JP4816214B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4816214B2
JP4816214B2 JP2006110778A JP2006110778A JP4816214B2 JP 4816214 B2 JP4816214 B2 JP 4816214B2 JP 2006110778 A JP2006110778 A JP 2006110778A JP 2006110778 A JP2006110778 A JP 2006110778A JP 4816214 B2 JP4816214 B2 JP 4816214B2
Authority
JP
Japan
Prior art keywords
semiconductor
thickness dimension
spacer
igbt
heat sinks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006110778A
Other languages
Japanese (ja)
Other versions
JP2007287784A (en
Inventor
憲司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006110778A priority Critical patent/JP4816214B2/en
Publication of JP2007287784A publication Critical patent/JP2007287784A/en
Application granted granted Critical
Publication of JP4816214B2 publication Critical patent/JP4816214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a manufacturing cost by reducing the number of elements to be mounted between a pair of heat sinks, and eliminating the necessity of highly accurately adjusting and controlling the thickness dimension of each of the elements. <P>SOLUTION: The semiconductor device 1 is configured so that a plurality of stacks of semiconductor elements 4, 5 and spacers 6, 7 are sandwiched between the pair of heat sinks 2, 3. The semiconductor device 1 is configured so that an element integrating an FWD with an IGBT is used as the semiconductor elements 2, 3; gate driving ICs 8, 9 of the IGBT are arranged between the pair of heat sinks 2, 3; and the semiconductor elements and the spacers of a combination in which (d1+d2) is a substantial constant value are selected and used from many semiconductor elements and many spacers, where d1 is the thickness of a semiconductor element and d2 is the thickness of a spacer. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、半導体素子及びスペーサを積み重ねたものを複数個、一対のヒートシンクの間に挟んで構成された半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device configured by sandwiching a plurality of stacked semiconductor elements and spacers between a pair of heat sinks, and a method for manufacturing the same.

インバータ装置等に利用される両面放熱パワーモジュールは、一対のヒートシンクの間に複数個のIGBT素子と複数個のFWD素子を挟むように実装して構成されており、一例として例えば特許文献1に記載のものが知られている。この構成の場合、IGBT素子のゲート駆動ICは、パワーモジュールの外部に配設されており、パワーモジュールのリード端子と上記ゲート駆動ICとを接続することにより、IGBT素子を駆動している。
アメリカ合衆国特許第6,072,240号
A double-sided heat dissipation power module used for an inverter device or the like is configured by mounting a plurality of IGBT elements and a plurality of FWD elements between a pair of heat sinks. Things are known. In this configuration, the gate drive IC of the IGBT element is arranged outside the power module, and the IGBT element is driven by connecting the lead terminal of the power module and the gate drive IC.
United States Patent No. 6,072,240

しかし、上記構成の場合、ゲート駆動ICをパワーモジュールの外部に配設する構成であるため、接続用の配線も含めてシステム全体の構成が大きくなるという問題点や、配線の寄生インダクタンスによりスイッチ速度が遅くなって損失が増えるという問題点がある。また、多くのIGBT素子及びFWD素子を一対のヒートシンクの間に実装するため、各素子の厚み寸法のばらつきにより各素子に作用する応力の大きさをばらつかせることから、各素子の接合部(半田付け部)の信頼性を低下させるという問題点もある。この対策としては、各素子の厚み寸法を高精度に調整・管理する必要があり、製造コストを増加させる要因になっていた。   However, in the case of the above configuration, since the gate drive IC is disposed outside the power module, the configuration of the entire system including the wiring for connection becomes large, and the switching speed due to the parasitic inductance of the wiring. However, there is a problem that the loss is increased due to the delay. In addition, since many IGBT elements and FWD elements are mounted between a pair of heat sinks, the magnitude of stress acting on each element varies due to variations in the thickness dimension of each element. There is also a problem that the reliability of the soldering part) is lowered. As a countermeasure, it is necessary to adjust and manage the thickness dimension of each element with high accuracy, which is a factor of increasing the manufacturing cost.

そこで、本発明の目的は、一対のヒートシンクの間に実装する素子の個数を削減すると共に、各素子の厚み寸法を高精度に調整・管理しなくてもすむようにして、製造コストを低減することができる半導体装置及びその製造方法を提供するにある。   Accordingly, an object of the present invention is to reduce the number of elements to be mounted between a pair of heat sinks and reduce the manufacturing cost by eliminating the need to adjust and manage the thickness dimension of each element with high accuracy. An object of the present invention is to provide a semiconductor device and a method for manufacturing the same.

本発明の半導体装置は、半導体素子及びスペーサを積み重ねたものを複数個、一対のヒートシンクの間に挟んで構成されたものにおいて、前記半導体素子は、IGBTにFWDを一体化させた素子で構成され、前記IGBTのゲート駆動用のICチップであって、前記一対のヒートシンクの間に配設されたゲート駆動ICを備え、前記半導体素子の厚み寸法d1とし、前記スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値となると共に、前記スペーサの厚み寸法d2が前記ゲート駆動ICの厚み寸法よりも厚くなるように構成したところに特徴を有する。 In the semiconductor device of the present invention, a plurality of stacked semiconductor elements and spacers are sandwiched between a pair of heat sinks. The semiconductor element is configured by an element in which an FWD is integrated with an IGBT. , an IC chip for driving the gate of the IGBT, a gate drive IC disposed between the pair of heat sinks, and the thickness d1 of the previous SL semiconductor device, when the thickness d2 of the spacer Further, the present invention is characterized in that d1 + d2 has a substantially constant value and the thickness dimension d2 of the spacer is larger than the thickness dimension of the gate driving IC .

上記構成によれば、半導体素子として、IGBTにFWDを一体化させた素子を使用するので、一対のヒートシンクの間に実装する素子の個数を削減できる。また、多数の半導体素子及び多数のスペーサの中から、前記半導体素子の厚み寸法d1とし、前記スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値となる組み合わせの前記半導体素子及び前記スペーサを選択して使用するように構成したので、各素子の厚み寸法を高精度に調整・管理しなくても、組み合わせた半導体素子及びスペーサの全体の厚み寸法がほぼ一定値となる。このため、各素子に作用する応力の大きさを均一にすることができ、各素子の接合部の信頼性を向上させることができる。更に、スペーサの厚み寸法d2がゲート駆動ICの厚み寸法よりも厚くなるように構成したので、ゲート駆動ICが該ゲート駆動ICを実装していない側のヒートシンクに設けられた配線層に接触することを防止できると共に、ゲート駆動ICのボンディング用のワイヤを配線するための空間を確保することができる。 According to the above configuration, since the element in which the FWD is integrated with the IGBT is used as the semiconductor element, the number of elements mounted between the pair of heat sinks can be reduced. Further, the semiconductor element and the spacer are combined in such a combination that d1 + d2 becomes a substantially constant value when the thickness dimension d1 of the semiconductor element and the thickness dimension d2 of the spacer are selected from among a number of semiconductor elements and a number of spacers Since it is configured to be selected and used, the total thickness dimension of the combined semiconductor element and spacer becomes a substantially constant value without adjusting and managing the thickness dimension of each element with high accuracy. For this reason, the magnitude | size of the stress which acts on each element can be made uniform, and the reliability of the junction part of each element can be improved. Furthermore, since the spacer has a thickness d2 that is larger than the thickness of the gate drive IC, the gate drive IC is in contact with the wiring layer provided on the heat sink on the side where the gate drive IC is not mounted. Can be prevented, and a space for wiring bonding wires of the gate drive IC can be secured.

また、上記構成の場合、前記スペーサを、金属で構成することが好ましい。更に、前記スペーサを、半導体で構成することがより一層好ましい。
本発明の半導体素子の製造方法は、半導体素子及びスペーサを積み重ねたものを複数個、一対のヒートシンクの間に挟んで構成された半導体素子を製造する方法において、前記半導体素子として、IGBTにFWDを一体化させた素子を使用し、前記IGBTのゲート駆動ICを前記一対のヒートシンクの間に配設し、多数の前記半導体素子及び多数の前記スペーサの中から、前記半導体素子の厚み寸法d1とし、前記スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値となる組み合わせの前記半導体素子及び前記スペーサを選択して使用すると共に、前記スペーサの厚み寸法d2を前記ゲート駆動ICの厚み寸法よりも厚くしたところに特徴を有する。
Moreover, in the case of the said structure, it is preferable to comprise the said spacer with a metal. Furthermore, it is even more preferable that the spacer is made of a semiconductor.
According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: a semiconductor device having a plurality of stacked semiconductor devices and spacers sandwiched between a pair of heat sinks; Using the integrated element, the gate drive IC of the IGBT is disposed between the pair of heat sinks, and the thickness dimension d1 of the semiconductor element is selected from among the multiple semiconductor elements and the multiple spacers, When the thickness dimension d2 of the spacer is set, the combination of the semiconductor element and the spacer in which d1 + d2 becomes a substantially constant value is selected and used , and the thickness dimension d2 of the spacer is made larger than the thickness dimension of the gate driving IC Characterized by thickening .

以下、本発明の第1の実施例について、図1ないし図4を参照しながら説明する。まず、図1は、本実施例のIGBTモジュール(半導体装置)1の縦断面図である。この図1に示すように、IGBTモジュール1は、一対のヒートシンク2、3と、これらヒートシンク2、3間に配設される半導体素子4、5と、ヒートシンク2、3間に配設され半導体素子4、5に積み重ねられるスペーサ6、7と、ヒートシンク2、3間に配設されるゲート駆動IC8、9とを備えて構成されている。   A first embodiment of the present invention will be described below with reference to FIGS. First, FIG. 1 is a longitudinal sectional view of an IGBT module (semiconductor device) 1 of the present embodiment. As shown in FIG. 1, the IGBT module 1 includes a pair of heat sinks 2 and 3, semiconductor elements 4 and 5 disposed between the heat sinks 2 and 3, and semiconductor elements disposed between the heat sinks 2 and 3. Spacers 6 and 7 stacked on 4 and 5 and gate drive ICs 8 and 9 disposed between the heat sinks 2 and 3 are provided.

ヒートシンク2、3は、熱伝導性が良い絶縁部材である例えば窒化アルミニウム(AlN)製の板材で構成されている。尚、ヒートシンク2、3を、例えばダイヤモンド製の板材で構成しても良い。   The heat sinks 2 and 3 are made of a plate material made of, for example, aluminum nitride (AlN), which is an insulating member having good thermal conductivity. In addition, you may comprise the heat sinks 2 and 3 with the board | plate material made from a diamond, for example.

半導体素子4、5は、図2に示すように、IGBT10にFWD11を一体化させたIGBTチップ(素子)12で構成されており、その形状は矩形薄板状である。本実施例の場合、IGBTチップ12は、その厚み寸法が例えば150μm程度になるように製造されている。IGBTチップ12の厚み寸法の製造のばらつきは、図3に示すような度数分布となり、厚み寸法の中心(150μm)のものが最も多く、中心より薄いほどまたは厚いほど少なくなる。この場合、最も薄い厚み寸法をa1とし、最も厚い厚み寸法をanとしている。   As shown in FIG. 2, each of the semiconductor elements 4 and 5 includes an IGBT chip (element) 12 in which an FWD 11 is integrated with an IGBT 10 and has a rectangular thin plate shape. In the case of the present embodiment, the IGBT chip 12 is manufactured so that its thickness dimension is, for example, about 150 μm. The variation in the manufacturing of the thickness dimension of the IGBT chip 12 has a frequency distribution as shown in FIG. 3, and is most often at the center (150 μm) of the thickness dimension, and decreases as the thickness is thinner or thicker. In this case, the thinnest thickness dimension is a1, and the thickest thickness dimension is an.

スペーサ6、7は、熱伝導性が良く且つ導電性の良い部材である例えば銅製のブロックで構成されている。本実施例の場合、スペーサ6、7は、その厚み寸法が例えば500μm程度になるように製造されている。スペーサ6、7の厚み寸法の製造のばらつきは、図4に示すような度数分布となり、厚み寸法の中心(500μm)のものが最も多く、中心より薄いほどまたは厚いほど少なくなる。この場合、最も薄い厚み寸法をb1とし、最も厚い厚み寸法をbnとしている。   The spacers 6 and 7 are made of, for example, copper blocks that are members having good thermal conductivity and good conductivity. In the case of the present embodiment, the spacers 6 and 7 are manufactured so that the thickness dimension thereof is, for example, about 500 μm. The variation in the manufacturing of the thickness dimension of the spacers 6 and 7 has a frequency distribution as shown in FIG. 4, and is most often at the center (500 μm) of the thickness dimension, and decreases as the thickness is thinner or thicker. In this case, the thinnest thickness dimension is b1, and the thickest thickness dimension is bn.

ゲート駆動IC8、9は、半導体素子4、5のIGBT10のゲート駆動用のICチップである。尚、ゲート駆動IC8、9の厚み寸法は、例えば400μm程度になるように製造されている。   The gate drive ICs 8 and 9 are IC chips for driving the gate of the IGBT 10 of the semiconductor elements 4 and 5. The gate drive ICs 8 and 9 are manufactured to have a thickness dimension of, for example, about 400 μm.

上記構成の場合、一方(図1中右方)の半導体素子4については、その下面に設けられたエミッタ電極を下方のヒートシンク2の上面に設けられたエミッタ接続用の配線層13に半田付けしている。このとき、半導体素子4の下面の右端部に設けられたベース電極をヒートシンク2の上面に設けられたベース接続用の配線層14に半田付けしている。   In the case of the above configuration, one (on the right side in FIG. 1) of the semiconductor element 4 is soldered to the emitter connection wiring layer 13 provided on the upper surface of the lower heat sink 2 with the emitter electrode provided on the lower surface thereof. ing. At this time, the base electrode provided at the right end of the lower surface of the semiconductor element 4 is soldered to the wiring layer 14 for base connection provided on the upper surface of the heat sink 2.

そして、半導体素子4の上面に設けられたコレクタ電極をスペーサ6の下面に半田付けしている。更に、スペーサ6の上面を、上方のヒートシンク3の下面に設けられたコレクタ接続用の配線層15に半田付けしている。尚、この配線層15は、他方(図1中左方)の半導体素子5の上面に設けられたエミッタ電極を接続するエミッタ接続用の配線層でもある。   The collector electrode provided on the upper surface of the semiconductor element 4 is soldered to the lower surface of the spacer 6. Further, the upper surface of the spacer 6 is soldered to a wiring layer 15 for collector connection provided on the lower surface of the upper heat sink 3. The wiring layer 15 is also an emitter connection wiring layer for connecting an emitter electrode provided on the upper surface of the other semiconductor element 5 (left side in FIG. 1).

即ち、他方の半導体素子5の上面のエミッタ電極をヒートシンク3の下面の上記配線層15に半田付けしている。そして、上記半導体素子5の上面の左端部に設けられたベース電極を、ヒートシンク3の下面に設けられたベース接続用の配線層16に半田付けしている。   That is, the emitter electrode on the upper surface of the other semiconductor element 5 is soldered to the wiring layer 15 on the lower surface of the heat sink 3. The base electrode provided at the left end of the upper surface of the semiconductor element 5 is soldered to the wiring layer 16 for base connection provided on the lower surface of the heat sink 3.

更に、半導体素子5の下面に設けられたコレクタ電極をスペーサ7の上面に半田付けしている。それから、スペーサ7の下面を、下方のヒートシンク2の上面に設けられたコレクタ接続用の配線層17に半田付けしている。   Further, the collector electrode provided on the lower surface of the semiconductor element 5 is soldered to the upper surface of the spacer 7. Then, the lower surface of the spacer 7 is soldered to a collector connecting wiring layer 17 provided on the upper surface of the lower heat sink 2.

ここで、積み重ねる半導体素子4、5とスペーサ6、7の組み合わせについて説明する。半導体素子4、5の厚み寸法は、図3に示すような度数分布の製造ばらつきがある。スペーサ6、7の厚み寸法も、図4に示すような度数分布の製造ばらつきがある。そこで、半導体素子の厚み寸法d1とし、スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値(この場合、例えば650μm)となる組み合わせの半導体素子及びスペーサを選択して組み合わせるように構成すれば、積み重ねたものの厚み寸法がほぼ一定になる。   Here, a combination of stacked semiconductor elements 4 and 5 and spacers 6 and 7 will be described. The thickness dimension of the semiconductor elements 4 and 5 has a manufacturing variation of a frequency distribution as shown in FIG. The thickness dimensions of the spacers 6 and 7 also have manufacturing variations in the frequency distribution as shown in FIG. Therefore, when the thickness dimension d1 of the semiconductor element and the thickness dimension d2 of the spacer are set, a combination of a semiconductor element and a spacer in which d1 + d2 is a substantially constant value (in this case, for example, 650 μm) is selected and combined. The thickness dimension of the stacked ones is almost constant.

具体的には、厚さ寸法がa1の半導体素子と厚さ寸法がbnのスペーサとを組み合わせ、厚さ寸法がa2の半導体素子と厚さ寸法がbn−1のスペーサとを組み合わせ、厚さ寸法がa3の半導体素子と厚さ寸法がbn−2のスペーサとを組み合わせ、・・・、厚さ寸法がanの半導体素子と厚さ寸法がb1のスペーサとを組み合わせるように構成すれば良い。   Specifically, a semiconductor element having a thickness dimension of a1 and a spacer having a thickness dimension of bn are combined, and a semiconductor element having a thickness dimension of a2 and a spacer having a thickness dimension of bn-1 are combined to obtain a thickness dimension. May be configured such that a semiconductor element having a3 and a spacer having a thickness dimension of bn-2 are combined, and a semiconductor element having a thickness dimension of an and a spacer having a thickness dimension of b1 are combined.

また、一方(図1中右方)のゲート駆動IC8は、ヒートシンク2の配線層14上に絶縁層18を介して設けられた配線層19上に半田付けされている。ゲート駆動IC8の各入出力電極は、配線層14やリードフレーム20にワイヤボンディングされている。そして、他方(図1中左方)のゲート駆動IC9は、ヒートシンク3の配線層16上に絶縁層21を介して設けられた配線層22上に半田付けされている。ゲート駆動IC9の各入出力電極は、配線層16やリードフレーム23にワイヤボンディングされている。   One (right side in FIG. 1) gate drive IC 8 is soldered onto a wiring layer 19 provided on the wiring layer 14 of the heat sink 2 via an insulating layer 18. Each input / output electrode of the gate drive IC 8 is wire-bonded to the wiring layer 14 and the lead frame 20. The other (left side in FIG. 1) gate drive IC 9 is soldered onto a wiring layer 22 provided on the wiring layer 16 of the heat sink 3 via an insulating layer 21. Each input / output electrode of the gate drive IC 9 is wire-bonded to the wiring layer 16 and the lead frame 23.

そして、ヒートシンク2、3間には、図示しない樹脂が充填されており、この樹脂により半導体素子4、5、スペーサ6、7、ゲート駆動IC8、9がモールドされるように構成されている。   A resin (not shown) is filled between the heat sinks 2 and 3, and the semiconductor elements 4 and 5, the spacers 6 and 7, and the gate drive ICs 8 and 9 are molded by this resin.

このような構成の本実施例によれば、半導体素子4、5として、IGBT10にFWD11を一体化させたIGBTチップ12を使用したので、一対のヒートシンク2、3の間に実装する素子の個数を削減することができる。そして、上記実施例においては、IGBT10のゲート駆動IC8、9を一対のヒートシンク2、3の間に配設したので、IGBTモジュール1全体の構成を小形化することができる。   According to the present embodiment having such a configuration, since the IGBT chip 12 in which the FWD 11 is integrated with the IGBT 10 is used as the semiconductor elements 4 and 5, the number of elements to be mounted between the pair of heat sinks 2 and 3 is set. Can be reduced. In the above embodiment, since the gate drive ICs 8 and 9 of the IGBT 10 are disposed between the pair of heat sinks 2 and 3, the entire configuration of the IGBT module 1 can be miniaturized.

また、上記実施例においては、多数の半導体素子及び多数のスペーサの中から、半導体素子の厚み寸法d1とし、スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値となる組み合わせの半導体素子及びスペーサを選択して使用するように構成したので、各半導体素子の厚み寸法を高精度に調整・管理しなくても、各半導体素子に作用する応力の大きさを均一にすることができ、各半導体素子の接合部(半田付け部)の信頼性を向上させることができる。   Further, in the above-described embodiment, the combination of the semiconductor elements in which d1 + d2 has a substantially constant value when the thickness dimension d1 of the semiconductor element is set to the thickness dimension d2 of the spacer from among the large number of semiconductor elements and the plurality of spacers. Since the spacer is selected and used, the magnitude of the stress acting on each semiconductor element can be made uniform without adjusting and managing the thickness dimension of each semiconductor element with high accuracy. The reliability of the joining portion (soldering portion) of the semiconductor element can be improved.

図5は、本発明の第2の実施例を示すものである。尚、第1の実施例と同一構成には、同一符号を付している。この第2の実施例では、ゲート駆動IC8、9をワイヤボンディングで接続する代わりに、フリップチップで接続するように構成している。   FIG. 5 shows a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, the gate drive ICs 8 and 9 are connected by flip chip instead of being connected by wire bonding.

具体的には、図5に示すように、ゲート駆動IC8については、配線層14の上に絶縁層24を設け、この絶縁層24の上に配線パターン25を設け、この配線パターン25にゲート駆動IC8をボール半田26を介して接続している。尚、半導体素子4の下面のゲート電極は、上記配線パターン25に半田付けされている。   Specifically, as shown in FIG. 5, for the gate driving IC 8, an insulating layer 24 is provided on the wiring layer 14, a wiring pattern 25 is provided on the insulating layer 24, and gate driving is performed on the wiring pattern 25. IC 8 is connected via ball solder 26. The gate electrode on the lower surface of the semiconductor element 4 is soldered to the wiring pattern 25.

同様にして、ゲート駆動IC9については、配線層16の上に絶縁層27を設け、この絶縁層27の上に配線パターン28を設け、この配線パターン28にゲート駆動IC9をボール半田29を介して接続している。尚、半導体素子5の上面のゲート電極は、上記配線パターン28に半田付けされている。   Similarly, for the gate driving IC 9, an insulating layer 27 is provided on the wiring layer 16, a wiring pattern 28 is provided on the insulating layer 27, and the gate driving IC 9 is connected to the wiring pattern 28 via a ball solder 29. Connected. The gate electrode on the upper surface of the semiconductor element 5 is soldered to the wiring pattern 28.

上述した以外の第2の実施例の構成は、第1の実施例の構成と同じ構成となっている。従って、第2の実施例においても、第1の実施例とほぼ同じ作用効果を得ることができる。特に、第2の実施例では、ゲート駆動IC8、9をフリップチップで配線パターン25、28に接続するように構成したので、配線の寄生インダクタンスが小さくなり、ゲート駆動IC8、9からの出力信号の波形がシャープになり、IGBT10のスイッチング損失を低減できる。また、ワイヤボンディングの実装余裕をなくすことが可能であるから、ヒートシンク2、3間の隙間を小さくすることができる。これにより、ヒートシンク2、3の熱抵抗を下げることができ、IGBTチップをシュリンクできる。   The configuration of the second embodiment other than that described above is the same as the configuration of the first embodiment. Therefore, in the second embodiment, substantially the same operational effects as in the first embodiment can be obtained. In particular, in the second embodiment, since the gate driving ICs 8 and 9 are configured to be connected to the wiring patterns 25 and 28 by flip chip, the parasitic inductance of the wiring is reduced, and the output signals from the gate driving ICs 8 and 9 are reduced. The waveform becomes sharp and the switching loss of the IGBT 10 can be reduced. Moreover, since it is possible to eliminate the wire bonding mounting margin, the gap between the heat sinks 2 and 3 can be reduced. Thereby, the thermal resistance of the heat sinks 2 and 3 can be lowered, and the IGBT chip can be shrunk.

また、上記各実施例においては、スペーサ6、7を金属例えば銅で構成したが、これに代えて、半導体例えばシリコンで構成しても良い。このように構成すると、スペーサ6、7と半導体素子4、5の熱膨張率が同じになるので、熱に対する信頼性を向上できる。   In each of the above embodiments, the spacers 6 and 7 are made of a metal such as copper. However, instead of this, a semiconductor such as silicon may be used. If comprised in this way, since the thermal expansion coefficient of the spacers 6 and 7 and the semiconductor elements 4 and 5 becomes the same, the reliability with respect to a heat | fever can be improved.

更に、上記各実施例において、ゲート駆動IC8、9を、トレンチ・SOI分離方式で構成するようにしても良い。このように、トレンチ・SOI分離方式で絶縁分離すると、接合リーク電流が少なくなり、接合分離方式よりも高温動作に優れたものとなることから、パワー素子の発熱が多いインバータモジュールに最適である。尚、ゲート駆動IC8、9に、IGBTやFWDの温度、電流を常時監視する機能を付加するように構成することが好ましい。このように構成すると、ゲート駆動IC8、9の熱暴走を防止することができる。   Further, in each of the embodiments described above, the gate drive ICs 8 and 9 may be configured by a trench / SOI isolation system. Thus, insulation isolation by the trench / SOI isolation method reduces junction leakage current and is superior in operation at a higher temperature than the junction isolation method, and is optimal for an inverter module that generates a large amount of heat from the power element. It is preferable that the gate drive ICs 8 and 9 have a function of constantly monitoring the temperature and current of the IGBT and FWD. With this configuration, thermal runaway of the gate drive ICs 8 and 9 can be prevented.

更にまた、ゲート駆動IC8、9を、トレンチ・SOI分離方式で構成した上で、低耐圧のLDMOSを多段接続して構成することがより一層好ましい。尚、LDMOSを多段接続する構成を実現するに際しては、本出願人が先に出願した特願2005−227058に記載されている構成を適宜用いれば良い。このように、LDMOSを多段接続するように構成すると、高耐圧を実現することができ、低電位、高電位間の電圧シフトが容易にできる。   Furthermore, it is more preferable that the gate drive ICs 8 and 9 are configured by trench / SOI separation and then are configured by connecting low-voltage LDMOS in multiple stages. When realizing a configuration in which LDMOSs are connected in multiple stages, the configuration described in Japanese Patent Application No. 2005-227058 filed earlier by the present applicant may be used as appropriate. Thus, when the LDMOS is configured to be connected in multiple stages, a high breakdown voltage can be realized, and a voltage shift between a low potential and a high potential can be easily performed.

また、上記各実施例の半導体素子4、5(FWD11を内蔵するIGBTチップ12)において、IGBT10のうちのエミッタ側の表面に、トレンチゲートとフロートpwell層とGND(接地)pwell層とを設けるように構成しても良い。この構成の一例を図6(第3の実施例)に示す。このように構成すると、IGBT10及びFWD11の総損失を最小にすることができるから、チップサイズを縮小することができる。   Further, in the semiconductor elements 4 and 5 (the IGBT chip 12 incorporating the FWD 11) of each of the above embodiments, a trench gate, a float pwell layer, and a GND (ground) pwell layer are provided on the surface of the IGBT 10 on the emitter side. You may comprise. An example of this configuration is shown in FIG. 6 (third embodiment). With this configuration, since the total loss of the IGBT 10 and the FWD 11 can be minimized, the chip size can be reduced.

また、上記第3の実施例の場合、pwell濃度を最適化すると共に、全接地することにより、損失をより一層低減することができる。   Further, in the case of the third embodiment, the loss can be further reduced by optimizing the pwell concentration and grounding it all.

本発明の第1の実施例を示すIGBTモジュールの断面図Sectional drawing of IGBT module which shows 1st Example of this invention IGBTモジュールの電気回路図Electrical circuit diagram of IGBT module 半導体素子の製造ばらつきを示す図Diagram showing manufacturing variations of semiconductor elements スペーサの製造ばらつきを示す図Diagram showing manufacturing variations of spacers 本発明の第2の実施例を示す図1相当図FIG. 1 equivalent view showing a second embodiment of the present invention. 本発明の第3の実施例を示す半導体素子の拡大部分断面図FIG. 4 is an enlarged partial cross-sectional view of a semiconductor device showing a third embodiment of the present invention.

符号の説明Explanation of symbols

図面中、1はIGBTモジュール(半導体装置)、2、3はヒートシンク、4、5は半導体素子、6、7はスペーサ、8、9はゲート駆動IC、10はIGBT、11はFWD、12はIGBTチップ(素子)を示す。   In the drawings, 1 is an IGBT module (semiconductor device), 2 and 3 are heat sinks, 4 and 5 are semiconductor elements, 6 and 7 are spacers, 8 and 9 are gate drive ICs, 10 is IGBT, 11 is FWD, and 12 is IGBT. A chip (element) is shown.

Claims (2)

半導体素子及びスペーサを積み重ねたものを複数個、一対のヒートシンクの間に挟んで
構成された半導体装置において、
前記半導体素子は、IGBTにFWDを一体化させた素子で構成され、
前記IGBTのゲート駆動用のICチップであって、前記一対のヒートシンクの間に配
設されたゲート駆動ICを備え、
前記半導体素子の厚み寸法d1とし、前記スペーサの厚み寸法d2としたときに、d1
+d2がほぼ一定値となると共に、前記スペーサの厚み寸法d2が前記ゲート駆動ICの
厚み寸法よりも厚くし、
前記スペーサは、半導体で構成されていることを特徴とする半導体装置。
In a semiconductor device configured by sandwiching a plurality of stacked semiconductor elements and spacers between a pair of heat sinks,
The semiconductor element is composed of an element in which FWD is integrated with an IGBT,
An IC chip for driving the gate of the IGBT, comprising a gate driving IC disposed between the pair of heat sinks;
When the thickness dimension d1 of the semiconductor element and the thickness dimension d2 of the spacer are d1,
+ D2 becomes a substantially constant value, and the thickness dimension d2 of the spacer is larger than the thickness dimension of the gate drive IC ,
The said spacer is comprised with the semiconductor, The semiconductor device characterized by the above-mentioned .
半導体素子及びスペーサを積み重ねたものを複数個、一対のヒートシンクの間に挟んで構成された半導体装置の製造方法において、
前記半導体素子として、IGBTにFWDを一体化させた素子を使用し、
前記IGBTのゲート駆動ICを前記一対のヒートシンクの間に配設し、
多数の前記半導体素子及び多数の前記スペーサの中から、前記半導体素子の厚み寸法d
1とし、前記スペーサの厚み寸法d2としたときに、d1+d2がほぼ一定値となる組み
合わせの前記半導体素子及び前記スペーサを選択して使用すると共に、前記スペーサの厚
み寸法d2を前記ゲート駆動ICの厚み寸法よりも厚くし
前記スペーサは、半導体で構成されていることを特徴とする半導体装置の製造方法。
In a manufacturing method of a semiconductor device configured by sandwiching a plurality of stacked semiconductor elements and spacers between a pair of heat sinks,
As the semiconductor element, an element in which FWD is integrated with IGBT is used,
The IGBT gate drive IC is disposed between the pair of heat sinks,
A thickness dimension d of the semiconductor element from among the plurality of semiconductor elements and the plurality of spacers.
1 and the thickness d2 of the spacer is selected and used in combination with the semiconductor element and the spacer in which d1 + d2 has a substantially constant value, and the thickness d2 of the spacer is the thickness of the gate driving IC. Thicker than the dimensions ,
The method of manufacturing a semiconductor device, wherein the spacer is made of a semiconductor .
JP2006110778A 2006-04-13 2006-04-13 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4816214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110778A JP4816214B2 (en) 2006-04-13 2006-04-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110778A JP4816214B2 (en) 2006-04-13 2006-04-13 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007287784A JP2007287784A (en) 2007-11-01
JP4816214B2 true JP4816214B2 (en) 2011-11-16

Family

ID=38759300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110778A Expired - Fee Related JP4816214B2 (en) 2006-04-13 2006-04-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4816214B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2705170T3 (en) * 2007-11-13 2019-03-22 Siemens Ag Power semiconductor module
JP2011114176A (en) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp Power semiconductor device
KR101289196B1 (en) * 2011-09-14 2013-07-26 삼성전기주식회사 Power Module Package and Method for Manufacturing the same
JP5840933B2 (en) * 2011-11-15 2016-01-06 トヨタ自動車株式会社 Semiconductor device
JP7475925B2 (en) * 2020-03-31 2024-04-30 愛三工業株式会社 Electronic substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605910B2 (en) * 1990-02-01 1997-04-30 富士電機株式会社 Power module
JPH05152574A (en) * 1991-11-29 1993-06-18 Fuji Electric Co Ltd Semiconductor device
JPH08274311A (en) * 1995-03-29 1996-10-18 Sanyo Electric Co Ltd Insulated-gate type semiconductor device
JP3201277B2 (en) * 1996-09-11 2001-08-20 株式会社日立製作所 Semiconductor device
JP3826667B2 (en) * 2000-04-19 2006-09-27 株式会社デンソー Double-sided cooling type semiconductor card module and refrigerant indirect cooling type semiconductor device using the same
JP3841007B2 (en) * 2002-03-28 2006-11-01 株式会社デンソー Semiconductor device
JP2005057235A (en) * 2003-07-24 2005-03-03 Mitsubishi Electric Corp Insulated gate type bipolar transistor, its manufacturing method, and inverter circuit

Also Published As

Publication number Publication date
JP2007287784A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP3516789B2 (en) Semiconductor power module
KR100616129B1 (en) High power mcm package
US9171773B2 (en) Semiconductor device
JP5787784B2 (en) Semiconductor device
US6867484B2 (en) Semiconductor device
US20070001273A1 (en) Semiconductor device
CN111971793B (en) Semiconductor module
CN106098646B (en) Semiconductor device
JP2010283053A (en) Semiconductor device and method for manufacturing the same
JP4816214B2 (en) Semiconductor device and manufacturing method thereof
WO2013132644A1 (en) Semiconductor module
CN113228265A (en) Circuit structure of semiconductor assembly
KR20200044635A (en) semiconductor sub-assembly and semiconductor power module
CN107611111B (en) Semiconductor module and power conversion device
CN116134716A (en) Switch component
JP5172290B2 (en) Semiconductor device
US10410996B2 (en) Integrated circuit package for assembling various dice in a single IC package
US9786516B2 (en) Power device having reduced thickness
US20220139797A1 (en) Semiconductor module, power semiconductor module, and power electronic equipment using the semiconductor module or the power semiconductor module
JP2005051109A (en) Power semiconductor module
CN112750800A (en) Semiconductor power module
JPH08340082A (en) Power semiconductor device
JP2004048084A (en) Semiconductor power module
WO2020184383A1 (en) Semiconductor device
CN219917172U (en) Electronic device and power electronic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees