JP4813451B2 - 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器 - Google Patents

撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器 Download PDF

Info

Publication number
JP4813451B2
JP4813451B2 JP2007316929A JP2007316929A JP4813451B2 JP 4813451 B2 JP4813451 B2 JP 4813451B2 JP 2007316929 A JP2007316929 A JP 2007316929A JP 2007316929 A JP2007316929 A JP 2007316929A JP 4813451 B2 JP4813451 B2 JP 4813451B2
Authority
JP
Japan
Prior art keywords
image
lens
imaging
imaging system
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007316929A
Other languages
English (en)
Other versions
JP2009141742A (ja
JP2009141742A5 (ja
Inventor
実 谷山
一也 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007316929A priority Critical patent/JP4813451B2/ja
Priority to US12/328,627 priority patent/US8111318B2/en
Priority to CN2008101798278A priority patent/CN101472047B/zh
Priority to TW097147348A priority patent/TWI401483B/zh
Publication of JP2009141742A publication Critical patent/JP2009141742A/ja
Publication of JP2009141742A5 publication Critical patent/JP2009141742A5/ja
Application granted granted Critical
Publication of JP4813451B2 publication Critical patent/JP4813451B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02T10/6204
    • Y02T10/6221
    • Y02T10/6282

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、被写体の光学像を撮像して得られる画像データの品質を、復元処理を用いて向上させる撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器に関するものである。
多数の受光画素を2次元状に配置してなる受光面を有するCCD素子やCMOS素子等の撮像素子を用い、撮像レンズを通して受光面上に結像させた被写体の光学像を撮像する撮像システムが知られている。
また、このような撮像システムの1例として、被写界深度が深くなるように設計した撮像レンズを有する撮像システムを回路基板上に直接取り付けてなる車載用カメラや携帯電話用カメラが知られている(特許文献1参照)。このような、回路基板に直接取り付けられる撮像システムは大きさが制限されるため、装置サイズを小さくするように設計されている。
さらに、高性能の車載用カメラや携帯電話用カメラに搭載される撮像システムには、撮像レンズの解像力が回折限界に近い性能を持つものも知られている。
特開2007−147951号公報
ところで、このような撮像システムを用いて得られる画像について、さらなる解像度の向上が求められている。
撮像システムによって得られる画像の解像度を向上させるには、受光画素の数を増大させるとともに、撮像レンズの解像力を高める必要がある。すなわち、例えば、撮像素子の受光面上に配列されている受光画素の画素密度を高くするとともに、撮像レンズを通してその受光面上に投影される点像が1つの受光画素の範囲内に収まるように撮像レンズの解像力を高めることによって、撮像システムを用いて得られる画像の解像度を向上させることができる。
ここで、撮像素子を構成する受光画素の画素密度を装置サイズを大きくすることなく高めることは近年の技術の向上により比較的容易に実現可能である。
一方、撮像レンズの解像力を向上させることは極めて難しい。すなわち、撮像レンズのサイズを大きくしたり、被写界深度を浅くすることなくこの撮像レンズの解像度を向上させるには、撮像レンズを構成する各レンズの形状誤差や組立誤差等を抑える必要がある。しかしながら、このような撮像レンズは既に回折限界に近いところまで解像力が高められていることもあり、製作精度(加工・組立・調整精度等)をさらに高めて解像力を向上させることが非常に難しいという問題がある。
本発明は、上記事情に鑑みてなされたものであり、受光面に投影される光学像を撮像して得られる画像データの品質を向上させることができる撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器を提供することを目的とするものである。
本発明の撮像システムは、撮像レンズと、多数の受光画素を2次元状に配列してなる受光面を有し、撮像レンズを通して受光面上に投影された被写体の光学像を撮像してこの被写体を表す第1の画像データを出力する撮像素子と、第1の画像データに対し、撮像レンズの解像力が高いときに撮像素子から出力される第1の画像データと同等の第2の画像データを生成するような復元処理を施す信号処理手段とを備え、撮像レンズが、物体側から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群とを有するものであり、撮像レンズと撮像素子とが、X,Y,Z方向のいずれの位置からこの撮像レンズを通して受光面上へ投影された点像についてもその点像の有効領域の最大径が受光画素の3画素以上に亘る大きさとなるように構成されたものであることを特徴とするものである。
前記撮像レンズは、この撮像レンズの焦点距離の10倍以上離れたX,Y,Z方向のいずれの位置からその撮像レンズを通して受光面上へ投影された被写体の光学像についてもこの光学像に関するMTF特性の値が正となるように構成されたものとすることができる。
前記信号処理手段は、受光面上における縦方向3画素以上および横方向3画素以上からなる合計9画素以上に亘る画素領域を最小単位として復元処理を行うものとしたり、受光面上に投影された点像の有効領域の全てを含む最小の画素領域を最小単位として復元処理を実行するものとしたりすることができる。
前記信号処理手段は、第1の画像データの表す画像中の点像の有効領域を表す大きさよりも、第2の画像データの表す画像中における前記点像の有効領域を表す大きさの方を小さくするように復元処理を実行するものとすることができる。
前記信号処理手段は、第1の画像データの表す点像の状態に応じた復元係数を用いて前記復元処理を実行するものとすることもできる。
前記復元係数は、各撮像システム毎に、その撮像システムに対して個別に求められるものとしたり、複数種類に分類された点像の状態それぞれに対応する各復元係数の候補のうち、第1の画像データの表す点像の状態に応じて選択されたものとしたり、あるいは、複数種類に分類された点像の状態それぞれに対応する複数種類の復元係数の候補のうち、第1の画像データの表す点像の状態に応じて選択された復元係数を、この点像の状態に応じてさらに補正してなるものとすることができる。
前記撮像システムは、復元係数を取得する復元係数取得手段をさらに備えたものとすることができる。
前記撮像レンズは2枚の単レンズからなるものとすることができる。
前記第1のレンズ群に対応する単レンズを物体側に凸面を向けたメニスカス形状をなすものとし、前記第2のレンズ群に対応する単レンズを物体側に凸面を向けたメニスカス形状をなすものとすることができる。
前記第1のレンズ群に対応する単レンズを、この単レンズの両面が凸形状をなすものとし、第2のレンズ群に対応する単レンズを像側に凸面を向けたメニスカス形状をなすものとすることができる。
本発明の撮像装置は、前記撮像システムを備えたことを特徴とするものである。
本発明の携帯端末機器は、前記撮像システムを備えたことを特徴とするものである。
本発明の車載機器は、前記撮像システムを備えたことを特徴とするものである。
本発明の医療機器は、前記撮像システムを備えたことを特徴とするものである。
前記受光面上へ投影される点像の有効領域の最大径は、受光面上へ投影される点像の有効領域が最も多くの受光画素を含む方向におけるこの有効領域の径とすることができ、前記「点像の有効領域の最大径が3画素以上に亘る大きさとなるような構成」は、「点像の有効領域が最も多くの受光画素を含む方向において、この有効領域が受光画素の3画素以上に亘る大きさとなるような構成」とすることができる。
前記「点像の有効領域」は、点像を表す光強度分布におけるピーク強度の1/e(約13.5%)以上の光強度を有する領域を意味するものである。
また、前記「復元処理」には、特開2000-123168号公報、段落0002〜0016に紹介されている画像復元処理等を採用することができる。なお、復元処理の実施においては、後述する非特許文献〔鷲沢嘉一・山下幸彦著、題名「Kernel Wiener Filter」、2003 Workshop on Information-Based Induction Sciences、(IBIS2003)、Kyoto, Japan, Nov 11 -12, 2003〕の技術等を適用することができる。
また、前記「撮像レンズの焦点距離の10倍以上離れた位置」は、「撮像レンズを構成するレンズ面のうち最も被写体側(物体側)の面とこの撮像レンズの光軸とが交わる位置を基準位置とし、この基準位置から、その撮像レンズの光軸方向(Z軸方向)に沿って焦点距離の10倍以上被写体の側へ離れた位置」を意味する。
本発明の撮像システムは、撮像レンズを物体側から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群とを有するものとし、撮像レンズと撮像素子とを、いずれの位置から撮像レンズを通して受光面上へ投影された点像についてもこの点像の有効領域の最大径が受光画素の3画素以上に亘る大きさとなるように構成されたものとし、撮像素子から出力された第1の画像データに対し、この撮像レンズの解像力が高いときに撮像素子から出力される第1の画像データと同等の第2の画像データを生成するような復元処理を施すようにしたので、受光面に投影される光学像を撮像して得られる画像データの品質を容易に向上させることができる。
すなわち、本発明の撮像システムでは、解像力の低い撮像レンズを用いて、この撮像レンズよりも高い解像力を持つ撮像レンズを通して投影された光学像を撮像して得られる画像と同等の画像を得ることができる。例えば、撮像レンズを通して投影される点像の有効領域が受光面上における縦方向3画素および横方向3画素の合計9画素に亘るものとする。そして、この合計9画素に亘る点像を撮像して撮像素子から出力される第1の画像データに対し、例えば点像の有効領域が受光面上の1画素の領域内に収まるようなときに撮像素子から出力される第1の画像データ(すなわち、撮像レンズの解像力が高いときに撮像素子から出力される第1の画像データ)と同等の第2の画像データを生成するような復元処理を施すようにしたので、第1の画像データの表す画像の解像度よりも高い解像度で同じ画像を表す第2の画像データを得ることができる。
さらに、この撮像システムでは、いずれの位置から撮像レンズを通して受光面上へ投影された光学像についても上記復元処理を実施することができるので、第1の画像データの表す画像全体の解像度を向上させることができる。すなわち、第2の画像データの表す画像中のいずれの領域の解像度も、第1の画像データの表す画像の解像度より高くすることができる。
これにより、従来のように、撮像システムの製作精度(加工・組立・調整精度等)を高めて撮像レンズの解像力を向上させる等の場合に比して、画像データの品質をより容易に向上させることができる。
また、撮像レンズを、この撮像レンズの焦点距離の10倍以上離れたX,Y,Z方向のいずれの位置からその撮像レンズを通して受光面上へ投影された被写体の光学像についてもこの光学像に関するMTF特性の値が正となるように構成されたものとすれば、撮像レンズの焦点距離の10倍以上離れた位置の被写体を表す第1の画像データについてその品質をより確実に向上させることができる。
また、信号処理手段を、受光面上における縦方向3画素以上および横方向3画素以上からなる合計9画素以上に亘る画素領域を最小単位として前記復元処理を行うものとすれば、復元処理をより確実に実施することができる。
さらに、信号処理手段を、受光面上に投影された点像の有効領域の全てを含む最小の画素領域を最小単位として復元処理を実行するものとすれば、復元処理における演算量の増大を抑制することができ復元処理を効率良く実施することができる。
また、信号処理手段を、第1の画像データの表す画像中の点像の有効領域を表す大きさよりも、第2の画像データの表す画像中における上記点像の有効領域を表す大きさの方を小さくするように復元処理を実行すれば、画像データの品質をより確実に向上させることができる。
ここで、信号処理手段を、第1の画像データの表す画像における点像の状態(以後、点像のボケ状態ともいう)に応じた復元係数を用いて復元処理を実行するものとすれば、上記点像のボケ状態をより正確に補正してなる第2の画像データを得ることができるので、画像データの品質をより確実に向上させることができる。
なお、「点像の状態」を「点像のボケ状態」ともいう理由は、撮像レンズを通して受光面上に投影される点像、およびこの点像を撮像して得られる第1の画像データの表す点像は、レンズ収差の影響等によりその点像に対応する物点となる被写体に比して多少なりとも画質が劣化しているからである。すなわち、例えば被写体が解像力チャートであるとすると、撮像レンズを通して受光面上に投影される解像力チャートの像、およびこの解像力チャートの像を撮像して得られる第1の画像データの表す解像力チャートの画像の解像度は、被写体となる解像力チャートの解像度よりも低下したものとなる。なお、この「点像の状態」あるいは「点像のボケ状態」は主に点像の解像度の劣化状態を示すものである。
また、復元係数を、各撮像システム毎に、その撮像システムに対して個別に求められるものとすれば、より正確に、画像データの品質を向上できる復元係数を求めることができる。
また、復元係数を、複数種類に分類された点像のボケ状態それぞれに対応する各復元係数の候補のうち、第1の画像データの表す点像のボケ状態に応じて選択されたものとすれば、各撮像システム毎に復元係数を個別に求める場合に比してより容易に復元係数を取得することができる。
なお、復元係数を、複数種類に分類された点像のボケ状態それぞれに対応する複数種類の復元係数の候補のうち、第1の画像データの表す点像のボケ状態に応じて選択された復元係数を、その点像のボケ状態に応じてさらに補正してなるものとすれば、各撮像システム毎に復元係数を個別に求める場合に比して、復元係数を求める際の精度低下を抑制しつつこの復元係数をより容易に取得することができる。
また、撮像システムを、復元係数を取得する復元係数取得手段が備えられたものとすれば、より確実に復元係数を取得することができる。
なお、撮像レンズを2枚の単レンズのみからなるものとして、第1のレンズ群の単レンズを物体側に凸面を向けたメニスカス形状をなすものとし、第2のレンズ群の単レンズを物体側に凸面を向けたメニスカス形状をなすものとすれば、被写体を表す第1の画像データの品質をより確実に高めることができる。
また、第1のレンズ群の単レンズを、この単レンズの両面が凸形状をなすものとし、第2のレンズ群の単レンズを像側に凸面を向けたメニスカス形状をなすものとすれば、撮像レンズのテレセントリック性をより確実に向上させることができる。
本発明の撮像装置、携帯端末機器、車載機器、医療機器それぞれは、前記撮像システムを備えているので、上記のように、受光面に投影された光学像を撮像して得られる画像データの品質を容易に高めることができる。
以下、本発明の実施の形態について、図面を用いて説明する。図1は本発明の撮像システムの概略構成を示すブロック図である。
<撮像システムの構成について>
以下、撮像システムの構成について説明する。
図1に示す本発明の撮像システム100は、撮像レンズ10と、多数の受光画素を2次元状に配列してなる受光面21を有する撮像素子20であって、撮像レンズ10を通して受光面21上に投影された被写体の光学像P1を撮像してこの被写体を表す第1の画像データG1を出力する撮像素子20と、第1の画像データG1に対し、撮像レンズ10の解像力が高いときに撮像素子20から出力される第1の画像データG1と同等の第2の画像データG2を生成するような復元処理を施す信号処理部40とを備えている。
撮像レンズ10は、被写体側(物体側)から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群とを有するものである。
撮像レンズ10と撮像素子20とは、X,Y,Z方向のいずれの位置から撮像レンズ10を通して受光面21上へ投影された点像(P1)についてもこの点像(P1)の有効領域の最大径が受光画素の3画素以上に亘る大きさとなるように構成されたものである。
ここでは、受光面21上へ投影された点像の有効領域の最大径は、受光面21上へ投影された点像P1の有効領域が最も多くの受光画素を含む方向におけるこの点像P1の有効領域の径とする。
なお、図1中に矢印Zで示す方向は撮像レンズ10の光軸方向であり、矢印X,Yで示す方向が受光面21に対して平行な方向である。
撮像システム100の外部には、撮像素子20から出力された第1の画像データG1で表される点像P1のボケ状態に応じた復元係数Kを取得する復元係数取得装置70Aが設けられている。上記信号処理部40は、復元係数取得装置70Aが取得した復元係数Kを用いて復元処理Fを実施する。
ここでは、撮像システム100は、復元係数取得装置70Aが取得した復元係数Kを記憶せしめられる係数記憶部30を備えたものとするが、この係数記憶部30は信号処理部40に内蔵されたものであってもよい。さらに、係数記憶部30は、必ずしも撮像システム100に備える必要はない。
上記復元係数取得装置70Aは、撮像レンズ10を含む光学系に全く誤差がないときの点像に関する設計データ、もしくはそれを上回る理想点像状態に関する理想点像状態データのいずれかであるデータDrを予め記憶させた理想点像記憶部72と、撮像素子20から出力された第1の画像データG1で表される点像P1のボケ状態を示すボケ点像状態データDbを取得するための点像ボケ状態取得部73と、この点像ボケ状態取得部73で得られた上記点像P1のボケ状態を表すボケ点像状態データDb、および理想点像記憶部72に記憶された設計データまたは理想点像状態データであるデータDrを入力し両者を用いた演算により上記第1の画像データG1の表す点像P1のボケ状態に応じた復元係数Kを示す係数データDkを取得して、この係数データDkの表す復元係数Kを係数記憶部30に記憶させる復元係数取得部78Aとを備えている。
なお、本発明の撮像システムに用いられる撮像レンズは、必ずしもこの撮像レンズを通して受光面上に光学像が正しく「結像される」ものに限らず、撮像レンズを通して受光面上に光学像が正しく「結像されない」ものであっても採用できるので、本発明においては撮像レンズを通して受光面上に光学像が「投影される」ものとして説明する。「結像されない」状態とは、いわゆるボケた像と解釈されるが、例えば製造誤差に起因して本来の点像よりも広がった点像を生成される状態や、設計的な制約条件(光学系の大きさやコスト)から設計値自体が本来得たい点像よりも大きい点像しか提供できないような状況も含む。
また、主に点像の解像度の劣化状態を示すボケ点像状態データDbは、例えば、点像P1の有効領域の大きさや点像P1の受光面上における輝度分布(画像中における濃度分布)等を表すものとすることができる。
<撮像システムの作用について>
次に、上記撮像システムの作用について説明する。
はじめに、復元係数取得装置により復元係数を求めてこの復元係数を係数記憶部に記憶させる場合の1例について説明する。
撮像レンズ10を通して受光面21上へ投影された被写体の光学像を撮像素子20により撮像し、撮像素子20から出力された上記被写体を表す第1の画像データG1が点像ボケ状態取得部73へ入力される。
第1の画像データG1が入力された点像ボケ状態取得部73は、第1の画像データG1の表す点像のボケ状態を解析しその解析結果を示すボケ点像状態データDbを出力する。
復元係数取得部78Aは、点像ボケ状態取得部73から出力されたボケ点像状態データDb、および予め理想点像記憶部72に記憶された上記設計データまたは理想点像状態データであるデータDrを入力し両者を用いた演算により上記点像P1のボケ状態に応じた復元係数Kを取得し、この復元係数Kを示す係数データDkを出力する。
復元係数取得部78Aから出力された復元係数Kを示す係数データDkは係数記憶部30に入力されてこの係数記憶部30に係数データDkの表す復元係数Kが記憶される。
なお、点像ボケ状態取得部73の機能を実現する例としては、後述するDxO Labs社(フランス)製のDxOアナライザが挙げられる。このDxOアナライザによれば、撮像素子20から出力された第1の画像データG1を解析することにより受光面21上へ投影された点像P1のボケ状態を求めることができる。
<復元処理について>
次に、係数記憶部30に記憶された復元係数Kを用い、撮像素子20から出力された第1の画像データに対し復元処理Fを実行して、第1の画像データの表す画像よりも解像度の高い画像を表す第2の画像データを取得する場合について説明する。なお、以下の説明においては、主に、点像を表す第1の画像データに対して復元処理Fを施す場合について説明する。
図2(a)は、縦軸に光強度E、横軸に受光面上におけるX方向の位置を示す座標上に点像の光強度分布を示す図である。図2(b)は、縦軸に受光面上のY方向の位置、横軸に受光面上のX方向の位置を示す座標上に、受光面を構成する受光画素の各画素領域(図中符号Rgで示す)とこの受光面に投影された点像とを示す図、図3(a)は第1の画像データの表す画像中に表示される点像の画像を示す図、図3(b)は第2の画像データの表す画像中に表示される点像の画像を示す図である。なお、図3(a)と図3(b)それぞれに示す画像中の画素領域(図中符号Rg′で示す)それぞれの大きさは互に一致する。なお、受光面21を構成する受光画素の各画素領域Rgと、第1の画像データG1や第2の画像データG2が表す画像中の画素領域Rg′とが互いに対応する領域となる。
また、図4(a)は、縦軸に光強度E、横軸に受光面上におけるX方向の位置を示す座標上に、撮像レンズ10の解像力が高いときに受光面21上に投影されるであろう点像の光強度分布を示す図である。また、これは光学系如何にかかわらず理想的な点像状態を表すものと考えて良い。図4(b)は、縦軸に受光面上のY方向の位置、横軸に受光面上のX方向の位置を示す座標上に、受光面を構成する受光画素の各画素領域(図中符号Rgで示す)および撮像レンズ10の解像力が高いときに受光面21上に投影されるであろう点像P2を示す図である。
撮像レンズ10を通して受光面21上に投影された光学像である点像P1の有効領域R1の最大径M1は、図2(b)に示すように、受光面21を構成する受光画素の連続する3画素に亘る大きさである。また、その有効領域R1は、受光面21上における縦方向3画素および横方向3画素からなる合計9画素に亘る領域である。すなわち、有効領域R1は、受光面21を構成する受光画素の9画素分(3画素×3画素)を占める領域である。
また、図2(a)に示すように、点像P1の有効領域R1は、点像P1を表す光強度分布H1におけるピーク強度Ep1の1/e以上の光強度を有する領域である。
上記受光面21上に投影された点像P1は撮像素子20により撮像され、この点像P1を表す第1の画像データG1が撮像素子20から出力される。
図3(a)に示すように、この第1の画像データG1が表す画像Zg1中に表示される上記点像P1に対応する画像P1′は、相変わらずその有効領域R1′が画像中において9画素分(3画素×3画素)に亘るものとして表示される。
次に、この画像データG1を入力した信号処理部40が、第1の画像データG1に対し復元係数K1を用いた復元処理Fを実行して第2の画像データG2を得る。
図3(a)、(b)に示すように、上記第1の画像データG1が表す点像の画像P1′に対応する第2の画像データG2が表す画像Zg2中の点像の画像P2′は、その画像P2′の有効領域R2´が上記第1の画像データG1の表す画像Zg1中の点像の画像P1′の有効領域R1′に比して小さくなる。したがって、画像Zg2中に表される点像の画像P2′の最大径M2′(画素領域Rg′の3画素分の領域)も画像Zg1中に表される点像の画像P1′の最大径M1′(画素領域Rg′の1画素分の領域)より小さくなる。
すなわち、この図3(b)に示す第2の画像データG2の表す点像の画像P2′と、撮像レンズ10の解像力が高いときに受光面21上に投影されるであろう点像P2(図4参照)を撮像した撮像素子20から出力される第1の画像データによって表される点像の画像とは同等の画像となる。
より具体的には、撮像レンズ10を通して受光面21上に投影された有効領域R1が9画素分に亘る点像P1(図2(a)、(b)参照)を撮像した撮像素子20から出力される第1の画像データG1に対して上記復元係数Kを用いた復元処理Fを施して得られる第2の画像データG2の表す点像の画像P2′(図3(b)参照)と、撮像レンズ10の解像力を高くしたときに受光面21上に投影されると予想される点像P2(有効領域R2の最大径M2が1つの画素領域Rgに含まれる、図4(a)、(b)参照)を撮像した撮像素子20から出力される第1の画像データG1の表す点像の画像とは同等の画像となる。
なお、図4(a)、(b)に示す受光面21上の1つの画素領域Rgに含まれる点像P2の有効領域R2は、上記点像P1の場合と同様に、点像P2を表す光強度分布H2におけるピーク強度Ep2の1/e以上の光強度を有する領域である。ここで、点像P2の有効領域R2は1つの画素領域Rgに含まれる大きさである。
このように、第1の画像データに復元処理を施して得られた第2の画像データの表す画像の解像度は、第1の画像データの表す画像の解像度よりも高くすることができる。
また、この復元処理Fにより、撮像レンズ10の被写界深度を拡大したときに得られる画像と同様の画像を得ることができるので、上記復元処理は、実質的に撮像レンズ10の被写界深度を拡大するものともいえる。
なお、信号処理部40による、第1の画像データG1の表す点像P1の状態に応じた復元係数Kを用いた復元処理Fには、上述の特開2000-123168号公報、段落0002〜0016に紹介されている画像復元処理等を採用することができる。
上記説明では点像を撮像する場合について説明したが、撮像レンズ10を通して受光面21上に投影される被写体の光学像は、被写体を表す点像の集まりであると考えられるので、撮像する被写体がどのようなものであっても、上記第1の画像データに復元処理を施してこの第1の画像データの表す画像よりも高い解像度で画像を表す第2の画像データを生成することができる。
<撮像系の性能について>
次に、上記撮像システム100に用いられる撮像レンズ10と撮像素子20とから構成される撮像系の性能について説明する。
図5は、横軸に撮像レンズから物点までの光軸方向の距離Uを対数目盛り(m)で示し、縦軸に受光面上に連続して並ぶ画素領域の数(N)に対応させた長さを示す座標上に、物点を光軸方向に移動させたときに受光面上に投影されるこの物点に対応する点像の有効領域の最大径の変化を模式的に示す図である。
ここでは、物点を、撮像レンズに略接する近点の位置(約0.01mまで接近した位置)から撮像レンズに対して略無限大離れた遠点の位置(約10m離れた位置)まで移動させた。
図5中の系列A-1、A-2、A-3によって示される3種類の曲線(実線)は、本発明の撮像システムの撮像レンズ10を通して受光面21上の互に異なる特定の領域(互に像高の異なる受光面上の特定の領域)に投影される各点像の有効領域の最大径の変化を模式的に示している。また、図5中の系列Awによって示される曲線(破線)は、従来の撮像システム(例えば車載用カメラ、携帯電話用カメラ、医療機器用カメラ等)に用いられる撮像レンズを通して受光面上に投影された点像の有効領域の最大径の一般的な変化を示している。
図5からわかるように、従来の撮像システムにおいては、受光面21上に物点を投影してなる点像の有効領域の最大径は、物点の光軸方向への移動にともない1画素分の大きさから30画素分に亘る大きさまで大きく変化する。
一方、本発明の撮像システム100が備える撮像レンズ10を通して受光面21上に物点を投影してなる点像の有効領域の最大径は、系列A-1、A-2、A-3のいずれについても3画素分以上、10画素分以下に亘る大きさである。すなわち、撮像レンズ10から物点までの距離にかかわらず、かつ、投影される点像の受光面上における位置(例えば、受光面上の像高)にかかわらず、この受光面上における点像の有効領域の大きさの変動は少ない。さらに、X,Y、Z方向のいずれの位置、すなわち3次元空間におけるいずれの位置から撮像レンズ10を通して受光面上へ投影された点像についても、この点像の有効領域の大きさの変動は少ないとも言える。
図6は、横軸に撮像レンズから物点までの光軸方向の距離Uを対数目盛(m)で示し、縦軸にMTF特性の値(%)を示した座標上に、物点を光軸方向に移動させたときに受光面上に投影される上記物点の光学像に関するMTF特性の値(%)の変化を模式的に示す図である。
ここでは、物点を、撮像レンズに略接する近点の位置(約0.01mまで接近した位置)から撮像レンズに対して略無限大離れた遠点の位置(約10m離れた位置)まで移動させた。
図6中の系列B1、B2、B3によって示される本発明の撮像システムに関する3種類の曲線(実線)は、撮像レンズ10を通して受光面上の互に異なる特定の領域(互に像高の異なる特定の領域)に投影された光学像に関するMTF特性の値(%)の変化を模式的に示している。また、図6中の系列Bwによって示される曲線(破線)は、従来の撮像システムについて、受光面上に投影された光学像に関するMTF特性の値(%)の一般的な変化を示している。
図6からわかるように、従来の撮像システムでは、受光面21上に投影される光学像に関するMTF特性の値(%)は、0%から80%を超える値まで大きく変化する。なお、撮像レンズ10と物点とが接近した近点においてMTF特性の値が0%となる位置よりも撮像レンズ10に近い領域(MTF特性の値が0%から折り返した領域)に位置する物点については偽解像が生じている。また、撮像レンズ10と物点とが離れた遠点においてMTF特性の値が0%となる位置よりも撮像レンズ10から遠い領域(MTF特性の値が0%から折り返した領域)に位置する物点についても偽解像が生じている。
一方、本発明の撮像システム100の備える撮像レンズ10を通して受光面21上に投影される光学像に関するMTF特性の値(%)は、系列B1、B2、B3のいずれについても10%以上、60%以下の大きさであり偽解像は生じない。すなわち、撮像レンズ10から物点までの距離にかかわらず、かつ、投影された光学像の受光面上における位置(例えば、受光面上の像高)にかかわらず、受光面上に投影された光学像に関するMTF特性の値の変動が少なく偽解像も生じない。さらに、X,Y、Z方向のいずれの位置から撮像レンズ10を通して受光面上へ投影された光学像に関するMTF特性の値についても変動が少ないとも言える。
なお、撮像レンズ10は、この撮像レンズ10の焦点距離(例えば4〜5mm)の10倍以上離れたX,Y,Z方向のいずれの位置からその撮像レンズ10を通して受光面21上へ投影された被写体の光学像についてもこの光学像に関するMTF特性の値が正となるように構成されたものである。
また、この撮像システム10は、撮像レンズと撮像素子とが、例えばZ方向に関しては10f以上に制限され、X、Y方向に関してもある物体高までに制限された範囲内において物体空間のX,Y,Z方向のいずれの位置から受光面上に投影された点像についても、この点像の有効領域の最大径が撮像素子の受光面を形成する受光画素の3画素以上に亘る大きさとなるように構成されたものとしてもよい。
しかしながら、撮像レンズ10は、必ずしもこの条件を満足する場合に限らず、撮像レンズ10と撮像素子20とが、X,Y,Z方向のいずれの位置からこの撮像レンズ10を通して受光面21上へ投影された点像についてもこの点像の有効領域の最大径が受光面上の受光画素の3画素以上に亘る大きさとなるように構成されたものであれば撮像素子20から出力される画像データの品質を高める効果を得ることができる。
上記のように、本発明の撮像システムによれば、従来のように、撮像システムから出力される第1の画像データの表す画像の解像度の不足を、単に、第1の画像データに対し復元処理(画像処理)を施すだけで補うことができる。すなわち、第1の画像データに対する復元処理により所望の解像度を有する画像を表す第2の画像データを得ることができるので、受光面に投影される光学像を撮像して得られる画像データの品質を容易に向上させることができる。
<復元係数取得装置の作用について>
以下、復元係数取得装置70Aの作用について詳しく説明する
復元係数取得装置70Aの機能としては、
(1)点像測定・画面内均一性判定、
(2)最適な復元処理を与える係数群(復元係数)の導出、
(3)最適な係数群の記録
が必要である。それぞれの機能をより詳しく解説する。
(1)は各撮像レンズと撮像素子の組み合わせに於いて、結像性能(解像力)を実際に測定・判定する機能である。撮像素子から得られる電気信号(第1の画像データ)をもとにして光学点像を測定する手段としては、仏DxO社のDxOアナライザが市販されている。これは、DxO社が提唱するBxUというぼけを表現する概念を用いたもので、撮像素子からの出力信号から点像(光学点像、画像処理後点像いずれも)を求める事が可能である。
具体的には、このDxOアナライザは、ある指定されたチャート(白地に黒丸が無数に配列したチャート)を撮影して得られた画像データ(第1の画像データ)を解析することによって撮像素子の受光面上の任意の点での点像大きさを計算するものである(http://www.dxo.com/jp/image_quality/dxo_analyzer)。
なお、光学点像を測定する手段は、撮像素子(すなわちセンサ)からの出力信号から点像を計算できる測定手段であれば形式は問わない。
一方、光学設計値通りであった場合の点像の大きさはその光学系を設計したツールにて計算できるので、この計算で得られた「設計値点像」とDxOアナライザ等の測定器で測定された「測定点像」の大きさを比較することで、測定点像がどの程度設計値からずれているのかを判定することが出来る。例えば、光学部品に組み立て誤差があった場合の測定点像の大きさは、設計値点像に比べて大きくなってしまうことが大半である。また、撮像素子の受光面上に投影される点像の有効領域の形状や輝度分布は、本来、点対称な形状や分布をなすが、撮像レンズが傾いていたりその軸がずれていたりすると部分的に前ぼけ、後ぼけが生じてしまい、いわゆる「片ぼけ状態」となる。このような設計値からの逸脱を、前記「設計値点像」と「測定点像」を比較することによって求め、更に設計値通りと言えるかどうかの判定をすることが可能である。また、設計値点像にこだわらなくとも、任意に理想状態を定義して、その理想状態(「理想点像」)と「測定点像」を比較しその差異を判定することも可能である。
(2)はカーネルウィーナーフィルタを基本とした復元処理を実行し、前記「測定点像」を「設計値点像」あるいは「理想点像」に近づける係数群(復元係数)を計算によって求める段階である。カーネルウィーナフィルタとは、文献(鷲沢嘉一・山下幸彦著、題名「Kernel Wiener Filter」、2003 Workshop on Information-Based Induction Sciences、(IBIS2003)、Kyoto, Japan, Nov 11 -12, 2003)で示される様に、原信号が何らかのフィルタリングを経てノイズとともに観測された場合に、ノイズの含まれた観測信号から原信号を推定する手法として広く用いられている。ここで、原信号を「撮影される物体」、フィルタリングとして「撮像レンズ+撮像素子」、観測信号を「画像信号(第1の画像データ)」、そしてノイズを「設計値点像(あるいは理想点像)と測定点像の差異」とすると、カーネルウィーナーフィルタを適用して「撮影される物体」を推定することが出来る。
実物の「撮像レンズ+撮像素子」に一切の誤差要因がなければ撮影される物体がすなわち画像信号となっているはずであり、この復元処理を経た後では原理的には理想的な「画像信号(第2の画像データ)」が得られる。実際には、元々の(1)による測定誤差等も存在し、ノイズ成分が全て除去されずに一部が残存するが、測定点像が設計値点像あるいは理想点像に近づくことは確実であり、最終的な画像としての品位は向上する。
具体的には何らかの誤差要因によって光学的な点像が設計値よりも大きい、あるいは結像面内で均一でないとしても復元処理によってその点像を小さく補正、あるいは結像面内で均一化することで、実用に耐えうる性能を確保することが出来る。また製造による誤差要因のみならず、設計的に低い性能(光学点像が素子ピッチに比較して大きい)を余儀なくされている光学系であるとしても、点像を補正することによって見かけ上光学性能を向上させることが出来る。この見かけ上の光学性能向上を追求すると、理論的に示される限界解像度を越えることも可能となるため、近年の画素サイズの小型化の傾向を考えると誠に有用である。
ここで、限界解像度はエアリーディスクの大きさで与えられ、無収差レンズの点像強度の有効領域(ピーク強度×(1/e))の半径Re、及び強度ゼロとなる半径Rcは以下の式で規定される。撮像素子として用いられる最近のCMOS素子の画素ピッチが2.2ミクロン、1.75ミクロンであり、今後1.4ミクロン、1.0ミクロンが主流になると予想される。例として、F2.8、波長550nmでReおよびRcを計算するとそれぞれ、
Re(点像強度の有効領域の半径)=0.82λF=0.82×2.8×550×0.001=1.26ミクロン(点像強度の有効領域の直径2.52ミクロン)
Rc(点像強度ゼロとなる半径)=1.22λF=1.22×2.8×550×0.001=1.88ミクロン(点像強度ゼロとなる直径3.76ミクロン)
であり、既に画素ピッチが回折限界を越えている。
回折限界は無収差を前提としているが、現実の光学系は無収差である事は無く、特に小型化・低コスト化の要請を鑑みると収差はむしろ残存しており、妥協された性能を余儀なくされている。カーネルウィーナーフィルタによる復元処理はこのような状況でも、最終的な画像としての品位を実用的な程度にまで高めることが出来る。
上記の復元処理はある特定の像面上もしくはその極近傍(前ぼけ後ぼけの範囲)で実行することを想定しているが、撮影距離の変動に対応するデフォーカス方向の無数の像面群において測定点像と設計値点像の差をなくすような復元処理を考えれば焦点深度を拡大することも可能である。
復元処理の実行にあたっては、キャンセルすべきノイズ成分が個々の「撮像レンズ+撮像素子」によってまちまちであり、各「撮像レンズ+撮像素子」の組み合わせ毎に最適な復元処理を行うことが望ましい。ただし、復元処理自体のアルゴリズムは同一で良く、そこで参照される「係数群」が最適であればよい。
(3)は実際に「撮像レンズ+撮像素子」の組に「最適な係数群」を組み合わせる段階である。その為には、何らかの記録媒体に最適な復元処理を実行するための係数群を記憶させてそれを「撮像レンズ+撮像素子」の組に加えねばならない。従って、記録過程が必要である。
このようにして、撮像系が「撮像レンズ+撮像素子+記録媒体」の組として用いられる事で光学的な点像が用途に適した形で補正され、最終的には良好な品位の画像を得ることが出来る。具体的には、解像力が何らかの理由(製造公差・元々の設計値が低い)によって不満足であったとしても処理後の画像としては満足のいく解像力を達成しうる手段を提供する。また、各撮像レンズと撮像素子の組の特性に合致したような焦点深度拡大手段も提供しうる。
<復元係数取得装置の変形例について>
以下、復元係数取得装置の変形例について説明する。
撮像素子から出力された第1の画像データで表される点像のボケ状態に応じた復元係数K1を係数記憶部30に記憶させる復元係数取得装置は、上記第1例の復元係数取得装置70Aとは異なる以下に説明する第2例の復元係数取得装置70Bや第3例の復元係数取得装置70Cのように構成してもよい。
図7は、複数種類に分類された点像のボケ状態それぞれに対応する各復元係数の候補のうち、第1の画像データの表す点像のボケ状態に応じて選択された復元係数を係数記憶部に記憶させる第2例の復元係数取得装置70Bを示す図である。
図7に示すように、この復元係数取得装置70Bは、予め複数種類に分類された点像のボケ状態それぞれに対応する各復元係数の候補K1、K2・・・を記憶させた候補係数記憶部79と、撮像レンズ10を通して受光面21上に投影された点像P1のボケ状態を取得する点像ボケ状態取得部73と、上記復元係数の候補K1、K2・・・のうち上記第1の画像データG1の表す点像P1のボケ状態に応じた復元係数(例えばK1)を選択し、この復元係数K1を係数記憶部30に記憶させる復元係数取得部78Bとを備えている。
この復元係数取得装置70Bは、点像ボケ状態取得部73により点像のボケ状態を示すボケ点像状態データDbを得、復元係数取得部78Bは、候補係数記憶部79に記憶された復元係数の候補K1、K2・・・のうちボケ点像状態データDbの表す点像P1のボケ状態に応じた復元係数(例えばK1)を選択し、この復元係数K1を示す係数データDkを係数記憶部30に出力し記憶させる。
すなわち、係数記憶部30には、複数種類に分類された点像のボケ状態それぞれに対応する各復元係数の候補K1,K2・・・のうちから第1の画像データG1の表す点像のボケ状態に応じて選択された復元係数が記憶される。
図8は、複数種類に分類された点像のボケ状態それぞれに対応する複数種類の復元係数の候補のうち、第1の画像データの表す点像のボケ状態に応じて選択された復元係数を、その点像のボケ状態に応じてさらに補正してなる補正済の復元係数を係数記憶部に記憶させる第3例復元係数取得装置70Cである。
図8に示すように、この復元係数取得装置70Cは、予め複数種類に分類された点像のボケ状態それぞれに対応する各復元係数の候補K1、K2・・・を記憶させた候補係数記憶部79と、撮像レンズ10の解像力が高いときに、この解像力の高い撮像レンズを通して受光面21上に投影される理想的な点像P1についての設計データまたは理想点像状態データであるデータDrを予め記憶させた理想点像記憶部72と、撮像レンズ10を通して受光面21上に投影された点像P1のボケ状態を取得する点像ボケ状態取得部73と、上記復元係数の候補K1、K2・・・のうち上記点像P1のボケ状態に応じた復元係数(例えばK1)を選択し、この復元係数K1を上記点像P1のボケ状態、および予め理想点像記憶部72に記憶された点像の設計データまたは理想点像状態データであるデータDrを用いた演算により補正してなる補正済の復元係数K1′を示す係数データDk(K1′)を取得して、この係数データDk(K1′)が表す補正済の復元係数K1′を係数記憶部30に記憶させる復元係数取得部78Cを備えている。
この復元係数取得装置70Cは、点像ボケ状態取得部73により撮像レンズ10を通して受光面21上に投影された点像P1のボケ状態を示すボケ状態データを取得する。復元係数取得部78Bは、候補係数記憶部79に記憶された復元係数の候補K1、K2・・・のうち上記点像P1のボケ状態に応じた復元係数(例えばK1)を選択する。さらに、この復元係数K1を上記点像P1のボケ状態および予め理想点像記憶部72に記憶された点像の設計データまたは理想点像状態データであるデータDrを用いた演算により補正してなる補正済の復元係数K1′を取得し、この補正済の復元係数K1′を係数記憶部30に記憶させる。
すなわち、係数記憶部30には、複数種類に分類された点像のボケ状態それぞれに対応する複数種類の復元係数の候補のうち、第1の画像データG1の表す点像P1のボケ状態に応じて選択された復元係数(例えばK1)に対して、さらに上記ボケ状態に応じた補正を施してなる補正済の復元係数K1´が記憶される。
なお、図9に示すように、本発明の撮像システムは、復元係数取得装置70A、70B、あるいは70C等と同様の機能を有する復元係数取得装置70や係数記憶部30を上記撮像システムの筐体内に備えた撮像システム100′であってもよい。
さらに、図10に示すように、本発明の撮像システムは、上記復元係数取得装置70や係数記憶部30を内蔵した信号処理部40′を備えた撮像システム100″であってもよい。すなわち、信号処理部40′を、復元係数取得装置70を兼ねるものとしてもよい。
<各構成要素の変形例について>
以下、撮像システムにおける構成要素の変形例について説明する。
信号処理手段は、受光面上における縦方向3画素以上および横方向3画素以上からなる合計9画素以上に亘る画素領域を最小単位として復元処理を行うものとする場合に限らず、縦方向3画素未満あるいは横方向3画素未満からなる合計9画素未満に亘る画素領域を最小単位として復元処理を行うものであってもよい。
また、信号処理部は、点像のボケ状態を表す第1の画像データを用いた演算により復元係数を求める場合に限らず、他の方式により復元係数を求めるようにしてもよい。
また、信号処理部は、受光面上に投影された点像の有効領域の全てを含む最小の画素領域を最小単位として復元処理を実行する場合に限らず、有効領域の全てを含むが最小ではない画素領域を最小単位として復元処理を実行するものとしてもよい。
さらに、信号処理部は、第1の画像データの表す画像中の点像の有効領域の大きさよりも、第2の画像データの表す画像中における点像の有効領域の大きさの方を小さくするように復元処理を実行する場合に限らず、第1の画像データの表す画像中の点像の有効領域の大きさを、第2の画像データの表す画像中における点像の有効領域の大きさ以上とするように復元処理を実行するものとしてもよい。
上記撮像システムを備えた本発明の撮像装置、携帯端末機器、車載機器、および医療機器等の被写界深度の深いことが要請される装置は、各装置に備えられた撮像システムの受光面に投影された光学像を撮像して得られる画像データの品質を上記と同様に容易に高めることができる。
なお、本発明の撮像システムは、軸対称形状からなる光学部材のみを通して受光面上に被写体の光学像が投影されるように構成したものであってもよいし、あるいは、非軸対称形状からなる光学部材を通して受光面上に被写体の光学像が投影されるように構成したものであってもよい。さらに、上記撮像レンズは、被写界深度の深いものとすることが望ましい。すなわち、被写体の移動、あるいは撮像レンズのフォーカス調整等により、被写体の光学像が受光面上に投影される状態に変化が生じても、受光面上に投影される点像のボケ状態の変化が少なくなるように撮像レンズと撮像素子とを構成することが望ましい。より具体的には、受光面上に投影される点像の有効領域の大きさ、およびコントラストの変化を少なくなるように撮像レンズと撮像素子とを構成することが望ましい。しかしながら、撮像システムは、被写界深度の深い撮像レンズを備える場合に限らず、被写界深度の浅い撮像レンズを備えるようにしてもよい。
また、上記撮像システムに用いる撮像素子は、CCD素子、あるいはCMOS素子とすることができる。
<撮像レンズのレンズ構成および作用について>
次に、上記撮像システム100に用いられる実施例1の撮像系の構成および作用について具体的に説明する。上記実施例1の撮像系に用いられる後述の撮像レンズ10A等は上述の撮像レンズ10の実施例となるものである。
なお、上記撮像レンズ10は、後述のように、被写体側(物体側)から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群G−1と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群G−2とを有するものである。
《実施例1の撮像系について》
図11は、実施例1に係る2枚の単レンズで構成された撮像レンズ10Aの概略構成を示す断面図、図12(a)〜(d)は横軸に撮像レンズ10Aを通して被写体の像が投影される受光面の光軸方向(Z軸方向)へのデフォーカス量Ud(μm)、縦軸にMTF特性の値(%)を示す座標上へ、上記撮像レンズに対して受光面をデフォーカスさせたときにこの受光面上へ投影される光学像のMTF特性の値(%)の変化を示す図である。ここで、受光面21Aのデフォーカス範囲は400μmである。
より詳しくは、上記図12(a)〜(d)は、撮像レンズ10Aに対する被写体の位置を固定した状態で受光面21Aをデフォーカスさせたときの種々の像高に投影された光学像に関するMTF特性の値(%)の変化を示す図である。図12(a)は20本/mmの空間周波数におけるMTF特性の値の変化を示すものであり、図12(b)は30本/mmの空間周波数、図12(c)は40本/mm、図12(d)は50本/mmの空間周波数におけるMTF特性の値の変化それぞれを示すものである。
なお、図12に示すデフォーカス量を示す横軸Udは、値が大きくなる方向(Udの値が400μmに近づく方向)が撮像レンズと受光面とが離れる方向を示し、値の小さくなる方向(Udの値が0に近づく方向)は受光面と撮像レンズとが接近する方向を示している。
図11に示すように、撮像レンズ10Aは、光軸C(Z軸)に沿って被写体側(図中矢印−Z方向の側)から順に、開口絞りSat、第1のレンズ群G−1に対応する第1の単レンズLa1、第2のレンズ群G−2に対応する第2の単レンズLa2、光学部材GLa1それぞれが配列されてなるものである。なお、図11に示すレンズ面R1、R3は、各単レンズLa1〜La2それぞれの入射側の面、レンズ面R2、R4は、各単レンズLa1〜La2それぞれの射出側の面を示している。上記撮像レンズ10Aを通して受光面21A上に被写体の光学像が投影される。
なお、受光面21Aの被写体側には、撮像系の構成に応じて、カバーガラスや、ローパスフィルタまたは赤外線カットフィルタ等を配置することが好ましく、図11ではこれらを想定した平行平板形状をなすパワーを持たない光学部材GLa1を配置した例を示している。また、開口絞りSatは形状や大きさを表すものではなく光軸Z上の位置を示すものである。
また、図11には、軸上光線Ja1から最大画角で入射する軸外光線Ja6で像高の低い方から順に7つの光線Ja1、Ja2、Ja3、Ja4、Ja5、Ja6が示してある。
なお、図12(a)中に記載の6本のMTF曲線Mta20は、上記5つの光線が受光面21A上に投影される各位置での20本/mmの空間周波数におけるMTF特性の値の変化を示している。図12(b)中に記載の6本のMTF曲線Mta30は上記と同様の各位置での30本/mmの空間周波数におけるMTF特性の値の変化を、図12(c)中に記載の6本のMTF曲線Mta40も上記と同様の各位置での40本/mmの空間周波数におけるMTF特性の値の変化を、図12(c)中に記載の6本のMTF曲線Mta50も上記と同様の各位置での50本/mmの空間周波数におけるMTF特性の値の変化をそれぞれ示している。
なお、図11に示す構成例では、第2の単レンズLa2と受光面21Aとの間に光学部材GLa1を配置した例を示しているが、各レンズの間にローパスフィルタや特定の波長域をカットするような各種フィルタを配置してもよい。あるいは、第1の単レンズLa1から第2の単レンズLa2のいずれかのレンズのレンズ面に、各種フィルタと同様の作用を有する表面処理(コーティング)を施してもよい。
この撮像レンズ10Aは、物体側から順に、正のパワーを持つ第1のレンズ群G−1である単レンズLa1と、正のパワーを持つ第2のレンズ群G−2である単レンズLa2とを有するものである。
第1のレンズ群G−1の単レンズLa1は物体側に凸面を向けたメニスカス形状をなすものであり、第2のレンズ群G−2の単レンズも物体側に凸面を向けたメニスカス形状をなすものである。
以下、実施例1にかかる撮像レンズ10Aの設計データについて説明する。
レンズデータおよび各種データを表1に、各非球面における非球面式の各係数を表2に、撮像レンズ10Aの概略仕様を表3に示す。
表1のレンズデータの下方に示すように、撮像レンズ10Aの焦点距離fは3.011mm、F値は4.0である。
表1のレンズデータにおいて、面番号は最も被写体側のレンズ面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示す。なお、表1には開口絞りSatと光学部材GLa1も含めて記載しており、光学部材GLa1の面番号(i=5、6)も記載している。
表1のRiはi番目(i=1、2、3、…)の面の近軸曲率半径を示し、Diはi(i=1、2、3、…)番目の面とi+1番目の面との光軸Z上の面間隔を示す。なお、表1のRiは、図11における符号Ri(i=1、2、3、…)と対応している。
表1のNdjは最も被写体側の光学要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.6nm)に対する屈折率を示し、νdjはj番目の光学要素のd線に対するアッベ数を示す。表1において、近軸曲率半径および面間隔の単位はmmであり、近軸曲率半径は被写体側(物体側)に凸の場合を正、像側に凸の場合を負としている。
表1のレンズデータにおいて、非球面は面番号に*印を付している。各非球面は下記非球面式により定義される。
非球面式における各非球面の各係数K、A3、A4、A5・・・の値を表2に示す。
撮像レンズ10Aを構成する単レンズLa1〜La2それぞれは、いずれも入射側および射出側のレンズ面が両方共に非球面形状をなすものである。
また、表3には、実施例1の撮像系における、点像の有効領域の最大径Dmax、点像の有効領域の最大径Dmaxに対応する画素数(画素領域の数)Ngs、最短撮影距離Sk、焦点深度Sdの関係を示す。
また、表3中の画素数Ngsは、点像の有効領域の最大径に対応する画素領域の数を受光面上の画素領域の各画素ピッチPg(2.2μm、1.85μm、1.4μm)毎に示している。ここで、画素数Ngsの値は、画素数Ngs=最大径Dmax/画素ピッチPgの式によって求められるものである。
上記点像の有効領域の最大径Dmaxは、この点像の有効領域が最も多くの画素を含む方向における点像の有効領域の径であり、画素ピッチはPgは上記方向における画素領域(受光画素)のピッチである。
最短撮影距離Skは、撮像レンズを実用に供するときの推奨値であり、所望の解像度で被写体の像を受光面上に投影可能な撮影レンズから被写体までの最短距離を示すものである。この最短距離は、撮影レンズの最も被写体側(物体側)のレンズ面(ここではレンズ面R1)から被写体までの距離(撮影距離)によって表されるものである。
この最短撮影距離は、受光面に投影された光学像を撮像して得られる画像データの品質を復元処理によって高める効果が得られる撮影距離の範囲内に含まれるものである。
なお、実施例1の撮像系において、画像データの品質を復元処理によって高める効果が得られる撮影距離の範囲は、撮影距離が0から∞(無限遠方)までの範囲であり、被写体を撮影可能な全範囲である。
焦点深度Sdは、撮像レンズに対する被写体の位置を固定した状態で受光面をデフォーカスさせたときに、受光面上に被写体の像を規定以上の解像度で投影可能なデフォーカスの範囲を示すものである。この焦点深度Sdは、撮像レンズに対する受光面の位置を所定位置に固定した状態において被写体を所定解像度で受光面上に投影可能な撮影距離の範囲とある程度対応すると考えられる値である。すなわち焦点深度Sdの値が大きくなれば、被写体を所定解像度で受光面上に投影可能な撮影距離の範囲も広がると考えられる。
表3からわかるように、実施例1の撮像系は、受光面21Aに投影された点像の有効領域が7μm以上、かつ、受光面21Aを構成する受光画素の画素ピッチが2.2μm以下であるときに点像の有効領域の最大径が3画素(3.2画素)以上に亘るものとなるように構成されている。
また、最短撮影距離Skの値は、点像の有効領域の最大径Dmaxを7μmとしたときには15f(約45.2mm)となる。
撮像レンズ10Aの焦点深度Sdの値は、点像の有効領域の最大径Dmaxを7μmとしたときには250μmとなる。
上記実施例1の撮像系に関するMTF特性の値については、受光面21Aを撮像レンズ10Aに対して最も接近させたとき、すなわち図12(a)〜(d)においてデフォーカス量Udの値が0のときには、空間周波数が20〜50Line/mmの全てのMTF特性の値が正である。
また、受光面21Aを撮像レンズ10Aから遠ざけたとき、すなわち図12(a)〜(d)においてデフォーカス量の値を250μmとしたときには、空間周波数が20〜50Line/mmの全てのMTF特性の値が正である。
すなわち、デフォーカス量の値が0〜250μmの範囲内のときには、空間周波数が20〜50Line/mmにおける全てのMTF特性の値は正となる。
デフォーカス量の値が250μmから400μmの範囲おいては、空間周波数20〜50Line/mmにおけるMTF特性の値が0%から反転し偽解像が生じている。偽解像が生じている範囲を図中矢印Gikで示す。
ここで、受光面上に投影された被写体の像に関するMTF特性の値が0%よりも大きいときには、この像を撮像して得られた画像データは光学的に意味のある情報を持つものと言えるので、この画像データは復元処理を実施して解像度を向上できる可能性のあるものとなる。しかしながら、受光面上に投影された被写体の像に関するMTF特性の値が0%または0%から折り返されて偽解像が生じている場合には、この像を撮像して得られた画像データは光学的に意味のある情報を持たないので、このような画像データに対して復元処理を施しても画像データの品質(画像データの表す画像の解像度)を向上させることはできない。
上記のようなことにより、この撮像システムによれば、受光面21Aと撮像レンズ10Aとの位置関係を固定した所定の状態で撮影距離を15f〜∞の範囲へ変化させたときに、被写体を受光面21A上に投影してなる像のMTF特性を常に0%より大きな値とすることができる(偽解像が生じないようにすることができる)。
すなわち、撮影距離が15f〜∞の範囲において受光面21A上に投影される被写体の像を意味のある像とすることができる。
さらに、撮影距離を0〜∞の範囲で変化させたときにこの受光面21A上に投影される点像の有効領域は、受光面21A上の3画素以上に亘る大きさとなるので、この範囲に存在する被写体を撮像して得られた画像データに対して復元処理を実施することにより画像の解像度を高めることができる。
すなわち、実施例1の撮像系を通して受光面21A上に投影された撮影距離が15f〜∞の範囲に存在する種々の被写体を含む像を撮像して得られた画像データは復元処理を実施するための前提条件(解像度を向上させる条件)を満足するものと言える。
なお、受光面21A上に投影される点像の大きさの変動を少なく抑えることによって、復元処理をより容易に実行することができる。すなわち、例えば、受光面上に投影される像が、互に異なる種々の撮影距離に存在する被写体を含むものであっても、各被写体の像を構成する点像のボケ状態が同様であれば、どのような位置に存在する被写体を表す画像データに対してもパラメータを変更することなく復元処理を実行することができる。これにより、復元処理の演算を行う信号処理部の負担を軽減することができる。
一方、常に同じパラメータを用いて復元処理を実行することを前提とする場合には、受光面上に投影される互に異なる種々の撮影距離に存在する被写体の像を構成する点像のボケ状態が同様であれば、復元処理を実施することにより、どのような位置に存在する被写体を表す画像データに対してもその被写体を表す画像の解像度を同じように高めることができる。すなわち、復元処理の実施により画像の解像度を画像全体に亘って均一に高めることができる。
このように、撮像レンズ10Aの焦点深度を大きくするような設計を施したことにより、撮像レンズ10Aを通して受光面21A上に投影された撮影距離が15f〜∞の範囲に存在する種々の被写体を含む像を撮像して得られた画像データによって表される画像全体の解像度を復元処理によって高めることが可能となる。
また、上記のように設計された撮像レンズ10Aによれば、受光面21Aへ入射する光のこの受光面21Aに対する入射角を小さくすることができる、すなわちテレセントリック性の良好な撮像レンズを得ることができる。
《実施例1で説明した撮像レンズの収差について》
図13は撮像レンズ10Aに関する収差を示す図である。実施例1で説明した撮像レンズの各収差図を、図13中に上から順に球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差の順番で示す。
収差図には、e線(波長546.07nm)を基準波長とした収差を示すが、球面収差図および倍率色収差図には、F線(波長486.1nm)、C線(波長656.3nm)についての収差も示す。ディストーションの図は、全系の焦点距離f、半画角θ(変数扱い、0≦θ≦ω)を用いて、理想像高をf×tanθとし、それからのずれ量を示す。
《比較例の撮像系について》
以下、比較例として携帯電話用カメラ等に使用される従来の撮像レンズについて説明する。
図14は比較例に係る4枚の単レンズからなる撮像レンズの概略構成を示す断面図、図15(a)〜(d)は、横軸に受光面の光軸方向(Z軸方向)のデフォーカス量Ud(μm)、縦軸にMTF特性の値(%)を示す座標上に、上記撮像レンズに対して受光面をデフォーカスさせたときにこの受光面に投影される光学像のMTF特性の値(%)の変化を示す図である。ここで、受光面のデフォーカス範囲は400μmである。
なお、MTF特性を示す図15(a)〜(d)は、上述の撮像レンズ10Aに関するMTF特性を示す図12(a)〜(d)等に対応するものである。
図14に示すように比較例の撮像レンズ10Hは、光軸C(Z軸)に沿って被写体側(図中矢印−Z方向の側)から順に、第1の単レンズLh1、第2の単レンズLh2、第3の単レンズLh3、第4の単レンズLh4、光学部材GLh1それぞれが配列されてなるものである。これらの4枚の単レンズを有する撮像レンズ10Hは、被写界深度が深くなるように設計されたものである。
上記撮像レンズ10Hを通して受光面21H上に被写体の光学像が投影される。
なお、光学部材GLh1は、平行平板からなるパワーを持たない光学部材である。
また、図15(a)〜(d)には、軸上光線Jh1から最大画角で入射する軸外光線Jh5まで像高の低い方から順に5つの光線Jh1、Jh2、Jh3、Jh4、Jh5が示してある。
なお、図15(a)中に記載の5本のMTF曲線Mth20は、上記5つの光線が受光面21H上に投影される各位置での20本/mmの空間周波数におけるMTF特性の値の変化を示している。図15(b)中に記載の5本のMTF曲線Mth30は上記と同様の各位置での30本/mmの空間周波数におけるMTF特性の値の変化を、図15(c)中に記載の5本のMTF曲線Mth40も上記と同様の各位置での40本/mmの空間周波数におけるMTF特性の値の変化を、図15(d)中に記載の5本のMTF曲線Mth50も上記と同様の各位置での50本/mmの空間周波数におけるMTF特性の値の変化をそれぞれ示している。
上記比較例の撮像系に関するMTF特性の値は、受光面を撮像レンズに接近させたとき、すなわち図15(a)〜(d)においてデフォーカス量の値が概略0から120μmの範囲に関し、空間周波数が30〜50Line/mmのMTF特性についてその値が0%から反転し偽解像が生じた状態となっている。偽解像が生じている範囲を図中矢印Gikで示す。
また、受光面を撮像レンズから遠ざけたとき、すなわち図15(a)〜(d)においてデフォーカス量の値が280μmから400μmの範囲に関し、空間周波数が30〜50Line/mmのMTF特性についてその値が0%から反転し偽解像が生じた状態となっている。偽解像が生じている範囲を図中矢印Gikで示す。
ここで、デフォーカス量Udの値が120μmと280μmの間(焦点深度の範囲)に
おいてはMTF特性の値が正であり、各空間周波数におけるMTF特性の値の変動幅は85%(50Line/mm)、90%(40Line/mm)、70%(30Line/mm)、45%(20Line/mm)程度となっている。
上記のように、比較例の撮像系によれば、比較的狭いデフォーカス範囲(約160μmの範囲)のみにおいてMTF特性の値が正となり、MTF特性の値の変動量が大きい。
MTF特性の値が0%から反転しているデフォーカスの範囲(図中矢印Gikで示す)については、点像は偽解像されたものであり、有効領域が3画素以上に亘ると特定できるような光学的に意味のある像は得られない。
すなわち、かなり限定された撮影距離の範囲においてのみMTF特性の値が正となり、受光面上に投影された被写体の像を意味のある像とすることができる。また、受光面上に投影される点像の大きさの変動量は大きい。
さらに、この比較例の撮像系は、撮影距離を0〜∞の範囲で変化させたときに受光面上に投影される点像の有効領域がこの受光面上の3画素以上に亘る大きさとなように構成されているわけではないので、このような撮像系を通して得られた画像データは復元処理を実施するための前提条件(解像度を向上させる条件)を満足するものではない。
したがって、比較例の撮像系を通して受光面21H上に投影された被写体の像を撮像して得られた画像データに対して復元処理を施しても、この被写体を表す画像の解像度を向上させる効果を得ることはできない。
図16は、撮像システムを備えた車載機器が搭載されている自動車を示す図である。
図16に示すように、本発明の撮像システムを備えた車載機器502〜504は、自動車501等に搭載して使用することができる。この自動車501は、助手席側の側面の死角範囲を撮像するための車外カメラである車載機器502と、自動車1の後側の死角範囲を撮像するための車外カメラである車載機器503と、ルームミラーの背面に取り付けられ、ドライバーと同じ視野範囲を撮影するための車内カメラである車載機器504とを備えている。
図17は、撮像システムを備えた携帯端末機器である携帯電話機を示す図である。
図示のように、この携帯電話機510は、携帯電話機の筐体511中に撮像システム512が配されたものである。
図18は、撮像システムを備えた医療機器である内視鏡装置を示す図である。
図示のように、生体組織525を観察するこの内視鏡装置520は、照明光Laで照明された生体組織525を撮像するための撮像システム522を内視鏡装置520の先端部521に配したものである。
このように、上記のような撮像システムを備えた本発明の撮像装置、携帯端末機器、車載機器、および医療機器は、従来より知られている撮像装置、携帯端末機器、車載機器、および医療機器が備えている従来の撮像システムとの置き換えが容易である。すなわち、従来より知られている撮像装置、携帯端末機器、車載機器、および医療機器の装置サイズや形状等を変更することなく、これらの装置が備える従来の撮像システムを本発明の撮像システムに置き換えて、本願発明の撮像装置、携帯端末機器、車載機器、および医療機器を構成することもできる。
なお、上記実施例では、撮像レンズを種々の条件で限定した例を示したが、本発明の撮像システムに用いられる撮像レンズは、物体側から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群とを有するものを用いるものであり、各群を構成するレンズ枚数や形状等が限定されるものではない。例えば、各群を複数枚のレンズで構成するようにしてもよい。
本発明の撮像システムの概略構成を示すブロック図 図2(a)は点像の光強度分布を示す図、図2(b)は受光面に投影された点像を示す図 図3(a)は第1の画像データの表す画像中に表示される点像の画像を示す図、図3(b)は第2の画像データの表す画像中に表示される点像の画像を示す図 図4(a)は撮像レンズの解像力が高いときに受光面上に投影されるであろう点像の光強度分布を示す図、図4(b)は撮像レンズの解像力が高いときに受光面に投影されるであろう点像を示す図 物点を光軸方向に移動させたときに受光面上に投影されるその物点の光学像である点像の有効領域の最大径の変化を示す図 物点を光軸方向に移動させたときに受光面上に投影されるその物点の光学像に関するMTF特性の値(%)の変化を示す図 第2例の復元係数取得装置を示す図 第3例の復元係数取得装置を示す図 復元係数取得装置を内部に備えた撮像システムを示す図 復元係数取得装置を信号処理部の内部に備えた撮像システムを示す図 実施例1の撮像系に配された撮像レンズの概略構成を示す断面図 受光面をデフォーカスさせたときのMTF特性の値の変化を示す図、図12(a)は20本/mmの空間周波数におけるMTF特性の値の変化を示す図、図12(b)は30本/mmの空間周波数におけるMTF特性の値の変化を示す図、図12(c)は40本/mmの空間周波数におけるMTF特性の値の変化を示す図、図12(d)は50本/mmの空間周波数におけるMTF特性の値の変化を示す図 実施例1の撮像レンズに関する収差を示す図 比較例の撮像系に配された撮像レンズの概略構成を示す断面図 受光面をデフォーカスさせたときのMTF特性の値の変化を示す図、図21(a)は20本/mmの空間周波数におけるMTF特性の値の変化を示す図、図21(b)は30本/mmの空間周波数におけるMTF特性の値の変化を示す図、図21(c)は40本/mmの空間周波数におけるMTF特性の値の変化を示す図、図21(d)は50本/mmの空間周波数におけるMTF特性の値の変化を示す図 撮像システムを備えた車載機器が搭載されている自動車を示す図 撮像システムを備えた携帯端末機器である携帯電話機を示す図 撮像システムを備えた医療機器である内視鏡装置を示す図
符号の説明
10 撮像レンズ
20 撮像素子
21 受光面
30 係数記憶部
40 信号処理部
70A 第1例の復元係数取得装置
70B 第2例の復元係数取得装置
70C 第3例の復元係数取得装置
72 理想点記憶部
76 判定部
78 復元係数取得部
79 候補係数記憶部
100 撮像システム
G1 第1の画像データ
G2 第2の画像データ
F 復元処理
P1 点像
K 復元係数
Dr 設計データ、理想点像状態データ
Dk 係数データ

Claims (16)

  1. 撮像レンズと、
    多数の受光画素を2次元状に配列してなる受光面を有し、前記撮像レンズを通して前記受光面上に投影された被写体の光学像を撮像して該被写体を表す第1の画像データを出力する撮像素子と、
    前記第1の画像データに対し、前記撮像レンズの解像力が高いときに前記撮像素子から出力される前記第1の画像データと同等の第2の画像データを生成するような復元処理を施す信号処理手段とを備え、
    前記撮像レンズが、物体側から順に、少なくとも1枚のレンズからなる正のパワーを持つ第1のレンズ群と、少なくとも1枚のレンズからなる正のパワーを持つ第2のレンズ群とを有するものであり、
    前記撮像レンズと撮像素子とが、前記撮像レンズの光軸方向、前記受光面に対して平行な方向のいずれの位置から前記撮像レンズを通して前記受光面上へ投影された点像についても該点像の有効領域の最大径が前記受光画素の3画素以上に亘る大きさとなるように構成されたものであり、かつ、前記撮像レンズが、該撮像レンズの焦点距離の10倍以上離れた、前記撮像レンズの光軸方向、前記受光面に対して平行な方向のいずれの位置から前記撮像レンズを通して前記受光面上へ投影された被写体の光学像についても該光学像に関するMTF特性の値が正となるように構成されたものであることを特徴とする撮像システム。
  2. 前記信号処理手段が、受光面上における縦方向3画素以上および横方向3画素以上からなる合計9画素以上に亘る画素領域を最小単位として前記復元処理を行うものであることを特徴とする請求項記載の撮像システム。
  3. 前記信号処理手段が、前記受光面上に投影された点像の有効領域の全てを含む最小の画素領域を最小単位として前記復元処理を実行するものであることを特徴とする請求項1または2記載の撮像システム。
  4. 前記信号処理手段が、前記第1の画像データの表す画像中の点像の有効領域を表す大きさよりも、前記第2の画像データの表す画像中における前記点像の有効領域を表す大きさの方を小さくするように前記復元処理を実行するものであることを特徴とする請求項1からのいずれか1項記載の撮像システム。
  5. 前記信号処理手段が、前記第1の画像データの表す点像の状態に応じた復元係数を用いて前記復元処理を実行するものであることを特徴とする請求項1からのいずれか1項記載の撮像システム。
  6. 前記復元係数が、各撮像システム毎に、該撮像システムに対して個別に求められるものであることを特徴とする請求項記載の撮像システム。
  7. 前記復元係数が、複数種類に分類された点像の状態それぞれに対応する各復元係数の候補のうち、前記第1の画像データの表す点像の状態に応じて選択されたものであることを特徴とする請求項記載の撮像システム。
  8. 前記復元係数が、複数種類に分類された点像の状態それぞれに対応する複数種類の復元係数の候補のうち、前記第1の画像データの表す点像の状態に応じて選択された復元係数を、該点像の状態に応じてさらに補正してなるものであることを特徴とする請求項記載の撮像システム。
  9. 前記復元係数を取得する復元係数取得手段をさらに備えたことを特徴とする請求項5から8のいずれか1項記載の撮像システム。
  10. 前記撮像レンズが2枚の単レンズからなるものであることを特徴とする請求項1からのいずれか1項記載の撮像システム。
  11. 前記第1のレンズ群の単レンズが物体側に凸面を向けたメニスカス形状をなすものであり、前記第2のレンズ群の単レンズが物体側に凸面を向けたメニスカス形状をなすものであることを特徴とする請求項10記載の撮像システム。
  12. 前記第1のレンズ群の単レンズが、該単レンズの両面が凸形状をなすものであり、前記第2のレンズ群の単レンズが像側に凸面を向けたメニスカス形状をなすものであることを特徴とする請求項10記載の撮像システム。
  13. 請求項1から12のいずれか1項記載の撮像システムを備えた撮像装置。
  14. 請求項1から12のいずれか1項記載の撮像システムを備えた携帯端末機器。
  15. 請求項1から12のいずれか1項記載の撮像システムを備えた車載機器。
  16. 請求項1から12のいずれか1項記載の撮像システムを備えた医療機器。
JP2007316929A 2007-12-07 2007-12-07 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器 Expired - Fee Related JP4813451B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007316929A JP4813451B2 (ja) 2007-12-07 2007-12-07 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器
US12/328,627 US8111318B2 (en) 2007-12-07 2008-12-04 Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
CN2008101798278A CN101472047B (zh) 2007-12-07 2008-12-05 摄像***及其制造方法、和具有该摄像***的摄像装置
TW097147348A TWI401483B (zh) 2007-12-07 2008-12-05 A photographing system, a manufacturing method of a photographing system, and a photographing device having the photographic system, a portable terminal device, a vehicle-mounted device, and a medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316929A JP4813451B2 (ja) 2007-12-07 2007-12-07 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器

Publications (3)

Publication Number Publication Date
JP2009141742A JP2009141742A (ja) 2009-06-25
JP2009141742A5 JP2009141742A5 (ja) 2010-07-15
JP4813451B2 true JP4813451B2 (ja) 2011-11-09

Family

ID=40871896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316929A Expired - Fee Related JP4813451B2 (ja) 2007-12-07 2007-12-07 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器

Country Status (1)

Country Link
JP (1) JP4813451B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581177B2 (ja) * 2010-11-04 2014-08-27 富士フイルム株式会社 撮像位置調整装置および撮像装置
JP2012141725A (ja) 2010-12-28 2012-07-26 Sony Corp 信号処理装置、信号処理方法、およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067743A1 (fr) * 1998-06-22 1999-12-29 Yoshikazu Ichiyama Procede de correction d'images et dispositif d'entree d'images
WO2004063989A2 (en) * 2003-01-16 2004-07-29 D-Blur Technologies Ltd. Camera with image enhancement functions
JP2004328506A (ja) * 2003-04-25 2004-11-18 Sony Corp 撮像装置および画像復元方法
WO2006022373A1 (ja) * 2004-08-26 2006-03-02 Kyocera Corporation 撮像装置および撮像方法

Also Published As

Publication number Publication date
JP2009141742A (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4813448B2 (ja) 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器
JP2009122514A (ja) 撮像システム、この撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器、並びに撮像システムの製造方法
TWI401483B (zh) A photographing system, a manufacturing method of a photographing system, and a photographing device having the photographic system, a portable terminal device, a vehicle-mounted device, and a medical device
JP4813446B2 (ja) 撮像システム、この撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器、並びに撮像システムの製造方法
JP4732480B2 (ja) 内視鏡用対物光学系
US10782506B2 (en) Optical imaging lens assembly, image capturing unit and electronic device
JP4792395B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5049012B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2015001641A (ja) 撮像レンズおよび撮像装置
US8077247B2 (en) Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
JP5101468B2 (ja) 撮像システム、この撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器、並びに撮像システムの製造方法
JP4813447B2 (ja) 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器
JP2010134347A (ja) 撮像レンズ、および撮像装置
US10230882B2 (en) Image pickup apparatus acquiring a plurality of in-focus images of different field angles
JP4813451B2 (ja) 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器
JP6720026B2 (ja) 内視鏡用対物光学系
JP2006094468A (ja) 撮像装置および撮像方法
JP2009139697A (ja) 撮像システム、この撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器、並びに撮像システムの製造方法
JP5570260B2 (ja) 撮像装置
JP2009139698A (ja) 撮像システム、並びにこの撮像システムを備えた撮像装置、携帯端末機器、車載機器、および医療機器
CN115362404A (zh) 拍摄光学***、拍摄装置以及车辆
JP2019101229A (ja) 結像レンズ系、撮像装置
JP2017073599A (ja) 画像処理装置、レンズ装置、撮像装置、および、撮像装置の製造方法
JP2017220765A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees