JP4818998B2 - Method for producing concentrated composition for reduced beverage - Google Patents

Method for producing concentrated composition for reduced beverage Download PDF

Info

Publication number
JP4818998B2
JP4818998B2 JP2007179612A JP2007179612A JP4818998B2 JP 4818998 B2 JP4818998 B2 JP 4818998B2 JP 2007179612 A JP2007179612 A JP 2007179612A JP 2007179612 A JP2007179612 A JP 2007179612A JP 4818998 B2 JP4818998 B2 JP 4818998B2
Authority
JP
Japan
Prior art keywords
calcium
acid
reduced
concentrated composition
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007179612A
Other languages
Japanese (ja)
Other versions
JP2009011288A (en
Inventor
昌弘 福田
枝里 板屋
宏和 高橋
良 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007179612A priority Critical patent/JP4818998B2/en
Publication of JP2009011288A publication Critical patent/JP2009011288A/en
Application granted granted Critical
Publication of JP4818998B2 publication Critical patent/JP4818998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は、体に欠かせない栄養素であるカルシウムを含有する還元飲料用濃縮組成物の製造方法に関する。   The present invention relates to a method for producing a concentrated composition for a reduced beverage containing calcium, which is an essential nutrient for the body.

今日、カルシウム欠乏により引き起こされる変性骨疾患である骨粗鬆症は、重要な健康問題として認識されている。カルシウムは骨の基本構成であり、毎日の食事にカルシウムが必要なことは、医学的に広く立証されている。多くの政府機関及び公衆衛生機関は、骨粗鬆症の危険を軽減するために食事中に最適量のカルシウムを含めるよう努力するように勧めてきた。   Today, osteoporosis, a degenerative bone disease caused by calcium deficiency, is recognized as an important health problem. Calcium is a basic component of bone, and the need for calcium in daily meals has been widely documented medically. Many government agencies and public health agencies have encouraged efforts to include the optimal amount of calcium in the diet to reduce the risk of osteoporosis.

カルシウムは、多くの生理学的機能を有している。身体のカルシウムの99パーセントが歯及び骨に存在すると報告されている。したがって、カルシウムは、歯及び骨の形成と維持の両方にとって必要である。食事源からのカルシウムの量が不十分な場合には、骨格代謝が損なわれ、成長中に骨が蓄積されず、骨強度の低下と同時に成長骨格からカルシウムが欠乏し、骨粗鬆症及びそれに起因する骨折を受けやすくなると考えられる。   Calcium has many physiological functions. It has been reported that 99 percent of the body's calcium is present in teeth and bones. Thus, calcium is necessary for both the formation and maintenance of teeth and bones. If the amount of calcium from the dietary source is inadequate, skeletal metabolism is impaired, bone does not accumulate during growth, and at the same time bone strength is reduced, calcium is depleted from the growing skeleton, resulting in osteoporosis and fractures resulting therefrom. It is thought that it becomes easy to receive.

このようにカルシウム欠乏が健康上の危険因子であることが判明しているにも関わらず、カルシウム摂取量は推奨量よりも低下している。しかし、通常の食事によって1日に必要量なカルシウムを得ることは容易ではない。食事の補給物質を摂取することは追加のカルシウムを摂取する一つの方法である。しかしながら、身体は通常、補給によって摂取されるカルシウムのほんの一部を吸収するに過ぎないが、カルシウムを高濃度化した液体又は食物を摂取することによりカルシウムの摂取量を増加させることができる。特に、有効量のカルシウム濃度を含有するカルシウム高濃度化製品を摂取することは、1日当たりの栄養所要量を満たすカルシウムを摂取するのに有効な手段である。   Despite this finding that calcium deficiency is a health risk factor, calcium intake is lower than recommended. However, it is not easy to obtain the necessary amount of calcium per day with a normal meal. Taking dietary supplements is one way to get additional calcium. However, although the body normally absorbs only a fraction of the calcium consumed by supplementation, it is possible to increase calcium intake by ingesting a liquid or food enriched with calcium. In particular, ingesting a calcium enriched product containing an effective amount of calcium concentration is an effective means for ingesting calcium that meets the daily nutritional requirements.

しかし、カルシウム高濃度化製品の開発には多くの技術的な課題があった。具体的には、液状のカルシウム高濃度化製品を製造するには、懸濁液が沈殿する問題があり、さらに、無機質と感じられる異臭、ざらつきがある等の口当たりが悪い欠点があった。又、塩化物、硫酸及びリン酸カルシウム塩等の水溶性が高い塩の形であれば、不溶性カルシウムよりも生体利用能が高くカルシウムを容易に水に添加することができるが、これらもまた異味を生じる。従来のカルシウム高濃度化飲料は異臭又は口当たりを改善する試みとして、糖、人工甘味料、及び香料などを添加することで対処してきたが、口当たりの良くない飲料は消費者に敬遠されるため、嗜好性に優れたカルシウム高濃度化飲料が必要とされてきた。   However, there have been many technical challenges in developing calcium-enriched products. Specifically, in order to produce a liquid calcium-enriched product, there is a problem that the suspension precipitates, and further, there are disadvantages that the mouth feels bad, such as a strange odor and a rough texture that are felt to be inorganic. In addition, in the form of highly water-soluble salts such as chloride, sulfuric acid, and calcium phosphate salts, the bioavailability is higher than insoluble calcium, and calcium can be easily added to water. . Conventional calcium-enriched beverages have been dealt with by adding sugar, artificial sweeteners, flavors, etc. as an attempt to improve off-flavors or mouthfeel, but drinks that do not taste well are avoided by consumers, A calcium-enriched beverage with excellent palatability has been required.

このような問題を解決するために、体に必要な栄養素としてカルシウムを高濃度化した飲料に有機酸等を配合する技術がみられるが、溶解度の低いカルシウム化合物を安定化し、さらに風味の問題を改善するには不十分であった(例えば、特許文献1〜14参照)。
特開平7−327648号公報 特表平8−501449号公報 米国特許6,616,955号公報 米国公開2005/0003068号公報 米国公開2006/0177559号公報 特開平1−117768号公報 特開平1−269476号公報 特開平2−308779号公報 特開平8−322508号公報 特表平8−502407号公報 特表平8−502648号公報 特表2002−525091号公報 特表2004−511242号公報 特開2006−29号公報
In order to solve such problems, there is a technology that blends organic acids etc. into beverages with a high concentration of calcium as a nutrient necessary for the body, but it stabilizes calcium compounds with low solubility and further reduces the problem of flavor. It was insufficient for improvement (see, for example, Patent Documents 1 to 14).
JP 7-327648 A Japanese National Patent Publication No. 8-501449 US Patent 6,616,955 US Publication No. 2005/003068 US Publication No. 2006/0177559 Japanese Patent Laid-Open No. 1-1117768 JP-A-1-269476 JP-A-2-308779 JP-A-8-322508 Japanese National Patent Publication No. 8-502407 JP-T 8-502648 Japanese translation of PCT publication No. 2002-525091 Special table 2004-511242 gazette JP 2006-29 A

本発明は、体に欠かせない栄養素であるカルシウムを十分に含有するにも関わらず、濁りが少なく、沈降安定性に優れ、還元飲料としたときに風味が良好である還元飲料用濃縮組成物の製造方法を提供するものである。   The present invention provides a concentrated composition for a reduced beverage that is sufficiently turbid, has excellent sedimentation stability, and has a good flavor when used as a reduced beverage, despite sufficiently containing calcium, which is an essential nutrient for the body. The manufacturing method of this is provided.

本発明により得られる還元飲料用濃縮組成物は液体の形態であり、飲料用濃縮物である(コーデックス食品添加物14.1.4.3参照)。これをイオン交換水、炭酸水又は他の飲料などを加える等の還元操作後、殺菌して製品にしたものが還元飲料である。
本発明者らは、酸味料を水に溶解して特定のpH範囲とし、次にカルシウム化合物を溶解する手法により組成物の濁りや沈殿が低減することを見出した。さらに甘味料として炭水化物を配合した結果、得られた濃縮組成物は、飲料に還元した際に収斂味が低減し、適度な甘味と酸味が両立することを見出した。
The concentrated composition for a reduced beverage obtained by the present invention is in the form of a liquid and is a beverage concentrate (see Codex Food Additive 14.1.4.3). A reduced beverage is a product obtained by sterilizing the product after a reduction operation such as adding ion-exchanged water, carbonated water or other beverages.
The present inventors have found that turbidity and precipitation of the composition can be reduced by dissolving the acidulant in water to a specific pH range and then dissolving the calcium compound. Further, as a result of blending carbohydrate as a sweetener, the obtained concentrated composition has been found to have a reduced astringency when reduced to a beverage and to achieve both an appropriate sweetness and acidity.

すなわち本発明は、下記(1)〜(3)の順の工程を含み、カルシウムを0.01質量%以上含有し、濁度が50NTU以下である還元飲料用濃縮組成物の製造方法を提供するものである。
(1)水に(A)酸味料を溶解する工程、
(2)工程(1)で得られた水溶液に(B)カルシウム化合物を溶解し、そのpHを2.0〜5.0にする工程、
(3)工程(2)で得られた水溶液に(C)炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び/又は炭酸カリウムを含有する水溶液、(D)茶抽出物の濃縮物及び/又は精製物、及び/又は(E)炭水化物を投入する工程。
That is, this invention provides the manufacturing method of the concentrate composition for reduced drinks which contains the process of the order of following (1)-(3), contains 0.01 mass% or more of calcium, and turbidity is 50 NTU or less. Is.
(1) a step of dissolving (A) a sour agent in water;
(2) A step of dissolving the calcium compound (B) in the aqueous solution obtained in the step (1) to adjust its pH to 2.0 to 5.0,
(3) The aqueous solution obtained in step (2) contains (C) an aqueous solution containing sodium bicarbonate, sodium carbonate, potassium bicarbonate and / or potassium carbonate, (D) a concentrate and / or purified product of tea extract. And / or (E) adding carbohydrates.

本発明により得られる還元飲料用濃縮組成物は液体の形態で濁りや沈殿が低減し、これを還元した飲料では、収斂味が減少し、適度な甘味と酸味を両立させることができる。   The concentrated composition for a reduced beverage obtained by the present invention is reduced in turbidity and precipitation in the form of a liquid, and in a beverage obtained by reducing this, the astringent taste is reduced and both moderate sweetness and sourness can be achieved.

本発明方法においては、まず(1)水に酸味料を溶解する工程を行う(工程(1))。用いる水としては、イオン交換水が好ましい。工程(1)で用いる(A)酸味料としては、クエン酸、乳酸、リンゴ酸、マレイン酸、アジピン酸、コハク酸、フマル酸、酒石酸、グルコン酸、アスコルビン酸及びエリソルビン酸から選ばれるカルボン酸やリン酸が挙げられるが、pH調整や酸化防止効果の観点からアスコルビン酸が好ましい。酸味料の使用量は、本発明の還元飲料用濃縮組成物中の濃度として0.01〜10.0質量%、さらに0.1〜10.0質量%となる量が好ましい。酸味料の濃度が0.01質量%以上である場合、還元飲料の収斂味が抑制できるとともに適度な酸味となる。一方、酸味料の濃度が10.0質量%以下であると良好な濃縮組成物の粘性や色相となり、還元飲料とした際に適度な酸味が得られる。   In the method of the present invention, first, (1) a step of dissolving a sour agent in water is performed (step (1)). As water to be used, ion-exchanged water is preferable. Examples of (A) acidulant used in step (1) include citric acid, lactic acid, malic acid, maleic acid, adipic acid, succinic acid, fumaric acid, tartaric acid, gluconic acid, ascorbic acid and erythorbic acid. Although phosphoric acid is mentioned, ascorbic acid is preferable from the viewpoint of pH adjustment and antioxidant effect. The amount of the sour agent used is preferably 0.01 to 10.0% by mass, more preferably 0.1 to 10.0% by mass as the concentration in the concentrated composition for a reduced beverage of the present invention. When the concentration of the acidulant is 0.01% by mass or more, the astringent taste of the reduced beverage can be suppressed and the acidity becomes moderate. On the other hand, when the concentration of the acidulant is 10.0% by mass or less, the viscosity and hue of the concentrated composition are good, and an appropriate acidity is obtained when a reduced beverage is obtained.

次に、工程(1)で得られた水溶液に、(B)カルシウム化合物を投入する(工程(2))。本発明では工程(1)において酸味料を溶解した後に、カルシウム化合物を溶解することにより、還元飲料にする際にカルシウム化合物由来の収斂味を低減することができる。カルシウム化合物を安定に溶解する観点から、溶液後のpHは2.0〜5.0であることが重要であり、より好ましくは2.0〜4.0、さらに好ましくは2.0〜3.0、特に好ましくは2.2〜2.8である。カルシウム化合物の使用量は、本発明の還元飲料用濃縮組成物中のカルシウム濃度として0.01質量%以上、さらに0.01〜1.0質量%となる量が好ましい。カルシウム濃度が0.01質量%以上である場合、還元飲料の収斂味が抑制できる。一方、カルシウム濃度が1.0質量%以下であると濁りや沈殿が低減した濃縮組成物となる。   Next, the calcium compound (B) is added to the aqueous solution obtained in the step (1) (step (2)). In this invention, after melt | dissolving a sour agent in process (1), when making a reduced drink, the astringent taste derived from a calcium compound can be reduced by melt | dissolving a calcium compound. From the viewpoint of stably dissolving the calcium compound, it is important that the pH after the solution is 2.0 to 5.0, more preferably 2.0 to 4.0, still more preferably 2.0 to 3. 0, particularly preferably 2.2 to 2.8. The amount of the calcium compound used is preferably 0.01% by mass or more, and more preferably 0.01 to 1.0% by mass as the calcium concentration in the concentrated composition for a reduced beverage of the present invention. When the calcium concentration is 0.01% by mass or more, the astringent taste of the reduced beverage can be suppressed. On the other hand, when the calcium concentration is 1.0% by mass or less, a concentrated composition with reduced turbidity and precipitation is obtained.

本発明の還元飲料用濃縮組成物の製造工程(2)に用いる(B)カルシウム化合物としては、カルシウムを含有する食塩、海洋ミネラル液、カルシウムを含有するかんすい、硫酸カルシウム、DL型合成乳酸カルシウム、L型発酵乳酸カルシウム、塩化カルシウム、グルコン酸カルシウム、パントテン酸カルシウム、乳清カルシウム、卵殻カルシウム、貝カルシウム、骨カルシウム、ミネラルウォーター、クエン酸カルシウム、酢酸カルシウム、炭酸カルシウム、水酸化カルシウム、リン酸カルシウム、グリセロン酸カルシウム及び焼成カルシウムが挙げられる。カルシウムを含有する食塩は、製造方法により何種類かに分類され、イオン交換膜かん水せんごう塩、海水蒸発かん水濃縮塩、輸入天日塩加工塩、岩塩、岩塩かん水天日塩、天日塩、天日かん水せんごう塩、湖塩、湖塩かん水せんごう塩等が挙げられる。海洋ミネラル液は、海水から採取できる水であれば制限されず、海面下〜200mから取水できる海洋表層水、1000mより深い海水から取水できる海洋深層水などから得られたにがり液等が挙げられる。これらは、市販されているカルシウム化合物であれば種類に特定されるものではない。これらのカルシウム化合物のうち入手性、風味及び溶解度の観点から硫酸カルシウム、乳酸カルシウム、塩化カルシウム、炭酸カルシウム、水酸化カルシウムが特に好ましい。   As the calcium compound (B) used in the production process (2) of the concentrated composition for reduced beverage of the present invention, sodium-containing calcium, marine mineral liquid, calcium-containing phosphate, calcium sulfate, DL-type synthetic calcium lactate, L-type fermented calcium lactate, calcium chloride, calcium gluconate, calcium pantothenate, whey calcium, shell calcium, shell calcium, bone calcium, mineral water, calcium citrate, calcium acetate, calcium carbonate, calcium hydroxide, calcium phosphate, glycerone Examples include calcium acid and calcined calcium. The salt containing calcium is classified into several types according to the production method. Ion-exchange membrane brine brine salt, seawater evaporated brine concentrate, imported salted salt salt, rock salt, rock salt brine salt, sun salt, sun salt brine salt. , Lake salt, lake salt brine salt, etc. The marine mineral liquid is not limited as long as it can be collected from seawater, and examples include marine surface water that can be taken from below sea level to 200 m, and bittern liquor obtained from deep sea water that can be taken from seawater deeper than 1000 m. These are not specified as long as they are commercially available calcium compounds. Of these calcium compounds, calcium sulfate, calcium lactate, calcium chloride, calcium carbonate, and calcium hydroxide are particularly preferable from the viewpoints of availability, flavor, and solubility.

本発明で使用するカルシウムは、栄養補給及び非重合体カテキン類の苦味抑制の観点から、還元飲料用濃縮組成物中に0.01質量%以上であることが好ましい。さらに、容器詰飲料に還元にした場合に成人男性の1日摂取量600mg(米国RDI基準:US2005/0003068記載:U.S.Reference Daily Intake)の10質量%以上を含有すれば、十分な栄養素として摂取することができることから、容器詰飲料の1日1本あたりの摂取量に換算すると摂取カルシウム総量は60mg以上となり、例えば500mlの容器詰飲料中には0.012質量%以上のカルシウムを含有することが好ましい。   The calcium used in the present invention is preferably 0.01% by mass or more in the concentrated composition for a reduced beverage from the viewpoint of nutritional supplementation and suppression of the bitter taste of non-polymer catechins. Furthermore, when it is reduced to a packaged beverage, it contains sufficient nutrients if it contains 10% by mass or more of the daily intake 600 mg (US RDI standard: US 2005/003068 description: US Reference Daily Intake) of an adult male. Therefore, the total amount of calcium ingested is 60 mg or more when converted to the daily intake of a packaged beverage. For example, a 500 ml packaged beverage contains 0.012% by mass or more of calcium. It is preferable to do.

次に、工程(2)で得られた水溶液に、(C)炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び/又は炭酸カリウムを含有する水溶液(弱アルカリ水溶液)、非重合体カテキン類を含有する茶抽出物の濃縮物及び/又は精製物、及び/又は炭水化物を溶解する(工程(3))ことにより、本発明の還元飲料用濃縮組成物が得られる。   Next, the aqueous solution obtained in step (2) contains (C) an aqueous solution containing sodium bicarbonate, sodium carbonate, potassium bicarbonate and / or potassium carbonate (weak alkaline aqueous solution), and non-polymer catechins. The concentrate composition for reduced beverages of the present invention is obtained by dissolving the concentrate and / or purified product and / or carbohydrate of the tea extract (step (3)).

本発明の工程により得られる還元飲料用濃縮組成物は、濁りの指標であるNTU(ISO7027、DIN27027準拠 Nephelometric Turbidity Units)が50以下であり、長期に渡って濁りが少なく安定な溶液形態を持続できる。NTUはより好ましくは45以下、特に好ましくは40以下である。   The concentrated composition for reduced beverages obtained by the process of the present invention has a turbidity index of NTU (ISO 7027, DIN27027 compliant Nephelometric Turbidity Units) of 50 or less, and can maintain a stable solution form with little turbidity over a long period of time. . NTU is more preferably 45 or less, particularly preferably 40 or less.

工程(3)に用いられるアルカリ剤である炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム又は炭酸カリウムは、pH調整や風味向上のために使用するが、カルシウムの沈降防止、発泡の抑制や収斂味低減の観点から工程(3)の段階で投入することが好ましい。ここでアルカリ剤の投入により安定なカルシウムの可溶化形態が形成されるため、カルシウムの沈降を長期に渡って防止することができるものと考えられる。   Sodium bicarbonate, sodium carbonate, potassium bicarbonate or potassium carbonate, which is an alkaline agent used in step (3), is used for pH adjustment and flavor improvement, but it prevents calcium sedimentation, suppresses foaming and reduces astringency. In view of the above, it is preferable to input at the stage of the step (3). Here, since a stable calcium solubilized form is formed by adding an alkali agent, it is considered that precipitation of calcium can be prevented over a long period of time.

また、工程(3)に用いられる茶抽出物の濃縮物及び/又は精製物としては、緑茶抽出物の濃縮物及び/又は精製物が好ましい。具体的には、緑茶抽出物の濃縮物の水溶液、あるいは当該緑茶抽出物の濃縮物に緑茶抽出液を配合したものが挙げられる。ここでいう緑茶抽出物の濃縮物又は精製物とは、緑茶葉から熱水もしくは水溶性有機溶媒により抽出した溶液から水分を一部除去したもの、又は濃縮して非重合体カテキン類濃度を高めたものであり、形態としては、固体、水溶液、スラリー状など種々のものが挙げられる。   Moreover, as the concentrate and / or purified product of the tea extract used in the step (3), a concentrate and / or purified product of the green tea extract is preferable. Specifically, an aqueous solution of a green tea extract concentrate or a mixture of the green tea extract and the green tea extract concentrate may be used. The concentrate or purified product of the green tea extract here refers to a product obtained by partially removing water from a solution extracted from green tea leaves with hot water or a water-soluble organic solvent, or concentrated to increase the concentration of non-polymer catechins. Examples of the form include various forms such as solid, aqueous solution, and slurry.

本発明で使用する茶抽出物の濃縮物及び/又は精製物には非重合体カテキン類を含有する。非重合体カテキン類とは、カテキン、ガロカテキン、カテキンガレート、ガロカテキンガレートなどの非エピ体カテキン類及びエピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレート等のエピ体カテキン類を合わせての総称であり、非重合体カテキン類の濃度は上記の合計8種の合計量に基づいて定義される。   The concentrate and / or purified product of the tea extract used in the present invention contains non-polymer catechins. Non-polymer catechins include non-epide catechins such as catechin, gallocatechin, catechin gallate, and gallocatechin gallate and epi-catechins such as epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. The concentration of non-polymer catechins is defined on the basis of the total amount of the above eight types.

非重合体カテキン類を含有する緑茶抽出物の濃縮物としては市販の三井農林(株)「ポリフェノン」、伊藤園(株)「テアフラン」、太陽化学(株)「サンフェノン」などが挙げられる。非重合体カテキン類濃度が上記範囲にあれば、これらを精製したものを用いてもよい。精製の方法としては、例えば緑茶抽出物の濃縮物を水又は水とエタノールなどの有機溶媒の混合物に懸濁して生じた沈殿を除去し、次いで溶媒を留去する方法がある。あるいは茶葉から熱水もしくはエタノールなどの水溶性有機溶媒により抽出した抽出物を濃縮したものをさらに精製したもの、あるいは抽出物を直接精製したものを用いてもよい。   Examples of the concentrate of green tea extract containing non-polymer catechins include commercially available Mitsui Norin Co., Ltd. “Polyphenone”, ITO EN Co., Ltd. “Theafuran”, Taiyo Kagaku Co., Ltd. “Sunphenon” and the like. If the concentration of non-polymer catechins is in the above range, purified products thereof may be used. As a purification method, for example, there is a method in which a precipitate formed by suspending a concentrate of a green tea extract in water or a mixture of water and an organic solvent such as ethanol is removed, and then the solvent is distilled off. Alternatively, a product obtained by further concentrating an extract extracted from tea leaves with hot water or a water-soluble organic solvent such as ethanol, or a product obtained by directly purifying the extract may be used.

非重合体カテキン類は、緑茶抽出物又はその精製物をタンナーゼ処理によりガレート体率を低下することができる。タンナーゼによる処理は、緑茶抽出物の非重合体カテキン類に対してタンナーゼを0.5〜10質量%の範囲になるように添加することが好ましい。タンナーゼ処理の温度は、酵素活性が得られる15〜40℃が好ましく、さらに好ましくは20〜30℃である。タンナーゼ処理時のpHは、酵素活性が得られる4〜6が好ましく、さらに好ましくは4.5〜6であり、特に好ましくは5〜6である。非重合体カテキン類にはエピガロカテキンガレート、ガロカテキンガレート、エピカテキンガレート及びカテキンガレートからなるガレート体と、エピガロカテキン、ガロカテキン、エピカテキン及びカテキンからなる非ガレート体がある。上記のガレート体率とは、(α)非重合体カテキン類中の(β)非重合体カテキンガレート体類の割合([(β)/(α)]×100)は5〜55質量%が好ましく、より好ましくは8〜50質量%、更に10〜45質量%であることが苦味抑制の観点から好ましい。   Non-polymer catechins can reduce the percentage of gallate body by treating a green tea extract or a purified product thereof with tannase. In the treatment with tannase, tannase is preferably added in a range of 0.5 to 10% by mass with respect to the non-polymer catechins of the green tea extract. The tannase treatment temperature is preferably 15 to 40 ° C., more preferably 20 to 30 ° C., at which enzyme activity can be obtained. The pH at the time of tannase treatment is preferably 4-6, more preferably 4.5-6, and particularly preferably 5-6, from which enzyme activity can be obtained. Non-polymer catechins include a gallate body composed of epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and catechin gallate, and a non-gallate body composed of epigallocatechin, gallocatechin, epicatechin and catechin. The percentage of gallate body is (α) the ratio of (β) non-polymer catechin gallate bodies in non-polymer catechins ([(β) / (α)] × 100) is 5 to 55% by mass. It is preferably 8 to 50% by mass, more preferably 10 to 45% by mass, from the viewpoint of bitterness suppression.

茶抽出物の濃縮物及び/又は精製物は、還元飲料用濃縮組成物中の非重合体カテキン類濃度が0.5〜25質量%、好ましくは2〜25質量%、さらに好ましくは3〜25質量%、特に好ましくは4〜18質量%になるように添加する。非重合体カテキン類含量が0.5質量%未満である場合、還元飲料にする際に使用する濃縮組成物の量が多くなるため収斂味の抑制が不十分となりうる。   The concentrate and / or purified product of the tea extract has a non-polymer catechin concentration in the concentrated composition for reduced beverage of 0.5 to 25% by mass, preferably 2 to 25% by mass, more preferably 3 to 25%. It adds so that it may become mass%, Most preferably 4-18 mass%. When the content of non-polymer catechins is less than 0.5% by mass, the amount of the concentrated composition used when making a reduced beverage increases, so that the astringent taste may not be sufficiently suppressed.

工程(3)に用いられる炭水化物は、単糖、複合多糖、オリゴ糖、糖アルコール又はそれらの混合物を含むものである。単糖の例としてはテトロース、ペントース、ヘキソース及びケトヘキソースがある。ヘキソースの例は、ブドウ糖として知られるグルコースのようなアルドヘキソースである。果糖として知られるフルクトースはケトヘキソースである。また、これらを多量に配合すると褐変による着色が生じる。単糖類の例としては、コーンシロップ、高フルクトースコーンシロップ、果糖ブドウ糖液糖、ブドウ糖果糖液糖、アガペエキス、蜂蜜等の混合単糖も使用できる。複合多糖としての好ましい例はマルトデキストリンである。さらに、多価アルコール、例えばグリセロール類も本発明で炭水化物として用いることができる。   The carbohydrate used in the step (3) includes a monosaccharide, a complex polysaccharide, an oligosaccharide, a sugar alcohol, or a mixture thereof. Examples of monosaccharides are tetrose, pentose, hexose and ketohexose. An example of a hexose is an aldohexose such as glucose known as glucose. Fructose, known as fructose, is a ketohexose. Moreover, when these are mix | blended in large quantities, coloring by browning will arise. As examples of monosaccharides, mixed monosaccharides such as corn syrup, high fructose corn syrup, fructose glucose liquid sugar, glucose fructose liquid sugar, agape extract, and honey can also be used. A preferred example of the complex polysaccharide is maltodextrin. In addition, polyhydric alcohols such as glycerols can also be used as carbohydrates in the present invention.

炭水化物は、非重合体カテキン類の保存安定性の向上や最適な甘味を得るために非還元性の糖類又は糖アルコールがより好ましく、またこれらを併用することもできる。非還元性の糖類としてはオリゴ糖があるが、例えば二糖類としてスクロース、マルトース、ラクトース、セルビオース、トレハロース、三糖類としてラフィノース、パノース、メレジトース、ゲンチアノース、四糖類としてスタキオ−ス等が挙げられる。このオリゴ糖の重要なタイプは二糖であり、代表例はサトウキビ、サトウダイコンから得られるショ糖又はテンサイ糖として知られるスクロースである。製品としては精製糖であるグラニュー糖、車糖、加工糖、液糖、シュガーケーンやメイプルシロップ等が使用できる。   The carbohydrate is more preferably a non-reducing saccharide or sugar alcohol in order to improve the storage stability of non-polymer catechins and obtain an optimum sweetness, and these can also be used in combination. Non-reducing saccharides include oligosaccharides, and examples include disaccharides such as sucrose, maltose, lactose, cellobiose, trehalose, trisaccharides such as raffinose, panose, melezitose, gentianose, and tetrasaccharides such as stachyose. An important type of this oligosaccharide is a disaccharide, a typical example being sucrose known as sugar cane or sugar beet sugar obtained from sugar cane or sugar beet. As products, refined sugars such as granulated sugar, curd sugar, processed sugar, liquid sugar, sugar cane, maple syrup and the like can be used.

炭水化物は、カロリーの観点から糖アルコールがさらに好ましく、糖アルコールとしてはエリスリトール、ソルビトール、キシリトール、マルチトール、ラクチトール、パラチノース、マンニトール、タガトース等などが好ましい。本発明の還元飲料用濃縮組成物ではこれら炭水化物の中でもカロリーが少なく、最大無作用摂取量が最も高いエリスリトールが好適である。   The carbohydrate is more preferably a sugar alcohol from the viewpoint of calories, and the sugar alcohol is preferably erythritol, sorbitol, xylitol, maltitol, lactitol, palatinose, mannitol, tagatose, and the like. In the concentrated composition for a reduced beverage of the present invention, erythritol having a low calorie and the highest maximum no-action intake is preferable among these carbohydrates.

炭水化物の使用量は濃縮組成物中に1〜65質量%となる量が好ましく、さらに好ましくは1〜60質量%、特に好ましくは24〜60質量%となる量が好ましい。炭水化物の濃度が1質量%未満である場合、還元飲料の収斂味の抑制が不十分となりうる。   The amount of the carbohydrate used is preferably 1 to 65% by mass in the concentrated composition, more preferably 1 to 60% by mass, and particularly preferably 24 to 60% by mass. When the carbohydrate concentration is less than 1% by mass, the astringent taste of the reduced beverage may not be sufficiently suppressed.

炭水化物は、少なすぎると甘みがほとんどなく、酸味、塩味とのバランスがとれないので、非重合体カテキン類を0.13質量%濃度となるようにイオン交換水で希釈して還元飲料とした際にショ糖を1としたときの甘味度が2以上であることが好ましい(参考文献:JISZ8144、官能評価分析−用語、番号3011、甘味;JISZ9080、官能評価分析−方法、試験方法;飲料用語辞典4−2甘味度の分類、資料11(ビバレッジジャパン社);特性等級試験mAG試験、ISO 6564−1985(E)、「Sensory Analysis−Methodology−Flavour profile method」等)。一方、甘味度が8以上になると、甘すぎて喉にひっかかる感覚が強く喉越しが低下する。尚、これらの甘味料の濃度は茶抽出物中のものも含む。   If the amount of carbohydrates is too small, there is almost no sweetness and the balance between sourness and saltiness cannot be achieved, so when diluting non-polymer catechins with ion-exchanged water to a concentration of 0.13% by mass, a reduced beverage is obtained. It is preferable that the sweetness degree when sucrose is set to 1 is 2 or more (reference document: JISZ8144, sensory evaluation analysis-term, number 3011, sweetness; JISZ9080, sensory evaluation analysis-method, test method; beverage glossary) 4-2 Classification of sweetness, document 11 (Beverage Japan); characteristic grade test mAG test, ISO 6564-1985 (E), “Sensory Analysis-Methodology-Flavour profile method”, etc.). On the other hand, when the sweetness level is 8 or more, the sense of being too sweet and caught in the throat is strong, and the feeling over the throat decreases. The concentration of these sweeteners includes those in the tea extract.

工程(1)〜工程(3)の温度は特に制限されないが、45℃以下、特に室温〜45℃の温度で行うのが好ましい。   The temperature in step (1) to step (3) is not particularly limited, but it is preferably 45 ° C. or less, particularly preferably room temperature to 45 ° C.

本発明により得られる還元飲料用濃縮組成物は液体又は粉末状の形態であり、飲料用濃縮物である(コーデックス食品添加物14.1.4.3参照)。これをイオン交換水、炭酸水又は他の飲料などを加える等の還元操作後、殺菌して製品にしたものが還元飲料である。還元時には、JAS果汁飲料品質表示基準(日本農林規格協会編、P79)に記載の濃縮果汁や還元果汁の基準とされる糖用屈折率計示度(Brix)を基準に希釈を行うことができる。また、本発明においては、製品(還元飲料)中のカテキン類濃度が0.05〜0.5質量%となるようにすることも好ましい。   The concentrated composition for a reduced beverage obtained by the present invention is in the form of a liquid or powder and is a beverage concentrate (see Codex Food Additives 14.1.4.3). A reduced beverage is a product obtained by sterilizing the product after a reduction operation such as adding ion-exchanged water, carbonated water or other beverages. At the time of reduction, dilution can be performed based on the refractometer indication (Brix) for sugar, which is used as a standard for concentrated fruit juice and reduced fruit juice described in JAS juice beverage quality display standards (edited by the Japan Agricultural Standards Association, P79). . Moreover, in this invention, it is also preferable to make it the catechin density | concentration in a product (reduced drink) be 0.05-0.5 mass%.

本発明により得られる還元飲料用濃縮組成物は、液体の場合は非重合体カテキン類の酸化防止やハンドリングの観点から20以上のBrixが好ましい。さらに好ましくはBrixが35〜70、特に好ましくはBrixが40〜50である。Brixが20以上では還元飲料の収斂味は抑制効果が良好であり、Brixが70以下であると濃縮組成物に含有する炭水化物やヒドロキシカルボン酸の結晶化が良好に抑制できる。   When the concentrated composition for a reduced beverage obtained by the present invention is a liquid, 20 or more Brix is preferable from the viewpoint of preventing oxidation and handling of non-polymer catechins. More preferably, Brix is 35 to 70, and particularly preferably Brix is 40 to 50. If the Brix is 20 or more, the astringent taste of the reduced beverage has a good inhibitory effect, and if the Brix is 70 or less, crystallization of carbohydrates and hydroxycarboxylic acids contained in the concentrated composition can be satisfactorily suppressed.

本発明により得られる還元飲料用濃縮組成物が固体、たとえば粉末状の場合は、固形分が70質量%以上のものが吸湿防止やハンドリングの観点から好ましい。同様の観点から、固形分は80質量%以上、特に90質量%以上であることが好ましい。還元飲料用濃縮組成物を溶かして飲む際に、非重合体カテキン類を高濃度に溶解させるために平均粒径10μm以下のものが好ましい。粉末状の還元飲料用濃縮組成物を製造するには、真空濃縮法や凍結濃縮法などがある。粉末化の方法は乾式でも湿式でもよく、真空乾燥、凍結乾燥、噴霧乾燥などがあり、品質的には凍結乾燥が好ましく、コスト面では噴霧乾燥が好ましい。凍結乾燥の乾燥温度は−50〜50℃程度であり、噴霧乾燥の乾燥温度は50℃〜120℃程度である。また、粉末状還元飲料用濃縮組成物の形態は、容器詰の上でスプーンによる計量方法を用いるものとしても良いが、スティックタイプのものが1杯分を簡便に調整できる上で好ましい。また密封容器内は窒素ガスを充填し、材質は酸素透過性の低いものの方がインスタント粉末飲料の品質を維持する上で好ましい。   When the concentrated composition for a reduced beverage obtained by the present invention is solid, for example, in the form of a powder, a solid content of 70% by mass or more is preferable from the viewpoint of moisture absorption prevention and handling. From the same viewpoint, the solid content is preferably 80% by mass or more, particularly 90% by mass or more. In order to dissolve non-polymer catechins at a high concentration when the concentrated composition for reduced beverage is melted and drinks, those having an average particle size of 10 μm or less are preferable. In order to produce a concentrated composition for a reduced beverage, there are a vacuum concentration method and a freeze concentration method. The powdering method may be dry or wet, and includes vacuum drying, freeze drying, spray drying, and the like. In terms of quality, freeze drying is preferable, and in terms of cost, spray drying is preferable. The drying temperature for freeze-drying is about −50 to 50 ° C., and the drying temperature for spray drying is about 50 to 120 ° C. Moreover, although the form of the concentrated composition for powdery reduced beverages may be one that uses a measuring method with a spoon after being packed in a container, a stick-type one is preferable because it can easily adjust one serving. Also, nitrogen gas is filled in the sealed container, and a material having a low oxygen permeability is preferable for maintaining the quality of the instant powdered beverage.

液体状の還元飲料用濃縮組成物は、一般の飲料用濃縮品と同様に包装材料に使用できるポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、アルミ蒸着フィルム等を材質とするレトルトパックで提供することが好ましく、さらに金属缶、PETボトル、ガラス容器のような形態でも提供することができる。   Liquid concentrated composition for reduced beverages should be provided in a retort pack made of polypropylene (PP), polyethylene terephthalate (PET), aluminum vapor deposited film, etc. that can be used as packaging materials in the same way as general beverage concentrates. Further, it can be provided in the form of a metal can, a PET bottle, or a glass container.

本発明により得られる濃縮組成物は製造後、輸送や保管した後イオン交換水や炭酸水などで希釈して還元飲料とするが、保存安定性に優れるため冷蔵のみならず常温でも保存が可能である。本発明の濃縮組成物は製造時にPPなどの容器に充填後、加熱殺菌できる場合にあっては適用されるべき法規(日本にあっては食品衛生法)に定められた殺菌条件で製造できる。PETボトル、紙容器のようにレトルト殺菌できないものについては、あらかじめ上記と同等の殺菌条件、例えばプレート式熱交換器などで高温短時間殺菌後、一定の温度迄冷却して容器に充填する等の方法が採用できる。また無菌下で、充填された容器に別の成分を配合して充填してもよい。さらに、酸性下で加熱殺菌後、無菌下でpHを中性に戻すことや、中性下で加熱殺菌後、無菌下でpHを酸性に戻すなどの操作も可能である。   The concentrated composition obtained by the present invention is manufactured, transported and stored, and then diluted with ion-exchanged water or carbonated water to make a reduced beverage, but because of its excellent storage stability, it can be stored at room temperature as well as refrigerated. is there. The concentrated composition of the present invention can be produced under the sterilization conditions stipulated in the applicable regulations (the Food Sanitation Law in Japan) if it can be sterilized by heating after filling into a container such as PP at the time of production. For PET bottles and paper containers that cannot be sterilized by retort, sterilize under the same conditions as above, for example, after sterilizing at high temperature and short time with a plate heat exchanger, etc. The method can be adopted. Moreover, you may mix | blend another component with the filled container under aseptic conditions. Furthermore, after sterilization by heating under acidic conditions, the pH can be returned to neutrality under aseptic conditions, or after sterilization by heating under neutral conditions, the pH can be returned to acidic conditions under aseptic conditions.

(非重合体カテキン類の測定)
本発明の濃縮組成物1.7gをイオン交換水で100gに希釈した後、メンブランフィルター(0.8μm)でろ過し、次いで蒸留水で希釈した試料を、島津製作所製、高速液体クロマトグラフ(型式SCL−10AVP)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム L−カラムTM ODS(4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により測定した。移動相A液は酢酸を0.1mol/L含有の蒸留水溶液、B液は酢酸を0.1mol/L含有のアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った(通常カテキン類の濃度は、質量/体積%(%[w/v])で表すが、実施例中の含有量は液量を掛けて質量で示した)。測定後、希釈率で換算して非重合体カテキン類の濃度を求めた。{濃度=測定値×(100/1.7)}
濃度勾配条件(体積%)
時間 移動相A 移動相B
0分 97% 3%
5分 97% 3%
37分 80% 20%
43分 80% 20%
43.5分 0% 100%
48.5分 0% 100%
49分 97% 3%
62分 97% 3%
(Measurement of non-polymer catechins)
After diluting 1.7 g of the concentrated composition of the present invention to 100 g with ion-exchanged water, filtering with a membrane filter (0.8 μm) and then diluting with distilled water, a sample made by Shimadzu Corporation, high performance liquid chromatograph (model) SCL-10AVP), a packed column for octadecyl group-introduced liquid chromatograph, L-column TM ODS (4.6 mmφ × 250 mm: manufactured by Chemicals Research Institute of Japan), and measured by a gradient method at a column temperature of 35 ° C. did. The mobile phase A solution was a distilled aqueous solution containing 0.1 mol / L of acetic acid, the B solution was an acetonitrile solution containing 0.1 mol / L of acetic acid, the sample injection amount was 20 μL, and the UV detector wavelength was 280 nm. (Normally, the concentration of catechins is expressed as mass / volume% (% [w / v]), but the content in the examples is expressed by mass multiplied by the liquid amount). After the measurement, the concentration of non-polymer catechins was determined in terms of dilution rate. {Concentration = Measured value × (100 / 1.7)}
Concentration gradient condition (volume%)
Time Mobile phase A Mobile phase B
0 minutes 97% 3%
5 minutes 97% 3%
37 minutes 80% 20%
43 minutes 80% 20%
43.5 minutes 0% 100%
48.5 minutes 0% 100%
49 minutes 97% 3%
62 minutes 97% 3%

(カルシウム濃度の測定法)
ICP発光分析法による。SEIKO社製SP1200Aを用いた。
(Measurement method of calcium concentration)
By ICP emission analysis. SP1200A manufactured by SEIKO was used.

(濁度、沈殿の評価)
殺菌後の本発明の濃縮組成物を透過散乱型濁度計TN−100(MKサイエンテフィック社製)を使用し、ポリスチレンラテックスを標準として測定し、濁度をNTU値として表した。さらに100mlのスクリュー管に本発明の濃縮組成物を充填し、25℃、1日静置後パネラー3名により目視観察を行い、白色沈殿の有無を3段階で評価した。
(Evaluation of turbidity and precipitation)
The concentrated composition of the present invention after sterilization was measured by using a transmission / scattering turbidimeter TN-100 (manufactured by MK Scientific) with polystyrene latex as a standard, and the turbidity was expressed as an NTU value. Further, the concentrated composition of the present invention was filled in a 100 ml screw tube, left to stand at 25 ° C. for 1 day, and visually observed by three panelists, and the presence or absence of white precipitate was evaluated in three stages.

(風味の評価)
還元飲料をパネラー5名により飲用試験を行い、収斂味を6段階、甘味・酸味を3段階評価し、平均化した結果を用いた。
(Evaluation of flavor)
A drinking test was conducted by five panelists on the reduced beverages, and the results of averaging and evaluating the astringency taste in 6 levels and the sweetness / acidity in 3 levels were used.

実施例1
(1)市販の緑茶抽出物の濃縮物(三井農林(株)「ポリフェノンHG」)100gを90.0質量%エタノール900gに分散させ、30分熟成し、2号濾紙及び孔径0.2μmの濾紙で濾過し、イオン交換水200mLを加えて減圧濃縮を行った。このうち75.0gをステンレス容器に投入し、イオン交換水で全量を1,000gとし、5質量%重曹水溶液3.0gを添加してpH5.5に調整した。次いで、22℃、150r/minの攪拌条件下で、イオン交換水1.07g中にキッコーマンタンナーゼKTFH(Industrial Grade、500U/g以上)0.27g(非重合体カテキン類に対して2.4%)を溶解した液を添加し、55分後にpHが4.24に低下した時点で酵素反応を終了した。次いで95℃の温浴にステンレス容器を浸漬し、90℃、10分間保持して酵素活性を完全に失活した後、25℃まで冷却した後に濃縮処理液を回収した。
Example 1
(1) 100 g of commercially available green tea extract concentrate (Mitsui Norin Co., Ltd. “Polyphenone HG”) is dispersed in 900 g of 90.0% by mass ethanol, aged for 30 minutes, No. 2 filter paper and 0.2 μm pore size filter paper Then, 200 mL of ion-exchanged water was added, and the mixture was concentrated under reduced pressure. Of these, 75.0 g was put into a stainless steel container, and the total amount was adjusted to 1,000 g with ion-exchanged water, and adjusted to pH 5.5 by adding 3.0 g of a 5 mass% sodium bicarbonate aqueous solution. Then, under stirring conditions of 22 ° C. and 150 r / min, 0.27 g of Kikkoman tannase KTFH (Industrial Grade, 500 U / g or more) in 1.07 g of ion-exchanged water (2.4% based on non-polymer catechins) ) Was added, and the enzyme reaction was terminated when the pH dropped to 4.24 55 minutes later. Next, the stainless steel container was immersed in a 95 ° C. warm bath and maintained at 90 ° C. for 10 minutes to completely deactivate the enzyme activity, and after cooling to 25 ° C., the concentrated treatment liquid was recovered.

(2)撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し10分間撹拌、硫酸カルシウム2水和物(CaSO4・2H2O、吉野石膏製)3.0g、前記濃縮処理液500gの順に溶解し10分間撹拌して緑茶抽出物の精製物を得た。次に10質量%重曹水15.0gを投入し10分間撹拌後、エリスリトール274.0gの全量を1,000gとし、UHT殺菌後レトルトパックに充填し、濃縮組成物を得た。 (2) Dissolve 3.0 g of ascorbic acid in stirred ion exchange water at 40 ° C. and stir for 10 minutes, 3.0 g of calcium sulfate dihydrate (CaSO 4 .2H 2 O, manufactured by Yoshino Gypsum), the concentrated treatment solution It melt | dissolved in order of 500 g, and stirred for 10 minutes, and the purified product of the green tea extract was obtained. Next, 15.0 g of 10% by mass sodium bicarbonate water was added and stirred for 10 minutes. The total amount of 274.0 g of erythritol was adjusted to 1,000 g, filled into a retort pack after UHT sterilization, and a concentrated composition was obtained.

(3)イオン交換水に上記2で得られた濃縮組成物のうち17.0g、緑茶抽出物の濃縮物0.2g、果糖38.6g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、緑茶香料0.5gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。配合後、UHT殺菌しガラス容器に充填して還元飲料を製造した。組成、風味評価結果を表1に示す。 (3) 17.0 g of the concentrated composition obtained in 2 above in ion-exchanged water, 0.2 g of green tea extract concentrate, 38.6 g of fructose, 2.9 g of erythritol, 1.0 g of citric acid, ascorbic acid 0.45 g and green tea flavor 0.5 g were added, pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. After blending, it was UHT sterilized and filled into a glass container to produce a reduced beverage. The composition and flavor evaluation results are shown in Table 1.

実施例2
イオン交換水に実施例1(2)で得られた濃縮組成物のうち17g、果糖38.0g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、レモンライム香料1.0gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。配合後、UHT殺菌しガラス容器に充填して還元飲料を製造した。組成、風味評価結果を表1に示す。
Example 2
17 g of the concentrated composition obtained in Example 1 (2), fructose 38.0 g, erythritol 2.9 g, citric acid 1.0 g, ascorbic acid 0.45 g and lemon lime flavor 1.0 g in ion-exchanged water. Further, the pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. After blending, it was UHT sterilized and filled into a glass container to produce a reduced beverage. The composition and flavor evaluation results are shown in Table 1.

実施例3
硫酸カルシウム2水和物の代わりに塩化カルシウム2水和物(CaCl2・2H2O、株式会社トクヤマ製)を使用し、実施例1(2)と同様にして濃縮組成物を得た。次に実施例2と同様の還元飲料を製造した。組成、風味評価結果を表1に示す。
Example 3
Instead of calcium sulfate dihydrate, calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Tokuyama Corporation) was used to obtain a concentrated composition in the same manner as in Example 1 (2). Next, the same reduced drink as Example 2 was manufactured. The composition and flavor evaluation results are shown in Table 1.

実施例4
中国産緑茶抽出物の濃縮物8.0gを使用し、濃縮処理液を減少させた以外は、実施例1(2)と同様にして濃縮組成物を得た。次に実施例2と同様の還元飲料を製造した。組成、風味評価結果を表1に示す。
Example 4
A concentrated composition was obtained in the same manner as in Example 1 (2) except that 8.0 g of Chinese green tea extract concentrate was used and the concentration treatment liquid was reduced. Next, the same reduced drink as Example 2 was manufactured. The composition and flavor evaluation results are shown in Table 1.

実施例5
硫酸カルシウム2水和物の代わりに炭酸カルシウム(CaCO3:白石工業製)を1.7g使用した以外は実施例1(2)と同様にして濃縮組成物を得た。さらに実施例2と同様にして還元飲料を製造した。組成、風味評価結果を表1に示す。
Example 5
A concentrated composition was obtained in the same manner as in Example 1 (2) except that 1.7 g of calcium carbonate (CaCO 3 : manufactured by Shiroishi Kogyo) was used instead of calcium sulfate dihydrate. Further, a reduced beverage was produced in the same manner as in Example 2. The composition and flavor evaluation results are shown in Table 1.

比較例1
撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し10分間撹拌、10質量%重曹水15.0g、実施例1(1)で得られた濃縮処理液500.0g、エリスリトール274.0gを溶解し10分間撹拌し、硫酸カルシウム2水和物0.3gを溶解し全量を1,000gとし、UHT殺菌後レトルトパックに充填した。次に実施例2と同様の還元飲料を製造した。組成、風味評価結果を表1に示す。
Comparative Example 1
Ascorbic acid (3.0 g) was dissolved in stirred ion exchange water at 40 ° C., stirred for 10 minutes, 10% by mass of sodium bicarbonate water (15.0 g), concentrated treatment liquid (500.0 g) obtained in Example 1 (1), erythritol (274.274). 0 g was dissolved and stirred for 10 minutes, 0.3 g of calcium sulfate dihydrate was dissolved to make the total amount 1,000 g, and filled into a retort pack after UHT sterilization. Next, the same reduced drink as Example 2 was manufactured. The composition and flavor evaluation results are shown in Table 1.

比較例2
撹拌した40℃のイオン交換水に硫酸カルシウム2水和物3.0gを溶解し10分間撹拌、10質量%重曹水15.0gを溶解し10分間撹拌後、実施例1(1)で得られた濃縮処理液500.0g、エリスリトール274.0g、アスコルビン酸3.0gの順に溶解し全量を1,000gとし、UHT殺菌後レトルトパックに充填した。ここでは、かなりの発泡がみられた。次に実施例2と同様の還元飲料を製造した。組成、風味評価結果を表1に示す。
Comparative Example 2
It is obtained in Example 1 (1) after dissolving 3.0 g of calcium sulfate dihydrate in stirred ion exchanged water at 40 ° C., stirring for 10 minutes, dissolving 15.0 g of 10 mass% sodium bicarbonate water and stirring for 10 minutes. 500.0 g of the concentrated treatment solution, 274.0 g of erythritol, and 3.0 g of ascorbic acid were dissolved in this order to make a total amount of 1,000 g, and the retort pack was filled after UHT sterilization. Here, considerable foaming was observed. Next, the same reduced drink as Example 2 was manufactured. The composition and flavor evaluation results are shown in Table 1.

表1から実施例1〜5は、比較例1に比べて収斂味が改善し、比較例2に比べて濁りが少なく沈殿発生がみられないことが明らかである。   From Table 1, it is clear that Examples 1 to 5 have improved astringency compared to Comparative Example 1, less turbidity than Comparative Example 2, and no occurrence of precipitation.

Claims (7)

下記(1)〜(3)の順の工程を含み、カルシウムを0.01質量%以上含有し、濁度が50NTU以下であり、非重合体カテキン類0.5〜25質量%を含有する還元飲料用濃縮組成物の製造方法。
(1)水に(A)酸味料を溶解する工程、
(2)工程(1)で得られた水溶液に(B)カルシウム化合物を溶解し、pHを2.0〜5.0にする工程、
(3)工程(2)で得られた水溶液に(C)炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び/又は炭酸カリウムを含有する水溶液、(D)茶抽出物の濃縮物及び/又は精製物、及び(E)炭水化物を溶解する工程。
Comprises sequentially the following steps (1) to (3), contains calcium least 0.01 wt%, turbidity of Ri der below 50 NTU, containing 0.5 to 25 wt% non-polymer catechins A method for producing a concentrated composition for a reduced beverage.
(1) a step of dissolving (A) a sour agent in water;
(2) A step of dissolving the calcium compound (B) in the aqueous solution obtained in the step (1) to adjust the pH to 2.0 to 5.0,
(3) The aqueous solution obtained in step (2) contains (C) an aqueous solution containing sodium bicarbonate, sodium carbonate, potassium bicarbonate and / or potassium carbonate, (D) a concentrate and / or purified product of tea extract. ,及beauty (E) a step of dissolving the carbohydrate.
酸味料がクエン酸、乳酸、リンゴ酸、マレイン酸、アジピン酸、コハク酸、フマル酸、酒石酸、グルコン酸、アスコルビン酸及びエリソルビン酸から選ばれるカルボン酸及び/又はリン酸である請求項1記載の還元飲料用濃縮組成物の製造方法。 Acidulant citric acid, lactic acid, malic acid, maleic acid, adipic acid, succinic acid, fumaric acid, tartaric acid, gluconic acid, according to claim 1 Symbol mounting a carboxylic acid and / or phosphoric acid selected from ascorbic acid and erythorbic acid Of producing a concentrated composition for reduced beverages. カルボン酸がアスコルビン酸である請求項記載の還元飲料用濃縮組成物の製造方法。 The method for producing a concentrated composition for a reduced beverage according to claim 2 , wherein the carboxylic acid is ascorbic acid. カルシウム化合物が、カルシウム含有食塩、海洋ミネラル液、カルシウム含有かんすい、硫酸カルシウム、乳酸カルシウム、塩化カルシウム、グルコン酸カルシウム、パントテン酸カルシウム、乳清カルシウム、卵殻カルシウム、貝カルシウム、骨カルシウム、ミネラルウォーター、クエン酸カルシウム、酢酸カルシウム、炭酸カルシウム、水酸化カルシウム、リン酸カルシウム、グリセロン酸カルシウム及び/又は焼成カルシウムである請求項1〜のいずれか1項記載の還元飲料用濃縮組成物の製造方法。 Calcium compounds are calcium-containing salt, marine mineral liquid, calcium-containing pancreatic calcium, calcium sulfate, calcium lactate, calcium chloride, calcium gluconate, calcium pantothenate, whey calcium, eggshell calcium, shellfish calcium, bone calcium, mineral water, quencher calcium, calcium acetate, calcium carbonate, calcium hydroxide, calcium phosphate method of claim 1 reducing beverage concentrate composition according to any one of 3 is Guriseron calcium and / or calcined calcium. 炭水化物が非還元性糖類及び/又は糖アルコールである請求項1〜のいずれか1項記載の還元飲料用濃縮組成物の製造方法。 The method for producing a concentrated composition for a reduced beverage according to any one of claims 1 to 4 , wherein the carbohydrate is a non-reducing saccharide and / or a sugar alcohol. 炭水化物がエリスリトールである請求項記載の還元飲料用濃縮組成物の製造方法。 The method for producing a concentrated composition for a reduced beverage according to claim 5 , wherein the carbohydrate is erythritol. 請求項1〜6のいずれか1項記載の方法で得られた還元飲料用濃縮組成物を還元する還元飲料の製造方法。 The manufacturing method of the reduced drink which reduces the concentrated composition for reduced drinks obtained by the method of any one of Claims 1-6 .
JP2007179612A 2007-07-09 2007-07-09 Method for producing concentrated composition for reduced beverage Active JP4818998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179612A JP4818998B2 (en) 2007-07-09 2007-07-09 Method for producing concentrated composition for reduced beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179612A JP4818998B2 (en) 2007-07-09 2007-07-09 Method for producing concentrated composition for reduced beverage

Publications (2)

Publication Number Publication Date
JP2009011288A JP2009011288A (en) 2009-01-22
JP4818998B2 true JP4818998B2 (en) 2011-11-16

Family

ID=40352955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179612A Active JP4818998B2 (en) 2007-07-09 2007-07-09 Method for producing concentrated composition for reduced beverage

Country Status (1)

Country Link
JP (1) JP4818998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200706A (en) * 2009-03-05 2010-09-16 Shiraishi Kogyo Kaisha Ltd Method for producing calcium-enriched carbonated beverage
JP6261539B2 (en) * 2015-03-31 2018-01-17 株式会社東洋新薬 Composition
EP3689154A4 (en) * 2017-09-25 2021-06-09 Suntory Holdings Limited Colorless transparent beverage containing calcium
CN110079562B (en) * 2019-04-11 2022-11-04 华中农业大学 Method for preparing calcium lactate by immobilized fermentation of eggshell powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786510A (en) * 1987-07-02 1988-11-22 The Procter & Gamble Company Calcium-iron mineral supplements
US4830862A (en) * 1987-07-31 1989-05-16 The Procter & Gamble Company Calcium-supplemented beverages and beverage concentrates containing low levels of sulfate
US4992282A (en) * 1989-05-08 1991-02-12 The Procter & Gamble Company Stable nutritional vitamin and mineral supplemented beverage
WO1994008473A1 (en) * 1992-10-21 1994-04-28 The Procter & Gamble Company Storage stable calcium-supplemented beverage premix concentrates and syrups
WO2000018258A2 (en) * 1998-09-29 2000-04-06 The Procter & Gamble Company Low acid beverages supplemented with nutritional calcium sources
US20060177559A1 (en) * 2005-02-04 2006-08-10 Pepsico, Inc. Stable beverage compositions containing tea polyphenols, flavonoids or catechins and methods
JP4694974B2 (en) * 2005-05-20 2011-06-08 花王株式会社 Method for producing purified green tea extract

Also Published As

Publication number Publication date
JP2009011288A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CA2158001C (en) Calcium fortified beverages
US8652560B2 (en) Packaged beverages
JP3590051B1 (en) Packaged beverage
JP5080835B2 (en) Effervescent container beverage
TWI402041B (en) Concentrated compositions for reduced beverages
JP5313320B2 (en) Container drink
WO2007122817A1 (en) Process for producing purified green tea extract
JP5330756B2 (en) Container drink
JP4838752B2 (en) Container drink
JP2005058208A (en) Drink packed into container
WO2007122818A1 (en) Process for producing purified green tea extract
JP4917988B2 (en) Container drink
JP4768666B2 (en) Container drink
JP4818998B2 (en) Method for producing concentrated composition for reduced beverage
JP3615213B1 (en) Container drink
JP4705599B2 (en) Container drink
JP5295616B2 (en) Concentrated composition for reduced beverage
JP2007319075A (en) Packaged beverage
WO2018225583A1 (en) Carbonated beverage, carbonated beverage in container, and method for enhancing yogurt flavor in carbonated beverage
JP5295617B2 (en) Method for producing concentrated composition for reduced beverage
JP5585055B2 (en) Drinking composition with improved off-flavor
JP2017046600A (en) Packaged citric acid-rich acidic beverage having reduced citric acid-derived foreign taste
JP2024070538A (en) BEVERAGES AND METHODS FOR IMPROVING THE SALTY TASTE OF BEVERAGES - Patent application
JP2001275617A (en) Food and drink product containing calcium and magnesium
JPH07203922A (en) Calcium-supplied and enriched drink and solid drink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4818998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250