JP4817190B2 - Electroreductive dehalogenation of activated carbon adsorbed organic halides - Google Patents

Electroreductive dehalogenation of activated carbon adsorbed organic halides Download PDF

Info

Publication number
JP4817190B2
JP4817190B2 JP2007060952A JP2007060952A JP4817190B2 JP 4817190 B2 JP4817190 B2 JP 4817190B2 JP 2007060952 A JP2007060952 A JP 2007060952A JP 2007060952 A JP2007060952 A JP 2007060952A JP 4817190 B2 JP4817190 B2 JP 4817190B2
Authority
JP
Japan
Prior art keywords
activated carbon
reductive dehalogenation
organic
organic halide
dehalogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007060952A
Other languages
Japanese (ja)
Other versions
JP2008272594A (en
Inventor
秀雄 田中
学 黒星
丈博 田中
Original Assignee
国立大学法人 岡山大学
新日本技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学, 新日本技研株式会社 filed Critical 国立大学法人 岡山大学
Priority to JP2007060952A priority Critical patent/JP4817190B2/en
Publication of JP2008272594A publication Critical patent/JP2008272594A/en
Application granted granted Critical
Publication of JP4817190B2 publication Critical patent/JP4817190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、活性炭に吸着した有害な有機ハロゲン化物を、電解還元により還元的脱塩素化を行って簡便且つ安全に無害化処理する方法に関する。   The present invention relates to a method for easily and safely detoxifying harmful organic halides adsorbed on activated carbon by performing reductive dechlorination by electrolytic reduction.

焼却炉などの排ガス、大気中の汚染物質、あるいは河川、湖沼、さらには工業排水などの汚水の浄化に於いて、活性炭吸着法は最も汎用的且つ有力な方法として多用されている。これに伴って、汚染物質を吸着した大量の活性炭が生成する。特に、ダイオキシン類や残留農薬などの各種有害有機塩素化物を吸着した活性炭は、通常、焼却処理、熱分解処理や埋め立て処理などが行われているが、排ガスと共に排出、あるいは埋立地からの溶出など、いずれも処理に伴う二次的な環境汚染を引き起こすことが懸念され、安全且つ簡便な無害化処理法あるいは賦活再生法が求められてきた。従来の有害有機塩素化物を吸着した活性炭の無害化処理法としては、過酸化物を作用させる化学的方法[特許文献1、特許文献2]、触媒を含む処理水中での酸素酸化(空気酸化)[特許文献3]が報告されている。また、活性炭および金属触媒を担持した活性炭に有害有機塩素化物を吸着させた後、マイクロ波を照射して分解する方法が報告されている[特許文献4]。しかし、これらの方法は大量の活性炭の無害化処理法としては、操作の簡便性、コスト、あるいは安全性などの観点から、必ずしも満足いく方法ではなく、多くの解決すべき問題を残している。   In purifying exhaust gas from incinerators, pollutants in the atmosphere, or sewage from rivers, lakes, and industrial wastewater, the activated carbon adsorption method is widely used as the most versatile and effective method. Along with this, a large amount of activated carbon adsorbing contaminants is generated. In particular, activated carbon that adsorbs various toxic organic chlorinated substances such as dioxins and residual pesticides is usually incinerated, pyrolyzed, and landfilled. However, it is discharged with exhaust gas or eluted from landfills. In any case, there is a concern about causing secondary environmental pollution associated with the treatment, and a safe and simple detoxification treatment method or activation regeneration method has been demanded. As a conventional detoxification treatment method for activated carbon adsorbing harmful organic chlorinated substances, a chemical method using a peroxide [Patent Document 1, Patent Document 2], oxygen oxidation in treated water containing a catalyst (air oxidation) [Patent Document 3] has been reported. In addition, a method has been reported in which harmful organic chlorinated products are adsorbed on activated carbon and activated carbon supporting a metal catalyst, and then decomposed by irradiation with microwaves [Patent Document 4]. However, these methods are not necessarily satisfactory as detoxification treatment methods for a large amount of activated carbon from the viewpoint of easy operation, cost, safety, etc., and many problems to be solved remain.

一方、活性炭を電極とする有機ハロゲン化物の電解酸化・還元がいくつか報告されている。予めハロゲン化脂肪族炭化水素化合物を活性炭に吸着しこれを陽極として電解質水溶液中で光照射下に電解を行い分解する方法が開示されている[特許文献5]。汚染土壌内の有機塩素化物を分解除去する方法として有機塩素化物を含む汚染水を活性炭を陽陰極として電解することにより有機塩素化物を分解処理する方法が報告されている[特許文献6]。また、パラジウムや亜鉛などの金属を担持した活性炭布を陰極とする有機塩素化物の電解還元も報告されている[非特許文献1]。しかし、いずれも電流効率や操作の簡便性などの観点から、実用的な活性炭の無害化処理法としては十分満足できるものではない。   On the other hand, some electrolytic oxidation / reduction of organic halides using activated carbon as an electrode have been reported. A method is disclosed in which a halogenated aliphatic hydrocarbon compound is adsorbed on activated carbon in advance, and this is used as an anode for electrolysis in an aqueous electrolyte solution under light irradiation to decompose [Patent Document 5]. As a method for decomposing and removing organic chlorinated substances in contaminated soil, a method for decomposing organic chlorinated substances by electrolyzing contaminated water containing organic chlorinated substances using activated carbon as a cathode is reported [Patent Document 6]. In addition, electrolytic reduction of an organic chlorinated product using an activated carbon cloth carrying a metal such as palladium or zinc as a cathode has been reported [Non-patent Document 1]. However, none of them is sufficiently satisfactory as a practical method for detoxifying activated carbon from the viewpoint of current efficiency and ease of operation.

特開2007−21347号公報JP 2007-21347 A 特開2006−192378号公報JP 2006-192378 A 特開2000−254619号公報JP 2000-254619 A 特開2006−116027号公報JP 2006-116027 A 特開2001−828号公報Japanese Patent Laid-Open No. 2001-828 特開2004−16911号公報JP 2004-16911 A S. M. Kulikov 他、Electrochimica Acta(1996年),41巻(4号),527−531頁S. M.M. Kulikov et al., Electrochimica Acta (1996), 41 (4), 527-531.

本発明は上記課題を解決するためになされたものであり、活性炭に吸着した有害な有機ハロゲン化物を、安価で安全に、且つ簡便な操作で、還元的脱ハロゲン化して無害化処理する方法を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems, and provides a method for detoxifying a harmful organic halide adsorbed on activated carbon by reductive dehalogenation at a low cost, safely and with a simple operation. It is intended to provide.

上記課題は、活性炭に吸着した有害有機ハロゲン化物の電解還元による還元的脱ハロゲン化に於いて、活性炭として予め遷移金属触媒を担持した粉状活性炭あるいは布状活性炭のいずれかを用い、陰極と陽極との間に活性炭層とセパレーターとを積層した電解装置を用いることを特徴とする有機ハロゲン化物の還元的脱ハロゲン化法を提供することによって解決される。 The above problem is that, in the reductive dehalogenation by electrolytic reduction of harmful organic halides adsorbed on activated carbon, either powdered activated carbon previously loaded with a transition metal catalyst or cloth activated carbon is used as activated carbon, and the cathode and anode It is solved by providing a reductive dehalogenation method of an organic halide, characterized in that an electrolysis apparatus in which an activated carbon layer and a separator are laminated between them is used.

また、上記課題は、活性炭に吸着した有機ハロゲン化物の電解還元による還元的脱ハロゲン化に於いて、活性炭として予め遷移金属触媒を担持した粉状活性炭あるいは布状活性炭のいずれかを用い、陰極と陽極との間に活性炭層とセパレーターとを積層したフロー型電解装置を用いて電解液を流しながら電解を行うことを特徴とする有機ハロゲン化物の還元的脱ハロゲン化法を提供することによっても解決される。 In addition, the above problem is that in reductive dehalogenation by electrolytic reduction of an organic halide adsorbed on activated carbon, either powdered activated carbon or a supported activated carbon previously loaded with a transition metal catalyst is used as the activated carbon. It is also solved by providing a reductive dehalogenation method for organic halides characterized in that electrolysis is performed while flowing an electrolyte using a flow type electrolyzer in which an activated carbon layer and a separator are laminated between the anode and the anode. Is done.

このとき遷移金属触媒がパラジウム触媒であることが好適であり、電解液が支持塩を含む水、メタノール、あるいは水とメタノール混合溶液のいずれかであることが好適である。有機ハロゲン化物が、ポリクロロジベンゾ−パラ−ジオキシン(PCDDs)、ポリクロロジベンゾフラン(PCDFs)、コプラナ−ポリクロロビフェニル(コプラナ−PCB) などのダイオキシン類あるいはベンゼンヘキサクロリド(BHC)やポリクロロナフタレン(PCN)のいずれかであることが好適である。 At this time , the transition metal catalyst is preferably a palladium catalyst, and the electrolytic solution is preferably water containing a supporting salt, methanol, or a mixed solution of water and methanol. Organic halides are dioxins such as polychlorodibenzo-para-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), coplanar-polychlorobiphenyls (coplana-PCB), benzenehexachloride (BHC) and polychloronaphthalene (PCN). ) Is preferred.

また、このとき、有機ハロゲン化物が下記一般式(1)で示されるDDT誘導体のいずれかであることが好適である。
[式中、Zは、−CHCCl−、−CHCHCl−または−C=CCl−から選択される1種である。]
At this time, the organic halide is preferably any one of the DDT derivatives represented by the following general formula (1).
Wherein, Z is, -CHCCl 3 -, - CHCHCl 2 - or -C = CCl 2 - is one selected from the. ]

さらに、このとき、有機ハロゲン化物が下記一般式(2)で示される芳香族ハロゲン化物のいずれかであることも好適である。
[式中、Rは、水素原子、置換基を有してもよいフェニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキル基または置換基を有してもよいアルケニル基を表し、Xは芳香環上のm個の塩素または臭素置換基を表し、mは1〜5の整数を表す。]
Furthermore, at this time, it is also preferable that the organic halide is any one of the aromatic halides represented by the following general formula (2).
[Wherein R may have a hydrogen atom, a phenyl group which may have a substituent, an acyl group which may have a substituent, an alkyl group which may have a substituent, or a substituent. Represents a good alkenyl group, Xm represents m chlorine or bromine substituents on the aromatic ring, and m represents an integer of 1-5. ]

本発明は、活性炭に吸着した有害な有機ハロゲン化物を、電解還元により直接還元的脱ハロゲン化して無害化処理するもので、活性炭と適当なセパレーターを陰極と陽極間に積層した電解槽を用いることにより、あるいは同様の積層構造を持つフローセルを用い電解液を流しながら通電を行うことにより、格段に電流効率を向上させることができ、低コストで安全に、且つ簡便な操作で効率よい還元的脱ハロゲン化が実現した。これにより、ダイオキシン類や残留農薬などの各種有害有機ハロゲン化物を吸着した活性炭の無害化処理に有効な方法を提供できる。さらには処理後の活性炭は有害ハロゲン化物を含まないので通常の賦活操作により、活性炭を再生することも可能である。   In the present invention, harmful organic halide adsorbed on activated carbon is detoxified by direct reductive dehalogenation by electrolytic reduction, and an electrolytic cell in which activated carbon and an appropriate separator are laminated between a cathode and an anode is used. Or by using a flow cell having a similar layered structure while flowing the electrolyte, the current efficiency can be greatly improved, and the reductive removal can be performed safely and easily with low cost. Halogenation was realized. Thereby, it is possible to provide an effective method for detoxifying activated carbon adsorbing various harmful organic halides such as dioxins and residual agricultural chemicals. Furthermore, since the activated carbon after treatment does not contain harmful halides, it is possible to regenerate the activated carbon by a normal activation operation.

本発明では、活性炭に吸着した有機ハロゲン化物の電解還元による還元的脱ハロゲン化に於いて、図1に示す陰極と陽極との間に活性炭層とセパレーターとを積層した電解装置を用いる。陽極上に、電解液は通すが活性炭は通さない非導電性セパレーターを配置し、その上に活性炭層を積層し、さらにその上に陰極を配置する。この積層構造を含んでいれば、装置の大きさや形状に特に限定はなく、電解液を含浸させたのち、直流電源を接続し電解する。   In the present invention, in reductive dehalogenation by electrolytic reduction of an organic halide adsorbed on activated carbon, an electrolytic device in which an activated carbon layer and a separator are laminated between a cathode and an anode shown in FIG. 1 is used. On the anode, a non-conductive separator that allows the electrolyte to pass but not the activated carbon is disposed, an activated carbon layer is laminated thereon, and a cathode is further disposed thereon. If this laminated structure is included, the size and shape of the apparatus are not particularly limited, and after impregnating with an electrolytic solution, a direct current power source is connected for electrolysis.

また、本発明では、図2に示す陰極と陽極との間に活性炭層とセパレーターとを積層したフロー型電解装置を用いる。陽極上に、電解液は通すが活性炭は通さない非導電性セパレーターを置き、その上に活性炭層を積層し、さらにその上に陰極を配置する。電解液を陽極側の電解液導入口から導入し、セパレーター、活性炭層を通って陰極側の電解液排出口から流出させながら電解を行う。このように電解液をフローセル中に流すことにより、安定した電流を効率よく流すことができる。フローセルの大きさや形状は、上記積層構造を含んでいれば特に限定はない。   Moreover, in this invention, the flow type electrolyzer which laminated | stacked the activated carbon layer and the separator between the cathode and anode shown in FIG. 2 is used. On the anode, a non-conductive separator that allows the electrolytic solution to pass but not the activated carbon passes, and an activated carbon layer is laminated thereon, and a cathode is further disposed thereon. The electrolytic solution is introduced from the electrolytic solution inlet on the anode side, and electrolysis is performed while flowing out from the electrolytic solution outlet on the cathode side through the separator and the activated carbon layer. In this way, by flowing the electrolytic solution into the flow cell, a stable current can be efficiently flowed. The size or shape of the flow cell is not particularly limited as long as it includes the above laminated structure.

活性炭としては通常市販されている粉状活性炭(直径1〜500μm)、顆粒状活性炭、破砕状活性炭、ガス吸着等に用いる成型活性炭、あるいはフェルト状活性炭、布状活性炭などが用いられるが、好ましくは粉状活性炭もしくは布状活性炭のいずれかが用いられる。また、活性炭として予め遷移金属触媒を担持した粉状活性炭あるいは布状活性炭のいずれかを好適に用いることができる。   As the activated carbon, commercially available powdered activated carbon (diameter 1 to 500 μm), granular activated carbon, crushed activated carbon, molded activated carbon used for gas adsorption, etc., felt activated carbon, cloth activated carbon, etc. are preferably used. Either powdered activated carbon or cloth-like activated carbon is used. Moreover, either powdered activated carbon or cloth-like activated carbon in which a transition metal catalyst is supported in advance can be suitably used as the activated carbon.

活性炭上に担持される遷移金属触媒としては、通常の水添反応で用いられる白金、パラジウム、ロジウムあるいはニッケルを含む触媒が例示できるが、好ましくは、硝酸パラジウム、塩化パラジウム、酢酸パラジウム、塩化パラジウムビス(ベンゾニトリル)、塩化パラジウムビス(アセトニトリル)などのパラジウム触媒が用いられる。   Examples of the transition metal catalyst supported on activated carbon include catalysts containing platinum, palladium, rhodium or nickel used in ordinary hydrogenation reactions, but preferably palladium nitrate, palladium chloride, palladium acetate, palladium chloride bis A palladium catalyst such as (benzonitrile) or palladium chloride bis (acetonitrile) is used.

電解装置(図1、図2)に用いられるセパレーターとしては、電解液は通すが活性炭は通さない非導電性の多孔質材料であれば特に限定はない。具体的には、セルロース、ガラス繊維、シリカゲル、ポリ(テトラフルオロエチレン)製のろ紙や、セルロースやポリエステルなどの合成高分子からできた布や、有機溶媒で変性しないナフィオン(登録商標)やテフロン(登録商標)などの多孔質高分子からなる膜や、ガラスフィルターなどを例示できる。   The separator used in the electrolyzer (FIGS. 1 and 2) is not particularly limited as long as it is a non-conductive porous material that allows the electrolytic solution to pass but does not allow the activated carbon to pass. Specifically, cellulose, glass fiber, silica gel, poly (tetrafluoroethylene) filter paper, cloth made of synthetic polymers such as cellulose and polyester, Nafion (registered trademark) and Teflon (not modified with organic solvents) Examples thereof include a film made of a porous polymer such as a registered trademark and a glass filter.

陽極及び陰極の電極材料としては、市販の金属電極あるいは炭素電極を用いることができる。具体的には、ステンレス、鉄、ニッケル、チタン、銅、アルミニウム、白金被覆各種金属などの金属電極、あるいはグラッシーカーボンやグラファイトなどの炭素電極が例示できる。   Commercially available metal electrodes or carbon electrodes can be used as the anode and cathode electrode materials. Specific examples include metal electrodes such as stainless steel, iron, nickel, titanium, copper, aluminum, and various metals covered with platinum, or carbon electrodes such as glassy carbon and graphite.

電流は電解装置の形状や活性炭の種類と量、さらには電解液の種類によって一定しないが、概ね活性炭層1gあたり1〜1000mA、より好ましくは10〜100mAの電流を流す。   The current is not constant depending on the shape of the electrolysis apparatus, the type and amount of the activated carbon, and the type of the electrolytic solution, but a current of about 1 to 1000 mA, more preferably 10 to 100 mA is applied per 1 g of the activated carbon layer.

電解液の溶媒としては、水あるいはメタノール、エタノール、プロパノールなどの低級アルコールが用いられるが、好ましくは、水あるいはメタノールあるいはそれらの1:100ないし100:1の混合溶媒が用いられる。   As the solvent of the electrolytic solution, water or a lower alcohol such as methanol, ethanol, propanol or the like is used, but preferably water, methanol, or a mixed solvent thereof of 1: 100 to 100: 1 is used.

電解液には必要な電流を流すために0.001〜5mol/L、好ましくは0.01〜1mol/Lの支持電解質を加える。支持電解質としては、硫酸、塩酸、リン酸、酢酸、蟻酸などの酸、水酸化ナトリウム、水酸化カリウム、水酸化テトラアルキルアンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸テトラアルキルアンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素テトラアルキルアンモニウムなどのアルカリ、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸テトラアルキルアンモニウム、過塩素酸N,N’−ジアルキルイミダゾリウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム、テトラフルオロホウ酸テトラアルキルアンモニウム、テトラフルオロホウ酸N,N’−ジアルキルイミダゾリウム、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、ヘキサフルオロリン酸テトラアルキルアンモニウム、ヘキサフルオロリン酸N,N’−ジアルキルイミダゾリウム、硫酸ナトリウム、硫酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化テトラアルキルアンモニウム、塩化N,N’−ジアルキルイミダゾリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化テトラアルキルアンモニウム、臭化N,N’−ジアルキルイミダゾリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、パラトルエンスルホン酸リチウム、パラトルエンスルホン酸ナトリウム、パラトルエンスルホン酸カリウム、ビス(トリフリミド)酸リチウム、ビス(トリフリミド)酸ナトリウム、ビス(トリフリミド)酸カリウムなどの塩を例示することができる。   In order to pass a necessary current to the electrolytic solution, 0.001 to 5 mol / L, preferably 0.01 to 1 mol / L of a supporting electrolyte is added. Supporting electrolytes include acids such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, formic acid, sodium hydroxide, potassium hydroxide, tetraalkylammonium hydroxide, sodium carbonate, potassium carbonate, tetraalkylammonium carbonate, sodium bicarbonate, hydrogen carbonate Alkali such as potassium and tetraalkylammonium hydrogen carbonate, lithium perchlorate, sodium perchlorate, potassium perchlorate, tetraalkylammonium perchlorate, N, N'-dialkylimidazolium perchlorate, lithium tetrafluoroborate Sodium tetrafluoroborate, potassium tetrafluoroborate, tetraalkylammonium tetrafluoroborate, N, N′-dialkylimidazolium tetrafluoroborate, lithium hexafluorophosphate, sodium hexafluorophosphate , Potassium hexafluorophosphate, tetraalkylammonium hexafluorophosphate, N, N′-dialkylimidazolium hexafluorophosphate, sodium sulfate, potassium sulfate, lithium chloride, sodium chloride, potassium chloride, tetraalkylammonium chloride, chloride N, N′-dialkylimidazolium, lithium bromide, sodium bromide, potassium bromide, tetraalkylammonium bromide, N, N′-dialkylimidazolium bromide, lithium acetate, sodium acetate, potassium acetate, paratoluenesulfone Examples of the salt include lithium acid, sodium paratoluenesulfonate, potassium paratoluenesulfonate, lithium bis (triflimide), sodium bis (triflimide), and potassium bis (triflimide). That.

本発明の電解還元は通常の環境条件下で行うことができ、冷却や加温等は特に必要ではないが、5〜30℃で電解するのが好適である。   The electrolytic reduction of the present invention can be carried out under normal environmental conditions, and cooling or heating is not particularly required, but it is preferable to perform electrolysis at 5 to 30 ° C.

以下、実施例によって本発明を説明するが、この実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, it is not limited to this Example.

実施例1
市販の5重量%のパラジウムを担持した活性炭1gに4−クロロフェニルヘキシルエーテル(1a)200mgを吸着した。この活性炭に少量の0.5mol/L水酸化ナトリウム水溶液を含浸し、図3の装置に装填した。この装置に200mAの電流を流して20分間電解した。反応後の活性炭をトルエンで洗浄し、洗液をガスクロマトグラフィーで分析したところ、還元体生成物であるフェニルヘキシルエーテル(2a)が62%、ホモカップリング体である4,4’−ジヘキシルオキシビフェニル(3a)が10%得られ、原料1aが12%回収された。
Example 1
200 mg of 4-chlorophenyl hexyl ether (1a) was adsorbed on 1 g of commercially available activated carbon carrying 5% by weight of palladium. The activated carbon was impregnated with a small amount of a 0.5 mol / L sodium hydroxide aqueous solution and loaded into the apparatus shown in FIG. The apparatus was electrolyzed with a current of 200 mA for 20 minutes. After the reaction, the activated carbon was washed with toluene, and the washing solution was analyzed by gas chromatography. As a result, the reduced product, phenylhexyl ether (2a), was 62%, and the homo-coupled 4,4′-dihexyloxy. 10% of biphenyl (3a) was obtained, and 12% of raw material 1a was recovered.

実施例2〜6
基質として4−ヘキシルオキシブロモベンゼン(1b)を用い、下記の表1に示した支持電解質を用いる以外は実施例1と同様にして還元的脱臭素化を行った。
Examples 2-6
Reductive debromination was carried out in the same manner as in Example 1 except that 4-hexyloxybromobenzene (1b) was used as a substrate and the supporting electrolyte shown in Table 1 below was used.

実施例7〜14
5重量%の酢酸パラジウムを担持した粉状活性炭を用い、下記の表2に示す支持電解質を用いた以外は実施例1と同様にして還元的脱臭素化を行った。
Examples 7-14
Reductive debromination was carried out in the same manner as in Example 1 except that powdered activated carbon supporting 5% by weight of palladium acetate was used and the supporting electrolyte shown in Table 2 below was used.

実施例15
10mgのPCB(KC−500)を吸着した活性炭10gを用いて、200mAの電流を流して100分間電解した以外は実施例1と同様にして還元的脱塩素化を行い、JIS K0093に掲載のCB%を用いる方法により分析、計算した結果、凡そ77%のPCBが脱塩素化・無害化処理されたことがわかった。
Example 15
Reductive dechlorination was carried out in the same manner as in Example 1 except that 10 g of activated carbon adsorbed with 10 mg of PCB (KC-500) was used and electrolysis was performed for 100 minutes with a current of 200 mA, and CB described in JIS K0093. As a result of analysis and calculation by a method using%, it was found that about 77% of PCB was dechlorinated and detoxified.

実施例16〜18
下記の表3に示す芳香族ハロゲン化物(Ar−X)を用いる以外は実施例1と同様にして還元的脱ハロゲン化を行った。
Examples 16-18
Reductive dehalogenation was carried out in the same manner as in Example 1 except that the aromatic halide (Ar-X) shown in Table 3 below was used.

実施例19
5重量%のPdを担持した布状の活性炭250mgに4−クロロフェニルヘキシルエーテル(1a)50mgを吸着させた。この布状の活性炭を少量の0.1mol/L水酸化ナトリウム水溶液に浸したのち、図4の装置に装填した。この装置に10mAの電流を流して定電流電解した。反応後の活性炭をトルエンで洗浄し、洗液をガスクロマトグラフィーで分析したところ、還元体生成物であるフェニルヘキシルエーテル(2a)が75%、ホモカップリング体である4,4’−ジヘキシルオキシビフェニル(3a)が13%得られた。
Example 19
50 mg of 4-chlorophenylhexyl ether (1a) was adsorbed on 250 mg of cloth-like activated carbon carrying 5% by weight of Pd. This cloth-like activated carbon was immersed in a small amount of a 0.1 mol / L sodium hydroxide aqueous solution and then loaded into the apparatus shown in FIG. This apparatus was subjected to constant current electrolysis by supplying a current of 10 mA. After the reaction, the activated carbon was washed with toluene, and the washing was analyzed by gas chromatography. As a result, 75% of the reduced product, phenylhexyl ether (2a), and 4,4′-dihexyloxy, which was a homo-coupled product, were obtained. 13% of biphenyl (3a) was obtained.

実施例20
5重量%のPdを担持した布状の活性炭250mgに4−クロロフェニルヘキシルエーテル(1a)50mgを吸着させた。この布状の活性炭を少量の0.1mol/L水酸化ナトリウム水溶液に浸したのち、図5の装置に装填した。この装置に0.1mol/L水酸化ナトリウム水溶液を毎分4mL流しながら、10mAの電流を一時間20分間流して定電流電解した。反応後の活性炭をトルエンで洗浄し、洗液をガスクロマトグラフィーで分析したところ、還元体生成物であるフェニルヘキシルエーテル(2a)が83%、ホモカップリング体である4,4’−ジヘキシルオキシビフェニル(3a)が11%,原料(1a)が3%回収された。
Example 20
50 mg of 4-chlorophenylhexyl ether (1a) was adsorbed on 250 mg of cloth-like activated carbon carrying 5% by weight of Pd. The cloth-like activated carbon was immersed in a small amount of a 0.1 mol / L sodium hydroxide aqueous solution and then loaded into the apparatus shown in FIG. The apparatus was subjected to constant current electrolysis by flowing a current of 10 mA for 1 hour and 20 minutes while flowing 4 mL of a 0.1 mol / L sodium hydroxide aqueous solution per minute. The activated carbon after the reaction was washed with toluene, and the washing was analyzed by gas chromatography. As a result, 83% of the reduced product, phenylhexyl ether (2a), and 4,4′-dihexyloxy, which was a homo-coupled product, were obtained. 11% of biphenyl (3a) and 3% of raw material (1a) were recovered.

実施例21
電解中、水酸化ナトリウムメタノール溶液(0.1mol/L,20ml)を毎分4mLで循環させる以外は実施例20と同様に反応させたところ、還元体生成物であるフェニルヘキシルエーテル(2a)が78%、ホモカップリング体である4,4’−ジヘキシルオキシビフェニル(3a)が15%得られた。原料回収はなかった。
Example 21
During electrolysis, the reaction was carried out in the same manner as in Example 20 except that a sodium hydroxide methanol solution (0.1 mol / L, 20 ml) was circulated at a rate of 4 mL per minute. As a result, phenylhexyl ether (2a) as a reduced product was obtained. As a result, 78%, 15% of 4,4′-dihexyloxybiphenyl (3a) as a homo-coupled product was obtained. There was no material recovery.

本発明は電力、エネルギー、各種化学産業に於いて、有害有機ハロゲン化物を含む排ガスあるいは排水や廃液水の浄化に用いられた使用済み活性炭の無害化処理さらには賦活再生処理に好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for detoxification treatment of used activated carbon used for purification of exhaust gas containing toxic organic halides, waste water or waste water, and activation regeneration treatment in the electric power, energy and various chemical industries.

陰極と陽極との間に活性炭層(粉状活性炭あるいは布状活性炭)と非導電性セパレーターとを積層した電解装置図である。It is an electrolysis apparatus figure which laminated | stacked the activated carbon layer (powder activated carbon or cloth-like activated carbon) and the nonelectroconductive separator between the cathode and the anode. 陰極と陽極との間に活性炭層(粉状活性炭あるいは布状活性炭)と非導電性セパレーターとを積層したフロー型電解装置図である。It is a flow type electrolyzer diagram in which an activated carbon layer (powder activated carbon or cloth activated carbon) and a non-conductive separator are laminated between a cathode and an anode. 陰極と陽極との間にパラジウム担持粉状活性炭層とポリ(テトラフルオロエチレン)製ろ紙とを積層した電解装置図である。It is an electrolysis apparatus figure which laminated | stacked the palladium carrying | support powdery activated carbon layer and the poly (tetrafluoroethylene) filter paper between the cathode and the anode. 陰極と陽極との間にパラジウム担持布状活性炭層と非導電性セパレーターとを積層した電解装置図である。It is the electrolysis apparatus figure which laminated | stacked the palladium-supporting cloth-like activated carbon layer and the nonelectroconductive separator between the cathode and the anode. 陰極と陽極との間にパラジウム担持布状活性炭層と非導電性セパレーターとを積層したフロー型電解装置図である。It is a flow type electrolysis apparatus diagram in which a palladium-supported cloth-like activated carbon layer and a non-conductive separator are laminated between a cathode and an anode.

符号の説明Explanation of symbols

1 陽極
2 陰極
3 電解液は通すが活性炭は通さない非導電性セパレーター
4 活性炭層(粉状活性炭あるいは布状活性炭)
5 電源装置
6 電解液導入口
7 電解液排出口
8 カバー
9 ポリ(テトラフルオロエチレン)製ろ紙
10 基質を吸着したパラジウム担持粉状活性炭層
11 基質を吸着したパラジウム担持布状活性炭層
1 Anode 2 Cathode 3 Non-conductive separator that allows electrolyte to pass but not activated carbon 4 Activated carbon layer (powder activated carbon or cloth activated carbon)
DESCRIPTION OF SYMBOLS 5 Power supply device 6 Electrolyte inlet 7 Electrolyte outlet 8 Cover 9 Poly (tetrafluoroethylene) filter paper 10 Palladium carrying powdery activated carbon layer which adsorbed substrate 11 Palladium carrying cloth activated carbon layer which adsorbed substrate

Claims (7)

活性炭に吸着した有機ハロゲン化物の電解還元による還元的脱ハロゲン化に於いて、活性炭として予め遷移金属触媒を担持した粉状活性炭あるいは布状活性炭のいずれかを用い、陰極と陽極との間に活性炭層とセパレーターとを積層した電解装置を用いることを特徴とする有機ハロゲン化物の還元的脱ハロゲン化法。 In reductive dehalogenation by electrolytic reduction of organic halides adsorbed on activated carbon, either activated carbon powdered with a transition metal catalyst or cloth activated carbon is used as activated carbon, and activated carbon is interposed between the cathode and anode. A reductive dehalogenation method of an organic halide, characterized by using an electrolyzer in which a layer and a separator are laminated. 活性炭に吸着した有機ハロゲン化物の電解還元による還元的脱ハロゲン化に於いて、活性炭として予め遷移金属触媒を担持した粉状活性炭あるいは布状活性炭のいずれかを用い、陰極と陽極との間に活性炭層とセパレーターとを積層したフロー型電解装置を用いて電解液を流しながら電解を行うことを特徴とする有機ハロゲン化物の還元的脱ハロゲン化法。 In reductive dehalogenation by electrolytic reduction of organic halides adsorbed on activated carbon, either activated carbon powdered with a transition metal catalyst or cloth activated carbon is used as activated carbon, and activated carbon is interposed between the cathode and anode. A reductive dehalogenation method for organic halides, characterized in that electrolysis is carried out while flowing an electrolyte using a flow type electrolyzer in which a layer and a separator are laminated. 遷移金属触媒がパラジウム触媒である請求項1又は2に記載の有機ハロゲン化物の還元的脱ハロゲン化法。 The method for reductive dehalogenation of an organic halide according to claim 1 or 2 , wherein the transition metal catalyst is a palladium catalyst. 電解液が支持塩を含む水、メタノール、あるいは水とメタノール混合溶液のいずれかである請求項1〜のいずれかに記載の有機ハロゲン化物の還元的脱ハロゲン化法。 The method for reductive dehalogenation of an organic halide according to any one of claims 1 to 3 , wherein the electrolytic solution is water containing a supporting salt, methanol, or a mixed solution of water and methanol. 有機ハロゲン化物が、ポリクロロジベンゾ−パラ−ジオキシン(PCDDs)、ポリクロロジベンゾフラン(PCDFs)、コプラナ−ポリクロロビフェニル(コプラナ−PCB) などのダイオキシン類あるいはベンゼンヘキサクロリド(BHC)やポリクロロナフタレン(PCN)のいずれかである請求項1〜のいずれかに記載の有機ハロゲン化物の還元的脱ハロゲン化法。 Organic halides are dioxins such as polychlorodibenzo-para-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), coplanar-polychlorobiphenyls (coplana-PCB), benzenehexachloride (BHC) and polychloronaphthalene (PCN). The method for reductive dehalogenation of an organic halide according to any one of claims 1 to 4 . 有機ハロゲン化物が下記一般式(1)で示されるDDT誘導体のいずれかである請求項1〜のいずれかに記載の有機ハロゲン化物の還元的脱ハロゲン化法。
[式中、Zは、−CHCCl−、−CHCHCl−または−C=CCl−から選択される1種である。]
The method for reductive dehalogenation of an organic halide according to any one of claims 1 to 4 , wherein the organic halide is any one of the DDT derivatives represented by the following general formula (1).
Wherein, Z is, -CHCCl 3 -, - CHCHCl 2 - or -C = CCl 2 - is one selected from the. ]
有機ハロゲン化物が下記一般式(2)で示される芳香族ハロゲン化物のいずれかである請求項1〜のいずれかに記載の有機ハロゲン化物の還元的脱ハロゲン化法。
[式中、Rは、水素原子、置換基を有してもよいフェニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキル基または置換基を有してもよいアルケニル基を表し、Xmは芳香環上のm個の塩素または臭素置換基を表し、mは1〜5の整数を表す。]
The method for reductive dehalogenation of an organic halide according to any one of claims 1 to 4 , wherein the organic halide is an aromatic halide represented by the following general formula (2).
[Wherein R may have a hydrogen atom, a phenyl group which may have a substituent, an acyl group which may have a substituent, an alkyl group which may have a substituent, or a substituent. Represents a good alkenyl group, Xm represents m chlorine or bromine substituents on the aromatic ring, and m represents an integer of 1-5. ]
JP2007060952A 2007-03-09 2007-03-09 Electroreductive dehalogenation of activated carbon adsorbed organic halides Expired - Fee Related JP4817190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060952A JP4817190B2 (en) 2007-03-09 2007-03-09 Electroreductive dehalogenation of activated carbon adsorbed organic halides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060952A JP4817190B2 (en) 2007-03-09 2007-03-09 Electroreductive dehalogenation of activated carbon adsorbed organic halides

Publications (2)

Publication Number Publication Date
JP2008272594A JP2008272594A (en) 2008-11-13
JP4817190B2 true JP4817190B2 (en) 2011-11-16

Family

ID=40051263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060952A Expired - Fee Related JP4817190B2 (en) 2007-03-09 2007-03-09 Electroreductive dehalogenation of activated carbon adsorbed organic halides

Country Status (1)

Country Link
JP (1) JP4817190B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530080A4 (en) * 2010-01-29 2017-05-31 Ogawa & Co., Ltd. Method for manufacturing polymethoxyflavones that are highly stable over time and have reduced residual pesticide levels
KR102016351B1 (en) * 2017-12-12 2019-10-21 주식회사 하이엔텍 Activated carbon regeneration device
CN108543415A (en) * 2018-05-03 2018-09-18 浙江利欧环保科技有限公司 A kind of method and bio-trickling filter of removal dioxin in flue gas
CN113981490B (en) * 2021-11-05 2022-11-15 浙江师范大学行知学院 Composite material of palladium-containing metal organic framework compound modified foam nickel and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416286A (en) * 1990-05-03 1992-01-21 Konica Corp Electrochemical treatment of water to be treated
JPH05305281A (en) * 1992-04-28 1993-11-19 Matsushita Electric Works Ltd Water purifier
JP3238839B2 (en) * 1994-11-24 2001-12-17 松下電器産業株式会社 Water purifier
JP2004016914A (en) * 2002-06-14 2004-01-22 Ohbayashi Corp Method, apparatus and system for treatment of organic chlorine compound
JP2005103518A (en) * 2003-10-02 2005-04-21 Air Water Inc Heavy metal wastewater treatment system and heavy metal wastewater treatment method
JP2005161172A (en) * 2003-12-01 2005-06-23 Koken Boring Mach Co Ltd Water treatment filter structure and water treatment method using the same
JP3970277B2 (en) * 2004-10-20 2007-09-05 東京電力株式会社 Contaminated oil treatment method

Also Published As

Publication number Publication date
JP2008272594A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
Martínez-Huitle et al. Electrochemical water and wastewater treatment
EP0968739B1 (en) Method for decomposing halogenated aliphatic and aromatic compounds
JP4116726B2 (en) Electrochemical treatment method and apparatus
US7812211B2 (en) Process for the destruction of halogenated hydrocarbons and their homologous/analogous in deep eutectic solvents at ambient conditions
Savall Electrochemical treatment of industrial organic effluents
CN114450252A (en) Reactive electrochemical membrane for wastewater treatment
EP1731198A1 (en) Method and apparatus for dehalogenating organic halide through electrolysis
JP4817190B2 (en) Electroreductive dehalogenation of activated carbon adsorbed organic halides
Cui et al. Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers
WO2003093535A2 (en) Electrolysis cell and method
Govindan et al. Efficient removal of gaseous trichloroethylene by continuous feed electro-scrubbing using a new homogeneous heterobimetallic electro-catalyst
Miyoshi et al. Electrochemical reduction of organohalogen compound by noble metal sintered electrode
Zhou et al. Improved photoelectrocatalytic degradation of tetrabromobisphenol A with silver and reduced graphene oxide-modified TiO2 nanotube arrays under simulated sunlight
Muñoz-Morales et al. A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents
Durante et al. Electrocatalytic dechlorination of polychloroethylenes at silver cathode
US5292409A (en) Cathode and process for degrading halogenated carbon compounds in aqueous solvents
Brillas et al. Electrochemical methods for degradation of organic pollutants in aqueous media
Rondinini et al. Electroreduction of halogenated organic compounds
King et al. Electrochemical reduction of halogenated organic contaminants using carbon-based cathodes: A review
Du et al. Efficient dechlorination of 2, 4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO 2 NTs/Ti cathode
WO2000071472A1 (en) Method of decomposing organochlorine compound
Kalu et al. In situ degradation of polyhalogenated aromatic hydrocarbons by electrochemically generated superoxide ions
JP3645061B2 (en) Apparatus for decomposing organic components in aqueous solution and method for decomposing the same
JPH11179195A (en) Organic compound decomposition method, apparatus to be employed therefor, waste gas purification method, and apparatus to be employed therefor
EP0819448B1 (en) Process for the reduction of chlorofluorocarbons and production of derivatives thereof in an electrolytic cell, cell for carrying out said reduction and process for removing the by-products formed within the cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees