JP4818131B2 - Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst - Google Patents

Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Download PDF

Info

Publication number
JP4818131B2
JP4818131B2 JP2007006858A JP2007006858A JP4818131B2 JP 4818131 B2 JP4818131 B2 JP 4818131B2 JP 2007006858 A JP2007006858 A JP 2007006858A JP 2007006858 A JP2007006858 A JP 2007006858A JP 4818131 B2 JP4818131 B2 JP 4818131B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
hydrocarbon oil
mass
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007006858A
Other languages
Japanese (ja)
Other versions
JP2008173529A (en
Inventor
忠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Cosmo Oil Co Ltd
Priority to JP2007006858A priority Critical patent/JP4818131B2/en
Publication of JP2008173529A publication Critical patent/JP2008173529A/en
Application granted granted Critical
Publication of JP4818131B2 publication Critical patent/JP4818131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)と、それを用いる炭化水素油の接触分解方法に関し、さらに詳しくは、高い分解活性を有し、また、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成を低減させ、ガソリン留分(以下「FCCガソリン」と記すこともある)の収率を向上させることができる炭化水素油の接触分解触媒と、それを用いる炭化水素油の接触分解方法に関する。   The present invention relates to a catalytic cracking catalyst for hydrocarbon oil (hereinafter sometimes referred to as "FCC catalyst") and a method for catalytic cracking of hydrocarbon oil using the same, more specifically, having a high cracking activity, Hydrocarbons that can reduce the production of cracked products such as dry gas (hydrogen, C1-C2), LPG, and coke, and improve the yield of gasoline fractions (hereinafter sometimes referred to as “FCC gasoline”). The present invention relates to an oil catalytic cracking catalyst and a hydrocarbon oil catalytic cracking method using the catalyst.

重質炭化水素油の接触分解は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、水素・コーク、液化石油ガス(Liquefied Petroleum Gas:LPG)、中間留分(Light Cycle Oil:LCO)、重質留分(Heavy Cycle Oil:HCO)が生産される。効率的にFCCガソリンを製造するためには、触媒の分解活性が高く、またガソリン収率が高く、さらには重質留分の選択性が低いことが望ましい。   Catalytic cracking of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking. When producing FCC gasoline, As co-products, hydrogen coke, liquefied petroleum gas (Liquid Petroleum Gas: LPG), middle distillate (Light Cycle Oil: LCO), and heavy distillate (Heavy Cycle Oil: HCO) are produced. In order to efficiently produce FCC gasoline, it is desirable that the cracking activity of the catalyst is high, the gasoline yield is high, and the selectivity of the heavy fraction is low.

また、自動車用ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することにより製造されており、特に重質な炭化水素油の接触分解から得られるFCCガソリンは、ガソリンへの配合量も多いため、FCCガソリン収率を向上させることは当業者にとって望ましい。   In addition, gasoline for automobiles is manufactured by mixing a plurality of gasoline base materials obtained in the refining process of crude oil. FCC gasoline obtained from catalytic cracking of heavy hydrocarbon oils is blended with gasoline. Because of the large amount, it is desirable for those skilled in the art to improve FCC gasoline yield.

しかし、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分である結晶性アルミノ珪酸塩の構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリンの選択性を低下させるなどの問題を有している。   However, in the catalytic cracking method for hydrocarbon oils, with the recent increase in crude oil grades and grades, heavy metals such as vanadium and nickel and feedstocks with high residual carbon content must be put into the fluid catalytic cracking unit. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the crystalline aluminosilicate that is the active component of the FCC catalyst, causing a significant decrease in the activity of the catalyst and increasing the production of hydrogen and coke. It is known to have problems such as lowering the selectivity. Nickel is also deposited and deposited on the catalyst surface, and has a problem of increasing the amount of hydrogen and coke produced to promote the dehydrogenation reaction and lowering the selectivity of gasoline.

従来から、炭化水素油の接触分解には、ゼオライト、粘土鉱物などの無機酸化物マトリックス及びバインダーからなる接触分解触媒が良く用いられている(例えば、特許文献1〜3参照)。しかし、従来の接触分解触媒では、上記のように近年の原油の重質化・低品位化に伴い、ドライガス(水素、C1〜C2)、LPG、コークの生成量の増大や、ガソリンの選択性の低下などが問題となっており、接触分解触媒のドライガス(水素、C1〜C2)、LPG、コークの生成量の低減や、ガソリンの選択性の向上などが強く望まれている。   Conventionally, a catalytic cracking catalyst comprising an inorganic oxide matrix such as zeolite or clay mineral and a binder is often used for catalytic cracking of hydrocarbon oil (see, for example, Patent Documents 1 to 3). However, in the conventional catalytic cracking catalyst, as the crude oil has become heavier and lower in quality as described above, the generation amount of dry gas (hydrogen, C1 to C2), LPG, coke, and the selection of gasoline are increased. The reduction of the property is a problem, and reduction of the amount of dry gas (hydrogen, C1 to C2), LPG and coke of the catalytic cracking catalyst, improvement of gasoline selectivity, and the like are strongly desired.

触媒の選択性を改善する方法としては、触媒の細孔径分布を最適化する方法が知られている。細孔を形成するためには、ホワイトカーボン等の細孔形成剤を添加する方法が提案されている(例えば、特許文献4参照)。しかしながら、本方法では、100〜1000Åのメソ細孔の容積を増加させる特徴を有するものの、マクロ細孔の容積を増加させる特徴は見られない。また、擬ベーマイト型アルミナ水和物を添加する方法が提案されているが(例えば、特許文献5参照)、本方法では、100〜500Åのメソ細孔に加え、500〜10000Åのいわゆるマクロ細孔の容積を増加させる特徴を有するものの、リン酸イオンの付着により、活性成分であるゼオライトの表面積が低下するため、触媒活性が低下しFCCガソリンの収率が低下するといった問題点を有している。さらに、擬ベーマイト型アルミナ水和物のホワイトカーボンの添加は触媒製造における原料費の増加につながるため、触媒価格が増加する問題がある。
特開平8−57328号公報 特開平9−285728号公報 特開平10−118501号公報 特開平10−128121号公報 特開平11−246868号公報
As a method for improving the selectivity of the catalyst, a method for optimizing the pore size distribution of the catalyst is known. In order to form pores, a method of adding a pore forming agent such as white carbon has been proposed (see, for example, Patent Document 4). However, although this method has the feature of increasing the volume of 100-1000 cm of mesopores, it does not show the feature of increasing the volume of macropores. Moreover, although the method of adding pseudo boehmite type | mold alumina hydrate is proposed (for example, refer patent document 5), in this method, in addition to the mesopores of 100-500 mm, what is called macropores of 500-10000 mm. Although the surface area of zeolite, which is an active ingredient, is reduced due to the attachment of phosphate ions, the catalytic activity is reduced and the yield of FCC gasoline is reduced. . Furthermore, since the addition of white carbon of pseudoboehmite type alumina hydrate leads to an increase in raw material costs in the production of the catalyst, there is a problem that the catalyst price increases.
JP-A-8-57328 JP-A-9-285728 Japanese Patent Laid-Open No. 10-118501 JP-A-10-128121 Japanese Patent Laid-Open No. 11-246868

以上の諸状況に鑑み、本発明は、炭化水素油の接触分解において、重質留分の分解性を向上させると同時に、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できる接触分解触媒を提供することを目的とする。   In view of the above circumstances, the present invention improves the decomposability of heavy fractions in catalytic cracking of hydrocarbon oil, and at the same time, dry gas (hydrogen, C1 to C2), LPG, coke, which are cracked products. An object of the present invention is to provide a catalytic cracking catalyst capable of efficiently producing FCC gasoline at a high yield by reducing the amount of produced gas and improving the selectivity of gasoline.

本発明者らは、上記の目的を達成するために検討を重ねた結果、ある一定割合で結晶性アルミノ珪酸塩、粘土鉱物、及びシリカバインダーを含有してなり、一定の細孔分布特性を有するFCC触媒であれば、炭化水素油の接触分解反応において、高い分解活性を有し、ドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できることを見出し、本発明を完成させるに至った。   As a result of repeated investigations to achieve the above object, the present inventors contain a crystalline aluminosilicate, a clay mineral, and a silica binder at a certain ratio, and have a certain pore distribution characteristic. FCC catalysts have high cracking activity in hydrocarbon oil catalytic cracking reactions, reduce the production of dry gas (hydrogen, C1 to C2), LPG, coke, and improve gasoline selectivity. Thus, the present inventors have found that FCC gasoline can be produced efficiently and with high yield, and have completed the present invention.

即ち、本発明は、次の炭化水素油の接触分解触媒、及びそれを用いた炭化水素油の接触分解方法を提供する。
(1)結晶性アルミノ珪酸塩を20〜60質量%、カオリンを主成分とする粘土鉱物を10〜75質量%、シリカバインダーを5〜40質量%含有してなり、かつ水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の50%以上を占めることを特徴とする炭化水素油の接触分解触媒。
(2)前記粘土鉱物が、水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の50%以上を占める粘土鉱物であることを特徴とする上記(1)に記載の炭化水素油の接触分解触媒。
(3)炭化水素油を接触分解するに当たり、上記(1)または(2)に記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。
That is, this invention provides the following catalytic cracking catalyst of hydrocarbon oil, and the catalytic cracking method of hydrocarbon oil using the same.
(1) 20 to 60% by mass of crystalline aluminosilicate, 10 to 75% by mass of clay mineral mainly composed of kaolin , 5 to 40% by mass of silica binder, and mercury intrusion method was used. In the pore distribution measurement, the pore volume has a peak in the range of 1000 to 5000 細孔, and the pore volume of 1000 to 10000 細孔 occupies 50% or more of the pore volume of 100 to 10000 細孔. A catalytic cracking catalyst for hydrocarbon oils.
(2) In the pore distribution measurement using the mercury intrusion method, the clay mineral has a pore volume peak in the range of 1000 to 5000 pores, and a pore volume of 1000 to 10,000 pores has a pore size of 100. The catalytic cracking catalyst for hydrocarbon oil according to (1) above, which is a clay mineral occupying 50% or more of a pore volume of 10000 Å.
(3) A catalytic cracking method for hydrocarbon oil, wherein the catalytic cracking catalyst according to (1) or (2) is used for catalytic cracking of hydrocarbon oil.

本発明に係る接触分解触媒は、炭化水素油の接触分解において、高い分解活性を有し、ドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができる。一般に、FCCプロセスにおいては、その性質上、わずかでもドライガス(水素、C1〜C2)、LPG、コークの生成量が低減できれば、FCC装置にかかるコスト及び負担を減少させることができる。特にFCC装置を高稼働率で運用する場合には、ドライガス(水素、C1〜C2)、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。さらに、一般にFCCガソリンは、市場に出荷するガソリンへの配合量が多いため、ガソリンの選択性の向上により生み出される利益は非常に大きい。   The catalytic cracking catalyst according to the present invention has high cracking activity in the catalytic cracking of hydrocarbon oil, reduces the amount of dry gas (hydrogen, C1 to C2), LPG and coke, and increases the selectivity of gasoline. As a result, FCC gasoline can be obtained efficiently and in high yield. Generally, in the FCC process, if the amount of dry gas (hydrogen, C1 to C2), LPG, and coke can be reduced even slightly, the cost and burden on the FCC apparatus can be reduced. In particular, when operating FCC equipment at a high operating rate, it is possible to afford more room for the regeneration tower temperature and gas section by reducing dry gas (hydrogen, C1 to C2), LPG, and coke. Driving is possible. Further, since FCC gasoline generally has a large blending amount with gasoline to be shipped to the market, the profit generated by improving the selectivity of gasoline is very large.

即ち、本発明のFCC触媒は、上記のように高い分解活性を有し、ドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができるので、実用上極めて有効である。   That is, the FCC catalyst of the present invention has a high cracking activity as described above, reduces the generation amount of dry gas (hydrogen, C1 to C2), LPG, coke, and improves the selectivity of gasoline. Since FCC gasoline can be obtained efficiently and in high yield, it is extremely effective in practice.

以下に本発明の実施の態様を詳細に説明する。
<触媒の構成成分>
本発明に係る接触分解触媒は、結晶性アルミノ珪酸塩、粘土鉱物、シリカバインダーを含有してなる。
Hereinafter, embodiments of the present invention will be described in detail.
<Components of catalyst>
The catalytic cracking catalyst according to the present invention comprises crystalline aluminosilicate, clay mineral, and silica binder.

(結晶性アルミノ珪酸塩)
本発明で触媒成分に用いる結晶性アルミノ珪酸塩は、天然物であっても、人工物であってもよく、またその構造形態も多岐にわたっており、正方晶系、斜方晶系、立方晶系、六方晶系などの結晶構造を有する。このような結晶性アルミノ珪酸塩としては、モルデナイト、βゼオライト、ZSM系ゼオライト、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることができ、Y型ゼオライトが好ましく、安定化Y型ゼオライトが特に好ましい。安定化Y型ゼオライトとしては、(a)化学組成分析によるバルクのSiO/Alモル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60、(c)全Alに対するゼオライト骨格内Alのモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いることができる。この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(0.02〜1.0)R/mO・Al・(5〜11)SiO・(5〜8)H
R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
(Crystalline aluminosilicate)
The crystalline aluminosilicate used for the catalyst component in the present invention may be a natural product or an artificial product, and its structural form is wide-ranging, and is tetragonal, orthorhombic, cubic. Have a hexagonal crystal structure. As such a crystalline aluminosilicate, mordenite, β zeolite, ZSM type zeolite, A type zeolite, X type zeolite, Y type zeolite and the like can be used, Y type zeolite is preferable, and stabilized Y type zeolite is used. Particularly preferred. As the stabilized Y-type zeolite, (a) bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4 to 15, preferably 5 to 10, and (b) unit cell size is 24.35 to 24. 65 cm, preferably 24.40 to 24.60, (c) The molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Can do. This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition as an oxide.
(0.02~1.0) R 2 / mO · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: R valence

本発明で用いるゼオライトの単位格子寸法は、X線回折装置(XRD)により測定することができ、またその全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO/Al比及び単位格子寸法から下記の式(A)〜(C)を用いて算出することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。 The unit cell size of the zeolite used in the present invention can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolite framework relative to the total Al is determined by SiO 2 / Al 2 O 3 by chemical composition analysis. It can be calculated from the ratio and unit cell size using the following formulas (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.

・NA1=(a−2.425)/0.000868・・・・・(A)
:単位格子寸法/nm
Al:単位格子当たりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、aとNAlについて1次式で整理したとき(a=0.000868NAl+2.425)の傾き
・(Si/Al)計算式=(192−NAl)/NAl・・・・・(B)
192:Y型ゼオライトの単位格子寸法あたりの(Si+Al)の原子数
・ ゼオライト骨格内Al/全Al=(Si/Al)化学組成分析値/(Si/Al)計算式・・・・・(C)
N A1 = (a o -2.425) /0.000868 (A)
a o : unit cell size / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a o and Inclination of N Al when arranged by a linear expression (a o = 0.000868N Al +2.425) (Si / Al) calculation formula = (192−N Al ) / N Al (B)
192: Number of atoms of (Si + Al) per unit cell size of Y-type zeolite: Al in zeolite framework / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula (C )

上記ゼオライトのSiO/Alモル比は、触媒の酸強度を示しており、一般にモル比が大きいほど触媒の酸強度が強くなる。そして、一般にSiO/Alモル比は、4以上であることが、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好適に進行して好ましい。また、15以下であることが、必要な酸の数が減少し、重質炭化水素油の分解活性が低下することを抑制できて好ましい。 The SiO 2 / Al 2 O 3 molar ratio of the zeolite indicates the acid strength of the catalyst. Generally, the larger the molar ratio, the stronger the acid strength of the catalyst. In general, when the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds suitably. preferable. Moreover, it is preferable that it is 15 or less because the number of required acids decreases and it can suppress that the decomposition activity of heavy hydrocarbon oil falls.

ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であることが、重質炭化水素油の分解に必要なAlの数が減少しすぎ、その結果分解が進行し難くなることを抑制できて好ましい。また、24.65Å以下であることが、ゼオライト結晶の劣化が進行しやすくなり、FCC触媒の分解活性の低下が著しくなることを抑制できて好ましい。   The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite. However, when the unit cell size is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy hydrocarbon oil is excessively reduced, and as a result It is preferable because decomposition can be prevented from being difficult to proceed. Moreover, it is preferable that it is 24.65 or less because deterioration of a zeolite crystal | crystallization progresses easily and it can suppress that the fall of the decomposition activity of a FCC catalyst becomes remarkable.

全Alに対するゼオライト骨格内Alのモル比は、0.3以上であることが、ゼオライト結晶を構成するAlの量が少なくなりすぎ、その結果ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなることを抑制できて好ましい。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more, the amount of Al constituting the zeolite crystal becomes too small, and as a result, more Al 2 O 3 particles fall off from the zeolite framework. Since the strong acid point is not expressed, it is preferable to prevent the catalytic decomposition reaction from proceeding. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to

上記のような要件を満たすゼオライトとして、特許第2544317号公報に記載されているヒートショック結晶性珪酸塩も使用することができる。このゼオライトは、SiO/Alモル比が5〜15、単位格子寸法が24.50以上24.70未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満である安定化Y型ゼオライトを600〜1200℃で5〜300分間、空気又は窒素雰囲気下で、結晶化度低下率が20%以下となるように焼成したものであり、化学組成分析によるバルクのSiO/Alモル比が5〜15、全Alに対するゼオライト骨格内Alのモル比が0.3〜0.6、単位格子寸法が24.45Å未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満、細孔分布において50Å付近及び180Å付近に特徴的なピークを示し、100Å以上の細孔容積が全細孔容積の10〜40%であり、かつY型ゼオライトの主要なX線回折パターンを有する結晶性アルミノ珪酸塩である。 As a zeolite that satisfies the above requirements, the heat shock crystalline silicate described in Japanese Patent No. 2544317 can also be used. This zeolite has a SiO 2 / Al 2 O 3 molar ratio of 5 to 15, a unit cell size of 24.50 or more and less than 24.70, and an alkali metal content of 0.02% by mass or more and less than 1% by mass in terms of oxides. The stabilized Y-type zeolite is calcined at 600 to 1200 ° C. for 5 to 300 minutes in air or nitrogen atmosphere so that the crystallinity reduction rate is 20% or less. SiO 2 / Al 2 O 3 molar ratio is 5 to 15, molar ratio of Al in zeolite framework to total Al is 0.3 to 0.6, unit cell size is less than 24.45 mm, alkali metal content is oxide equivalent 0.02% by mass or more and less than 1% by mass, showing a characteristic peak in the pore distribution around 50 and 180%, with a pore volume of 100 or more being 10 to 40% of the total pore volume, and Y Type Z It is a crystalline aluminosilicate with the main X-ray diffraction pattern of Olite.

(シリカバインダー)
本発明で触媒成分に用いるシリカバインダーは、結晶性アルミノケイ酸塩や粘土鉱物などの粒子間に存在し、触媒を微粒子化する時の成形性を良くし、触媒微粒子を球状にさせ、また得られる触媒微粒子の流動性及び耐摩耗性を図るために使用される。シリカバインダーは固体酸性質を示さないため、それ自身に分解活性は持たないが、メソ細孔の形成に寄与しコークの生成量を低減させることができる。
(Silica binder)
The silica binder used as a catalyst component in the present invention exists between particles such as crystalline aluminosilicate and clay mineral, improves the moldability when the catalyst is made fine, makes the catalyst fine particles spherical, and is also obtained. Used for fluidity and wear resistance of catalyst fine particles. Since the silica binder does not exhibit solid acid properties, it does not have decomposition activity by itself, but contributes to the formation of mesopores and can reduce the amount of coke produced.

上記シリカバインダーとしては、幾つかの種類が知られており、コロイダルシリカを例に挙げれば、ナトリウム型、リチウム型、酸型等のシリカゾルがある。本発明では、これらいずれの型のものも使用することができる。商業用規模での接触分解触媒の生産を考慮すれば、低コストの希釈水ガラス水溶液と硫酸水溶液とを反応させて得られるシリカヒドロゾル等を好ましく用いることができる。また本発明で得られる効果を逸脱しない限り、アルミナバインダーなどを混合して使用することもできる。   Several types of silica binders are known. Examples of colloidal silica include sodium sol, lithium type, and acid type silica sols. Any of these types can be used in the present invention. Considering production of a catalytic cracking catalyst on a commercial scale, silica hydrosol obtained by reacting a low-cost diluted water glass aqueous solution with a sulfuric acid aqueous solution can be preferably used. Moreover, an alumina binder etc. can also be mixed and used unless it deviates from the effect acquired by this invention.

(粘土鉱物)
本発明で用いる粘土鉱物は、水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の50%以上を占める細孔分布特性を有するものが好ましい。より好ましくは、2000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の70%以上を占めるものである。上記細孔分布特性を有する粘土鉱物は、単独で使用してもよいし、上記細孔分布特性を持たない他の粘土鉱物と混合して使用してもよい。
(Clay mineral)
The clay mineral used in the present invention has a pore volume peak in the pore diameter range of 1000 to 5000 mm in the pore distribution measurement using the mercury intrusion method, and the pore volume of the pore diameter of 1000 to 10,000 mm has a pore diameter of 100. What has the pore distribution characteristic which occupies 50% or more of the pore volume of 10000 kg is preferable. More preferably, the pore volume has a peak in the range of 2000 to 5000 liters, and the pore volume with a pore diameter of 1000 to 10000 occupies 70% or more of the pore volume with a pore diameter of 100 to 10000 liters. The clay mineral having the pore distribution characteristics may be used alone, or may be used by mixing with other clay minerals not having the pore distribution characteristics.

本発明で用いる粘土鉱物としては、モンモリロナイト、カオリン、ベントナイト、アタパルガイト、ボーキサイト、クオーツ(石英)、イライト、ベーマイト等を、必要に応じて、好ましくは上記細孔分布特性を有する限りにおいて、単独で又は複数種混合して用いることができるが、主成分はカオリンであることが好ましい。カオリンには、カオリナイト(六角板状、kaolinite−1A)、積層に乱れのあるカオリナイト(kaolinite−1Md)、ハロイサイト(針状)、ナクライト(六角板状、kaolinite−1M)、ディッカイト(板状、kaolinite−2M)等が知られており、上記のどの形態のカオリンでも混合することができる。ここで、「1A」とは、結晶のポリタイプ(多形)を示しており、Aは三斜(Asym/Triclinic)を示している。   As the clay mineral used in the present invention, montmorillonite, kaolin, bentonite, attapulgite, bauxite, quartz (quartz), illite, boehmite, etc., if necessary, preferably as long as they have the above pore distribution characteristics, or A mixture of a plurality of types can be used, but the main component is preferably kaolin. The kaolin includes kaolinite (hexagonal plate shape, kaolinite-1A), kaolinite (kaolinite-1Md) with disordered lamination, halloysite (needle shape), nacrite (hexagonal plate shape, kaolinite-1M), dickite (plate shape). , Kaolinite-2M), etc. are known, and any of the above forms of kaolin can be mixed. Here, “1A” indicates the polytype (polymorphism) of the crystal, and A indicates triclinic (Asym / Triclinic).

粘土鉱物の粒子サイズは、小さければ小さい程よいが、本発明では、平均粒子径が0.1〜10μmのものであれば、強度、磨耗性に優れた触媒粒子を造粒できるため好ましい。また、SiO/Alモル比1.5〜2.5、水分2.0質量%以下、吸油量40〜80cc/100g、表面積5〜40m/gの性状を有するものであれば、原料炭化水素油を効率よく吸油し、分解することができるため好ましい。また、カオリン等の粘土鉱物の形状は特に制限されるものではなく、六角板状、針状、板状のいずれであってもよい。また、この粘土鉱物は、本発明の触媒において、マトリックスとして機能する。 The particle size of the clay mineral is preferably as small as possible. However, in the present invention, if the average particle size is 0.1 to 10 μm, catalyst particles excellent in strength and abrasion can be granulated. Also, SiO 2 / Al 2 O 3 molar ratio 1.5 to 2.5, water content 2.0% by mass or less, oil absorption of 40~80cc / 100g, as long as it has the properties of surface area 5 to 40 m 2 / g It is preferable because the raw material hydrocarbon oil can be efficiently absorbed and decomposed. The shape of the clay mineral such as kaolin is not particularly limited, and may be any of hexagonal plate shape, needle shape, and plate shape. The clay mineral functions as a matrix in the catalyst of the present invention.

本発明の接触分解触媒は、水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、100〜10000Åの細孔容積の50%以上を占める細孔分布特性を有する。好ましくは、細孔径1000〜4000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の70%以上を占めるものである。より好ましくは、細孔径1000〜3000Åの範囲に細孔容積のピークを持つものである。本発明の接触分解触媒におけるこの細孔分布特性は、一般に、使用する粘土鉱物の細孔分布特性を選択することによって達成することができる。本発明の接触分解触媒は、上記特定の細孔分布特性を有することにより、炭化水素油の接触分解において、高い分解活性を有し、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができる。   The catalytic cracking catalyst of the present invention has a pore volume peak in a pore diameter range of 1000 to 5000 liters in a pore distribution measurement using a mercury intrusion method, and a pore volume of a pore diameter of 1000 to 10,000 liters is 100 to 10000 liters. The pore distribution characteristic occupies 50% or more of the pore volume. Preferably, the pore volume has a peak in the range of 1000 to 4000 細孔, and the pore volume of 1000 to 10000 細孔 occupies 70% or more of the pore volume of 100 to 10000 細孔. More preferably, it has a pore volume peak in the pore diameter range of 1000 to 3000 mm. This pore distribution characteristic in the catalytic cracking catalyst of the present invention can generally be achieved by selecting the pore distribution characteristic of the clay mineral used. The catalytic cracking catalyst of the present invention has the above specific pore distribution characteristics, and thus has high cracking activity in catalytic cracking of hydrocarbon oil, and is a dry product (hydrogen, C1 to C2) that is a cracked product. By reducing the amount of LPG and coke produced and improving the selectivity of gasoline, it is possible to obtain an excellent effect that FCC gasoline can be produced efficiently and in high yield.

本発明でかかる優れた効果が得られる原因の詳細は必ずしも明らかではないが、本発明の触媒では、上記特定の細孔分布特性によって、接触分解反応に好適な細孔分布が形成されたためと考えられる。つまり本発明の接触分解触媒では炭化水素油と分解活性点との接触効率が向上したため、コークの生成量が低減し、かつガソリン選択性が向上して優れた効果が得られると考えられる。   Although the details of the reason why such excellent effects can be obtained in the present invention are not necessarily clear, it is considered that the catalyst according to the present invention formed a pore distribution suitable for catalytic cracking reaction due to the specific pore distribution characteristics. It is done. In other words, in the catalytic cracking catalyst of the present invention, the contact efficiency between the hydrocarbon oil and the cracking active point is improved, so that it is considered that the production amount of coke is reduced and the gasoline selectivity is improved and an excellent effect is obtained.

(粘土鉱物以外のマトリックス等)
本発明の触媒には、上記粘土鉱物以外のマトリックス成分として、シリカ、シリカ−アルミナ、アルミナ、擬ベーマイト、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解用触媒に使用される公知の無機酸化物の酸化物微粒子を含有させることもできる。また、アルカリ土類や、マンガン、アンチモン、スズ等のメタル不活性化機能を持つ無機酸化物を含有させることもできる。
(Matrix other than clay mineral)
In the catalyst of the present invention, as a matrix component other than the clay mineral, silica, silica-alumina, alumina, pseudoboehmite, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina, etc. It is also possible to contain oxide fine particles of known inorganic oxides used for ordinary catalytic cracking catalysts. In addition, an alkaline earth or an inorganic oxide having a metal inactivating function such as manganese, antimony, tin, or the like can be contained.

<触媒の調製>
以上のような各成分から構成されている本発明の接触分解触媒を調製するには、種々の方法があって、その調製方法は特に制限されないが、例えば次のような手順で調製することができる。
<Preparation of catalyst>
There are various methods for preparing the catalytic cracking catalyst of the present invention composed of the above components, and the preparation method is not particularly limited. For example, it can be prepared by the following procedure. it can.

先ず、上記の結晶性アルミノ珪酸塩、シリカバインダー及び粘土鉱物を混合溶液中で攪拌混合し、均一な水性スラリーを得る。このときの結晶性アルミノ珪酸塩、シリカバインダー、及び粘土鉱物の混合割合は、触媒乾燥基準で、結晶性アルミノ珪酸塩が20〜60質量%、好ましくは30〜50質量%、シリカバインダーが5〜40質量%、好ましくは10〜30質量%、粘土鉱物が10〜75質量%、好ましくは30〜70質量%の範囲に入るようにする。   First, the above crystalline aluminosilicate, silica binder, and clay mineral are stirred and mixed in a mixed solution to obtain a uniform aqueous slurry. At this time, the mixing ratio of the crystalline aluminosilicate, the silica binder, and the clay mineral is 20 to 60% by mass of the crystalline aluminosilicate, preferably 30 to 50% by mass, and 5 to 5% of the silica binder on the basis of catalyst drying. It is made to fall within the range of 40% by mass, preferably 10-30% by mass, and clay minerals by 10-75% by mass, preferably 30-70% by mass.

結晶性アルミノ珪酸塩の量が20質量%以上であれば、所期の分解活性を得ることができ、また、50質量%以下であれば、相対的に粘土鉱物やシリカバインダーの量が少なくなりすぎて、次のような好ましくない現象が生じることを回避できる。即ち、粘土鉱物やシリカバインダーの量が少なすぎると、触媒強度が低下するのみならず、触媒の嵩密度が小さくなり、装置の運転において好ましくない結果を生じる。   If the amount of crystalline aluminosilicate is 20% by mass or more, the desired decomposition activity can be obtained, and if it is 50% by mass or less, the amount of clay mineral and silica binder is relatively reduced. Therefore, the following undesirable phenomenon can be avoided. That is, if the amount of the clay mineral or the silica binder is too small, not only the catalyst strength is lowered but also the bulk density of the catalyst is reduced, resulting in undesirable results in the operation of the apparatus.

また、シリカバインダーの量が5質量%以上であれば、触媒の強度が保てるため、触媒の飛散、生成油中への混入等の好ましくない現象を回避でき、また、40質量%以下であれば、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。   Further, if the amount of the silica binder is 5% by mass or more, the strength of the catalyst can be maintained, so that undesirable phenomena such as catalyst scattering and mixing in the produced oil can be avoided, and if it is 40% by mass or less. An improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.

さらにまた、粘土鉱物の量が10質量%以上であれば、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすことを回避でき、また、75質量%以下であれば、相対的に結晶性アルミノ珪酸塩やシリカバインダーの量が少なくなり、結晶性アルミノ珪酸塩の量の不足により所期の高い分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となることを回避できる。そして、粘土鉱物の混合割合を上記範囲とすることが、高い分解活性を有し、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという本発明の優れた効果を得る上で肝要である。   Furthermore, if the amount of the clay mineral is 10% by mass or more, the catalyst strength and the bulk density of the catalyst are small, and it can be avoided that the operation of the apparatus is hindered, and if it is 75% by mass or less, The amount of crystalline aluminosilicate and silica binder is relatively small, the expected amount of decomposition activity cannot be obtained due to the insufficient amount of crystalline aluminosilicate, and the catalyst preparation is not possible due to the insufficient amount of binder. The difficulty can be avoided. And, the mixing ratio of the clay mineral is within the above range, which has a high decomposition activity, reduces the generation amount of dry gas (hydrogen, C1 to C2), LPG and coke as decomposition products, and It is important to obtain the excellent effect of the present invention that the selectivity can be improved and FCC gasoline can be produced efficiently and in high yield.

上記の各成分を混合して調製される水性スラリー中の固形分の割合は、約5〜60質量%、より好ましくは10〜50質量%が適している。固形分の割合がこの範囲であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、スラリーの粘度が高くなり過ぎて、スラリーの輸送が困難になることがない。   The ratio of the solid content in the aqueous slurry prepared by mixing the above components is about 5 to 60% by mass, more preferably 10 to 50% by mass. If the ratio of the solid content is within this range, the amount of water to be evaporated will be appropriate, and there will be no trouble in the spray drying process, etc., and the viscosity of the slurry will be too high, making it difficult to transport the slurry. There is no.

次いで、調製された結晶性アルミノ珪酸塩/シリカバインダー/粘土鉱物の混合スラリーを通常噴霧乾燥し、触媒粒子を得る。噴霧乾燥工程は、一般に、噴霧乾燥装置を用い、ガス入口温度を約200〜400℃、ガス出口温度を約100〜200℃として行う。噴霧乾燥により得られる微小球体は、一般に、約20〜150μmの粒子径で、約10〜30質量%の水分含有量であることが好ましい。   Next, the prepared mixed slurry of crystalline aluminosilicate / silica binder / clay mineral is usually spray-dried to obtain catalyst particles. The spray drying process is generally performed using a spray drying apparatus at a gas inlet temperature of about 200 to 400 ° C and a gas outlet temperature of about 100 to 200 ° C. In general, the microspheres obtained by spray drying preferably have a particle size of about 20 to 150 μm and a water content of about 10 to 30% by mass.

上記の水性スラリーを噴霧乾燥して得られた微小球体は、必要に応じて200℃以上で焼成し、焼成物とすることもでき、また、噴霧乾燥装置で水性スラリーの噴霧乾燥を行う際、ガス出口温度を200℃以上に保つことができる設備を備えている場合には、噴霧乾燥工程に微小球体の焼成工程を含めることも可能である。   The microspheres obtained by spray-drying the above aqueous slurry can be fired at 200 ° C. or higher as necessary to form a fired product, and when spray drying of the aqueous slurry with a spray drying device, In the case where a facility capable of maintaining the gas outlet temperature at 200 ° C. or higher is provided, it is possible to include a microsphere firing step in the spray drying step.

<触媒の洗浄>
上記のようにして得られた触媒の微小球体あるいはその焼成物は、通常、結晶性アルミノ珪酸塩や、シリカバインダーや、粘土鉱物の各触媒成分からの可溶性不純物やナトリウムやカリウム等のアルカリ金属が含まれているため、水やアンモニア水を用いて可溶性不純物を洗浄除去し、次いでアルカリ金属をイオン交換することによって洗浄除去する。得られた微小球体やその焼成物に過剰のナトリウムやカリウムが存在しない場合は、その洗浄除去を行うことなく、そのまま触媒として用いることもできる。
<Catalyst cleaning>
The catalyst microspheres or the calcined product obtained as described above are usually composed of crystalline aluminosilicate, silica binder, soluble impurities from each catalyst component of clay mineral, and alkali metals such as sodium and potassium. Since it is contained, soluble impurities are washed away using water or aqueous ammonia, and then the alkali metal is washed away by ion exchange. When there is no excess sodium or potassium in the obtained microspheres or the fired product thereof, they can be used as a catalyst without being washed away.

上記のナトリウムやカリウム等のアルカリ金属の洗浄除去は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液を用いてイオン交換して行うことができる。
上記洗浄に続いて、この微小球体あるいはその焼成物を約100〜500℃の温度で再度乾燥し、水分含有量を約1〜25質量%にして、本発明に係る接触分解触媒が得られる。
Specifically, the washing and removal of alkali metals such as sodium and potassium are specifically ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, and phosphoric acid. Ions using aqueous solutions of ammonium salts such as ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate Can be exchanged.
Subsequent to the washing, the microspheres or the calcined product thereof is dried again at a temperature of about 100 to 500 ° C. to adjust the water content to about 1 to 25% by mass, whereby the catalytic cracking catalyst according to the present invention is obtained.

<接触分解方法>
本発明において、炭化水素油を接触分解するには、ガソリンの沸点範囲200℃以上で沸騰する炭化水素油(炭化水素混合物)を、上記本発明の接触分解触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素混合物とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や、常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、脱剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油、GTL(Gas to Liquids)油、植物油、廃潤滑油、廃食油をも包括するものである。
<Catalytic decomposition method>
In the present invention, in order to catalytically crack hydrocarbon oil, hydrocarbon oil (hydrocarbon mixture) boiling in a boiling range of gasoline of 200 ° C. or higher may be brought into contact with the catalytic cracking catalyst of the present invention. The hydrocarbon mixture boiling above the gasoline boiling range means a light oil fraction obtained by atmospheric or vacuum distillation of crude oil, an atmospheric distillation residue oil, and a vacuum distillation residue oil. It includes oil, dehumidified and deasphalted asphalt, tar sand oil, shale oil oil, coal liquefied oil, GTL (Gas to Liquids) oil, vegetable oil, waste lubricant oil, and waste cooking oil.

商業的規模での接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明のFCC触媒を連続的に流動循環させて行う。即ち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活したFCC触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した使用済みのFCC触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物はドライガス(水素、C1〜C2)、LPG、ガソリン留分、中間留分、及び重質サイクル油(HCO)あるいはスラリー油のような1種類以上の重質留分に分離する。もちろん、これらの重質留分を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。   In the catalytic cracking on a commercial scale, the above-described FCC catalyst of the present invention is usually continuously fluidized and circulated in a catalytic cracking apparatus composed of two kinds of containers, a vertically installed cracking reactor and a catalyst regenerator. Do it. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed and guided in the upward direction in the cracking reactor. As a result, the FCC catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The spent FCC catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is recycled to the cracking reactor. On the other hand, the cracked product is separated into dry gas (hydrogen, C1-C2), LPG, gasoline fraction, middle fraction, and one or more heavy fractions such as heavy cycle oil (HCO) or slurry oil. To do. Of course, these heavy fractions can be recycled into the cracking reactor to further proceed the cracking reaction.

上記の接触分解におけるクラッキング反応器の運転条件としては、圧力が常圧〜5kg/cm、温度が約400〜600℃、好ましくは約450〜550℃、触媒/原料炭化水素油の重量比が約2〜20、好ましくは約4〜15とすることが適している。 The operating conditions of the cracking reactor in the catalytic cracking are as follows: the pressure is normal pressure to 5 kg / cm 2 , the temperature is about 400 to 600 ° C., preferably about 450 to 550 ° C., and the weight ratio of catalyst / raw hydrocarbon oil is It is suitable to be about 2-20, preferably about 4-15.

反応温度が400℃以上であれば、原料炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガス(水素、C1〜C2)やLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができて経済的である。   If reaction temperature is 400 degreeC or more, the decomposition reaction of raw material hydrocarbon oil will advance suitably, and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, light gas production amounts, such as dry gas (hydrogen, C1-C2) and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object will be increased relatively. Is economical.

圧力が5kg/cm以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の重量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを防ぐことができる。 If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the weight ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. On the other hand, if it is 20 or less, the effect of increasing the catalyst concentration is saturated, and it is possible to prevent disadvantages without obtaining an effect commensurate with increasing the catalyst concentration.

以下、本発明を実施例、比較例により具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this is only an illustration and does not restrict | limit this invention.

〔分析機器、分析条件等〕
実施例、比較例で得た各触媒の分析に使用した機器、計算式等は次のとおりである。
ICP(組成分析):Thermo Jarrell Ash社製
“IRIS Advantage”
SA(比表面積):日本ベル株式会社製‘BELSORP28SA’
(高精度全自動ガス吸着装置)
PV(水銀圧入法を用いた細孔分布測定):島津社製“MICROMERITICS
AUTOPORE IV”
[Analytical equipment, analysis conditions, etc.]
The equipment, calculation formulas, etc. used for the analysis of each catalyst obtained in Examples and Comparative Examples are as follows.
ICP (composition analysis): “IRIS Advantage” manufactured by Thermo Jarrel Ash
SA (specific surface area): Nippon Bell Co., Ltd. 'BELSORP28SA'
(High-precision fully automatic gas adsorption device)
PV (pore distribution measurement using mercury intrusion method): “MICROMERITICS” manufactured by Shimadzu
AUTOPORE IV ”

〔触媒の調製〕
実施例1
結晶性アルミノ珪酸塩として表1の性状を有する安定化Y型ゼオライト、表2の性状を有し、水銀圧入法を用いた細孔分布測定において図1及び2の細孔分布を示す粘土鉱物(a)、及び結合剤(バインダー)としてシリカゾル(JIS3号水ガラス、SiO濃度20.0質量%)をそれぞれ用い、次のようにして触媒を調製した。
(Preparation of catalyst)
Example 1
Stabilized Y-type zeolite having the properties shown in Table 1 as crystalline aluminosilicates, clay minerals having the properties shown in Table 2 and showing the pore distributions of FIGS. 1 and 2 in the pore distribution measurement using the mercury intrusion method ( A catalyst was prepared as follows using a) and silica sol (JIS No. 3 water glass, SiO 2 concentration 20.0 mass%) as a binder (binder).

希硫酸94gに水ガラス138gと純水176gの混合溶液を滴下し、シリカゾル水溶液(SiO濃度20.0質量%)を調製した。一方、表1の性状を有する安定化Y型ゼオライト69.4g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記のシリカゾル水溶液に、粘土鉱物(a)108.5g(乾燥基準)と上記のゼオライトスラリーを混合し、さらに5分間混合した。 A mixed solution of 138 g of water glass and 176 g of pure water was added dropwise to 94 g of dilute sulfuric acid to prepare an aqueous silica sol solution (SiO 2 concentration 20.0 mass%). On the other hand, distilled water was added to 69.4 g (dry basis) of a stabilized Y-type zeolite having the properties shown in Table 1 to prepare a zeolite slurry. To the silica sol aqueous solution, 108.5 g (dry basis) of the clay mineral (a) and the zeolite slurry were mixed and further mixed for 5 minutes.

得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。該触媒前駆体を、60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、表2の性状を有し、図3及び4の細孔分布を示す実施例1にかかる触媒を得た。   The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. The catalyst precursor was ion-exchanged twice with 3 L of a 5% by mass ammonium sulfate aqueous solution at 60 ° C., and further washed with 6 L of distilled water. Thereafter, the catalyst was dried in a dryer at 110 ° C. overnight to obtain a catalyst according to Example 1 having the properties shown in Table 2 and showing the pore distributions shown in FIGS.

比較例1
結晶性アルミノ珪酸塩として表1の性状を有する安定化Y型ゼオライト、表2の性状を有し、水銀圧入法を用いた細孔分布測定において図1及び2の細孔分布を示す粘土鉱物(b)、及び結合剤としてシリカゾル(JIS3号水ガラス、SiO濃度20.0質量%)をそれぞれ用い、次のようにして比較例1にかかる触媒を調製した。
Comparative Example 1
Stabilized Y-type zeolite having the properties shown in Table 1 as crystalline aluminosilicates, clay minerals having the properties shown in Table 2 and showing the pore distributions of FIGS. 1 and 2 in the pore distribution measurement using the mercury intrusion method ( A catalyst according to Comparative Example 1 was prepared as follows using b) and silica sol (JIS No. 3 water glass, SiO 2 concentration 20.0 mass%) as a binder.

希硫酸94gに水ガラス138gと純水176gの混合溶液を滴下し、シリカゾル水溶液(SiO濃度20.0質量%)を調製した。一方、表1の性状を有する安定化Y型ゼオライト69.4g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記のシリカゾル水溶液に、粘土鉱物(b)108.5g(乾燥基準)と上記のゼオライトスラリーを混合し、さらに5分間混合した。 A mixed solution of 138 g of water glass and 176 g of pure water was added dropwise to 94 g of dilute sulfuric acid to prepare an aqueous silica sol solution (SiO 2 concentration 20.0 mass%). On the other hand, distilled water was added to 69.4 g (dry basis) of a stabilized Y-type zeolite having the properties shown in Table 1 to prepare a zeolite slurry. To the silica sol aqueous solution, 108.5 g (dry basis) of the clay mineral (b) and the zeolite slurry were mixed and further mixed for 5 minutes.

得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。該触媒前駆体を、60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、表2の性状を有し、図3及び4の細孔分布を示す比較例1にかかる触媒を得た。   The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. The catalyst precursor was ion-exchanged twice with 3 L of a 5% by mass ammonium sulfate aqueous solution at 60 ° C., and further washed with 6 L of distilled water. Thereafter, the catalyst was dried in a dryer at 110 ° C. overnight to obtain a catalyst according to Comparative Example 1 having the properties shown in Table 2 and showing the pore distributions shown in FIGS.

Figure 0004818131
Figure 0004818131

Figure 0004818131
Figure 0004818131

〔触媒組成〕
上記の実施例1及び比較例1で得た触媒の組成を表3に纏めて示す。
[Catalyst composition]
The compositions of the catalysts obtained in Example 1 and Comparative Example 1 are summarized in Table 3.

Figure 0004818131
Figure 0004818131

〔触媒活性評価〕
実施例1及び比較例1で得た各触媒について、沸騰床マイクロ活性試験装置(KAYSER TECHNOLOGY社製 ACE−Model R+)を用いて、同一原料油、同一測定条件のもと、接触分解特性を試験した。なお、試験に先立ち、上記触媒について、実際の使用状況に近似させるべく、即ち平衡化させるべく、各新触媒を室温から600℃まで30分間で昇温し、600℃にて2時間保持して乾燥した後、ニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させ、100℃で乾燥し、しかる後600℃まで30分間で昇温し、600℃で2時間保持して焼成を行い、次いで、各触媒を、流動状態で、空気雰囲気下で室温から800℃まで90分間で昇温し、800℃に到達後、100%スチーム雰囲気に切替え、6時間処理した。
[Evaluation of catalyst activity]
Each catalyst obtained in Example 1 and Comparative Example 1 was tested for catalytic cracking characteristics under the same feedstock and the same measurement conditions using an ebullated bed microactivity test apparatus (ACE-Model R + manufactured by KAYSER TECHNOLOGY). did. Prior to the test, each catalyst was heated from room temperature to 600 ° C. for 30 minutes and held at 600 ° C. for 2 hours in order to approximate the actual use situation, that is, to equilibrate the catalyst. After drying, the cyclohexane solution containing nickel naphthenate and vanadium naphthenate is absorbed so that nickel and vanadium become 1000 ppm by mass and 2000 ppm by mass, respectively, dried at 100 ° C., and then increased to 600 ° C. over 30 minutes. The catalyst is heated for 2 hours at 600 ° C. and calcined, and then each catalyst is heated in a flowing state from room temperature to 800 ° C. in 90 minutes in 90 minutes. After reaching 800 ° C., 100% steam is reached. It switched to atmosphere and processed for 6 hours.

上記平衡化処理した触媒を用い、また、原料油として表4に性状を示す炭化水素油(脱硫減圧軽油(VGO)50%+脱流残油(DDSP)50%)を使用し、沸騰床マイクロ活性試験装置にて、反応温度510℃、反応時間75〜150秒、触媒/炭化水素油比(質量比)3.0、4.0、5.0、6.0として、評価試験を行った。その試験結果をグラフ化し、このグラフ(図示省略)から転化率が60質量%となる触媒/炭化水素油比(質量比)を回帰計算により算出した。ここで、転化率とは100−(中間留分(LCO)の質量%)−(重質留分(HCO)の質量%)である。さらに、回帰計算により転化率60質量%の時の算出されたFCC生成油の組成を表5にそれぞれ示す。   Using the above-equilibrated catalyst, and hydrocarbon oil (desulfurized vacuum gas oil (VGO) 50% + deflow residual oil (DDSP) 50%) having properties shown in Table 4 as feedstock oil, In an activity test apparatus, an evaluation test was performed with a reaction temperature of 510 ° C., a reaction time of 75 to 150 seconds, and a catalyst / hydrocarbon oil ratio (mass ratio) of 3.0, 4.0, 5.0, 6.0. . The test results were graphed, and from this graph (not shown), the catalyst / hydrocarbon oil ratio (mass ratio) at which the conversion was 60% by mass was calculated by regression calculation. Here, the conversion rate is 100− (mass% of middle fraction (LCO)) − (mass% of heavy fraction (HCO)). Further, Table 5 shows the compositions of the FCC-generated oil calculated by the regression calculation when the conversion is 60% by mass.

Figure 0004818131
Figure 0004818131

Figure 0004818131
Figure 0004818131

比較例1で得られた触媒はFCCガソリンの収率が低く、ドライガス(水素、C1〜C2)、LPG及びコーク量が多いため、炭化水素油の接触分解反応において、装置にかかるコストや負担を考慮すると不利である。   Since the catalyst obtained in Comparative Example 1 has a low FCC gasoline yield and a large amount of dry gas (hydrogen, C1 to C2), LPG and coke, the cost and burden on the apparatus in the catalytic cracking reaction of hydrocarbon oil. Is a disadvantage.

しかしながら、本発明に従った実施例1で得られた触媒は、ドライガス(水素、C1〜C2)、LPG、コークの生成量を低減させ、FCCガソリンを高収率で得ることができる。特にFCCを高稼働率で運用する場合には、ドライガス(水素、C1〜C2)、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。また、FCCガソリンは、市場に出荷されるガソリンへの配合量が多いため、FCCガソリンを若干でも高収率で得ることができれば、経済的なメリットが大きい。   However, the catalyst obtained in Example 1 according to the present invention can reduce the generation amount of dry gas (hydrogen, C1 to C2), LPG and coke, and can obtain FCC gasoline in high yield. In particular, when operating FCC at a high operating rate, reducing the dry gas (hydrogen, C1 to C2), LPG, and coke allows more room for the regeneration tower temperature and gas section. Is possible. In addition, since FCC gasoline has a large blending amount with gasoline shipped to the market, if FCC gasoline can be obtained even in a slightly high yield, there is a great economic merit.

実施例1及び比較例1で用いた粘土鉱物(a)及び粘土鉱物(b)の水銀圧入法を用いた細孔分布測定結果である。It is a pore distribution measurement result using the mercury intrusion method of the clay mineral (a) and the clay mineral (b) used in Example 1 and Comparative Example 1. 実施例1及び比較例1で用いた粘土鉱物(a)及び粘土鉱物(b)の水銀圧入法を用いた細孔分布測定結果である。It is a pore distribution measurement result using the mercury intrusion method of the clay mineral (a) and the clay mineral (b) used in Example 1 and Comparative Example 1. 実施例1及び比較例1で得られた触媒の水銀圧入法を用いた細孔分布測定結果である。It is a pore distribution measurement result using the mercury intrusion method of the catalyst obtained in Example 1 and Comparative Example 1. 実施例1及び比較例1で得られた触媒の水銀圧入法を用いた細孔分布測定結果である。It is a pore distribution measurement result using the mercury intrusion method of the catalyst obtained in Example 1 and Comparative Example 1.

Claims (3)

結晶性アルミノ珪酸塩を20〜60質量%、カオリンを主成分とする粘土鉱物を10〜75質量%、シリカバインダーを5〜40質量%含有してなり、かつ水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の50%以上を占めることを特徴とする炭化水素油の接触分解触媒。 Pore distribution using 20 to 60% by mass of crystalline aluminosilicate, 10 to 75% by mass of clay mineral mainly composed of kaolin, and 5 to 40% by mass of silica binder, and using mercury intrusion method In the measurement, the pore volume has a peak in the range of 1000 to 5000 Å, and the pore volume of 1000 to 10000 Å occupies 50% or more of the pore volume of 100 to 10000 細孔. Hydrocarbon oil catalytic cracking catalyst. 前記粘土鉱物が、水銀圧入法を用いた細孔分布測定において、細孔径1000〜5000Åの範囲に細孔容積のピークを持ち、細孔径1000〜10000Åの細孔容積が、細孔径100〜10000Åの細孔容積の50%以上を占める粘土鉱物であることを特徴とする請求項1に記載の炭化水素油の接触分解触媒。   In the pore distribution measurement using the mercury intrusion method, the clay mineral has a pore volume peak in a pore diameter range of 1000 to 5000 liters, and a pore volume with a pore diameter of 1000 to 10000 liters has a pore diameter of 100 to 10000 liters. The catalytic cracking catalyst for hydrocarbon oil according to claim 1, which is a clay mineral occupying 50% or more of the pore volume. 炭化水素油を接触分解するに当たり、請求項1または2に記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。   A catalytic cracking method for hydrocarbon oil, wherein the catalytic cracking catalyst according to claim 1 or 2 is used for catalytic cracking of hydrocarbon oil.
JP2007006858A 2007-01-16 2007-01-16 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Active JP4818131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006858A JP4818131B2 (en) 2007-01-16 2007-01-16 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006858A JP4818131B2 (en) 2007-01-16 2007-01-16 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2008173529A JP2008173529A (en) 2008-07-31
JP4818131B2 true JP4818131B2 (en) 2011-11-16

Family

ID=39700963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006858A Active JP4818131B2 (en) 2007-01-16 2007-01-16 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4818131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408397A (en) * 2020-10-21 2021-02-26 斯瑞尔环境科技股份有限公司 Method for producing white carbon black for high oil absorption rubber by using waste catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1117511A (en) * 1977-11-02 1982-02-02 Edwin W. Albers Cracking catalyst composition
JP2750370B2 (en) * 1989-05-12 1998-05-13 触媒化成工業株式会社 Catalytic cracking catalyst composition and method for producing the same
JP3949778B2 (en) * 1996-07-01 2007-07-25 出光興産株式会社 Catalytic cracking catalyst
JP3527036B2 (en) * 1996-10-29 2004-05-17 触媒化成工業株式会社 Method for producing catalyst composition for catalytic cracking of hydrocarbons
JPH11156197A (en) * 1997-11-26 1999-06-15 Cosmo Sogo Kenkyusho Kk Cracking catalyst for hydrocarbon oil
JP2003105345A (en) * 2001-09-27 2003-04-09 Catalysts & Chem Ind Co Ltd Method for fluid catalytic cracking of heavy hydrocarbon oil
JP4394992B2 (en) * 2004-03-25 2010-01-06 日揮触媒化成株式会社 Catalyst composition for increasing gasoline octane number and / or lower olefin and fluid catalytic cracking process of hydrocarbons using the same

Also Published As

Publication number Publication date
JP2008173529A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CA2691074C (en) Structurally enhanced cracking catalysts
US9675967B2 (en) Structurally enhanced cracking catalysts
JP5392150B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
CN101405078B (en) Cracking catalyst, process for preparation thereof, and process for catalytic cracking of hydrocarbon oil
TWI627269B (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP4689472B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5126613B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP4818135B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4463556B2 (en) FCC catalyst for feedstock containing nickel and vanadium
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
CN1501841A (en) Zeolite based catalyst of ultra-high kinetic conversion activity
JP4916321B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818157B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445781B2 (en) Method for producing catalytic cracking catalyst
JP4818156B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818136B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5499407B2 (en) Method for producing catalytic cracking catalyst
JP4689576B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4689577B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5258281B2 (en) Catalyst composition for catalytic cracking of hydrocarbon and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250