JP4820988B2 - Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same - Google Patents

Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same Download PDF

Info

Publication number
JP4820988B2
JP4820988B2 JP2005320707A JP2005320707A JP4820988B2 JP 4820988 B2 JP4820988 B2 JP 4820988B2 JP 2005320707 A JP2005320707 A JP 2005320707A JP 2005320707 A JP2005320707 A JP 2005320707A JP 4820988 B2 JP4820988 B2 JP 4820988B2
Authority
JP
Japan
Prior art keywords
reactive
functional group
fine particles
reactive functional
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005320707A
Other languages
Japanese (ja)
Other versions
JP2007129079A (en
Inventor
小川  一文
Original Assignee
国立大学法人 香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 香川大学 filed Critical 国立大学法人 香川大学
Priority to JP2005320707A priority Critical patent/JP4820988B2/en
Publication of JP2007129079A publication Critical patent/JP2007129079A/en
Application granted granted Critical
Publication of JP4820988B2 publication Critical patent/JP4820988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法に関するものである。さらに詳しくは、表面を安定化させるか、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した磁性微粒子とその製造方法およびそれらを用いて作製した磁石とその製造方法に関するものである。 The present invention relates to magnetic fine particles, a method for producing the same, a magnet using them, and a method for producing the same. More specifically, magnetic fine particles having a surface stabilized or thermally or photoreactive, or radical or ion reactive on the surface, a method for producing the same, a magnet produced using them, and a method for producing the same It is about.

本発明において、「磁性微粒子」には、磁性金属微粒子や磁性金属酸化物微粒子が含まれる。 In the present invention, “magnetic fine particles” include magnetic metal fine particles and magnetic metal oxide fine particles.

従来から、磁性微粒子を焼結した磁石や、樹脂中に磁性微粒子分散固化したプラスチック磁石が数多く知られている。 Conventionally, many magnets obtained by sintering magnetic fine particles and plastic magnets obtained by dispersing and solidifying magnetic fine particles in a resin are known.

しかしながら、磁性微粒子を焼結した磁石では、高温で焼結するため磁性粒子の磁気特性が劣化して高性能な磁石は得られなかった。また、樹脂中に磁性微粒子分散固化したプラスチック磁石では、樹脂をバインダーにしているため弾力性は持っているが、磁化強度に優れた磁石は得られなかった。 However, a magnet obtained by sintering magnetic fine particles is sintered at a high temperature, so that the magnetic properties of the magnetic particles deteriorate and a high-performance magnet cannot be obtained. Further, a plastic magnet in which magnetic fine particles are dispersed and solidified in a resin has elasticity because it uses a resin as a binder, but a magnet having excellent magnetization strength cannot be obtained.

本発明は、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べて、磁性微粒子の焼結温度を低くすると共にバインダーを用いないで固化することにより、より高性能な磁気特性を有する磁性微粒子固化磁石を提供することを目的とする。 Although the present invention is a magnet in which magnetic fine particles are solidified, it lowers the sintering temperature of the magnetic fine particles and solidifies without using a binder as compared with conventional sintered magnets, thereby providing higher performance magnetic properties. An object of the present invention is to provide a magnetic fine particle solidified magnet.

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

前記課題を解決するための手段として提供される第一の発明は、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して成形されていることを特徴とする磁石である A first invention provided as a means for solving the above-described problems includes a first organic thin film that includes a first reactive functional group at one end and is covalently bonded to the surface via Si at the other end. Including the first reactive magnetic fine particles , the second reactive functional group that reacts with the first reactive functional group at one end to form a covalent bond, and the other end via Si second reactive magnetic particles are mixed, it is formed by reaction with the second reactive functional group and the first reactive functional groups to one another which is covered with a second organic thin film covalently bonded to a The magnet is characterized by being formed by covalent bonding via a covalent bond.

(削除)(Delete)

(削除)(Delete)

の発明は、第の発明において、前記第1および第2の反応性の官能基の一方がエポキシ基、他方がイミノ基あることを特徴とする磁石である。 The second invention is the first invention, one of the first and second reactive functional group is a magnet, wherein the epoxy group, and the other is an imino group.

の発明は、第の発明またはの発明において、前記第1および第2の有機薄膜が共に単分子膜で構成されていることを特徴とする磁石である。 The third invention is the first invention or the second invention, a magnet, wherein the first and second organic thin film is formed together with a monomolecular film.

の発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造する工程と、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造する工程と、前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させる工程を含むことを特徴とする磁石の製造方法である。 According to a fourth aspect of the present invention, a first alkoxysilane compound containing a first reactive functional group at one end of a linear alkylene group and an alkoxysilyl group at the other end, a silanol condensation catalyst, and a non-aqueous organic solvent are mixed. The magnetic fine particles were dispersed in the chemical adsorption solution prepared in the above, and the first organic thin film containing one of the first reactive functional groups at one end and covalently bonded to the surface via Si at the other end was covered. Including a step of producing first reactive magnetic fine particles, a second reactive functional group that forms a covalent bond by reacting with the first reactive functional group at one end of the linear alkylene group, Magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing a second alkoxysilane compound containing an alkoxysilyl group at one end, a silanol condensation catalyst, and a non-aqueous organic solvent, and the second reactive functional group at one end. Group at the other end via Si Covalently bound comprising the steps of producing a second reactive magnetic microparticles covered with a second organic thin film, put in a mold by mixing the first reactive magnetic particles and the second reactive magnetic fine particles and pressurizing and heating in a magnetic field, production of the first reactive functional group is reacted with the second reactive functional group, a magnet which comprises a step of forming a covalent bond Is the method.

(削除)(Delete)

の発明は、第の発明において、前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする磁石の製造方法である。
以下これらの発明についての要旨を説明する。
A fifth invention is characterized in that, in the fourth invention, when the first reactive magnetic fine particles and the second reactive magnetic fine particles are placed in a template, an ultrasonic wave is applied in a magnetic field. It is a manufacturing method of a magnet.
The gist of these inventions will be described below.

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

本発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造し、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造し、次いで、前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させることにより、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して固化成形されている磁石を提供することを要旨とする。 The present invention comprises mixing a first alkoxysilane compound containing a first reactive functional group at one end of a linear alkylene group and an alkoxysilyl group at the other end, a silanol condensation catalyst, and a non-aqueous organic solvent. A magnetic fine particle is dispersed in the prepared chemical adsorption solution, and the first organic thin film is coated with a first organic thin film that includes the first reactive functional group at one end and is covalently bonded to the surface via Si at the other end. The second reactive functional group that reacts with the first reactive functional group to form a covalent bond at one end of the linear alkylene group and the alkoxysilyl at the other end is produced. Magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing a second alkoxysilane compound containing a group, a silanol condensation catalyst, and a non-aqueous organic solvent, and the second reactive functional group is included at one end; Covalent bond to the surface via Si at the other end And the second to produce a second reactive magnetic microparticles covered with an organic thin film, then, mixing the first reactive magnetic particles a second reactive magnetic particles placed in a mold, in a magnetic field and in pressurizing and heating, it is reacted with the second reactive functional group and the first reactive functional group, by forming a covalent bond, the first reactive functional group at one end Including a first reactive magnetic fine particle covered with a first organic thin film covalently bonded to the surface via Si at the other end, and a covalent bond by reacting with the first reactive functional group at one end. Magnetic fine particles covered with a second organic thin film containing a second reactive functional group to be formed and covalently bonded to the surface via Si at the other end are mixed, and the first reactive functional group is mutually mixed. the reaction solidified is molded covalently bonded through the formed covalent bonds with the second reactive functional group and And gist thereof is to provide a by which the magnet.

このとき、第1の反応性磁性微粒子第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、第1の反応性の官能基と第2の反応性の官能基とを反応させ、共有結合を形成させるため、成形が容易である。また、鋳型に入れて加圧加温反応させる際、磁場中で超音波を印加しながら行うと、磁石内での磁性微粒子の結晶方向を揃える上で都合がよい。 At this time, we put in a mold by mixing the first reactive magnetic particles and the second reactive magnetic particles, and pressurizing and heating in a magnetic field, the first reactive functional group and the second reactive Molding is easy because it reacts with a functional group to form a covalent bond . In addition, when the pressure-warming reaction is performed in a mold, it is convenient to align the crystal directions of the magnetic fine particles in the magnet if an ultrasonic wave is applied in a magnetic field.

一方、表面に共有結合した第1および第2の有機薄膜を、直鎖アルキレン基の一端に第1または第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物で構成しておくと、固化温度を低くできて都合がよい。 On the other hand, the first and second organic thin films covalently bonded to the surface are formed from the first alkoxy containing the first or second reactive functional group at one end of the linear alkylene group and the alkoxysilyl group at the other end. It is convenient to use a silane compound because the solidification temperature can be lowered.

また、第1および第2の反応性の官能基の組み合わせが、熱反応性のエポキシ基およびイミノ基であると、固化の際収縮が少なくて都合がよい。
さらに、表面に共有結合した第1および第2の有機薄膜を単分子膜で構成しておくと、磁性微粒子密度を高くする上で都合がよい。
Also, the combination of the first and second reactive functional groups, if it is thermally reactive epoxy groups and imino groups, may conveniently be less shrinkage during solidification.
Furthermore, it is convenient to increase the density of magnetic fine particles if the first and second organic thin films covalently bonded to the surface are composed of monomolecular films.

本発明によれば、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べてより高性能な磁気特性を有する磁性微粒子固化磁石を提供できる格別な効果がある。 ADVANTAGE OF THE INVENTION According to this invention, although it is a magnet which solidified magnetic fine particles, there exists a special effect which can provide the magnetic fine particle solidified magnet which has a higher performance magnetic characteristic compared with the conventional sintered magnet.

本発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造し、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造し、次いで、前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させることにより、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子と、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して固化成形されている磁石を提供するものである。 The present invention comprises mixing a first alkoxysilane compound containing a first reactive functional group at one end of a linear alkylene group and an alkoxysilyl group at the other end, a silanol condensation catalyst, and a non-aqueous organic solvent. A magnetic fine particle is dispersed in the prepared chemical adsorption solution, and the first organic thin film is coated with a first organic thin film that includes the first reactive functional group at one end and is covalently bonded to the surface via Si at the other end. The second reactive functional group that reacts with the first reactive functional group to form a covalent bond at one end of the linear alkylene group and the alkoxysilyl at the other end is produced. Magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing a second alkoxysilane compound containing a group, a silanol condensation catalyst, and a non-aqueous organic solvent, and the second reactive functional group is included at one end; Covalent bond to the surface via Si at the other end The second reactive magnetic fine particles covered with the second organic thin film are manufactured, and then the first reactive magnetic fine particles and the second reactive magnetic fine particles are mixed and placed in a mold, and then in a magnetic field. The first reactive functional group is reacted with the first reactive functional group and the second reactive functional group to form a covalent bond, thereby forming the first reactive functional group at one end. Including a first reactive magnetic fine particle covered with a first organic thin film covalently bonded to the surface via Si at the other end, and a covalent bond by reacting with the first reactive functional group at one end. Magnetic fine particles covered with a second organic thin film containing a second reactive functional group to be formed and covalently bonded to the surface via Si at the other end are mixed, and the first reactive functional group is mutually mixed. And solidified by covalent bonding via a covalent bond formed by the reaction between the second reactive functional group and the second reactive functional group. And that there is provided a magnet.

したがって、本発明には、磁性微粒子本来の形状と機能をほぼ完全に保ったままで粒子そのものの表面に反応性を付与した磁性微粒子、さらに、その機能を用いて磁性微粒子を成形固化した高性能磁石を提供できる。 Therefore, in the present invention, the magnetic fine particles in which the original shape and function of the magnetic fine particles are maintained almost completely and the surface of the particles themselves are given reactivity, and the high-performance magnet in which the magnetic fine particles are molded and solidified by using the function. Can provide.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。 Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

なお、本発明に関する磁性微粒子には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子があるが、まず、代表例としてマグネタイト微粒子を取り上げて説明する。 The magnetic fine particles according to the present invention include magnetic metal fine particles made of iron, chromium, nickel and alloys thereof, and magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, etc. First, as a representative example, magnetite Take the fine particles for explanation.

まず、無水のマグネタイト1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチルスズジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好まし化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous magnetite 1 was prepared and dried well. Next, as a chemical adsorbent, a functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as a chemical represented by the following formula (Chemical Formula 1) or (Chemical Formula 2) 99 wt%, as a silanol condensation catalyst, e.g., dibutyltin diacetyl acetonate or acetate as an organic acid were weighed respectively so as to be 1 wt%, silicone solvents, for example, hexamethyldisiloxane and dimethylformamide (50: 50) concentration of about 1% by weight in a mixed solvent (not preferable concentration of the chemical adsorbent was prepared chemisorption solution by dissolving such that 0.5 to 3%).

Figure 0004820988
Figure 0004820988

Figure 0004820988
Figure 0004820988

この吸着液に無水のマグネタイト微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のマグネタイト微粒子表面には水酸基2が多数含まれているの(図1a)で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは酢酸等の有機酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に、示したような結合を形成し、磁性微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3あるいはアミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1b、1c)。なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。 Anhydrous magnetite fine particles were mixed in the adsorbed liquid and stirred, and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 2 on the surface of the anhydrous magnetite fine particles (FIG. 1a), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are an organic acid such as a silanol condensation catalyst or acetic acid. Reaction in the presence of (in this case, de-CH 3 OH) to form bonds as shown in the following formula (Chemical Formula 3) or (Chemical Formula 4). A chemisorption monomolecular film 3 containing bonded epoxy groups or a chemisorption film 4 containing amino groups was formed with a thickness of about 1 nanometer (FIGS. 1b and 1c). Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.

その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ作製できた。 After that, when a chlorine-based solvent such as trichlene was added and washed with stirring, magnetite fine particles covered with a chemisorption monomolecular film having a reactive functional group such as an epoxy group or an amino group on the surface could be produced. .

Figure 0004820988
Figure 0004820988

Figure 0004820988
Figure 0004820988

この処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子形状を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたマグネタイト微粒子が得られた。
Since the coating film was extremely thin with a film thickness of nanometer level, the particle shape was not impaired.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Magnetite fine particles on which an ultrathin polymer film made of an adsorbent was formed were obtained.

この方法の特徴は脱アルコール反応であるため、マグネタイト微粒子のような酸で破壊されるような物でも使用可能である。 Since this method is characterized by a dealcoholization reaction, it is possible to use a material that is broken by an acid such as magnetite fine particles.

次に、前記エポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ同量採取り十分混合し、金型中に入れて加圧し、さらに50〜100℃程度に加熱すると、下記式(化)に示したような反応でエポキシ基とアミノ基が付加して磁性微粒子は結合固化し、さらに着磁させると、バインダーを含まない磁石を製造できた。 Next, the same amount of the magnetite fine particles 5 and 6 covered with the chemisorption monomolecular film having the epoxy group or amino group are collected and mixed together, put into a mold and pressurized, and further 50-100 When heated to about 0 ° C., an epoxy group and an amino group are added by the reaction shown in the following formula (Chemical Formula 5 ), the magnetic fine particles are bonded and solidified, and further magnetized, a magnet containing no binder can be produced. .

Figure 0004820988
Figure 0004820988

なお、金型中に入れる際、磁場中で超音波を当てながら充填すると、微粒子の配向が揃い磁気特性の優れたマグネタイト磁石が得られることが確認できた。(図2) In addition, when putting in a metal mold | die, it has confirmed that the magnetite magnet 7 with which the orientation of microparticles | fine-particles was uniform and excellent in the magnetic characteristic was obtained by applying ultrasonic waves in a magnetic field. (Figure 2)

なお、上記実施例では、反応性基を含む化学吸着剤として式(化1)あるいは(化2)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH (CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。
In addition, in the said Example, although the substance shown in Formula (Formula 1) or (Formula 2) was used as a chemical adsorbent containing a reactive group, in addition to the above, the following (1) to (16) The substances shown in the above were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 4 Si (OC 2 H 5 ) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3
Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 0004820988
Figure 0004820988

Figure 0004820988
Figure 0004820988

なお、実施例1にいて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジプロピルチタネートを用いることが可能であった。 Incidentally, have you in Example 1, the silanol condensation catalyst, a carboxylic acid metal salt, carboxylic acid ester metal salt, metal carboxylate polymer, metal carboxylate chelate, titanate esters, and titanate chelates available It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctoate, dibutyltin diacetate, dioctyltin dilaurate, dioctyl tin dioctate, dioctyl tin diacetate, stannous, lead naphthenate dioctanoate, cobalt naphthenate , 2-ethyl hexene iron, dioctyl tin bis octene dust thioglycolic acid ester salts, dioctyl tin maleate salt, dibutyl tin maleate polymer, dimethyl tin mercapto propionate polymers, dibutyl tin bis acetyl acetate, dioctyl tin bis-acetyl It was possible to use laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) di - propyl titanate.

また、膜形成溶液の溶媒として、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。
さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
Further, it was possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorocarbon-based solvent, a silicone-based solvent, or a mixture thereof that does not contain water as a solvent for the film-forming solution. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.
Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド、あるいはそれら混合物等を挙げることができる。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide, or a mixture thereof.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Further, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチルスズオキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, replacing the dibutyl tin oxide silanol catalyst H3 of the Japan Epoxy Resin Co. is a ketimine compound, and other conditions were tried to the same, except that the reaction time was reduced to about 1 hour, nearly the same Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチルスズビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Further, a silanol catalyst, and Japan Epoxy Resins Co. of H3 is a ketimine compound, a mixture of dibutyl tin bis-acetyl acetonate silanol catalyst (mixing ratio 1: 1) replaced, but other conditions were tried to the same The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、酸、マロン酸等があり、ほぼ同様の効果があった。 Although not particularly limited as organic acids which can be used, for example, formic acid or acetic acid, propionic acid, butyric acid, there is and malonic acid, it had substantially the same effect.

さらにまた、本発明で得られる磁石では、バインダーを含まないので、金属磁石並みの高性能な磁気特性を有する磁石を、比較定低温で金型に入れてプレスするだけで大量生産できる作用がある。 Furthermore, since the magnet obtained in the present invention does not contain a binder, it has the effect of mass-producing a magnet having high-performance magnetic properties similar to that of a metal magnet by simply placing it in a mold at a relatively constant low temperature and pressing it. .

また、上記実施例では、マグネタイト微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ磁性微粒子で有れば、どのような磁性微粒子にでも適用可能である。 In the above-described embodiments, magnetite fine particles have been described as an example. However, the present invention is not limited as long as the surface is a magnetic fine particle containing active hydrogen, that is, hydrogen of a hydroxyl group, hydrogen of an amino group, or hydrogen of an imino group. It can be applied to various magnetic fine particles.

具体的には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子等に適用可能である。 Specifically, the present invention can be applied to magnetic metal fine particles made of iron, chromium, nickel, and alloys thereof, magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, and the like.

本発明の実施例1における磁性微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前の磁性微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the conceptual diagram which expanded the reaction of the magnetic fine particle in Example 1 of this invention to the molecular level, (a) is a figure of the magnetic fine particle surface before reaction, (b) is the monomolecular film containing an epoxy group formed. (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の実施例1における磁石を微粒子レベルまで拡大した概念図であり、エポキシ基を含む単分子膜が形成された磁性微粒子Aとアミノ基を含む単分子膜が形成された磁性微粒子Bを等量混合し、鋳型に入れて加熱反応させ固化後、着磁させた後の図を示す。FIG. 2 is a conceptual diagram in which the magnet in Example 1 of the present invention is enlarged to a fine particle level, including magnetic fine particles A on which a monomolecular film containing an epoxy group is formed and magnetic fine particles B on which a monomolecular film containing an amino group is formed. The figure after quantity mixing, putting in a mold, heating and reacting, solidifying, and magnetizing is shown.

1 マグネタイト微粒子
2 水酸基
3 エポキシ基を含む単分子膜
4 アミノ基を含む単分子膜
エポキシ基を含む単分子膜で被覆されたマグネタイト微粒子
アミノ基を含む単分子膜で被覆されたマグネタイト微粒子
マグネタイト磁石
DESCRIPTION OF SYMBOLS 1 Magnetite fine particle 2 Hydroxyl group 3 Monomolecular film containing an epoxy group 4 Monomolecular film containing an amino group
Magnetite fine particles coated with monomolecular film containing 5 epoxy groups
Magnetite fine particles coated with monomolecular film containing 6 amino groups
7 magnetite magnet

Claims (5)

一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子
一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して成形されていることを特徴とする磁石。
First reactive magnetic fine particles covered with a first organic thin film containing a first reactive functional group at one end and covalently bonded to the surface via Si at the other end ;
A second organic thin film that includes a second reactive functional group that reacts with the first reactive functional group to form a covalent bond at one end and is covalently bonded to the surface via Si at the other end. Molded second reactive magnetic fine particles are mixed and covalently bonded to each other through a covalent bond formed by the reaction between the first reactive functional group and the second reactive functional group. A magnet characterized by being made.
前記第1および第2の反応性の官能基の一方がエポキシ基、他方がイミノ基あることを特徴とする請求項記載の磁石。 It said first and second reactive one epoxy group functional group, the magnet according to claim 1, wherein the other is characterized by an imino group. 前記第1および第2の有機薄膜が共に単分子膜で構成されていることを特徴とする請求項1または2記載の磁石。 The magnet according to claim 1 or 2, wherein both the first and second organic thin films are formed of a monomolecular film. 直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造する工程と、
直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造する工程と、
前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させる工程を含むことを特徴とする磁石の製造方法。
A chemisorption made by mixing a first alkoxysilane compound containing a first reactive functional group at one end of a linear alkylene group and an alkoxysilyl group at the other end, a silanol condensation catalyst, and a non-aqueous organic solvent. First reactive magnetism is obtained by dispersing magnetic fine particles in a liquid, covering the first organic thin film that includes the first reactive functional group at one end and is covalently bonded to the surface via Si at the other end. A step of producing fine particles;
A second alkoxysilane compound containing a second reactive functional group that forms a covalent bond by reacting with the first reactive functional group at one end of a linear alkylene group and an alkoxysilyl group at the other end The magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing a silanol condensation catalyst and a non-aqueous organic solvent, the second reactive functional group is contained at one end, and Si is interposed at the other end on the surface. Producing a second reactive magnetic fine particle covered with a covalently bonded second organic thin film;
The first placed in the reactive magnetic particles and the second reactive magnetic particles were mixed molds and pressed and heated in a magnetic field, said second reactive with the first reactive functional group A method for producing a magnet, comprising the step of reacting with a functional group of the above to form a covalent bond .
前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする請求項記載の磁石の製造方法。 5. The method of manufacturing a magnet according to claim 4, wherein when the first reactive magnetic fine particles and the second reactive magnetic fine particles are put into a template, the ultrasonic waves are applied in a magnetic field.
JP2005320707A 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same Active JP4820988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320707A JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320707A JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007129079A JP2007129079A (en) 2007-05-24
JP4820988B2 true JP4820988B2 (en) 2011-11-24

Family

ID=38151470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320707A Active JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4820988B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136132A1 (en) * 2007-05-01 2008-11-13 Kazufumi Ogawa Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
JP5077747B2 (en) * 2007-08-29 2012-11-21 国立大学法人 香川大学 Magnetic fluid, manufacturing method thereof, magnetic fluid bearing device and magnetic seal device using magnetic fluid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197102A (en) * 1989-01-26 1990-08-03 Mitsubishi Heavy Ind Ltd Surface modification method for magnetic material
JP3209380B2 (en) * 1993-07-21 2001-09-17 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
ATE176077T1 (en) * 1994-07-07 1999-02-15 Chiron Diagnostics Corp HIGHLY DISPERSED MAGNETIC METAL OXIDE PARTICLES, PRODUCTION PROCESS AND APPLICATION
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JP3597507B2 (en) * 2001-01-24 2004-12-08 松下電器産業株式会社 Fine particle array, method for producing the same, and device using the same
JP2004337742A (en) * 2003-05-15 2004-12-02 Tdk Corp Crushing system, method for manufacturing r-t-b type permanent magnet and r-t-b type permanent magnet
JP4444713B2 (en) * 2004-03-29 2010-03-31 株式会社アドバネクス Releasable mold, method for producing the same, and method for producing molded product
JP4565102B2 (en) * 2004-03-31 2010-10-20 小川 一文 Water and oil repellent antifouling apparel product manufacturing method
JP5050190B2 (en) * 2005-10-26 2012-10-17 国立大学法人 香川大学 Fine particles and production method thereof

Also Published As

Publication number Publication date
JP2007129079A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
US20100015472A1 (en) Protective coating of magnetic nanoparticles
JP2007119545A (en) Fine particle film and method for producing the same
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP5050190B2 (en) Fine particles and production method thereof
JP4820988B2 (en) Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
US8623500B2 (en) Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP5167528B2 (en) Chemisorption solution
JP2007161912A (en) Adhesion method and biochemical chip produced by the method and optical part
JP4993700B2 (en) Protective film and method for producing the same
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP2008277663A (en) Magnet, and manufacturing method thereof
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP4521569B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording reader using the same
JP5240959B2 (en) Drug and production method
WO2008136132A1 (en) Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
JP5200244B2 (en) Fine particle film and manufacturing method thereof
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
WO2008149470A1 (en) Monolayer fluor fine particle film, fluor fine particle film-layered body, and manufacturing method thereof and display device and photoreceptor and sensor, which are made by using them
JP2007128607A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same
WO2010023714A1 (en) Mold and process for producing the mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150