JP4817336B2 - Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave - Google Patents

Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave Download PDF

Info

Publication number
JP4817336B2
JP4817336B2 JP2008039555A JP2008039555A JP4817336B2 JP 4817336 B2 JP4817336 B2 JP 4817336B2 JP 2008039555 A JP2008039555 A JP 2008039555A JP 2008039555 A JP2008039555 A JP 2008039555A JP 4817336 B2 JP4817336 B2 JP 4817336B2
Authority
JP
Japan
Prior art keywords
terahertz electromagnetic
electromagnetic wave
sample
treated water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008039555A
Other languages
Japanese (ja)
Other versions
JP2009198278A5 (en
JP2009198278A (en
Inventor
洋 今井
智 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Original Assignee
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC filed Critical Ibaraki University NUC
Priority to JP2008039555A priority Critical patent/JP4817336B2/en
Publication of JP2009198278A publication Critical patent/JP2009198278A/en
Publication of JP2009198278A5 publication Critical patent/JP2009198278A5/ja
Application granted granted Critical
Publication of JP4817336B2 publication Critical patent/JP4817336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明はテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置に関し、特にフェムト光を用いテラヘルツ電磁波時間領域分光分析システムを適用したテラヘルツ電磁波を用いた試料の集合体構造分析方法およびテラヘルツ電磁波を用いた試料の集合体構造分析装置に関する。   The present invention relates to a sample structural analysis method using terahertz electromagnetic waves and a sample structural analysis apparatus using terahertz electromagnetic waves, and in particular, an assembly of samples using terahertz electromagnetic waves using femto light and applying a terahertz electromagnetic wave time domain spectroscopic analysis system. The present invention relates to a structure analysis method and a sample assembly structure analysis apparatus using terahertz electromagnetic waves.

本発明は特にテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法およびテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置に関し、特にフェムト光を用いテラヘルツ電磁波時間領域分光分析システムを適用したテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の集合体構造分析方法およびテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の集合体構造分析装置に関する。   In particular, the present invention relates to a structure analysis method for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves, and a structure analyzer for magnetically treated water and nonmagneticly treated water using terahertz electromagnetic waves, and particularly to a terahertz electromagnetic wave time domain using femto light. The present invention relates to an aggregate structure analysis method for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves to which a spectroscopic analysis system is applied, and an aggregate structure analyzer for magnetically treated water and nonmagneticly treated water using terahertz electromagnetic waves.

従来の試料として例えば水の構造の検出法として、X線回折法、核磁気共鳴法、ラマン分光分析法、赤外吸収法など種々試みられてきているもののそれぞれの方法に問題があり、未だ水の構造検出、構造分析には至っていない。   Conventional methods such as X-ray diffraction, nuclear magnetic resonance, Raman spectroscopic analysis, infrared absorption, etc. have been tried as methods for detecting the structure of water. The structure has not been detected or analyzed.

例えば、X線回折法は、電子濃度に過敏であり、ラマン分光分析法は、非常に低い波数を用いる必要があり、ラマン分光分析法は複雑なスペクトルピークが現れるなどの問題がある。このように、水の構造を分析する方法がないために、磁気処理水等の効能の原因は未だ不明であり、また水の構造分析が不可能であるために、水の処理の最適化やより高度な水の精製も行えない状況にある。   For example, the X-ray diffraction method is sensitive to the electron concentration, the Raman spectroscopic analysis method needs to use a very low wave number, and the Raman spectroscopic analysis method has a problem that a complex spectral peak appears. As described above, since there is no method for analyzing the structure of water, the cause of the efficacy of magnetically treated water is still unknown, and since the structure analysis of water is impossible, optimization of water treatment and It is in a situation where more advanced water purification cannot be performed.

一方、テラヘルツ電磁波時間領域分光分析システムは、環境や健康科学に関して効能を持つとされる種々の処理を施した水の構造を分析するのに利用できる。この水の構造分析には磁気処理水を採用し、水中に含まれるミネラル種およびそれらの濃度と磁気処理による水の構造変化との関係を明らかにし、テラヘルツ電磁波による水の構造分析により、磁気処理水の生体(植物)や化学現象における効能を究明することが望まれている。   On the other hand, the terahertz electromagnetic wave time domain spectroscopic analysis system can be used to analyze the structure of water that has been subjected to various treatments that are considered to be effective for the environment and health sciences. Magnetically treated water is used for the structural analysis of this water, the relationship between the mineral species contained in the water and their concentrations and the structural change of the water due to the magnetic treatment is clarified. It is desired to investigate the effects of water on plants (plants) and chemical phenomena.

テラヘルツ電磁波は、一般に300ギガヘルツ(300GHz)から10テラヘルツ(10THz)の周波数帯域の電磁波で、光波と電波の中間に位置している。この周波数領域には、固体中のプラズマ周波数、超伝導体エネルギーギャップガップ、巨大分子の振動モード、様々の分子間相互作用、および気体中の振動スペクトルなどの特性が存在している。テラヘルツ電磁波は、物質をイオン化させない、物質を破壊しない、光波同様の光学系を構築できる、高い位相の感受率を持つなどの特長があり、分光、イメージング、センシングなどの幅広い応用をもつ。   The terahertz electromagnetic wave is generally an electromagnetic wave in a frequency band of 300 gigahertz (300 GHz) to 10 terahertz (10 THz), and is located between the light wave and the radio wave. In this frequency region, there are characteristics such as plasma frequency in solids, superconductor energy gap gap, macromolecular vibration modes, various intermolecular interactions, and vibrational spectra in gas. Terahertz electromagnetic waves have features such as that they do not ionize materials, do not destroy materials, can construct optical systems similar to light waves, and have a high phase sensitivity, and have a wide range of applications such as spectroscopy, imaging, and sensing.

テラヘルツ電磁波時間領域分光システムは、テラヘルツ電磁波の時間波形を測定する手法である。測定した時間波形をフーリュ変換することで、テラヘルツ領域の電場の振幅と位相の周波数成分を得る。この手法は、振幅と位相差を同時に測定できるので、Kramers−Kronig変換を使わずに光学定数を決定できる。   The terahertz electromagnetic wave time domain spectroscopic system is a technique for measuring a time waveform of a terahertz electromagnetic wave. The frequency components of the electric field amplitude and phase in the terahertz region are obtained by performing Fourier transform on the measured time waveform. Since this method can simultaneously measure the amplitude and the phase difference, the optical constant can be determined without using the Kramers-Kronig conversion.

時間領域分光法は、時間遅延を用いることで電磁波の時間波形を検出する方法を透過型時間領域分光法と呼ぶ。透過型時間領域分光法を用いると、電磁波がサンプルを透過する前後での位相差と電磁波の電界振幅の減衰より、物質の複素屈折率、複素導電率などの導出が可能であり、全周波数領域を必要とするKramers−Kronig変換を必要としないという特長を持っている。   In time domain spectroscopy, a method of detecting a time waveform of an electromagnetic wave by using a time delay is called transmission time domain spectroscopy. Using transmission time-domain spectroscopy, the complex refractive index and complex conductivity of a substance can be derived from the phase difference before and after the electromagnetic wave passes through the sample and the attenuation of the electric field amplitude of the electromagnetic wave. Kramers-Kronig conversion is required, so that it does not require.

本発明の一実施例では、通常の水に比べ水クラスタのサイズが小さいといわれている磁気処理水を取り扱っている。また、磁気処理水と比較するために、非処理水、脱イオン水、および蒸留水を用意した。用意した様々の水を、それぞれ厚さ60μm、130μm、および210μmの場合について、テラヘルツ電磁波時間領域分光システムを用いて測定した。磁気処理水、植物などに影響を及ぼすとされている水の定量的な評価が可能になった。水クラスタのサイズが小さくなるといわれている磁気処理水を主なサンプルとし、様々な水に関して、テラヘルツ電磁波時間領域分光システムを用いて測定を行った。
テラヘルツ放射発生に、フェムト秒パルスレーザーで励起された半導体素子による発生法で、時間領域分光法を用いることで直接電磁波の時間波形測定が可能であり、Kramers−Kronig変換なしに物質の複素屈折率や複素誘電率、複素導率など定数を求めることができる。
One embodiment of the present invention handles magnetically treated water, which is said to have a smaller water cluster size than normal water. In addition, non-treated water, deionized water, and distilled water were prepared for comparison with magnetically treated water. The various prepared waters were measured using a terahertz electromagnetic wave time domain spectroscopy system for thicknesses of 60 μm, 130 μm, and 210 μm, respectively. Quantitative evaluation of water that is supposed to affect magnetically treated water and plants has become possible. Magnetic water, which is said to have a small water cluster size, was used as the main sample, and various waters were measured using a terahertz electromagnetic time domain spectroscopy system.
Generation of terahertz radiation using a semiconductor device excited by a femtosecond pulse laser, and time domain spectroscopy can be used to directly measure the time waveform of electromagnetic waves, and the complex refractive index of the substance without Kramers-Kronig conversion. And constants such as complex permittivity and complex conductivity can be obtained.

フェムト秒パルスレーザーとしては、チタン・サファイヤレーザーやエルビユーム(Er)ドープファイバレーザーがある。
水の構造モデルは、水の分子間ネットワークで水素結合により集合体を形成している。そして、ランダムネットワークモデルでは、ピコ秒オーダーで構造変化し、クラスターモデルでは、テラヘルツ帯の分子間振動する。このためテラヘルツ分光分析が有効である。
The femtosecond pulsed laser, titanium-sapphire laser Yae Rubiyumu (Er) doped fiber laser.
The structure model of water forms an aggregate by hydrogen bonds in the intermolecular network of water. In the random network model, the structure changes in the picosecond order, and in the cluster model, the terahertz band intermolecular vibration occurs. For this reason, terahertz spectroscopy is effective.

一方、水の効能については、磁気処理水の吸収特性の影響の解明と、磁気処理水の微量の含有金属イオンの影響の解明が必要である。   On the other hand, regarding the efficacy of water, it is necessary to elucidate the influence of the absorption characteristics of magnetically treated water and the influence of trace amounts of metal ions contained in magnetically treated water.

従来の試料として例えば水の構造の検出法として、フェムト光を用いテラヘルツ電磁波時間領域分光分析システムを適用したテラヘルツ電磁波による水の構造分析方法が知られている。この従来の水の構造分析方法においては、1個のビ−ム光(シングルビーム光)を用い、水分析チャンバーに1個の試料(例えば、1種類の水のサンプル)を収容し、一つ一つの試料(サンプル)のみ分析、測定していた。例えば、磁気処理水と非処理水、脱イオン水、および蒸留水との分析においては、それぞれの試料を水分析チャンバーに1回毎に入れ替え、個々の試料のデータを得ていた。   As a conventional sample, for example, as a method for detecting the structure of water, a structure analysis method for water using terahertz electromagnetic waves using femto light and applying a terahertz electromagnetic wave time domain spectroscopic analysis system is known. In this conventional water structural analysis method, one beam light (single beam light) is used, and one sample (for example, one kind of water sample) is accommodated in the water analysis chamber. Only one sample (sample) was analyzed and measured. For example, in the analysis of magnetically treated water, non-treated water, deionized water, and distilled water, each sample was replaced in the water analysis chamber every time, and data of each sample was obtained.

テラヘルツ電磁波は、空気中の水分に対して強く吸収され易い性質を有する。テラヘルツ電磁波は、空気中の水分でかき乱され易い。いいかれば、テラヘルツ電磁波は、テラヘルツ電磁波が伝播する空気中の影響を受け易い。従来の試料分析チャンバー内部での個々の試料による分析は、試料を試料分析チャンバーに入れ替えて時間間隔をおいて行われていた。2種類以上の試料分析の場合、それぞれの試料は、試料分析チャンバー内部の環境条件が変化するので、テラヘルツ電磁波が水分に吸収される具合(吸収率)が変化した。このように、試料分析チャンバー内部に収容した2種類以上の試料の集合体構造を分析しようとしても、試料分析チャンバー内部の環境条件が変化するので、テラヘルツ電磁波は試料分析チャンバー内部の空気によって吸収されるテラヘルツ電磁波の水分割合が異なる等の外乱による差異が生じていた。   Terahertz electromagnetic waves have a property of being easily absorbed by moisture in the air. Terahertz electromagnetic waves are easily disturbed by moisture in the air. In other words, the terahertz electromagnetic wave is easily affected by the air in which the terahertz electromagnetic wave propagates. Conventional analysis by individual samples inside the sample analysis chamber has been performed at intervals of time by replacing the sample with the sample analysis chamber. In the case of two or more types of sample analysis, the environmental conditions inside the sample analysis chamber of each sample changed, so that the degree of absorption of terahertz electromagnetic waves into moisture (absorption rate) changed. In this way, even if an attempt is made to analyze the aggregate structure of two or more types of samples housed inside the sample analysis chamber, the environmental conditions inside the sample analysis chamber change, so that terahertz electromagnetic waves are absorbed by the air inside the sample analysis chamber. Differences due to external disturbances such as the water content of the terahertz electromagnetic wave differing.

このため、テラヘルツ電磁波を用いて、2種類以上の試料の集合体を分析をしようとしても、この場合は試料の集合体構造の精密な測定が不可能であった。例えば、磁気処理水と非磁気処理水の分析の場合、水分析チャンバー内部の環境条件が変化し、例えば2種類の試料である磁気処理水と非磁気処理水とのテラヘルツ電磁波の与える影響が異なるので、磁気処理水と非磁気処理水との集合体構造の相互関連を一度にかつ即座に得られなかった。   For this reason, even if an attempt is made to analyze an aggregate of two or more types of samples using terahertz electromagnetic waves, in this case, accurate measurement of the aggregate structure of the samples is impossible. For example, in the case of analysis of magnetically treated water and nonmagnetically treated water, the environmental conditions inside the water analysis chamber change, and the influence of terahertz electromagnetic waves on, for example, two types of magnetically treated water and nonmagneticly treated water is different. Therefore, the correlation of the aggregate structure of magnetically treated water and nonmagnetically treated water could not be obtained at once and immediately.

また、試料分析チャンバー内部の環境条件が変化するので、試料分析チャンバー内部に配置された個々の試料の集合体構造は、得られるテラヘルツ電磁波吸収係数にばらつきが生じていた。   In addition, since the environmental conditions inside the sample analysis chamber change, the aggregate structure of individual samples arranged inside the sample analysis chamber varies in the obtained terahertz electromagnetic wave absorption coefficient.

なお、パルス幅がフェムト秒以上10ピコ秒以下のパルスレーザー光を用いた半導体デバイスの故障診断方法と装置(特許文献1)やパルス幅がフェムト秒以上10ピコ秒以下のパルスレーザー光を用いた集積回路断線検査方法と装置(特許文献2)は公知である。   In addition, a semiconductor device failure diagnosis method and apparatus (Patent Document 1) using a pulse laser beam having a pulse width of femtosecond or more and 10 picoseconds or less, and a pulse laser beam having a pulse width of femtosecond or more and 10 picoseconds or less were used. An integrated circuit disconnection inspection method and apparatus (Patent Document 2) is known.

[特許文献1]特開2006−24774号公報
[特許文献2]特開2004−228235号公報
[Patent Document 1] JP 2006-24774 [Patent Document 2] JP 2004-228235 A

本発明の目的は、試料分析チャンバー内部の環境条件に影響を受けないテラヘルツ電磁波を用いた2種類以上の試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   An object of the present invention is to provide a structure analysis method for two or more types of samples using terahertz electromagnetic waves that are not affected by environmental conditions inside the sample analysis chamber, and a structure analysis apparatus for samples using terahertz electromagnetic waves.

本発明の目的は、試料分析用チャンバーの同一の環境条件下で、2種類以上の試料の構造分析を正確に行なうことができるテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a sample structural analysis method using terahertz electromagnetic waves and a sample using terahertz electromagnetic waves capable of accurately performing structural analysis of two or more types of samples under the same environmental conditions in the sample analysis chamber. An object of the present invention is to provide a structural analysis apparatus.

本発明の他の目的は、2種類以上の試料を分析する際、各試料の集合体構造が精密に測定できるテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   Another object of the present invention is to provide a sample structure analysis method using terahertz electromagnetic waves and a sample structure analysis apparatus using terahertz electromagnetic waves that can accurately measure the aggregate structure of each sample when analyzing two or more types of samples. Is to provide.

本発明の他の目的は、2種類以上の試料の特定のテラヘルツ電磁波の吸収特性の影響が解明できるテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   Another object of the present invention is to provide a sample structure analysis method using terahertz electromagnetic waves and a sample structure analysis apparatus using terahertz electromagnetic waves that can elucidate the influence of absorption characteristics of specific terahertz electromagnetic waves of two or more types of samples. There is.

本発明の他の目的は、2種類以上の試料についての微量の含有金属イオンの影響が解明できるテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   Another object of the present invention is to provide a sample structural analysis method using terahertz electromagnetic waves and a sample structural analysis apparatus using terahertz electromagnetic waves, which can elucidate the influence of trace amounts of contained metal ions on two or more types of samples. It is in.

本発明の他の目的は、試料の集合体構造で、試料の集合体に含有されているイオンの種類によって生じる差異を検出して微量のイオン種を特定(同定)できるテラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置を提供することにある。   Another object of the present invention is a sample structure using a terahertz electromagnetic wave that can detect a difference caused by the type of ions contained in the sample aggregate and identify (identify) a small amount of ion species. An object of the present invention is to provide a structural analysis method for a sample and a structural analysis apparatus for a sample using terahertz electromagnetic waves.

本発明の特徴は、フェムト秒レーザーから第1のビーム光と第2のビーム光を発生し、前記第1のビーム光を第1のテラヘルツ電磁波に変換して試料分析チャンバーに導入し、前記第1のテラヘルツ電磁波を前記試料分析チャンバーに配置した第1の試料に伝播させて、前記第1の試料のテラヘルツ電磁波時間領域分光分析を行ない、前記第1の試料の特定のテラヘルツ電磁波吸収値を求め、前記第2のビーム光を第2のテラヘルツ電磁波に変換して前記試料分析チャンバーに導入し、前記第2のテラヘルツ電磁波を前記試料分析チャンバーに配置した第2の試料に伝播させて、前記第2の試料のテラヘルツ電磁波時間領域分光分析を行ない、前記第2の試料の特定のテラヘルツ電磁波吸収値を求め、前記第1の試料の前記特定のテラヘルツ電磁波吸収値と前記第2の試料の前記特定のテラヘルツ電磁波吸収値との差を求めるテラヘルツ電磁波を用いた試料の構造分析方法にある。   A feature of the present invention is that a first beam light and a second beam light are generated from a femtosecond laser, the first beam light is converted into a first terahertz electromagnetic wave, introduced into a sample analysis chamber, and One terahertz electromagnetic wave is propagated to a first sample disposed in the sample analysis chamber, and the first sample is subjected to terahertz electromagnetic wave time domain spectroscopic analysis to obtain a specific terahertz electromagnetic wave absorption value of the first sample. The second beam light is converted into a second terahertz electromagnetic wave and introduced into the sample analysis chamber, the second terahertz electromagnetic wave is propagated to a second sample disposed in the sample analysis chamber, and the second Performing a terahertz electromagnetic wave time domain spectroscopic analysis of the second sample, obtaining a specific terahertz electromagnetic wave absorption value of the second sample, and determining the specific terahertz of the first sample. In structural analysis methods for sample using THz radiation for obtaining a difference of the wave absorption value and the said specific terahertz electromagnetic wave absorption value of the second sample.

本発明の特徴は、第1のビーム光と第2のビーム光を発生するフェムト秒レーザー;前記フェムト秒レーザーで発生した前記第1のビーム光と前記第2のビーム光が伝播する、第1の試料と第2の試料を有する試料分析チャンバー;前記試料分析チャンバーに設けられ、前記第1のビーム光を第1のテラヘルツ電磁波に生成する第1のテラヘルツ電磁波生成手段;前記試料分析チャンバーに設けられ、前記第1のテラヘルツ電磁波生成手段からの前記第1のテラヘルツ電磁波が伝播する前記第1の試料の試料載置部;前記試料分析チャンバーに設けられ、前記第1の試料載置部に伝播した前記第1のテラヘルツ電磁波を導出する第1のテラヘルツ電磁波導出手段;前記第1の試料のテラヘルツ電磁波時間領域分光分析を行なう第1の試料のテラヘルツ電磁波時間領域分光分析手段;前記第1の試料の特定のテラヘルツ電磁波吸収値を計測する第1のテラヘルツ電磁波試料吸収値計測手段;前記試料分析チャンバーに設けられ、前記第2のビーム光を第2のテラヘルツ電磁波に生成する第2のテラヘルツ電磁波生成手段;前記試料分析チャンバーに設けられ、前記第2のテラヘルツ電磁波生成手段からの前記第2のテラヘルツ電磁波が伝播する前記第2の試料の試料載置部;前記試料分析チャンバーに設けられ、前記第2の試料載置部に伝播した前記第2のテラヘルツ電磁波を導出する第2のテラヘルツ電磁波導出手段;前記第2の試料のテラヘルツ電磁波時間領域分光分析を行なう第2の試料のテラヘルツ電磁波時間領域分光分析手段;前記第2の試料の特定のテラヘルツ電磁波吸収値を計測する第2のテラヘルツ電磁波試料吸収値計測手段;および前記第1の試料テラヘルツ電磁波吸収値計測手段で計測した前記第1の試料の前記特定のテラヘルツ電磁波吸収値と前記第2の試料テラヘルツ電磁波吸収値計測手段で計測した前記第2の試料の前記特定のテラヘルツ電磁波吸収値との差を求めるテラヘルツ電磁波吸収値差計測手段よりなるテラヘルツ電磁波を用いた試料の構造分析装置にある。   A feature of the present invention is that a femtosecond laser that generates a first beam light and a second beam light; the first beam light and the second beam light generated by the femtosecond laser propagate, A sample analysis chamber having a first sample and a second sample; first terahertz electromagnetic wave generating means provided in the sample analysis chamber for generating the first beam light into a first terahertz electromagnetic wave; provided in the sample analysis chamber A sample mounting portion of the first sample through which the first terahertz electromagnetic wave from the first terahertz electromagnetic wave generating means propagates; provided in the sample analysis chamber and propagated to the first sample mounting portion First terahertz electromagnetic wave deriving means for deriving the first terahertz electromagnetic wave; first sample terahertz electromagnetic wave time domain spectroscopic analysis of the first sample Hertz electromagnetic wave time domain spectroscopic analysis means; first terahertz electromagnetic wave sample absorption value measuring means for measuring a specific terahertz electromagnetic wave absorption value of the first sample; provided in the sample analysis chamber; A second terahertz electromagnetic wave generating means for generating two terahertz electromagnetic waves; a sample mounting of the second sample provided in the sample analysis chamber and through which the second terahertz electromagnetic wave from the second terahertz electromagnetic wave generating means propagates A second terahertz electromagnetic wave deriving unit for deriving the second terahertz electromagnetic wave that is provided in the sample analysis chamber and propagates to the second sample mounting unit; terahertz electromagnetic wave time domain spectroscopy of the second sample Terahertz electromagnetic wave time domain spectroscopic analysis means for the second sample to be analyzed; specific terahertz electromagnetic wave absorption of the second sample; Second terahertz electromagnetic wave sample absorption value measuring means for measuring the value; and the specific terahertz electromagnetic wave absorption value of the first sample measured by the first sample terahertz electromagnetic wave absorption value measuring means and the second sample terahertz The sample structural analysis apparatus using terahertz electromagnetic waves comprises terahertz electromagnetic wave absorption value difference measuring means for obtaining a difference between the second sample measured by the electromagnetic wave absorption value measuring means and the specific terahertz electromagnetic wave absorption value.

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、2種類以上の試料について測定する際、2種類以上の試料を同一の試料分析チャンバーに収容し、2種類以上の試料は試料分析チャンバー内部では同一の環境条件の下で置かれるので、2種類以上の試料は試料分析チャンバーの同じ水分状態で特定のテラヘルツ電磁波を吸収することができる。   According to the present invention, in a sample structural analysis method using a terahertz electromagnetic wave and a structural analysis apparatus for a sample using a terahertz electromagnetic wave, when measuring two or more types of samples, the two or more types of samples are subjected to the same sample analysis chamber. Since two or more types of samples are placed in the sample analysis chamber under the same environmental conditions, two or more types of samples can absorb specific terahertz electromagnetic waves in the same moisture state of the sample analysis chamber. .

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、2種類以上の試料での試料分析チャンバーでの空気に起因する水分の吸収による外乱を防止できる。   According to the present invention, in a sample structural analysis method using a terahertz electromagnetic wave and a sample structural analysis apparatus using a terahertz electromagnetic wave, disturbance due to absorption of moisture caused by air in a sample analysis chamber in two or more types of samples Can be prevented.

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、2種類以上の試料に関する特定のテラヘルツ電磁波の吸収係数を正確に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the absorption coefficient of the specific terahertz electromagnetic wave regarding two or more types of samples can be obtained correctly in the structural analysis method of the sample using the terahertz electromagnetic wave, and the structural analysis apparatus of the sample using the terahertz electromagnetic wave.

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、2種類以上の試料に関する吸収される特定のテラヘルツ電磁波の精密な分析、測定ができる。   According to the present invention, in a sample structure analysis method using a terahertz electromagnetic wave and a sample structure analysis apparatus using a terahertz electromagnetic wave, it is possible to accurately analyze and measure a specific terahertz electromagnetic wave absorbed by two or more types of samples. .

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、試料の集合体に関するテラヘルツ電磁波の吸収特性の影響が解明できる。   According to the present invention, the influence of the absorption characteristics of the terahertz electromagnetic wave on the aggregate of the samples can be clarified in the sample structural analysis method using the terahertz electromagnetic wave and the sample structural analysis apparatus using the terahertz electromagnetic wave.

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、試料の構造体の微量な(金属)含有イオンの影響が解明できる。   According to the present invention, in a sample structure analysis method using a terahertz electromagnetic wave and a sample structure analysis apparatus using a terahertz electromagnetic wave, the influence of a trace amount (metal) -containing ions of the sample structure can be clarified.

本発明によれば、テラヘルツ電磁波を用いた試料の構造分析方法およびテラヘルツ電磁波を用いた試料の構造分析装置において、試料の集合体構造で、試料に含有されている(金属)イオンの種類によって生じる差異を検出して、微量の(金属)イオン種を特定(同定)できる。   According to the present invention, in a sample structure analysis method using a terahertz electromagnetic wave and a sample structure analysis apparatus using a terahertz electromagnetic wave, the aggregate structure of the sample is generated depending on the type of (metal) ions contained in the sample. Differences can be detected to identify (identify) trace amounts of (metal) ionic species.

本発明の好ましい実施形態として、テラヘルツ電磁波を用いた処理試料の構造分析方法およびテラヘルツ電磁波を用いた処理試料の構造分析装置の一例として、試料として水を例にとり、テラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法およびテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置の一実施例について以下説明する。   As a preferred embodiment of the present invention, as an example of a structural analysis method for a treated sample using terahertz electromagnetic waves and a structural analysis apparatus for a treated sample using terahertz electromagnetic waves, water is used as an example of the sample, and magnetically treated water using terahertz electromagnetic waves is taken as an example Examples of the structure analysis method for non-magnetic treated water and the structure analysis apparatus for magnetic treated water and non-magnetic treated water using terahertz electromagnetic waves will be described below.

図1は、本発明の一実施例であるテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置を示す。磁気処理水と非磁気処理水の構造分析装置100は、2ビーム型(ダブルビーム型)テラヘルツ電磁波時間領域分光分析システムを採用した磁気処理水と非磁気処理水のテラヘルツ電磁波時間領域分光分析システムを利用したテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置100である。   FIG. 1 shows a structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to an embodiment of the present invention. The structure analysis apparatus 100 of magnetically treated water and nonmagnetically treated water is a terahertz electromagnetic wave time domain spectroscopic analysis system that employs a two-beam type (double beam type) terahertz electromagnetic wave time domain spectroscopic analysis system. This is a structure analysis apparatus 100 for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves.

図1において、テラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置100は、励起用ファイバレーザーであるフェムト波ファイバレーザー(フェムト波パルスレーザー:励起型ファイバレーザー)1を備えている。このフェムト波ファイバレーザーで発生するレーザーは、例えば波長780nm、パルス幅82fs、パルス繰り返し数(repetition rate)82MHzである。   In FIG. 1, a structural analysis apparatus 100 for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves includes a femto wave fiber laser (femto pulsed laser: excitation type fiber laser) 1 which is an excitation fiber laser. . The laser generated by this femto wave fiber laser has, for example, a wavelength of 780 nm, a pulse width of 82 fs, and a pulse repetition rate of 82 MHz.

このフェムト波パルスレーザー1から発生されたレーザー光である主ビーム光aは伝播され、ファイバカプラー(ファイバ連結器)2に到達する。このファイバカプラー2によって、主ビーム光aは2種類のビーム光bとビーム光cとに分岐される。   The main beam light a which is a laser beam generated from the femto wave pulse laser 1 is propagated and reaches a fiber coupler (fiber coupler) 2. The fiber coupler 2 splits the main beam light a into two types of beam light b and beam light c.

ファイバカプラー2から分岐された一方の分岐ビーム光bは、ポラライザー(偏光板、偏光子)3、チョッパー4を通り、ファイバカプラー5に伝播、導入される。ファイバカプラー5により、分岐ビーム光bは、さらに2種類のビーム光dとビーム光eとに分岐される。分岐された2種類の分岐ビーム光dと分岐ビーム光eとの両ビーム光d、eは、水分析チャンバー20に、それぞれ伝播、導入される。   One branched light beam b branched from the fiber coupler 2 is propagated and introduced to the fiber coupler 5 through the polarizer (polarizing plate, polarizer) 3 and the chopper 4. The branched light beam b is further branched into two types of beam light d and beam light e by the fiber coupler 5. Both of the branched beam light d and the branched beam light e, which are branched, are propagated and introduced into the water analysis chamber 20, respectively.

磁気処理水と非磁気処理水の構造分析装置100に設けられた水分析チャンバー20の一側には、試料水(磁気処理水)のテラヘルツ電磁波エミッター6A、試料水分析セル(磁気処理水分析セル)を有する試料水部(磁気処理水部)または試料水分析セル載置台7Aとテラヘルツ電磁波検出器8Aが配置されている。また、水分析チャンバー20の他側には、標準試料水(非処理水部)のテラヘルツ電磁波エミッター6B、標準水分析セル(非磁気処理水分析セル)を有する標準試料水部(非処理水部)または標準試料水分析セル載置台7Bとテラヘルツ電磁波検出器8Bとが配置されている。   On one side of a water analysis chamber 20 provided in the structure analysis apparatus 100 for magnetically treated water and nonmagnetically treated water, a terahertz electromagnetic wave emitter 6A for sample water (magnetically treated water), a sample water analyzing cell (magnetically treated water analyzing cell) ) Or a sample water analysis cell mounting table 7A and a terahertz electromagnetic wave detector 8A are disposed. Further, on the other side of the water analysis chamber 20, a standard sample water section (non-process water section) having a terahertz electromagnetic wave emitter 6B of standard sample water (non-process water section) and a standard water analysis cell (non-magnetic process water analysis cell). ) Or a standard sample water analysis cell mounting table 7B and a terahertz electromagnetic wave detector 8B.

この磁気処理水と非磁気処理水の構造分析装置100の水分析チャンバー20の上記テラヘルツ電磁波エミッターAおよび上記テラヘルツ電磁波エミッターBは、それぞれ光導伝スイッチテラヘルツ電磁波発信機を構成し、また上記テラヘルツ電磁波検出器Aおよび上記テラヘルツ電磁波検出器Bは、それぞれ光導伝スイッチテラヘルツ電磁波受信機を構成している。 The magnetic water treatment and the THz radiation emitter 6 A and the THz radiation emitter 6 B Water analysis chamber 20 of the structural analysis apparatus 100 of the non-magnetic water treatment constitutes an optical Den switch THz transmitter respectively, also the terahertz electromagnetic wave detector 8 a and the terahertz wave detector 8 B constitute the optical den switch THz receiver, respectively.

上述した試料水のテラヘルツ電磁波エミッター6A、試料水部(試料載置台)7A、テラヘルツ電磁波検出器8Aと、標準試料水のテラヘルツ電磁波エミッター6B、標準試料水部(標準試料載置台)7B、テラヘルツ電磁波検出器8Bとは、それぞれ対向して水分析チャンバー20の内部に配置されている。   Sample water terahertz electromagnetic wave emitter 6A, sample water part (sample mounting table) 7A, terahertz electromagnetic wave detector 8A, standard sample water terahertz electromagnetic wave emitter 6B, standard sample water part (standard sample mounting table) 7B, terahertz electromagnetic wave The detector 8B is disposed inside the water analysis chamber 20 so as to face each other.

試料水のテラヘルツ電磁波エミッター6Aと標準試料水のテラヘルツ電磁波エミッター6Bは、同じ構造で同じ大きさであり、同様な作用を行なう。また、試料水テラヘルツ電磁波検出器8Aと標準試料水テラヘルツ電磁波検出器8Bとは、同じ構造で同じ大きさであり、同様な作用を行なう。   The sample water terahertz electromagnetic wave emitter 6A and the standard sample water terahertz electromagnetic wave emitter 6B have the same structure and the same size, and perform the same operation. The sample water terahertz electromagnetic wave detector 8A and the standard sample water terahertz electromagnetic wave detector 8B have the same structure and the same size, and perform the same operation.

分岐ビーム光dは、試料水のテラヘルツ電磁波エミッター6Aに伝播、導入され、テラヘルツ電磁波となって試料水部7Aと検出器8Aに伝播される。一方、分岐ビーム光eは、標準試料水のテラヘルツ電磁波エミッター6Bに伝播、導入され、テラヘルツ電磁波となって標準試料水部7Bと検出器8Bに伝播される。また直流供給源13からの直流電圧は、試料水のテラヘルツ電磁波エミッター6Aと標準試料水のテラヘルツ電磁波エミッター6Bとに供給、印加される。   The branched beam light d propagates and is introduced into the terahertz electromagnetic wave emitter 6A of the sample water, and is propagated to the sample water portion 7A and the detector 8A as a terahertz electromagnetic wave. On the other hand, the branched beam light e propagates and is introduced into the terahertz electromagnetic wave emitter 6B of the standard sample water, and is propagated to the standard sample water portion 7B and the detector 8B as a terahertz electromagnetic wave. The DC voltage from the DC supply source 13 is supplied and applied to the terahertz electromagnetic wave emitter 6A of the sample water and the terahertz electromagnetic wave emitter 6B of the standard sample water.

一方、フェムト波ファイバレーザー1で発生された主レーザー光aは、ファイバカプラー2によってビーム光cに分岐される。この分岐ビーム光cは、ポラライザー(偏光板、偏光子)に伝播される。さらに、この分岐ビーム光cは、レンズ10を通過してリトロリフレクタ11に空気伝播され、このリトロリフレクタ11で光の通過する長さ等を調節する。リトロリフレクタ11で時間遅延操作等後、空気伝播され、再びビーム光となり、ファイバカプラー12に伝播、導入される。 On the other hand, the main laser light a generated by the femto wave fiber laser 1 is branched into the beam light c by the fiber coupler 2. This branched beam light c is propagated to a polarizer (polarizing plate, polarizer) 9 . Further, the branched beam light c passes through the lens 10 and is propagated in the air to the retroreflector 11, and the length of light passing through the retroreflector 11 is adjusted. After a time delay operation or the like by the retro-reflector 11 , the air is propagated and becomes the light beam c again, which is propagated and introduced into the fiber coupler 12.

ビーム光は、ファイバカプラー12により、ビーム光とビーム光とに分岐される。分岐されたビーム光は、水分析チャンバー20に配置された試料水のテラヘルツ電磁波検出器8Aに伝播、導入される。一方、分岐されたビーム光は、水分析チャンバー20に配置された標準試料のテラヘルツ電磁波検出器8Bに伝播、導入される。試料水のテラヘルツ電磁波検出器8Aからの信号と標準試料水のテラヘルツ電磁波検出器8Bからの信号は、増幅器15に入力される。 The beam light c is branched into the beam light f and the beam light g by the fiber coupler 12. The branched beam light g is propagated and introduced into the terahertz electromagnetic wave detector 8 </ b> A of the sample water disposed in the water analysis chamber 20 . On the other hand, the branched beam light f is propagated and introduced into the standard sample terahertz electromagnetic wave detector 8 </ b> B disposed in the water analysis chamber 20. A signal from the terahertz electromagnetic wave detector 8 </ b> A of the sample water and a signal from the terahertz electromagnetic wave detector 8 </ b> B of the standard sample water are input to the amplifier 15.

磁気処理水と非磁気処理水のテラヘルツ電磁波時間領域分光分析装置100の上記チョッパー4は、ロック・イン・増幅器16に接続されている。ロック・イン・増幅器16には、テラヘルツ電磁波時間領域分光分析用および自動測定用のパーソナルコンピュータ(PC)17が接続されている。   The chopper 4 of the terahertz electromagnetic wave time domain spectroscopic analyzer 100 for magnetically treated water and nonmagnetically treated water is connected to a lock-in amplifier 16. A personal computer (PC) 17 for terahertz electromagnetic wave time domain spectroscopic analysis and automatic measurement is connected to the lock-in amplifier 16.

このパーソナルコンピュータ(PC)17には、スペクトル(図形形成部)18が接続されている。パーソナルコンピュータ(PC)17からの信号でスペクトル(図形形成部)18を表示する。なお、パーソナルコンピュータ(PC)17自体でスペクトルを見ることもできる。また、パーソナルコンピュータ(PC)17には、ステージコントローラ14が接続されている。このステージコントローラ14は、リトロリフレクタ11に接続され、時間遅延を与える等の操作制御を行なう。 A spectrum (graphic forming unit) 18 is connected to the personal computer (PC) 17. A spectrum (graphic forming unit) 18 is displayed by a signal from a personal computer (PC) 17. The spectrum can also be viewed on the personal computer (PC) 17 itself. A stage controller 14 is connected to the personal computer (PC) 17. The stage controller 14 is connected to the retro-reflector 11 and performs operation control such as giving a time delay.

また、試料水部7Aの検出器8Aからの信号と標準試料水部7Bの検出器8Bからの信号は演算増幅器(Amp)15にそれぞれ入力され、この演算増幅器15からの信号は、ロック・イン・増幅器(ロック・イン・Amp)16に入力される。   The signal from the detector 8A of the sample water section 7A and the signal from the detector 8B of the standard sample water section 7B are respectively input to an operational amplifier (Amp) 15, and the signal from the operational amplifier 15 is locked-in. Input to amplifier (lock-in-Amp) 16

パーソナルコンピュータ(PC)17は、データの取り込み、フエーリュ変換を行い、周波数スペクトルの変換、2種類の試料(磁気処理水、非磁気処理水)の周波数スペクトルを差し引く等の操作が行われる。   The personal computer (PC) 17 performs operations such as data acquisition, file conversion, frequency spectrum conversion, and subtraction of frequency spectra of two types of samples (magnetically treated water and nonmagnetically treated water).

図1に示したテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置100において、フェムト波ファイバレーザー1からのビーム光dとビーム光eは、同じ強度(同じ振幅)で同位相(同じ位相)を有している。このように、本発明の上記実施例では、フェムト波ファイバレーザー1からの二つのビーム光d、e、いいかえれば二重ビーム光(ダブルビーム光)d、eが水分析チャンバー20の内部に伝播される。   In the structure analysis apparatus 100 of magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves shown in FIG. 1, the beam light d and the beam light e from the femto wave fiber laser 1 have the same intensity (same amplitude) and the same phase. (Same phase). Thus, in the above embodiment of the present invention, the two beam lights d and e from the femto wave fiber laser 1, in other words, the double beam lights (double beam lights) d and e propagate inside the water analysis chamber 20. Is done.

ビーム光dは、試料水のテラヘルツ電磁波エミッター6Aでテラヘルツ電磁波に変換され、試料水部7Aとテラヘルツ電磁波検出器8Aに伝播される。また、ビーム光eは、標準試料水のテラヘルツ電磁波エミッター6Bでテラヘルツ電磁波に変換され、標準試料水部7Bとテラヘルツ電磁波検出器8Bに伝播される。   The beam light d is converted into a terahertz electromagnetic wave by the terahertz electromagnetic wave emitter 6A of the sample water and propagated to the sample water part 7A and the terahertz electromagnetic wave detector 8A. The beam light e is converted into a terahertz electromagnetic wave by the terahertz electromagnetic wave emitter 6B of the standard sample water, and propagated to the standard sample water part 7B and the terahertz electromagnetic wave detector 8B.

図1に示したテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置100において、テラヘルツ電磁波エミッター6Aから試料水部7Aに伝播されるテラヘルツ電磁波とテラヘルツ電磁波エミッター6Bから標準試料水部7Bに伝播されるテラヘルツ電磁波は、同じ強度(同じ振幅)で同位相(同じ位相)を有している。   In the structure analysis apparatus 100 for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves shown in FIG. 1, the terahertz electromagnetic wave propagated from the terahertz electromagnetic wave emitter 6A to the sample water part 7A and the standard sample water part from the terahertz electromagnetic wave emitter 6B. The terahertz electromagnetic waves propagated to 7B have the same intensity (same amplitude) and the same phase (same phase).

それぞれのテラヘルツ電磁波の信号は、ステージコントローラ14、リトロリフレクタ11、増幅器15、ロック・イン・増幅器16、およびパーソナルコンピュータ(PC)17等により、テラヘルツ電磁波時間領域分光分析が実行される。そして、パーソナルコンピュータ(PC)17の信号を用いて、スペクトル18を表示する。 Each terahertz electromagnetic wave signal is subjected to terahertz electromagnetic wave time domain spectroscopic analysis by the stage controller 14, retroreflector 11, amplifier 15, lock-in amplifier 16, personal computer (PC) 17, and the like. Then, the spectrum 18 is displayed using the signal of the personal computer (PC) 17.

つぎに水の磁気処理について述べる。対象となる水は、脱イオン水で、電気抵抗率は16MΩcm以上であり、ミネラル水は、次の3種類を用いた。
(1)硬度20
濃度(/100ml)(Ca:0.51mg、Mg:0.14mg、
Na:0.86mg、K:0.08mg)
(2)硬度90
濃度(/100ml)(Ca:2.66mg、Mg:0.50mg、
Na:0.86mg、K:0.19mg)
(3)硬度1500
濃度(/100ml)(Ca:6.79mg、Mg:34mg、
Na:4.87mg、K:0.13mg)
また、磁気処理条件は、回転速度:500rpm、かくはん時間:30分、水量:200cc、および温度:20℃であった。
Next, the magnetic treatment of water will be described. The target water was deionized water, the electrical resistivity was 16 MΩcm or more, and the following three types of mineral water were used.
(1) Hardness 20
Concentration (/ 100 ml) (Ca: 0.51 mg, Mg: 0.14 mg,
(Na: 0.86 mg, K: 0.08 mg)
(2) Hardness 90
Concentration (/ 100 ml) (Ca: 2.66 mg, Mg: 0.50 mg,
(Na: 0.86 mg, K: 0.19 mg)
(3) Hardness 1500
Concentration (/ 100 ml) (Ca: 6.79 mg, Mg: 34 mg,
(Na: 4.87 mg, K: 0.13 mg)
The magnetic treatment conditions were: rotational speed: 500 rpm, stirring time: 30 minutes, water amount: 200 cc, and temperature: 20 ° C.

磁石として、ネオジウム磁石(NdFe14B)を使用し、残留磁場強度は1.2Tesla、高磁場強度は11kOe、および表面磁場強度は4400ガウス(Gauss)であった。 A neodymium magnet (Nd 2 Fe 14 B) was used as the magnet, the residual magnetic field strength was 1.2 Tesla, the high magnetic field strength was 11 kOe, and the surface magnetic field strength was 4400 Gauss.

試料として用意した水は、いずれの処理も行っていない水道水(非処理水)、脱イオン水、蒸留水、および磁気処理水である。水はテラヘルツオーダの電磁波の領域では非常に吸収が大きくなるので、試料(水)の厚さを薄くする必要がある。そこで、テラヘルツ電磁波領域での透過性と、扱いやすさを考慮して、ガラス板を用いて試料(水)を封入するための2種類のセルを作成した。   Water prepared as a sample is tap water (non-treated water), deionized water, distilled water, and magnetically treated water that has not been subjected to any treatment. Since water is very absorbed in the terahertz electromagnetic wave region, it is necessary to reduce the thickness of the sample (water). Therefore, in consideration of permeability in the terahertz electromagnetic wave region and ease of handling, two types of cells for enclosing a sample (water) using a glass plate were created.

一方は、厚さが約1mmのガラス板にウエットエッチングを施すことで直接ガラス板に溝を作成した。その溝は、縦が約10mm、横が約10mm、および深さが約30μmである。測定では同様なセルを2つ用意し、溝を重ね合わせるようにセルで試料(水)を挟む込むことで厚さ約60μmの試料(水)とした。   On the other hand, a groove was directly formed on the glass plate by performing wet etching on a glass plate having a thickness of about 1 mm. The groove is about 10 mm in length, about 10 mm in width, and about 30 μm in depth. In the measurement, two similar cells were prepared, and a sample (water) having a thickness of about 60 μm was obtained by sandwiching the sample (water) between the cells so that the grooves were overlapped.

他方は、薄い平板を用意し、その中央を抜くことで試料(水)の封入スペースとした。用意した平板は、厚さ約130μmのガラス板、および厚さ約210μmのプラスチック板である。測定では、平板を厚さが約1mmのガラス板2枚で挟み込み、そこに試料(水)を封入して、厚さ約130μmのサンプル、および厚さ約130μmの試料(水)とした。   On the other hand, a thin flat plate was prepared, and a space for enclosing the sample (water) was formed by removing the center. The prepared flat plate is a glass plate having a thickness of about 130 μm and a plastic plate having a thickness of about 210 μm. In the measurement, a flat plate was sandwiched between two glass plates having a thickness of about 1 mm, and a sample (water) was sealed therein to obtain a sample having a thickness of about 130 μm and a sample (water) having a thickness of about 130 μm.

テラヘルツ電磁波の発生素子と検出素子について説明する。フェムト秒レーザー励起による様々な材料や素子からのテラヘルツ電磁波発生がある。この実施例では、低温成長型GaAs光伝導アンテナ(Low Temperature grown GaAs antenna、LT−GaAs)および半導体表面からの発生を用いた。
テラヘルツ電磁波が電気光学結晶に照射されると、電気光学効果であるポッケルス効果により、その電場強度に応じて結晶の複屈折率に微小に変化が生じる。そこに同期してフェムト秒レーザーを用いて結晶中を透過させると、電気光学結晶中の複屈折率の変化に応じてフェムト秒レーザーの偏光状態がわずかに変化する。
A generation element and a detection element of a terahertz electromagnetic wave will be described. There is generation of terahertz electromagnetic waves from various materials and devices by femtosecond laser excitation. In this example, a low temperature grown GaAs photoconductive antenna (Low Temperature grown GaAs antenna, LT-GaAs) and generation from a semiconductor surface were used.
When a terahertz electromagnetic wave is irradiated on an electro-optic crystal, the birefringence of the crystal changes minutely according to the electric field strength due to the Pockels effect which is an electro-optic effect. If the femtosecond laser is transmitted through the crystal synchronously therewith, the polarization state of the femtosecond laser slightly changes according to the change of the birefringence in the electro-optic crystal.

変化を受けたフェムト秒レーザーは、λ/4板を通った後、偏光ビームスプリッタでP波、およびS波に分離され、2つのフォトダイオードによりバランス検出される。検出された信号はテラヘルツ電磁波の電場強度に比例しているので、テラヘルツ電磁波の振幅を検出することができる。光伝導アンテナによる検出と同様に、フェムト秒レーザーに時間遅延を与えることでテラヘルツ電磁波の時間波形を得ることができる。   The changed femtosecond laser passes through the λ / 4 plate, and is then separated into a P wave and an S wave by a polarization beam splitter, and a balance is detected by two photodiodes. Since the detected signal is proportional to the electric field strength of the terahertz electromagnetic wave, the amplitude of the terahertz electromagnetic wave can be detected. Similar to detection by a photoconductive antenna, a time waveform of a terahertz electromagnetic wave can be obtained by giving a time delay to the femtosecond laser.

本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置100で得られた時間(ps)と電界(a.u.:任意定数:任意単位)との関連図を図2に示す。   The time (ps) and electric field (au: Arbitrary constant: Arbitrary unit) obtained with the structure analyzer 100 of magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to an embodiment of the present invention. A related diagram is shown in FIG.

図2は、試料を通過して検出器(光導伝スイッチテラヘルツ電磁波受信機)に入った光信号を示すものである。つまり、時間(ps)に対する入射光強度の変化を示すものである。   FIG. 2 shows an optical signal that has passed through the sample and entered the detector (optical transmission switch terahertz electromagnetic wave receiver). That is, it shows a change in incident light intensity with respect to time (ps).

ついで、本発明の一実施例を示す磁気処理水と非磁気処理水の構造分析装置100で得られた周波数(THz)と強度(対数)(a.u.:任意定数:任意単位)との関連図を図3に示す。   Next, the frequency (THz) and intensity (logarithm) (au: arbitrary constant: arbitrary unit) obtained by the structure analysis apparatus 100 of magnetically treated water and nonmagnetically treated water showing an embodiment of the present invention. A related figure is shown in FIG.

図3は、試料を通過してテラヘルツ電磁波検出器(光導伝スイッチテラヘルツ電磁波受信機)に入った光信号を示すものである。いいかえれば、図3は、図2の時間(ps)に対する入射光強度の変化に対し、周波数(テラヘルツ電磁波:THz)に対する入射光強度の変化を示すものである。   FIG. 3 shows an optical signal that passes through the sample and enters the terahertz electromagnetic wave detector (optical transmission switch terahertz electromagnetic wave receiver). In other words, FIG. 3 shows a change in incident light intensity with respect to frequency (terahertz electromagnetic wave: THz) with respect to a change in incident light intensity with respect to time (ps) in FIG.

図4は、本発明の一実施例を示す磁気処理水と非磁気処理水の構造分析装置100で得られた水の吸収係数差を示す図で、周波数(THz)と吸収係数差Δαとの関連図である。図4において、曲線4Aは水の厚さは300μmで硬度90、曲線4Bは水の厚さは300μmで硬度1500の場合を示す。   FIG. 4 is a diagram showing a difference in absorption coefficient of water obtained by the structure analysis apparatus 100 of magnetically treated water and nonmagnetically treated water according to an embodiment of the present invention. The difference between the frequency (THz) and the absorption coefficient difference Δα. It is a related figure. In FIG. 4, a curve 4A shows a case where the water thickness is 300 μm and the hardness is 90, and a curve 4B shows a case where the water thickness is 300 μm and the hardness is 1500.

吸収係数差分Δαは、Δα=α(processed:処理) − α(non―processed:非処理)である。いいかえれば、吸収係数差Δαは、処理を施した磁気処理水の吸収係数αから処理を施さない非処理水の吸収係数αを引いた絶対差である。
図4は、図3で得られた2種類の曲線、例えば2種類の水(磁気処理水と非処理水)の周波数(THz)と強度(対数)(a.u.:任意定数:任意単位)との関連曲線を差し引いて示しものであり、差し引きスペクトルを示す。これは、微量の金属のイオン濃度が異なる水を反映したスペクトルを示すものである。つまり、2種類の水(磁気処理水と非磁気処理水)の性質の違いを表わすスペクトルを示している。
The absorption coefficient difference Δα is Δα = α (processed: processing) −α (non-processed: non-processing). In other words, the absorption coefficient difference Δα is an absolute difference obtained by subtracting the absorption coefficient α of non-treated water not subjected to treatment from the absorption coefficient α of magnetic treated water subjected to treatment.
4 shows two types of curves obtained in FIG. 3, for example, frequency (THz) and intensity (logarithm) (au: arbitrary constant: arbitrary unit) of two types of water (magnetic treated water and non-treated water). ) Is subtracted from the relevant curve and shows the subtracted spectrum. This shows a spectrum reflecting water with different ion concentrations of a trace amount of metal. That is, the spectrum showing the difference in the properties of two types of water (magnetic treated water and non-magnetic treated water) is shown.

図5は、本発明の一実施例を示す磁気処理水と非磁気処理水の構造分析装置で得られた水の吸収係数差の硬度依存を示す図で、硬度(°)と吸収係数差Δαとの関連図である。この図5では、横軸の硬度は、微量な金属であるマグネシウム(Mg)イオンとカルシウム(Ca)イオンのみのイオン硬度を示している。   FIG. 5 is a diagram showing the hardness dependence of the difference in absorption coefficient of water obtained by the structure analyzer of magnetically treated water and non-magnetically treated water according to an embodiment of the present invention. The hardness (°) and the difference in absorption coefficient Δα FIG. In FIG. 5, the hardness on the horizontal axis indicates the ionic hardness of only magnesium (Mg) ions and calcium (Ca) ions, which are trace amounts of metal.

図5で、白丸は水の厚さ200μm、黒丸は水の厚さ300μmの場合である。図5で、曲線5Aは0.29THz、曲線5Bは0.73THz、曲線5Cは1.03THzの硬度(°)と吸収係数差Δαとの関連図である。   In FIG. 5, the white circle is the case where the water thickness is 200 μm, and the black circle is the case where the water thickness is 300 μm. In FIG. 5, a curve 5A is 0.29 THz, a curve 5B is 0.73 THz, and a curve 5C is a relationship between a hardness (°) of 1.03 THz and an absorption coefficient difference Δα.

上述のテラヘルツ電磁波時間領域分光分析システムを適用した磁気処理水の構造分析の結果、磁気処理によって、0.3テラヘルツ(THz)、0.7テラヘルツ(THz)、および1.0テラヘルツ(THz)付近で水の吸収特性が変化した。
また、磁気処理によって現れるテラヘルツ電磁波の吸収特性変化は、金属のイオン硬度が高いほど顕著であった。
As a result of the structural analysis of the magnetically treated water to which the above-mentioned terahertz electromagnetic wave time domain spectroscopic analysis system is applied, by the magnetic treatment, the vicinity of 0.3 terahertz (THz), 0.7 terahertz (THz), and 1.0 terahertz (THz) The water absorption characteristics changed.
Further, the change in the absorption characteristics of the terahertz electromagnetic wave that appears due to the magnetic treatment is more remarkable as the ionic hardness of the metal is higher.

図6は、本発明の一実施例を示す磁気処理水と非磁気処理水の構造分析装置100で得られた水の吸収係数差Δαの金属イオン濃度依存を示す図である。図6は、微量な金属イオン濃度(ppm)と吸収係数差Δαとの関連図である。この実施例の金属イオンとしては、図5に示したマグネシウム(Mg)イオンとカルシウム(Ca)イオンに加えて、ナトリウム(Na)イオン、カリウム(Ka)イオン等がある。 FIG. 6 is a diagram showing the dependence of the absorption coefficient difference Δα of water obtained by the structure analyzer 100 on magnetically treated water and nonmagnetically treated water according to an embodiment of the present invention on the metal ion concentration . FIG. 6 is a relationship diagram between a trace amount of metal ion concentration (ppm) and an absorption coefficient difference Δα. As metal ions in this embodiment, there are sodium (Na) ions, potassium (Ka) ions, etc. in addition to the magnesium (Mg) ions and calcium (Ca) ions shown in FIG.

図6で、白丸は水の厚さ200μm、黒丸は水の厚さ300μmの場合である。図6で
、曲線6Aは0.29THz、曲線6Bは0.73THz、曲線6Cは1.03THzの
金属イオン濃度(ppm)と吸収係数差Δαとの関連図である。
In FIG. 6, the white circle is the case where the water thickness is 200 μm, and the black circle is the case where the water thickness is 300 μm. In FIG. 6, curve 6A is 0.29 THz, curve 6B is 0.73 THz, and curve 6C is 1.03 THz.
It is a related figure of metal ion concentration (ppm) and absorption coefficient difference Δα.

上述のテラヘルツ電磁波時間領域分光分析システムを適用した磁気処理水の構造分析の結果、磁気処理によって、0.3テラヘルツ(THz)、0.7テラヘルツ(THz)、および1.0テラヘルツ(THz)付近で水の吸収特性が変化した。また、磁気処理によって現れる吸収特性の変化は、含有金属イオン濃度が高いほど顕著であった。   As a result of the structural analysis of the magnetically treated water to which the above-mentioned terahertz electromagnetic wave time domain spectroscopic analysis system is applied, by the magnetic treatment, the vicinity of 0.3 terahertz (THz), 0.7 terahertz (THz), and 1.0 terahertz (THz) The water absorption characteristics changed. Moreover, the change of the absorption characteristic which appears by magnetic processing became so remarkable that the content metal ion concentration was high.

なお、水クラスタの分析法を確立するために、通常の水に比べ水クラスタのサイズが小さいといわれている磁気処理水を取り扱っている。また、磁気処理水と比較するために、非処理水、脱イオン水、および蒸留水を用意した。用意した様々の水を、それぞれ厚さ60μm、130μm、および210μmの場合について、テラヘルツ電磁波時間領域分光システムを用いて測定した。水クラスタの分析法を確立して、磁気処理水など、植物などに影響を及ぼすとされている水の定量的な評価が可能になった。水クラスタのサイズが小さくなるといわれている磁気処理水を主なサンプルとし、様々な水に関して、テラヘルツ電磁波時間領域分光システムを用いて測定を行った。   In order to establish a water cluster analysis method, we are handling magnetically treated water, which is said to be smaller in size than normal water. In addition, non-treated water, deionized water, and distilled water were prepared for comparison with magnetically treated water. The various prepared waters were measured using a terahertz electromagnetic wave time domain spectroscopy system for thicknesses of 60 μm, 130 μm, and 210 μm, respectively. Establishing a water cluster analysis method, it has become possible to quantitatively evaluate water that is believed to affect plants, such as magnetically treated water. Magnetic water, which is said to have a small water cluster size, was used as the main sample, and various waters were measured using a terahertz electromagnetic time domain spectroscopy system.

なお、本発明の上記一実施例では、2種類の試料として、磁気処理水と非磁気処理水を採用した。例えば、薬剤の一成分を構成する2種類の化学構造物、例えば基の一部を構成する金属が構造式で異なる位置に配置されて2種類の化学構造物を、2種類の試料として採用することもできる。   In the above embodiment of the present invention, magnetically treated water and nonmagnetically treated water were adopted as the two types of samples. For example, two types of chemical structures that constitute one component of a drug, for example, two types of chemical structures that are arranged at different positions in the structural formula, are used as two types of samples. You can also.

また、本発明の上記一実施例では、2種類の試料を試料分析チャンバーに収容した例を示したが、3種類以上の試料を試料分析チャンバーに収容し、それぞれの試料の構造分析を行なうことも勿論できる。   In the above-described embodiment of the present invention, an example in which two types of samples are accommodated in the sample analysis chamber is shown. However, three or more types of samples are accommodated in the sample analysis chamber, and structural analysis of each sample is performed. Of course you can.

本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置のシステム図。1 is a system diagram of a structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to an embodiment of the present invention. 本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置で得られた時間(ps)と電界(a.u.)との関連図。The related figure of time (ps) and electric field (au) obtained with the structure analysis apparatus of the magnetically treated water using the terahertz electromagnetic wave which shows one Example of this invention, and nonmagnetically treated water. 本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置で得られた周波数(THz)と強度(対数)(a.u.)との関連図。The related figure of the frequency (THz) and intensity | strength (logarithm) (au) obtained with the structure analyzer of the magnetically treated water using the terahertz electromagnetic wave which shows one Example of this invention, and nonmagnetically treated water. 本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置で得られた水の吸収係数差を示す図で、周波数(THz)と吸収係数差Δαとの関連図。It is a figure which shows the absorption coefficient difference of the water obtained with the structural analysis apparatus of the magnetically treated water using the terahertz electromagnetic wave which shows one Example of this invention, and nonmagnetic treated water, and a frequency (THz) and absorption coefficient difference (DELTA) (alpha) Association chart. 本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水の非磁気処理水の構造分析装置で得られた水の吸収係数差の硬度依存を示す図で、硬度(°)と吸収係数差分Δαとの関連図。The figure which shows the hardness dependence of the absorption coefficient difference of the water obtained with the structure analysis apparatus of the non-magnetic process water using the terahertz electromagnetic wave which shows one Example of this invention, hardness (degree) and an absorption coefficient difference Relationship diagram with Δα. 本発明の一実施例を示すテラヘルツ電磁波を用いた磁気処理水の非磁気処理水の構造分析装置で得られた水の吸収係数差の硬度依存を示す図で、金属イオン濃度(ppm)と吸収係数差Δαとの関連図。The figure which shows the hardness dependence of the absorption coefficient difference of the water obtained with the structural analysis apparatus of the non-magnetic treated water using the terahertz electromagnetic wave which shows one Example of this invention, and a metal ion concentration (ppm) and absorption The related figure with coefficient difference (DELTA) (alpha).

符号の説明Explanation of symbols

1 フェムト光レーザー
6A テラヘルツ電磁波エミッター
6B テラヘルツ電磁波エミッター
7A 試料水部(試料載置台)
7B 標準試料水部(標準試料載置台)
8A テラヘルツ電磁波検出器
テラヘルツ電磁波検出器
11 リトロリフレクタ
14 ステージコントローラ
15 増幅器
16 ロック・イン・増幅器、
17 パーソナルコンピュータ(PC)
18 スペクトル
20 水分析チャンバー
d 分岐レーザー光
e 分岐レーザー光
1 Femto laser 6A Terahertz electromagnetic wave emitter 6B Terahertz electromagnetic wave emitter 7A Sample water part (sample mounting table)
7B Standard sample water section (standard sample mounting table)
8A terahertz electromagnetic wave detector 8 B THz radiation detector
11 Retro-reflector 14 Stage controller 15 Amplifier 16 Lock-in amplifier
17 Personal computer (PC)
18 Spectrum 20 Water analysis chamber d Branched laser beam e Branched laser beam

Claims (12)

フェムト秒レーザーから第1のビーム光と第2のビーム光を発生し、前記第1のビーム光を第1のテラヘルツ電磁波に変換して試料分析チャンバーに導入し、前記第1のテラヘルツ電磁波を前記試料分析チャンバーに配置した第1の試料に伝播させて、前記第1の試料のテラヘルツ電磁波時間領域分光分析を行ない、前記第1の試料の特定のテラヘルツ電磁波吸収値を求め、前記第2のビーム光を第2のテラヘルツ電磁波に変換して前記試料分析チャンバーに導入し、前記第2のテラヘルツ電磁波を前記試料分析チャンバーに配置した第2の試料に伝播させて、前記第2の試料のテラヘルツ電磁波時間領域分光分析を行ない、前記第2の試料の特定のテラヘルツ電磁波吸収値を求め、前記第1の試料の前記特定のテラヘルツ電磁波吸収値と前記第2の試料の前記特定のテラヘルツ電磁波吸収値との差を求めることを特徴とするテラヘルツ電磁波を用いた試料の構造分析方法。   A first beam light and a second beam light are generated from a femtosecond laser, the first beam light is converted into a first terahertz electromagnetic wave, introduced into a sample analysis chamber, and the first terahertz electromagnetic wave is converted into the first terahertz electromagnetic wave. Propagating to a first sample disposed in a sample analysis chamber, performing terahertz electromagnetic wave time domain spectroscopy analysis of the first sample, obtaining a specific terahertz electromagnetic wave absorption value of the first sample, and obtaining the second beam Light is converted into a second terahertz electromagnetic wave, introduced into the sample analysis chamber, the second terahertz electromagnetic wave is propagated to a second sample disposed in the sample analysis chamber, and the terahertz electromagnetic wave of the second sample is transmitted. Time domain spectroscopic analysis is performed to obtain a specific terahertz electromagnetic wave absorption value of the second sample, and the specific terahertz electromagnetic wave absorption value of the first sample Structure sample analysis method using a terahertz electromagnetic wave and obtains the difference between the specific terahertz electromagnetic wave absorption value of the second sample. 請求項1のテラヘルツ電磁波を用いた試料の構造分析方法において、前記第1のビーム光と前記第2のビームとは、同じ強度と同じ位相を有し、前記第1のテラヘルツ電磁波と前記第2のテラヘルツ電磁波とは、同じ強度と同じ位相を有することを特徴とするテラヘルツ電磁波を用いた試料の構造分析方法。   2. The structural analysis method of a sample using terahertz electromagnetic waves according to claim 1, wherein the first beam light and the second beam have the same intensity and the same phase, and the first terahertz electromagnetic wave and the second beam. The method for analyzing the structure of a sample using terahertz electromagnetic waves, characterized in that the terahertz electromagnetic waves have the same intensity and the same phase. 請求項1のテラヘルツ電磁波を用いた試料の構造分析方法において、前記特定のテラヘルツ電磁波吸収値差により、前記第1の試料と前記第2の試料のイオン種を同定することを特徴とするテラヘルツ電磁波を用いた試料の構造分析方法。   2. The sample structural analysis method using a terahertz electromagnetic wave according to claim 1, wherein ion species of the first sample and the second sample are identified based on the difference in absorption value of the specific terahertz electromagnetic wave. A method for analyzing the structure of a sample. フェムト秒レーザーから第1のビーム光と第2のビーム光を発生し、前記第1のビーム光を第1のテラヘルツ電磁波に変換して水分析チャンバーに導入し、前記第1のテラヘルツ電磁波を前記水分析チャンバーに配置した磁気処理水に伝播させて、前記磁気処理水のテラヘルツ電磁波時間領域分光分析を行ない、前記磁気処理水の特定のテラヘルツ電磁波吸収値を求め、前記第2のビーム光を第2のテラヘルツ電磁波に変換して前記水分析チャンバーに導入し、前記第2のテラヘルツ電磁波を前記水分析チャンバーに配置した非磁気処理水に伝播させて、前記非磁気処理水のテラヘルツ電磁波時間領域分光分析を行ない、前記非磁気処理水の特定のテラヘルツ電磁波吸収値を求め、前記磁気処理水の前記特定のテラヘルツ電磁波吸収値と前記非磁気処理水の前記特定のテラヘルツ電磁波吸収値との差を求めることを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法。   A first beam light and a second beam light are generated from a femtosecond laser, the first beam light is converted into a first terahertz electromagnetic wave, introduced into a water analysis chamber, and the first terahertz electromagnetic wave is converted into the first terahertz electromagnetic wave. Propagating the magnetically treated water disposed in the water analysis chamber to perform a terahertz electromagnetic wave time domain spectroscopic analysis of the magnetically treated water, obtaining a specific terahertz electromagnetic wave absorption value of the magnetically treated water, The terahertz electromagnetic wave is converted into two terahertz electromagnetic waves and introduced into the water analysis chamber, and the second terahertz electromagnetic wave is propagated to non-magnetically treated water disposed in the water analytical chamber, whereby terahertz electromagnetic wave time domain spectroscopy of the nonmagnetically treated water is performed. Performing an analysis, obtaining a specific terahertz electromagnetic wave absorption value of the non-magnetically treated water, and the specific terahertz electromagnetic wave absorption value of the magnetically treated water and the Magnetic water treatment and structural analysis methods for non-magnetic water treatment using the terahertz electromagnetic wave and obtains the difference between the specific terahertz electromagnetic wave absorption value of magnetic water treatment. 請求項4のテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法において、前記第1のビーム光と前記第2のビームとは、同じ強度と同じ位相を有し、前記第1のテラヘルツ電磁波と前記第2のテラヘルツ電磁波とは、同じ強度と同じ位相を有することを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法。   5. The structure analysis method of magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to claim 4, wherein the first beam light and the second beam have the same intensity and the same phase, and The structure analysis method of magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves, wherein the terahertz electromagnetic wave and the second terahertz electromagnetic wave have the same intensity and the same phase. 請求項4のテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法において、前記の特定のテラヘルツ電磁波吸収値差により、前記磁気処理水と前記非磁気処理水のイオン種を同定することを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析方法。   5. The structure analysis method for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to claim 4, wherein the ionic species of the magnetically treated water and the nonmagneticly treated water is identified by the difference in the absorption value of the specific terahertz electromagnetic wave. A structure analysis method for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves. 第1のビーム光と第2のビーム光を発生するフェムト秒レーザー;前記フェムト秒レーザーで発生した前記第1のビーム光と前記第2のビーム光が伝播する、第1の試料と第2の試料を収納する試料分析チャンバー;前記試料分析チャンバーに設けられ、前記第1のビーム光を第1のテラヘルツ電磁波に生成する第1のテラヘルツ電磁波生成手段;前記試料分析チャンバーに設けられ、前記第1のテラヘルツ電磁波生成手段からの前記第1のテラヘルツ電磁波が伝播する前記第1の試料の試料載置部;前記試料分析チャンバーに設けられ、前記第1の試料載置部に伝播した前記第1のテラヘルツ電磁波を導出する第1のテラヘルツ電磁波導出手段;前記第1の試料のテラヘルツ電磁波時間領域分光分析を行なう第1の試料のテラヘルツ電磁波時間領域分光分析手段;前記第1の試料の特定のテラヘルツ電磁波吸収値を計測する第1のテラヘルツ電磁波試料吸収値計測手段;前記試料分析チャンバーに設けられ、前記第2のビーム光を第2のテラヘルツ電磁波に生成する第2のテラヘルツ電磁波生成手段;前記試料分析チャンバーに設けられ、前記第2のテラヘルツ電磁波生成手段からの前記第2のテラヘルツ電磁波が伝播する前記第2の試料の試料載置部;前記試料分析チャンバーに設けられ、前記第2の試料載置部に伝播した前記第2のテラヘルツ電磁波を導出する第2のテラヘルツ電磁波導出手段;前記第2の試料のテラヘルツ電磁波時間領域分光分析を行なう第2の試料のテラヘルツ電磁波時間領域分光分析手段;前記第2の試料の特定のテラヘルツ電磁波吸収値を計測する第2のテラヘルツ電磁波試料吸収値計測手段;および前記第1の試料テラヘルツ電磁波吸収値計測手段で計測した前記第1の試料の前記特定のテラヘルツ電磁波吸収値と前記第2の試料テラヘルツ電磁波吸収値計測手段で計測した前記第2の試料の前記特定のテラヘルツ電磁波吸収値との差を求めるテラヘルツ電磁波吸収値差計測手段よりなることを特徴とするテラヘルツ電磁波を用いた試料の構造分析装置。   A femtosecond laser that generates a first beam light and a second beam light; a first sample and a second sample through which the first beam light and the second beam light generated by the femtosecond laser propagate; A sample analysis chamber for storing a sample; a first terahertz electromagnetic wave generating means provided in the sample analysis chamber for generating the first beam light into a first terahertz electromagnetic wave; provided in the sample analysis chamber; A sample mounting portion of the first sample through which the first terahertz electromagnetic wave from the terahertz electromagnetic wave generating means propagates; the first sample that is provided in the sample analysis chamber and propagates to the first sample mounting portion First terahertz electromagnetic wave deriving means for deriving terahertz electromagnetic wave; terahertz electromagnetic wave of first sample for performing terahertz electromagnetic wave time domain spectroscopic analysis of said first sample Inter-region spectroscopic analysis means; first terahertz electromagnetic wave sample absorption value measuring means for measuring a specific terahertz electromagnetic wave absorption value of the first sample; provided in the sample analysis chamber; A second terahertz electromagnetic wave generating means for generating a terahertz electromagnetic wave; a sample mounting portion of the second sample provided in the sample analysis chamber and through which the second terahertz electromagnetic wave from the second terahertz electromagnetic wave generating means propagates A second terahertz electromagnetic wave deriving unit provided in the sample analysis chamber for deriving the second terahertz electromagnetic wave propagated to the second sample mounting portion; terahertz electromagnetic wave time domain spectroscopic analysis of the second sample; Terahertz electromagnetic wave time domain spectroscopic analysis means for the second sample to be measured; a specific terahertz electromagnetic wave absorption value of the second sample is measured Two terahertz electromagnetic wave sample absorption value measuring means; and the specific terahertz electromagnetic wave absorption value of the first sample measured by the first sample terahertz electromagnetic wave absorption value measuring means and the second sample terahertz electromagnetic wave absorption value measuring means. A structural analysis apparatus for a sample using terahertz electromagnetic waves, comprising terahertz electromagnetic wave absorption value difference measuring means for obtaining a difference from the specific terahertz electromagnetic wave absorption value of the second sample measured in step (b). 請求項7のテラヘルツ電磁波を用いた試料の構造分析装置において、前記第1のビーム光と前記第2のビームとは、同じ強度と同じ位相を有し、前記第1のテラヘルツ電磁波と前記第2のテラヘルツ電磁波とは、同じ強度と同じ位相を有することを特徴とするテラヘルツ電磁波を用いた試料の構造分析装置。   8. The sample structural analysis apparatus using a terahertz electromagnetic wave according to claim 7, wherein the first beam light and the second beam have the same intensity and the same phase, and the first terahertz electromagnetic wave and the second beam. The structural analysis apparatus for a sample using terahertz electromagnetic waves, characterized in that the terahertz electromagnetic waves have the same intensity and the same phase. 請求項7のテラヘルツ電磁波を用いた試料の構造分析装置において、前記の特定のテラヘルツ電磁波吸収値差により、前記第1の試料と前記第2の試料のイオン種を同定することを特徴とするテラヘルツ電磁波を用いた試料の構造分析装置8. The structural analysis apparatus for a sample using terahertz electromagnetic waves according to claim 7, wherein ion species of the first sample and the second sample are identified based on the specific terahertz electromagnetic wave absorption value difference. Sample structural analysis equipment using electromagnetic waves. 第1のビーム光と第2のビーム光を発生するフェムト秒レーザー;前記フェムト秒レーザーで発生した前記第1のビーム光と前記第2のビーム光が伝播する、磁気処理水と非磁気処理水を有する水分析チャンバー;前記第1のビーム光を第1のテラヘルツ電磁波に生成する第1のテラヘルツ電磁波生成手段;前記第1のテラヘルツ電磁波生成手段からの前記第1のテラヘルツ電磁波が伝播する、前記水分析チャンバーに設けた前記磁気処理水を収納した磁気処理水載置部;前記磁気処理水載置部を伝播した前記第1のテラヘルツ電磁波を導出する第1のテラヘルツ電磁波導出手段;前記磁気処理水のテラヘルツ電磁波時間領域分光分析を行なう磁気処理水テラヘルツ電磁波時間領域分光分析手段;前記磁気処理水の特定のテラヘルツ電磁波吸収値を計測するテラヘルツ電磁波磁気処理水吸収値計測手段;前記第2のビーム光を第2のテラヘルツ電磁波に生成する第2のテラヘルツ電磁波生成手段;前記第2のテラヘルツ電磁波生成手段からの前記第2のテラヘルツ電磁波が伝播する、前記水分析チャンバーの設けた前記非磁気処理水を収納した非磁気処理水載置部;前記非磁気処理水載置部を伝播した前記第2のテラヘルツ電磁波を導出する第2のテラヘルツ電磁波導出手段;前記非磁気処理水のテラヘルツ電磁波時間領域分光分析を行なう非磁気処理水テラヘルツ電磁波時間領域分光分析手段;前記非磁気処理水の特定のテラヘルツ電磁波吸収値を計測するテラヘルツ電磁波非磁気処理水吸収値計測手段;および前記磁気処理水の前記テラヘルツ電磁波磁気処理水吸収値計測手段で計測した前記磁気処理水の前記特定のテラヘルツ電磁波吸収値と前記非磁気処理水の前記テラヘルツ電磁波非磁気処理水吸収値計測手段で計測した前記非磁気処理水の前記特定のテラヘルツ電磁波吸収値との差を求めるテラヘルツ電磁波吸収値差計測手段よりなることを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置。   Femtosecond laser that generates first beam light and second beam light; magnetically treated water and nonmagnetically treated water in which the first beam light and the second beam light generated by the femtosecond laser propagate A water analysis chamber having: a first terahertz electromagnetic wave generating means for generating the first beam light into a first terahertz electromagnetic wave; the first terahertz electromagnetic wave from the first terahertz electromagnetic wave generating means is propagated; A magnetically treated water mounting unit for storing the magnetically treated water provided in a water analysis chamber; a first terahertz electromagnetic wave deriving unit for deriving the first terahertz electromagnetic wave propagating through the magnetically treated water mounting unit; Magnetically treated water terahertz electromagnetic wave time domain spectroscopic means for performing terahertz electromagnetic wave time domain spectroscopic analysis of water; specific terahertz electromagnetic wave absorption of said magnetically treated water; Terahertz electromagnetic wave magnetic treatment water absorption value measuring means for measuring a value; second terahertz electromagnetic wave generating means for generating the second beam light into a second terahertz electromagnetic wave; the second terahertz electromagnetic wave generating means from the second terahertz electromagnetic wave generating means A non-magnetically treated water mounting portion for storing the nonmagnetically treated water provided in the water analysis chamber; wherein the second terahertz electromagnetic wave propagating through the nonmagnetically treated water placing portion is derived. Second terahertz electromagnetic wave deriving means; non-magnetically treated water terahertz electromagnetic wave time domain spectroscopic means for performing terahertz electromagnetic wave time domain spectroscopic analysis of the nonmagnetically treated water; terahertz for measuring a specific terahertz electromagnetic wave absorption value of the nonmagnetically treated water Electromagnetic wave non-magnetically treated water absorption value measuring means; and the terahertz electromagnetic wave magnetically treated water absorption value measuring means of the magnetically treated water The specific terahertz electromagnetic wave absorption value of the measured magnetically treated water and the specific terahertz electromagnetic wave absorption value of the nonmagnetic treated water measured by the terahertz electromagnetic wave nonmagnetic treated water absorption value measuring means of the nonmagnetic treated water A structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves, characterized by comprising terahertz electromagnetic wave absorption value difference measuring means for obtaining a difference. 請求項10のテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置において、前記第1のビーム光と前記第2のビームとは、同じ強度と同じ位相を有し前記第1のテラヘルツ電磁波と前記第2のテラヘルツ電磁波とは、同じ強度と同じ位相を有することを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置。   The structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to claim 10, wherein the first beam light and the second beam have the same intensity and the same phase. The structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves, wherein the terahertz electromagnetic waves and the second terahertz electromagnetic waves have the same intensity and the same phase. 請求項10のテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置において、前記の特定のテラヘルツ電磁波吸収値差により、前記磁気処理水と前記非磁気処理水のイオン種を同定することを特徴とするテラヘルツ電磁波を用いた磁気処理水と非磁気処理水の構造分析装置The structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves according to claim 10, wherein ion species of the magnetically treated water and the nonmagneticly treated water are identified by the specific terahertz electromagnetic wave absorption value difference. A structure analysis apparatus for magnetically treated water and nonmagnetically treated water using terahertz electromagnetic waves.
JP2008039555A 2008-02-21 2008-02-21 Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave Expired - Fee Related JP4817336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039555A JP4817336B2 (en) 2008-02-21 2008-02-21 Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039555A JP4817336B2 (en) 2008-02-21 2008-02-21 Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave

Publications (3)

Publication Number Publication Date
JP2009198278A JP2009198278A (en) 2009-09-03
JP2009198278A5 JP2009198278A5 (en) 2011-03-31
JP4817336B2 true JP4817336B2 (en) 2011-11-16

Family

ID=41141937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039555A Expired - Fee Related JP4817336B2 (en) 2008-02-21 2008-02-21 Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave

Country Status (1)

Country Link
JP (1) JP4817336B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279412A (en) * 2002-03-22 2003-10-02 Nippon Spectral Kenkyusho:Kk Spectrometry device using white electromagnetic wave emitted from photonic crystal member generated by single pulse photoexcitation as light source
GB0208100D0 (en) * 2002-04-09 2002-05-22 Univ Strathclyde Semiconductor diode laser spectrometer arrangement
JP2004279352A (en) * 2003-03-18 2004-10-07 Tochigi Nikon Corp Measuring instrument using terahertz light
JP2007101370A (en) * 2005-10-05 2007-04-19 Tochigi Nikon Corp Terahertz spectral device
JP4773839B2 (en) * 2006-02-15 2011-09-14 キヤノン株式会社 Detection device for detecting information of an object
JP5127159B2 (en) * 2006-05-19 2013-01-23 キヤノン株式会社 Measuring apparatus and measuring method

Also Published As

Publication number Publication date
JP2009198278A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
Labeyrie et al. Large Faraday rotation of resonant light in a cold atomic cloud
EP1982163B1 (en) Methods and apparatus for determining fibre orientation
JP6058692B2 (en) Device for measuring the polarization state of incident waves with a frequency of 10 GHz to 30 THz
Ibrahim et al. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation
US20080123099A1 (en) Photothermal conversion measuring instrument
Stadnytskyi et al. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer
RU2135983C1 (en) Process measuring transmission, circular dichroism and optical rotation of optically active substances and dichrograph for its realization
Castro-Camus et al. Extraction of the anisotropic dielectric properties of materials from polarization-resolved terahertz time-domain spectra
Antsygin et al. Specific features of studying anisotropic media by methods of time-domain terahertz spectroscopy
JP5618119B2 (en) Terahertz light detection element and optical equipment
JP4817336B2 (en) Sample structure analysis method using terahertz electromagnetic wave and sample structure analysis apparatus using terahertz electromagnetic wave
Yandong et al. Simple methods to measure partial polarization parameters in the Terahertz band using THz‐TDS
Chai et al. Stokes–Mueller method for comprehensive characterization of coherent terahertz waves
WO2017119237A1 (en) Magneto-optical measurement method and magneto-optical measurement device
Sun et al. Terahertz sensing with high sensitivity and substance identification capability using a novel High-quality resonance supported by a thin structured silicon film
Hou et al. Effects of HPO42− and SCN− on the hydrogen bond network of water: femtosecond OHD‐RIKES and FTIR measurements
Stephens Linearization of the magneto-optic signals produced by the Voigt effect in atomic vapors
Vetrov et al. A highly sensitive technique for measurements of the Kerr electrooptic coefficient in glasses and glass ceramics
Park et al. Monitoring temporal evolution of the dehydration process of the caffeine hydrate with terahertz spectroscopy
Wettling et al. Investigation of ferromagnetic resonance by the inelastic light scattering technique
Goy et al. Electro-Optic Sampling of Terahertz Waves Under Brewster’s Angle
CN211740399U (en) Single measurement device for terahertz polarization information and time domain waveform
JP2019109117A (en) Carbonate mineral analysis method
Antipov et al. X-Ray and Charged Particle Detection by Detuning of a Microwave Resonator
Causa et al. FTU diagnostic system based on THz Time-Domain Spectroscopy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees