037]
sol. Al
Al is added to form inclusions that become precipitation sites for the deoxidizer and intragranular ferrite. In order to obtain the effect, 0.015% or more is added. On the other hand, if 0.050% or more is added, the inclusions become coarse and the toughness decreases, so the content is made 0.015 to 0.050%.
[0038]
Ca
Ca produces a Ca—Al-based composite oxide, which has the effect of precipitating CaO (which will continue to be TiN precipitation nuclei) and CaS to precipitate intragranular ferrite, which is important in the present invention. Essential addition as an element. If the amount is less than 0.001%, the effect cannot be sufficiently obtained. On the other hand, if the amount exceeds 0.004%, large inclusions and clusters are formed, and the cleanliness of the steel deteriorates. 004%.
[0039]
N
N forms TiN and suppresses the coarsening of the γ crystal grains in the weld heat affected zone, and also nucleates ferrite and precipitates intragranular ferrite. Therefore, the N content is set to 0.001% or more. On the other hand, if it exceeds 0.005%, the amount of solute N increases and the toughness of the base metal and the welded portion is deteriorated, so 0.001 to 0.005%.
[0040]
O
O produces | generates the Ca-Al type complex oxide used as the nucleation site of TiN and CaS, and improves the toughness of a welding heat affected zone. In order to acquire the effect, it is made 0.001% or more. On the other hand, if it exceeds 0.007%, O in the steel becomes excessive and the base material toughness deteriorates, so 0.001 to 0.007%.
[0041]
The above is the basic component composition of the present invention. In order to improve the strength characteristics, one or more of Cu, Ni, Cr, Mo, V, Nb, and B can be further contained.
[0042]
Cu
If Cu is added excessively, the weldability is impaired and the toughness of the base metal and the weld heat affected zone is deteriorated by precipitation hardening, so the content is made 0.5% or less.
[0043]
Ni
If Ni is added excessively, weldability is impaired and the manufacturing cost is increased.
[0044]
Cr, Mo, V, Nb
When Cr, Mo, V, Nb is added excessively, the weldability is impaired and the toughness of the weld heat affected zone is deteriorated, so Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03%.
[0045]
B
B suppresses the growth of the ferrite side plate, which is harmful to the toughness of the heat affected zone, and fixes solute N as BN to prevent toughness deterioration of the weld heat affected zone. However, excessive addition increases the solid solution B, impairs the weldability, improves the hardenability of the heat affected zone of the weld, and deteriorates the toughness, so 0.0003 to 0.003%
And
[0046]
In the present invention, it is possible to contain a trace element as long as its action and effect are not impaired.
[0047]
The steel of the present invention can be processed by controlled rolling, controlled cooling, quenching and tempering according to the desired mechanical properties of the base metal, and its manufacturing method is not particularly defined. It will not be damaged.
[0048]
【Example】
Steels having chemical components shown in Table 1 were heated to 1150 to 1250 ° C. after being melted, and steel plates having a thickness of 20 mm were formed by air cooling after controlled rolling.
[0049]
The obtained steel sheet was investigated for the strength and toughness of the base metal, and a joint was produced by electrogas arc welding with a heat input of 60 kJ / cm. / 4 and the impact absorption energy was determined at a test temperature of −50 ° C. Further, a welded part reproduction thermal cycle test (maximum heating temperature 1400 ° C., cooling time of 800 to 500 ° C. 80 sec, plate thickness 20 mm, heat input 60 kJ / cm) was also performed at the test temperature −50 ° C.
[0050]
The test results are shown in Table 2. No. of the steel of the present invention. Nos. 1 to 11 have a tensile strength of 500 N / mm @ 2 and an absorbed energy at -50 [deg.] C. of 200 J or more, and 50 J is also obtained as a result of a welded part reproduction thermal cycle test.
[0051]
On the other hand, Comparative Steel No. 12-15, 17, 18, and 22 have component compositions outside the scope of the present invention, and the base material characteristics are the same as the steel of the present invention, but the welded part reproduction thermal cycle test is inferior to less than 40 J.
[0052]
Comparative steel No. No. 16, Ti and N are comparative steel Nos. In No. 23, S is out of the range of the present invention, and the base metal toughness or the welded portion reproduction thermal cycle test result is inferior.
[0053]
Comparative steel No. No. 21 has a low C content outside the scope of the present invention and a low base metal strength. Nos. 19, 20, and 24 to 26 are both inferior in the results of the welded portion reproduction thermal cycle test because both the X and Y values are outside the scope of the present invention.
[0054]
[Table 1]
Figure 0004821051
[0055]
[Table 2]
Figure 0004821051
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the steel for welded structures excellent in the high heat input weld part toughness in low temperature without requiring a complicated manufacturing process with an inexpensive component composition is obtained, and it is very useful industrially.

Claims (2)

質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2.0%、S:0.001〜0.01%、Ti:0.005〜0.02%、sol.Al:0.015〜0.050%、Ca:0.001〜0.004%、N:0.001〜0.005%、O:0.001〜0.007%を含有し、且つ,CaOとして存在する酸素量の全酸素量に対する割合(X):0.08〜0.25、CaSとして存在する硫黄量の全硫黄量に対する割合(Y):0.1〜0.3を満足する残部鉄及び不可避不純物よりなる溶接熱影響部の靭性に優れた低温用溶接構造用高張力鋼。
但し、X=(CaOとして存在する酸素の量)/(鋼中に含まれる全酸素量)
Y=(CaSとして存在する硫黄の量)/(鋼中に含まれる全硫黄量)
各量は、鋼中含有量(mass%)とする。
In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, S: 0.001 to 0.01%, Ti: 0.005-0.02%, sol. Al: 0.015-0.050%, Ca: 0.001-0.004%, N: 0.001-0.005%, O: 0.001-0.007%, and CaO The ratio of the oxygen amount present as the total oxygen amount (X): 0.08 to 0.25, the ratio of the sulfur amount present as CaS to the total sulfur amount (Y): 0.1 to 0.3 High-tensile strength steel for low-temperature welded structures with excellent toughness of weld heat-affected zone composed of iron and inevitable impurities.
Where X = (amount of oxygen present as CaO) / (total amount of oxygen contained in the steel)
Y = (amount of sulfur present as CaS) / (total amount of sulfur contained in steel)
Each amount is the steel content (mass%).
更に鋼成分として質量%で、Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%、B:0.0003〜0.003%の一種または二種以上を含有することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた低温用溶接構造用高張力鋼。  Further, as a steel component in mass%, Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03%, 2. The high-tensile strength steel for low-temperature welded structures having excellent toughness of the weld heat-affected zone according to claim 1, wherein B: 0.0003 to 0.003% is contained.
JP2001121185A 2001-04-19 2001-04-19 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness Expired - Lifetime JP4821051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121185A JP4821051B2 (en) 2001-04-19 2001-04-19 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121185A JP4821051B2 (en) 2001-04-19 2001-04-19 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness

Publications (2)

Publication Number Publication Date
JP2002317243A JP2002317243A (en) 2002-10-31
JP4821051B2 true JP4821051B2 (en) 2011-11-24

Family

ID=18971113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121185A Expired - Lifetime JP4821051B2 (en) 2001-04-19 2001-04-19 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness

Country Status (1)

Country Link
JP (1) JP4821051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432539B2 (en) * 2009-01-28 2014-03-05 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
WO2017141714A1 (en) 2016-02-15 2017-08-24 株式会社神戸製鋼所 Steel sheet and production method therefor
JP2018009239A (en) 2016-02-15 2018-01-18 株式会社神戸製鋼所 Steel sheet and production method therefor

Also Published As

Publication number Publication date
JP2002317243A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5076658B2 (en) Steel material for large heat input welding
JP5137032B2 (en) Steel plate for submerged arc welding
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
TW201331387A (en) Steel material for high heat input welding
JP6665658B2 (en) High strength steel plate
JP4821051B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP3722044B2 (en) Welded joint
CN114423878B (en) Thick steel plate and method for producing same
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JPS62170459A (en) High tension steel plate for high heat input welding
JP4220914B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP2020204091A (en) High strength steel sheet for high heat input welding
JP2003211268A (en) Welded joint with large input-heat welding
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JP2020204075A (en) High strength steel sheet for high heat input welding
JP7323086B1 (en) Steel plate and its manufacturing method
JP2005002476A (en) Weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

EXPY Cancellation because of completion of term