JP4818603B2 - Battery separator and non-aqueous electrolyte battery including the same - Google Patents

Battery separator and non-aqueous electrolyte battery including the same Download PDF

Info

Publication number
JP4818603B2
JP4818603B2 JP2004312435A JP2004312435A JP4818603B2 JP 4818603 B2 JP4818603 B2 JP 4818603B2 JP 2004312435 A JP2004312435 A JP 2004312435A JP 2004312435 A JP2004312435 A JP 2004312435A JP 4818603 B2 JP4818603 B2 JP 4818603B2
Authority
JP
Japan
Prior art keywords
battery
group
separator
battery separator
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312435A
Other languages
Japanese (ja)
Other versions
JP2006127839A (en
Inventor
正珠 大月
裕士 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004312435A priority Critical patent/JP4818603B2/en
Publication of JP2006127839A publication Critical patent/JP2006127839A/en
Application granted granted Critical
Publication of JP4818603B2 publication Critical patent/JP4818603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池用セパレータ及びそれを備えた非水電解質電池に関し、特にフッ化ビニリデン系ポリマーからなる不燃性の電池用セパレータ及び該セパレータを備えた安全性の高い非水電解質電池に関するものである。   The present invention relates to a battery separator and a nonaqueous electrolyte battery including the same, and more particularly to a nonflammable battery separator made of a vinylidene fluoride polymer and a highly safe nonaqueous electrolyte battery including the separator. .

昨今、高電圧、高エネルギー密度を有する電源として、リチウム電池やリチウムイオン2次電池等の非水電解液電池が、広く用いられるようになってきており、例えば、カメラ、電子ウォッチや各種メモリーバックアップ用電源、ノート型パソコンや携帯電話等の駆動電源、電気自動車や燃料電池自動車の主電源若しくは補助電源として用いられている。そして、現在、これら非水電解液電池の正極と負極との間において、正負極間の短絡を防止するために設けられるセパレータには、ポリエチレンやポリプロピレン等のポリオレフィンを多孔質化したフィルムが用いられているが、該セパレータには、電池の充放電中にイオンを通過させるための多数の穴が設けられており、通常の使用環境下ではイオンの通過を阻害することはない。しかしながら、ポリオレフィン系の薄層フィルムには電解液を保持する能力が無いため、該薄層フィルムをセパレータとして用いた電池には、液漏れの危険性がある。   Recently, non-aqueous electrolyte batteries such as lithium batteries and lithium ion secondary batteries have come to be widely used as power sources having high voltage and high energy density. For example, cameras, electronic watches, and various memory backups It is used as a power source for driving, a driving power source for notebook computers and mobile phones, and a main power source or auxiliary power source for electric vehicles and fuel cell vehicles. Currently, a porous film made of polyolefin such as polyethylene or polypropylene is used as a separator provided between the positive electrode and the negative electrode of these nonaqueous electrolyte batteries to prevent a short circuit between the positive and negative electrodes. However, the separator is provided with a large number of holes for allowing ions to pass during charging and discharging of the battery, and does not hinder the passage of ions under a normal use environment. However, since a polyolefin-based thin film does not have an ability to retain an electrolyte solution, a battery using the thin film as a separator has a risk of liquid leakage.

これに対して、近年、液漏れの心配の無い電池として、固体電解質やゲル電解質を用いた電池が提案されている。該電池は、液漏れの心配がないことに加え、フィルム化が可能で電子機器への組み込み性が良く、スペースの有効利用が可能であるため、近年、特に研究が盛んである。但し、上記固体電解質は、イオン伝導度が低く、電池への実用化が難しいため、現在、ゲル電解質を用いた電池が集中的に研究されている。かかるゲル電解質としては、特開2002−8723号公報(特許文献1)や特開2002−216848号公報(特許文献2)に記載のような、モノマーとしてフッ化ビニリデンを用いたポリマーに非水電解液を含浸・膨潤させたゲル電解質等が知られている。そして、これらゲル電解質は、電池の電解質としての機能と共に、正極と負極の接触を防止するためのセパレータとしての機能も有している。   On the other hand, in recent years, a battery using a solid electrolyte or a gel electrolyte has been proposed as a battery that does not cause a liquid leakage. In recent years, the battery has been particularly researched because it does not have to worry about liquid leakage, can be formed into a film, can be easily incorporated into an electronic device, and can effectively use space. However, since the solid electrolyte has low ionic conductivity and is difficult to put into practical use in a battery, a battery using a gel electrolyte is currently intensively studied. As such a gel electrolyte, a polymer using vinylidene fluoride as a monomer as described in JP-A No. 2002-8723 (Patent Document 1) and JP-A No. 2002-216848 (Patent Document 2) is used for non-aqueous electrolysis. A gel electrolyte impregnated and swollen with a liquid is known. And these gel electrolytes have a function as a separator for preventing the contact of a positive electrode and a negative electrode with the function as an electrolyte of a battery.

ところで、上記ゲル電解質を用いた電池には、前述した非水電解液電池と同様に、負極材料としてリチウム金属やリチウム合金が使用され、該負極が水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、ゲル電解質に使用される有機溶媒は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。   By the way, in the battery using the gel electrolyte, similarly to the non-aqueous electrolyte battery described above, lithium metal or a lithium alloy is used as a negative electrode material, and the negative electrode is violently mixed with a compound having active protons such as water and alcohol. In order to react, the organic solvent used for the gel electrolyte is limited to aprotic organic solvents such as ester compounds and ether compounds.

しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。また、短絡等によって電池が異常に発熱した際には、上記フッ化ビニリデン系のポリマーが連鎖分解して、ポリマー自体に引火する危険性もある。   However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Therefore, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit. Further, when the battery abnormally generates heat due to a short circuit or the like, there is a risk that the vinylidene fluoride polymer is chain decomposed and the polymer itself is ignited.

特開2002−8723号公報JP 2002-8723 A 特開2002−216848号公報JP 2002-216848 A

そこで、本発明の目的は、上記従来技術の問題を解決し、ポリフッ化ビニリデン及び/又はフッ化ビニリデン含有共重合体を含む不燃性の電池用セパレータを提供することにある。また、本発明の他の目的は、かかる不燃性の電池用セパレータを用いた安全性の高い非水電解質電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a nonflammable battery separator containing polyvinylidene fluoride and / or a vinylidene fluoride-containing copolymer. Another object of the present invention is to provide a highly safe nonaqueous electrolyte battery using such a nonflammable battery separator.

本発明者らは、上記目的を達成するために鋭意検討した結果、ポリフッ化ビニリデン及び/又はフッ化ビニリデン含有共重合体からなる電池用セパレータに、リンを含む不燃性付与物質を含ませることで、電池用セパレータを不燃性にすることができ、該不燃性の電池用セパレータを非水電解質電池に用いることで、該電池の安全性を大幅に改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have incorporated a nonflammability imparting substance containing phosphorus into a battery separator made of polyvinylidene fluoride and / or a vinylidene fluoride-containing copolymer. The present inventors have found that the battery separator can be made nonflammable, and that the safety of the battery can be greatly improved by using the nonflammable battery separator for a nonaqueous electrolyte battery, thereby completing the present invention. It was.

即ち、本発明の電池用セパレータは、ポリフッ化ビニリデン及びフッ化ビニリデン含有共重合体からなる群から選択される少なくとも1種のポリマーと、リン含有不燃性付与物質とを含有し、該リン含有不燃性付与物質がホスホネート化合物及びホスフィネート化合物からなる群から選択される少なくとも一種であることを特徴とする。 That is, the battery separator of the present invention contains at least one polymer selected from the group consisting of polyvinylidene fluoride and a vinylidene fluoride-containing copolymer, and a phosphorus-containing nonflammability imparting substance , and the phosphorus-containing nonflammable material. The sex-imparting substance is at least one selected from the group consisting of phosphonate compounds and phosphinate compounds .

本発明の電池用セパレータにおいては、前記リン含有不燃性付与物質が25℃で固体であることが好ましい。   In the battery separator of the present invention, the phosphorus-containing nonflammability imparting substance is preferably solid at 25 ° C.

本発明の電池用セパレータにおいて、前記ポリマーとしては、ポリフッ化ビニリデンが好ましい。   In the battery separator of the present invention, the polymer is preferably polyvinylidene fluoride.

また、本発明の非水電解質電池は、上記電池用セパレータと、正極と、負極と、非水電解液とを備えることを特徴とする。   A nonaqueous electrolyte battery according to the present invention includes the battery separator, a positive electrode, a negative electrode, and a nonaqueous electrolytic solution.

本発明の非水電解質電池においては、前記電池用セパレータ中に前記非水電解液が保持されゲル状電解質を形成していることが好ましい。この場合、電池からの液漏れを防止できることに加え、電池のフィルム化が可能で、電子機器への組み込み性を向上させて電子機器内のスペースを有効に利用することができる。   In the nonaqueous electrolyte battery of the present invention, it is preferable that the nonaqueous electrolyte is held in the battery separator to form a gel electrolyte. In this case, in addition to preventing liquid leakage from the battery, the battery can be formed into a film, and the space in the electronic device can be effectively utilized by improving the incorporation into the electronic device.

本発明によれば、ポリフッ化ビニリデン及び/又はフッ化ビニリデン含有共重合体とリン含有不燃性付与物質とを含む、不燃性の電池用セパレータを提供することができる。また、該セパレータを備えた、安全性の高い非水電解質電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonflammable battery separator containing a polyvinylidene fluoride and / or a vinylidene fluoride containing copolymer and a phosphorus containing nonflammability provision substance can be provided. In addition, a highly safe nonaqueous electrolyte battery including the separator can be provided.

以下に、本発明を詳細に説明する。本発明の電池用セパレータは、ポリフッ化ビニリデン及びフッ化ビニリデン含有共重合体からなる群から選択される少なくとも1種のポリマーと、リン含有不燃性付与物質とを含有し、該リン含有不燃性付与物質がホスホネート化合物及びホスフィネート化合物からなる群から選択される少なくとも一種であることを特徴とする。本発明の電池用セパレータは、リン含有不燃性付与物質を含むため、不燃性であり、該セパレータを電池に適用することで、該電池が短絡等により異常に発熱した際に、セパレータ自体が燃焼することがなく、電池の熱暴走を確実に防止することができる。 The present invention is described in detail below. The battery separator of the present invention contains at least one polymer selected from the group consisting of polyvinylidene fluoride and a vinylidene fluoride-containing copolymer, and a phosphorus-containing incombustibility imparting substance , and the phosphorus-containing incombustibility imparted The substance is at least one selected from the group consisting of phosphonate compounds and phosphinate compounds . The battery separator of the present invention contains a phosphorous-containing nonflammability imparting substance and is therefore nonflammable. When the separator is applied to a battery, the separator itself burns when the battery abnormally generates heat due to a short circuit or the like. This can reliably prevent thermal runaway of the battery.

本発明の電池用セパレータを構成するポリマーは、ポリフッ化ビニリデン(PVDF)及び/又はフッ化ビニリデン含有共重合体であり、これらポリマーは1種単独で用いても、2種以上を混合して用いてもよい。上記フッ化ビニリデン含有共重合体は、フッ化ビニリデンと他のモノマーとの共重合体であり、フッ化ビニリデンと共重合されるモノマーとしては、ヘキサフルオロプロピレン、マレイン酸、マレイン酸エステル、無水マレイン酸、テトラフルオロエチレン、トリフルオロエチレン、フルオロエチレン、エチレン、プロピレン、トリフルオロプロピレン等が挙げられ、これらの中でも、ヘキサフルオロプロピレンが好ましい。なお、本発明の電池用セパレータに用いるポリマーとしては、ポリフッ化ビニリデン及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体が好ましく、ポリフッ化ビニリデンが更に好ましい。   The polymer constituting the battery separator of the present invention is polyvinylidene fluoride (PVDF) and / or a vinylidene fluoride-containing copolymer. These polymers may be used alone or in combination of two or more. May be. The vinylidene fluoride-containing copolymer is a copolymer of vinylidene fluoride and other monomers, and monomers copolymerized with vinylidene fluoride include hexafluoropropylene, maleic acid, maleic acid ester, maleic anhydride Examples include acids, tetrafluoroethylene, trifluoroethylene, fluoroethylene, ethylene, propylene, trifluoropropylene, and the like. Among these, hexafluoropropylene is preferable. The polymer used in the battery separator of the present invention is preferably polyvinylidene fluoride and a vinylidene fluoride-hexafluoropropylene copolymer, and more preferably polyvinylidene fluoride.

本発明の電池用セパレータに用いる不燃性付与物質は、リンを含むことを要し、25℃(室温)で固体であることが好ましい。ここで、上記不燃性付与物質、ホスホネート化合物及びホスフィネート化合物からなる群から選択され、これらリン含有化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これら分子中にリンを含む化合物は、セパレータが燃焼する際にリン酸エステル類を発生し、該リン酸エステル類の作用によってセパレータを不燃性にする。また、リンには、セパレータの原料である上記ポリフッ化ビニリデン及びフッ化ビニリデン含有共重合体の連鎖分解を抑制する作用があるため、効果的にセパレータの燃焼の危険性を低減することができる。 The nonflammability-imparting substance used for the battery separator of the present invention needs to contain phosphorus and is preferably solid at 25 ° C. (room temperature). Here, the nonflammability imparting substance is selected from the group consisting of a phosphonate compound and a phosphinate compound, and these phosphorus-containing compounds may be used singly or in combination of two or more. These compounds containing phosphorus in the molecule generate phosphate esters when the separator burns, and make the separator incombustible by the action of the phosphate esters. Moreover, since phosphorus has the effect | action which suppresses the chain decomposition of the said polyvinylidene fluoride which is a raw material of a separator, and a vinylidene fluoride containing copolymer, the danger of the combustion of a separator can be reduced effectively.

本発明の電池用セパレータ中の上記不燃性付与物質の含有率は、3〜20質量%の範囲が好ましく、5〜15質量%の範囲が更に好ましい。不燃性付与物質の含有率が3質量%未満では、セパレータの燃焼の危険性を低減する効果が小さく、20質量%を超えると、セパレータの機械的強度が低下する。   The content of the nonflammability imparting substance in the battery separator of the present invention is preferably in the range of 3 to 20% by mass, and more preferably in the range of 5 to 15% by mass. When the content of the nonflammability imparting substance is less than 3% by mass, the effect of reducing the risk of burning the separator is small, and when it exceeds 20% by mass, the mechanical strength of the separator is lowered.

上記ホスホネート化合物としては、下記式(VI):

Figure 0004818603
[式中、R6aは、それぞれ独立して一価の置換基を示し;R6bは、一価の置換基又はハロゲン元素を示す]で表される化合物が好ましく、上記ホスフィネート化合物としては、下記式(VII):
Figure 0004818603
[式中、R7aは、一価の置換基を示し;R7bは、それぞれ独立して一価の置換基又はハロゲン元素を示す]で表される化合物が好ましい。これらホスホネート化合物及びホスフィネート化合物は、1種単独で用いても、2種以上を混合して用いてもよく、ホスホネート化合物とホスフィネート化合物とを組み合わせて用いてもよい。 Examples of the phosphonate compound include the following formula (VI):
Figure 0004818603
[Wherein R 6a independently represents a monovalent substituent; R 6b represents a monovalent substituent or a halogen element] is preferable, and examples of the phosphinate compound include the following: Formula (VII):
Figure 0004818603
[Wherein, R 7a represents a monovalent substituent; R 7b independently represents a monovalent substituent or a halogen element] is preferable. These phosphonate compounds and phosphinate compounds may be used singly or in combination of two or more, or a phosphonate compound and a phosphinate compound may be used in combination.

上記式(VI)のR6a及びR6b並びに式(VII)のR7a及びR7bにおける一価の置換基としては、アルコキシ基、アリールオキシ基、アルキル基、アリール基、アシル基、置換又は非置換アミノ基、アルキルチオ基、アリールチオ基等が挙げられ、これらの中でも、不燃性に優れる点で、アルコキシ基及びアリールオキシ基が好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、上記アリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられ、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられ、上記置換又は非置換アミノ基としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、アジリジル基、ピロリジル基等が挙げられ、上記アルキルチオ基としては、メチルチオ基、エチルチオ基等が挙げられ、上記アリールチオ基としては、フェニルチオ基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。 Examples of the monovalent substituent in R 6a and R 6b in the above formula (VI) and R 7a and R 7b in the formula (VII) include an alkoxy group, an aryloxy group, an alkyl group, an aryl group, an acyl group, a substituted or non-substituted group. Examples thereof include a substituted amino group, an alkylthio group, and an arylthio group. Among these, an alkoxy group and an aryloxy group are preferable in terms of excellent nonflammability. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group, and the like. Examples of the aryloxy group include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Includes a phenyl group, a tolyl group, a naphthyl group, and the substituted or unsubstituted amino group includes an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, an aziridyl group, and a pyrrolidyl group. Examples of the alkylthio group include methylthio group, ethylthio group It includes groups such as the above-described arylthio group, a phenylthio group, and the like. The hydrogen element in these monovalent substituents may be substituted with a halogen element, and is preferably substituted with fluorine.

一方、上記式(VI)のR6b及び式(VII)のR7bにおけるハロゲン元素としては、フッ素、塩素、臭素等が挙げられ、これらの中でもフッ素が好ましい。 On the other hand, examples of the halogen element in R 6b of the above formula (VI) and R 7b of the formula (VII) include fluorine, chlorine, bromine, etc. Among these, fluorine is preferable.

上記式(VI)のホスホネート化合物として、具体的には、フルオロリン酸ジメチル、フルオロリン酸ジエチル、フルオロリン酸ビストリフルオロエチル、フルオロリン酸ジプロピル、フルオロリン酸ジアリル、フルオロリン酸ジブチル、フルオロリン酸ジフェニル、フルオロリン酸ジフルオロフェニル等が挙げられる。   Specific examples of the phosphonate compound of the above formula (VI) include dimethyl fluorophosphate, diethyl fluorophosphate, bistrifluoroethyl fluorophosphate, dipropyl fluorophosphate, diallyl fluorophosphate, dibutyl fluorophosphate, and fluorophosphoric acid. Examples thereof include diphenyl and difluorophenyl fluorophosphate.

一方、上記式(VII)のホスフィネート化合物として、具体的には、クロロフルオロリン酸メチル、クロロフルオロリン酸エチル、クロロフルオロリン酸トリフルオロエチル、クロロフルオロリン酸プロピル、クロロフルオロリン酸アリル、クロロフルオロリン酸ブチル、クロロフルオロリン酸メトキシエチル、クロロフルオロリン酸メトキシエトキシエチル、クロロフルオロリン酸フェニル、クロロフルオロリン酸フルオロフェニル、ジフルオロリン酸メチル、ジフルオロリン酸エチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸アリル、ジフルオロリン酸ブチル、ジフルオロリン酸メトキシエチル、ジフルオロリン酸メトキシエトキシエチル、ジフルオロリン酸フェニル、ジフルオロリン酸フルオロフェニル等が挙げられる。これらの中でも、ジフルオロリン酸メチル、ジフルオロリン酸エチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸フェニルが好ましい。   On the other hand, as the phosphinate compound of the above formula (VII), specifically, methyl chlorofluorophosphate, ethyl chlorofluorophosphate, trifluoroethyl chlorofluorophosphate, propyl chlorofluorophosphate, allyl chlorofluorophosphate, chloro Butyl fluorophosphate, methoxyethyl chlorofluorophosphate, methoxyethoxyethyl chlorofluorophosphate, phenyl chlorofluorophosphate, fluorophenyl chlorofluorophosphate, methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, Propyl difluorophosphate, allyl difluorophosphate, butyl difluorophosphate, methoxyethyl difluorophosphate, methoxyethoxyethyl difluorophosphate, phenyl difluorophosphate, fluorinated difluorophosphate Phenyl, and the like. Among these, methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, and phenyl difluorophosphate are preferable.

本発明の電池用セパレータは、例えば、上記ポリマー及びリン含有不燃性付与物質に、可塑剤及び揮発性有機溶媒を加え、均一に混合して混合溶液を得、該混合溶液をガラス板等の上にキャストした後、加熱乾燥して揮発性有機溶媒を揮発させて、フィルム状とし、次いで、可塑剤を抽出溶媒で抽出することで製造できる。ここで、上記可塑剤としては、ジブチルフタレート(DBP)等が挙げられ、上記揮発性有機溶媒としては、アセトン等が挙げられ、また、上記抽出溶媒としては、使用したポリマー及びリン含有不燃性付与物質の溶解力が低く且つ使用した可塑剤の溶解力に優れた溶媒を適宜選択して使用する。こうして得られるフィルム状のセパレータは、可塑剤の抽出によって微多孔が形成されており、後述する非水電解液の保持性に優れる。   The battery separator of the present invention includes, for example, a plasticizer and a volatile organic solvent added to the polymer and the phosphorus-containing nonflammability imparting substance, and uniformly mixed to obtain a mixed solution. The mixed solution is placed on a glass plate or the like. Then, it is heated and dried to volatilize the volatile organic solvent to form a film, and then the plasticizer can be extracted with an extraction solvent. Here, examples of the plasticizer include dibutyl phthalate (DBP), examples of the volatile organic solvent include acetone, and examples of the extraction solvent include the polymer used and phosphorus-containing nonflammability. A solvent having a low solubility of the substance and an excellent solubility of the plasticizer used is appropriately selected and used. The film-like separator thus obtained has micropores formed by extraction of a plasticizer, and is excellent in non-aqueous electrolyte retention described later.

本発明の非水電解質電池は、上述の電池用セパレータと、正極と、負極と、非水電解液とを備え、その他、必要に応じて非水電解質電池の技術分野で通常使用されている他の部材を備える。   The non-aqueous electrolyte battery of the present invention includes the above-described battery separator, positive electrode, negative electrode, and non-aqueous electrolyte solution, and is otherwise used in the technical field of non-aqueous electrolyte batteries as required. The member is provided.

本発明の非水電解質電池の正極活物質は1次電池と2次電池で一部異なり、例えば、1次電池の場合、正極活物質としては、フッ化黒鉛[(CFx)n]、MnO2(電気化学合成であっても化学合成であってもよい)、V25、MoO3、Ag2CrO4、CuO、CuS、FeS2、SO2、SOCl2、TiS2等が好適に挙げられ、これらの中でも、高容量で安全性が高く、更には放電電位が高く電解液の濡れ性に優れる点で、MnO2、フッ化黒鉛が好ましい。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between a primary battery and a secondary battery. For example, in the case of a primary battery, as the positive electrode active material, fluorinated graphite [(CF x ) n ], MnO 2 (electrochemical synthesis or chemical synthesis), V 2 O 5 , MoO 3 , Ag 2 CrO 4 , CuO, CuS, FeS 2 , SO 2 , SOCl 2 , TiS 2 etc. are preferred Among these, MnO 2 and fluorinated graphite are preferable from the viewpoints of high capacity and high safety, and high discharge potential and excellent wettability of the electrolytic solution. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、2次電池の場合、正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、あるいはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 On the other hand, in the case of a secondary battery, as the positive electrode active material, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 and LiFePO 2 are used. Preferable examples include lithium-containing composite oxides such as 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni (wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解質電池の負極活物質は1次電池と2次電池で一部異なり、例えば、1次電池の場合、負極活物質としては、リチウム金属自体の他、リチウム合金等が挙げられる。リチウムと合金をつくる金属としては、Sn、Si、Pb、Al、Au、Pt、In、Zn、Cd、Ag、Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点からAl、Zn、Mgが好ましい。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   The negative electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between a primary battery and a secondary battery. For example, in the case of a primary battery, examples of the negative electrode active material include lithium metal itself and lithium alloys. . Examples of the metal that forms an alloy with lithium include Sn, Si, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of rich reserves and toxicity. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、2次電池の場合、負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   On the other hand, in the case of a secondary battery, preferred examples of the negative electrode active material include lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn, or the like, or a carbon material such as graphite doped with lithium. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable in terms of higher safety and excellent wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解質電池に用いる非水電解液は、非水溶媒及び支持塩を主成分とする。ここで、非水溶媒としては、非プロトン性有機溶媒が挙げられ、また、上述したホスホネート化合物及びホスフィネート化合物の中から、25℃(室温)において液体のものを選択して用いることもでき、非プロトン性有機溶媒とホスホネート化合物及びホスフィネート化合物の少なくとも1種との混合溶液を使用することもできる。ここで、非プロトン性有機溶媒として、具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の炭酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)、フェニルメチルエーテル等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のカルボン酸エステル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類が挙げられる。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte used for the non-aqueous electrolyte battery of the present invention contains a non-aqueous solvent and a supporting salt as main components. Here, examples of the non-aqueous solvent include aprotic organic solvents, and liquids at 25 ° C. (room temperature) can be selected and used from the phosphonate compounds and phosphinate compounds described above. A mixed solution of a protic organic solvent and at least one of a phosphonate compound and a phosphinate compound can also be used. Here, specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene. Carbonates such as carbonate (VC), ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), diethyl ether (DEE), phenylmethyl ether, γ-butyrolactone (GBL), γ-valerolactone Carboxylic acid esters such as methyl formate (MF), nitriles such as acetonitrile, amides such as dimethylformamide, and sulfones such as dimethyl sulfoxide. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

また、上記支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、LiPF6が更に好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。また、上記非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。 Moreover, as said support salt, the support salt used as the ion source of lithium ion is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 is more preferable in terms of excellent nonflammability. These supporting salts may be used alone or in combination of two or more. The concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L. If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

本発明の非水電解質電池において、上記セパレータに対する非水電解液の使用量を調整したり、非水電解液に使用する上記非水溶媒の種類を選択して、セパレータ中に非水電解液を保持させ、セパレータと非水電解液とからゲル状電解質を形成することで、電池からの液漏れを防止することができる。また、この場合、電池のフィルム化が可能で、電子機器への組み込み性を大幅に改善でき、電子機器内のスペースを有効に利用することもできる。   In the nonaqueous electrolyte battery of the present invention, the amount of the nonaqueous electrolyte used for the separator is adjusted, or the type of the nonaqueous solvent used for the nonaqueous electrolyte is selected, and the nonaqueous electrolyte is added to the separator. By holding and forming a gel electrolyte from the separator and the non-aqueous electrolyte, liquid leakage from the battery can be prevented. Further, in this case, the battery can be made into a film, the incorporation into the electronic device can be greatly improved, and the space in the electronic device can be used effectively.

以上に説明した本発明の非水電解質電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレータを挟み、非水電解液を含浸する等して、非水電解質電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解質電池を作製することができる。   The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, and various known forms such as a coin-type, button-type, paper-type, square-type or spiral-type cylindrical battery are preferably cited. It is done. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode, sandwiching a separator between the positive electrode and negative electrode, and impregnating with a non-aqueous electrolyte. In the case of a spiral structure, for example, a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. .

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

参考例1
<電池用セパレータの作製>
ポリフッ化ビニリデン(PVDF)45 g、ホスファゼン化合物A[下記式(II)
(NPR 2 2 ) n ・・・ (II)
において、nが3で、6つのR2の総てがClである環状ホスファゼン化合物]5 g、ジブチルフタレート(DBP)50 mL及びN-メチルピロリドン50 mLを混合して均一溶液を得、得られた混合溶液をガラス板上にキャストした後、加熱乾燥によってN-メチルピロリドンを揮発させてフィルム状とし、次いで、エチルメチルカーボネート(抽出溶媒)でジブチルフタレートを抽出し、乾燥して、電池用セパレータを製造した。また、得られたセパレータの安全性及び限界酸素指数を下記の方法で評価した。結果を表1に示す。
( Reference Example 1 )
<Preparation of battery separator>
Polyvinylidene fluoride (PVDF) 45 g, phosphazene compound A [formula (II) below :
(NPR 2 2 ) n ... (II)
In the above, a cyclic phosphazene compound in which n is 3, and all six R 2 are Cl] 5 g, 50 mL of dibutyl phthalate (DBP) and 50 mL of N-methylpyrrolidone are mixed to obtain a uniform solution. After casting the mixed solution on a glass plate, N-methylpyrrolidone is volatilized by heating to form a film, and then dibutyl phthalate is extracted with ethyl methyl carbonate (extraction solvent), dried, and separated into a battery separator. Manufactured. Moreover, the safety | security and critical oxygen index of the obtained separator were evaluated by the following method. The results are shown in Table 1.

(1)安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動からセパレータの安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、上記セパレータから127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Safety The safety of the separator was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging UL (underlighting laboratory) standard UL94HB method. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a 127 mm × 12.7 mm test piece was produced from the separator. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”, and when the ignited flame does not reach the 25 mm line and the fallen object is not ignited, “flame retardant” The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.

(2)限界酸素指数
JIS K 7201に準じて、セパレータの限界酸素指数を測定した。限界酸素指数が大きい程、セパレータが燃焼し難いことを示す。具体的には、上記セパレータから127mm×12.7mmの試験片を作製し、該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を所定の酸素濃度下で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表1に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(2) Critical oxygen index The critical oxygen index of the separator was measured according to JIS K7201. A larger critical oxygen index indicates that the separator is less likely to burn. Specifically, a 127 mm × 12.7 mm test piece was prepared from the separator, the test piece was perpendicular to the test piece support, and a combustion cylinder (inner diameter 75 mm, height 450 mm, diameter 4 mm of glass particles from the bottom 100) It is attached so that it is located at a distance of 100 mm or more from the upper end of a metal net that is evenly filled with a thickness of ± 5 mm, and then oxygen (JIS K 1101 or this) is attached to the combustion cylinder. Equivalent or better) and nitrogen (JIS K 1107 grade 2 or better), and the test piece is ignited under a predetermined oxygen concentration (the heat source is JIS K 2240 Type 1 No. 1) and burned I checked the condition. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 1. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

(実施例〜6、参考例2〜4及び比較例1〜2)
ホスファゼンA、ホスファゼンB[式(II)において、nが3で、6つのR2の総てがフェノキシ基(-OPh)である環状ホスファゼン化合物]、ジフルオロリン酸トリフルオロエチル、クロロリン酸ビストリフルオロエチルを表1に示す配合量で使用し、参考例1と同様にして電池用セパレータを製造した。また、得られたセパレータの安全性及び限界酸素指数を下記の方法で評価した。結果を表1に示す。
(Examples 5-6 , Reference Examples 2-4, and Comparative Examples 1-2)
Phosphazene A, phosphazene B [cyclic phosphazene compound in which n is 3 and all six R 2 are phenoxy groups (—OPh) in formula (II)], trifluoroethyl difluorophosphate, bistrifluoroethyl chlorophosphate Was used in the same amount as shown in Table 1, and a battery separator was produced in the same manner as in Reference Example 1 . Moreover, the safety | security and critical oxygen index of the obtained separator were evaluated by the following method. The results are shown in Table 1.

Figure 0004818603
Figure 0004818603

表1から明らかなように、比較例のセパレータは、燃焼性で且つ限界酸素指数が低いのに対し、実施例のセパレータは、不燃性で且つ限界酸素指数が非常に高かった。   As apparent from Table 1, the separator of the comparative example was flammable and had a low critical oxygen index, whereas the separator of the example was nonflammable and had a very high critical oxygen index.

Claims (5)

ポリフッ化ビニリデン及びフッ化ビニリデン含有共重合体からなる群から選択される少なくとも1種のポリマーと、リン含有不燃性付与物質とを含有し、
前記リン含有不燃性付与物質がホスホネート化合物及びホスフィネート化合物からなる群から選択される少なくとも一種である
ことを特徴とする電池用セパレータ。
Containing at least one polymer selected from the group consisting of polyvinylidene fluoride and a vinylidene fluoride-containing copolymer, and a phosphorus-containing incombustibility imparting substance ,
The battery separator, wherein the phosphorus-containing incombustibility imparting substance is at least one selected from the group consisting of a phosphonate compound and a phosphinate compound .
前記リン含有不燃性付与物質が25℃で固体であることを特徴とする請求項1に記載の電池用セパレータ。 The battery separator according to claim 1 , wherein the phosphorus-containing nonflammability imparting substance is solid at 25 ° C. 前記ポリマーがポリフッ化ビニリデンであることを特徴とする請求項1に記載の電池用セパレータ。   The battery separator according to claim 1, wherein the polymer is polyvinylidene fluoride. 請求項1〜3のいずれかに記載の電池用セパレータと、正極と、負極と、非水電解液とを備えた非水電解質電池。 A nonaqueous electrolyte battery comprising the battery separator according to claim 1 , a positive electrode, a negative electrode, and a nonaqueous electrolytic solution. 前記電池用セパレータ中に前記非水電解液が保持されゲル状電解質を形成していることを特徴とする請求項4に記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 4 , wherein the nonaqueous electrolyte is retained in the battery separator to form a gel electrolyte.
JP2004312435A 2004-10-27 2004-10-27 Battery separator and non-aqueous electrolyte battery including the same Expired - Fee Related JP4818603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312435A JP4818603B2 (en) 2004-10-27 2004-10-27 Battery separator and non-aqueous electrolyte battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312435A JP4818603B2 (en) 2004-10-27 2004-10-27 Battery separator and non-aqueous electrolyte battery including the same

Publications (2)

Publication Number Publication Date
JP2006127839A JP2006127839A (en) 2006-05-18
JP4818603B2 true JP4818603B2 (en) 2011-11-16

Family

ID=36722359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312435A Expired - Fee Related JP4818603B2 (en) 2004-10-27 2004-10-27 Battery separator and non-aqueous electrolyte battery including the same

Country Status (1)

Country Link
JP (1) JP4818603B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862868B1 (en) 2007-08-21 2008-10-09 도레이새한 주식회사 Fabrication method of nonflammable multi-component separator film for lithium secondary battery and separator film therefrom
WO2010101180A1 (en) 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell
JP5753672B2 (en) 2010-09-06 2015-07-22 株式会社Nttファシリティーズ Non-aqueous electrolyte secondary battery
JP5753671B2 (en) 2010-09-06 2015-07-22 株式会社Nttファシリティーズ Non-aqueous electrolyte secondary battery
JP5623198B2 (en) 2010-09-06 2014-11-12 株式会社Nttファシリティーズ Non-aqueous electrolyte battery
JP5623199B2 (en) 2010-09-06 2014-11-12 株式会社Nttファシリティーズ Non-aqueous electrolyte battery
JP5896374B2 (en) * 2011-09-05 2016-03-30 株式会社Nttファシリティーズ Non-aqueous electrolyte battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306462A (en) * 1996-05-17 1997-11-28 Asahi Chem Ind Co Ltd Battery separator
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
JP4965032B2 (en) * 2001-06-27 2012-07-04 Jx日鉱日石エネルギー株式会社 Solid electrolyte
JP4684651B2 (en) * 2002-08-26 2011-05-18 Jx日鉱日石エネルギー株式会社 Method for producing ion conductive film
DE60330061D1 (en) * 2002-12-27 2009-12-24 Bridgestone Corp SEPARATOR FOR A NON-AQUEOUS ELECTROLYTIC CELL

Also Published As

Publication number Publication date
JP2006127839A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
JP5315674B2 (en) Non-aqueous battery electrolyte and non-aqueous battery using the same
EP1798792B1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008053211A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
EP2683013A1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4818603B2 (en) Battery separator and non-aqueous electrolyte battery including the same
JP2006294332A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2006294334A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees