JP4810242B2 - Plate stack heat exchanger - Google Patents

Plate stack heat exchanger Download PDF

Info

Publication number
JP4810242B2
JP4810242B2 JP2006016861A JP2006016861A JP4810242B2 JP 4810242 B2 JP4810242 B2 JP 4810242B2 JP 2006016861 A JP2006016861 A JP 2006016861A JP 2006016861 A JP2006016861 A JP 2006016861A JP 4810242 B2 JP4810242 B2 JP 4810242B2
Authority
JP
Japan
Prior art keywords
plate
convex portions
heat exchanger
temperature fluid
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006016861A
Other languages
Japanese (ja)
Other versions
JP2007198660A (en
Inventor
達人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
Original Assignee
Tokyo Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd filed Critical Tokyo Roki Co Ltd
Priority to JP2006016861A priority Critical patent/JP4810242B2/en
Publication of JP2007198660A publication Critical patent/JP2007198660A/en
Application granted granted Critical
Publication of JP4810242B2 publication Critical patent/JP4810242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、オイルクーラやEGRクーラ等のプレート積層型熱交換器に関し、特に、フィンを設けた場合と同等の熱交換効率を維持しつつ、フィンの削減を可能としたプレート積層型熱交換器に関する。   The present invention relates to a plate laminated heat exchanger such as an oil cooler or an EGR cooler, and in particular, a plate laminated heat exchanger that can reduce fins while maintaining heat exchange efficiency equivalent to that provided with fins. About.

従来のプレート積層型熱交換器としては、例えば図5に示す如く、プレート間にフィンを設けたものがある。図5に示すプレート積層型熱交換器500は、前後のエンドプレート51,52間に複数のコアプレート53,54の組を積層し、その外周フランジ部同士をロウ付けすることで、エンドプレート51,52及びコアプレート53,54で囲われた内部を高温流体室と低温流体室とが交互に積層されるように画成している。そして、各流体室を前部側エンドプレート51にそれぞれ突設した一対の循環パイプ56a,56b及び57a,57bに連通させており、一組のコアプレート間には、通常、熱交換効率を向上させるためのフィン58が介層されている(例えば、特許文献1,2参照)。   As a conventional plate laminated heat exchanger, for example, as shown in FIG. 5, there is one in which fins are provided between plates. In the plate laminated heat exchanger 500 shown in FIG. 5, a set of a plurality of core plates 53 and 54 are laminated between the front and rear end plates 51 and 52, and the outer peripheral flange portions are brazed to each other so that the end plate 51 , 52 and the core plates 53, 54 are defined so that a high temperature fluid chamber and a low temperature fluid chamber are alternately stacked. Each fluid chamber communicates with a pair of circulation pipes 56a, 56b and 57a, 57b projecting from the front end plate 51, and the heat exchange efficiency is usually improved between a pair of core plates. The fin 58 for making it interpose (for example, refer patent document 1, 2).

同図において、コアプレート53,54はいずれも平板状であり、コアプレート53,54及びフィン58が1組となってコア55を構成し、コア55内には高温流体(例えば、オイルやEGRガス等)が流れる高温流体室が画成され、他方、コア55間には低温流体(例えば、冷却水等)が流れる低温流体室が画成されている。そして、これらの高温流体室及び低温流体室は、それぞれ循環パイプ56a,56b及び循環パイプ57a,57bに連通して、高温流体及び低温流体が導入若しくは導出されるようになっており、各流体室を流れる際に熱交換が行われる。
特開2001−194086号公報
In the figure, the core plates 53 and 54 are both flat, and the core plates 53 and 54 and the fins 58 constitute a core 55 to form a core 55. The core 55 has a high-temperature fluid (for example, oil or EGR). A high-temperature fluid chamber in which gas or the like flows is defined, and a low-temperature fluid chamber in which a low-temperature fluid (for example, cooling water or the like) flows is defined between the cores 55. The high-temperature fluid chamber and the low-temperature fluid chamber communicate with the circulation pipes 56a and 56b and the circulation pipes 57a and 57b, respectively, so that the high-temperature fluid and the low-temperature fluid are introduced or led out. Heat exchange takes place as it flows through.
JP 2001-194086 A

しかしながら、フィン58は、通常ラビリエンス状の複雑な構造を有するので、圧力損失の増大を招いてしまう。そこで、例えば、特開2005−195190号公報に示すようにしてフィン58を削減すれば、圧力損失の低減を図ることができる。しかし、その場合には、フィン58を設けた場合と比べると、熱交換効率が著しく低下してしまう。なお、フィン58のピッチ粗さを適宜調整すれば、フィン58を削減することなく、圧力損失を抑制することも可能であるが、その場合にも、熱交換効率の低下を招いてしまう。
すなわち、従来のプレート積層型熱交換器500にあっては、フィン58を設けた場合と同等の熱交換効率を維持しつつ、フィン58を削減することができなかった。
However, the fins 58 usually have a labyrinth-like complicated structure, which causes an increase in pressure loss. Therefore, for example, if the fins 58 are reduced as shown in JP-A-2005-195190, the pressure loss can be reduced. However, in that case, the heat exchange efficiency is significantly reduced as compared with the case where the fins 58 are provided. If the pitch roughness of the fins 58 is appropriately adjusted, the pressure loss can be suppressed without reducing the fins 58, but in that case, the heat exchange efficiency is also lowered.
That is, in the conventional plate laminated heat exchanger 500, the number of fins 58 could not be reduced while maintaining the same heat exchange efficiency as when the fins 58 were provided.

本発明は、上記の問題に鑑みてなされたものであり、その目的は、フィンを設けた場合と同等の熱交換効率を維持しつつ、フィンの削減を可能としたプレート積層型熱交換器を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide a plate-stacked heat exchanger that can reduce fins while maintaining the same heat exchange efficiency as when fins are provided. It is to provide.

上記課題を解決するために、本発明は、前後のエンドプレート間に複数のコアプレートの組を積層し、その外周フランジ部同士をロウ付けすることで、エンドプレート及びコアプレートで囲われた内部を高温流体が流れる高温流体室と低温流体が流れる低温流体室とに画成し、各流体室を前部側エンドプレートにそれぞれ突設した一対の循環パイプに連通させてなるプレート積層型熱交換器であって、前記コアプレートは、平板状のプレートの片面側に前記高温流体の流れ方向に沿って連続的に蛇行する波状の凸部を複数形成し、さらにこのプレートを積層方向に山部と谷部とが配置されるとともに、該山部及び該谷部が前記流れ方向に沿って繰り返されるように湾曲形成したものであり、一対の前記コアプレートは、それらのコアプレートを前記凸部と反対側の他面側同士が相互に向き合い、それぞれに形成した前記凸部同士が逆向きに対をなすとともに、前記積層方向の前記山部同士及び前記谷部同士を相互に重ね合わせるようにして組み付けてなり、前記凸部は、前記流れ方向と直交する方向に山部と谷部とが形成され、該山部及び該谷部が前記流れ方向に沿って周期的に繰り返されるように蛇行し、該山部及び該谷部がそれぞれ前記積層方向の山部及び谷部に対応するように湾曲形成してなり、一対の前記コアプレートに形成された前記凸部同士は、前記流れ方向に沿って同位相で蛇行し、一対の前記コアプレートの組には、同位相の前記凸部同士の壁面で囲繞されてなる蛇行管が形成され、該蛇行管により前記高温流体が流れる前記流体室が構成されていることを特徴とする。 In order to solve the above-described problems, the present invention provides a structure in which a plurality of core plate sets are stacked between front and rear end plates, and the outer peripheral flange portions are brazed to each other so that an inner portion surrounded by the end plate and the core plate is obtained. Plate-stacked heat exchange in which a high-temperature fluid chamber in which high-temperature fluid flows and a low-temperature fluid chamber in which low-temperature fluid flows are defined, and each fluid chamber is connected to a pair of circulation pipes projecting from the front end plate. The core plate is formed with a plurality of wave-like convex portions that meander continuously along the flow direction of the high-temperature fluid on one side of a flat plate, and the plate further has a peak portion in the stacking direction. And the troughs are arranged and curved so that the crests and troughs are repeated along the flow direction, and the pair of core plates are the core plates. The other surface sides opposite to the convex portions face each other, the convex portions formed on each other form a pair in the opposite direction, and the mountain portions and the valley portions in the stacking direction overlap each other. fit way Ri Na assembled, the convex portion, the a in the direction perpendicular to the flow direction crest valleys formed, periodically repeated該山portions and valley portions along the flow direction Meandering, the ridges and valleys are curved so that they correspond to the ridges and valleys in the stacking direction, respectively, and the protrusions formed on the pair of core plates are A meandering pipe meandering in the same phase along the flow direction, and a pair of the core plates is formed with a meandering pipe surrounded by the wall surfaces of the convex parts in the same phase. and wherein the fluid chamber flows is formed That.

また、本発明において、前記凸部を構成する各壁面に、凹凸を設けたことを特徴とする。   Moreover, in this invention, the unevenness | corrugation was provided in each wall surface which comprises the said convex part, It is characterized by the above-mentioned.

本発明によれば、プレート積層型熱交換器において、フィンを設けた場合と同等の熱交換効率を維持しつつ、フィンを削減することができる。   According to the present invention, in the plate laminated heat exchanger, fins can be reduced while maintaining the same heat exchange efficiency as when fins are provided.

以下、本発明の実施形態及び参考例について説明する。本実施形態のプレート積層型熱交換器は、プレートに形成した凸部が長手方向と直交する方向(以下「水平方向」という。)及び積層方向に蛇行するものである。なお、本実施形態で、凸部の長手方向と直交する断面が略矩形の場合を例に挙げ、参考例では同断面が略半円形の場合を例に挙げている。但し、本発明において、凸部の断面形状は、参考例のように略半円形であってもよく、あるいは、断面略六角形、断面略楕円形その他の形状であってもよく、また、これらの形状に限定されるものではない。 The following describes the implementation embodiments and reference examples of the present invention. In the plate laminated heat exchanger according to the present embodiment, convex portions formed on the plate meander in the direction perpendicular to the longitudinal direction (hereinafter referred to as “horizontal direction”) and the lamination direction. In the present real施形 state, an example in the cross section is substantially rectangular perpendicular to the longitudinal direction of the convex portion, the reference example the cross section is mentioned substantially example the case of a semi-circular. However, in the present invention, the cross-sectional shape of the convex portion may be a substantially semicircular shape as in the reference example, or may be a substantially hexagonal cross-sectional shape, a substantially elliptical cross-sectional shape, or other shapes. It is not limited to the shape.

===実施形態===
まず、図1,図2A及び図2Bを参照しながら、本発明の一実施形態について説明する。図1はプレート積層型熱交換器100の全体を示す概略分解斜視図、図2A及び図2Bはプレート積層型熱交換器200の主要部を示す概略説明図であり、図2Bは図2Aの凸部に凹凸を設けて第二凸部を形成したものを示す。同図において、図5と同一若しくは類似の箇所には同一の符号を付し、新たに追加した箇所及び変更した箇所には異なる符号を付している。
== = implementation form ===
First, an embodiment of the present invention will be described with reference to FIGS. 1, 2A, and 2B. FIG. 1 is a schematic exploded perspective view showing the entire plate laminated heat exchanger 100, FIGS. 2A and 2B are schematic explanatory views showing main parts of the plate laminated heat exchanger 200, and FIG. 2B is a convex view of FIG. 2A. The thing which provided the unevenness | corrugation in the part and formed the 2nd convex part is shown. In the figure, the same or similar parts as in FIG. 5 are denoted by the same reference numerals, and newly added parts and changed parts are denoted by different reference numerals.

プレート積層型熱交換器100,200は、いずれも図5に示したプレート積層型熱交換器500と同様の構成を有し、前後のエンドプレート51,52間に複数のコアプレート13,14の組15を積層し、その外周フランジ部同士をロウ付けすることで、エンドプレート51,52及びコアプレート13,14で囲われた内部を高温流体室と高温流体室とが交互に積層されるように画成している。そして、各流体室を前部側エンドプレート51にそれぞれ突設した一対の循環パイプ56a,56b及び57a,57bに連通させている。但し、同図に示すコアプレート13,14は、図5に示した平板状のコアプレート53,54と比べると形状が異なり、コアプレート13,14間には複雑な流路が形成され、フィンが介層されていない(図1参照)。 Each of the plate stacked heat exchangers 100 and 200 has the same configuration as the plate stacked heat exchanger 500 shown in FIG. 5, and a plurality of core plates 13 and 14 are arranged between the front and rear end plates 51 and 52. By laminating the set 15 and brazing the outer peripheral flange portions, the high temperature fluid chambers and the high temperature fluid chambers are alternately laminated in the interior surrounded by the end plates 51 and 52 and the core plates 13 and 14. It is defined in. Then, a pair of circulation pipes 56a projecting from each respective fluid chambers on the front side end plate 5 1, 56b and 57a, are communicated to 57 b. However, the core plates 13 and 14 shown in the figure are different in shape from the flat core plates 53 and 54 shown in FIG. 5, and a complicated flow path is formed between the core plates 13 and 14. Is not interposed (see FIG. 1).

すなわち、コアプレート13,14は、平板状のプレートを改良したものであり、平板状のプレート片面に長手方向(高温流体が流れる方向と同じ方向)に沿って連続的に蛇行する波状の凸部30,40を複数形成し、さらにこのプレートを積層方向に山部と谷部とが配置され、該山部及び該谷部が長手方向に沿って繰り返されるように湾曲形成したものである。なお、凸部30,40は、プレートの長手方向に対して平行に複数形成されており、隣接する凸部30,40が等間隔で配列されている。   That is, the core plates 13 and 14 are improvements of a flat plate, and are wavy convex portions that meander continuously along the longitudinal direction (the same direction as the direction in which the high-temperature fluid flows) on one side of the flat plate. A plurality of 30 and 40 are formed, and this plate is further curved and formed so that crests and troughs are arranged in the stacking direction, and the crests and troughs are repeated along the longitudinal direction. The plurality of convex portions 30 and 40 are formed in parallel to the longitudinal direction of the plate, and the adjacent convex portions 30 and 40 are arranged at equal intervals.

これらの凸部30,40は、いずれも水平方向に山部と谷部とが形成され、該山部と該谷部とが交互に長手方向に沿って周期的に繰り返されるように蛇行する。そして、水平方向の山部及び谷部は、それぞれ積層方向の山部及び谷部に配置され、両波形が同一周期となるように形成されている。   Each of these convex portions 30 and 40 meanders so that a crest and a trough are formed in the horizontal direction, and the crest and the trough are alternately repeated periodically along the longitudinal direction. And the horizontal peak part and trough part are each arrange | positioned at the peak part and trough part of the lamination direction, and it is formed so that both waveforms may become the same period.

一対のコアプレート13,14の組15は、二枚のコアプレート13,14を凸部形成されていない他面側同士が相互に向き合い、それぞれに形成した凸部30,40同士が上下逆向きに対をなすとともに(図2A(a)参照)、積層方向の山部同士及び谷部同士を相互に重ね合わせるようにして組み付けたものである(図2A(b)参照)。   In the set 15 of the pair of core plates 13 and 14, the other surface side where the convex portions are not formed faces the two core plates 13 and 14, and the convex portions 30 and 40 formed on each other face upside down. (See FIG. 2A (a)), and the ridges and valleys in the stacking direction are assembled so as to overlap each other (see FIG. 2A (b)).

凸部30,40同士は、いずれも長手方向に沿って同位相で蛇行し、凸部30の水平方向の山部及び谷部がそれぞれ凸部40の水平方向の山部及び谷部と一致している。他方、凸部30の積層方向の山部及び谷部は、それぞれ凸部40の積層方向の山部及び谷部と一致している。そして、一対のコアプレート13,14の組15には、同位相の凸部30,40同士の壁面で囲繞されてなる蛇行管が形成され、該蛇行管により高温流体が流れる流体室が構成されている。   The convex portions 30 and 40 meander in the same phase along the longitudinal direction, and the horizontal crest and trough portion of the convex portion 30 coincide with the horizontal crest and trough portion of the convex portion 40, respectively. ing. On the other hand, the peaks and valleys in the stacking direction of the protrusions 30 coincide with the peaks and valleys in the stacking direction of the protrusions 40, respectively. The set 15 of the pair of core plates 13 and 14 is formed with a meandering tube surrounded by the wall surfaces of the convex portions 30 and 40 having the same phase, and the meandering tube constitutes a fluid chamber through which high-temperature fluid flows. ing.

凸部30,40同士は、上下逆向きに対をなして蛇行管を構成し、水平方向に隣接する蛇行管同士は互いに遮断されている。従って、高温流体は、同一の蛇行管内を略長手方向に流れ、隣接する他の蛇行管内には流れ込まない。但し、本発明の構成は、かかる形態に限定されるものではなく、例えば、凸部30,40同士を長手方向若しくは水平方向に半位相ずらして形成し、蛇行管を構成しないようにしてもよい(但し図示せず)。このような構成とした場合、高温流体は、隣接する凸部間にも流れ込むようになり、より複雑な高温流体室が形成される。   The convex portions 30 and 40 are paired upside down to constitute a meandering tube, and the meandering tubes adjacent in the horizontal direction are blocked from each other. Accordingly, the high-temperature fluid flows in the substantially meandering direction in the same meandering pipe, and does not flow into other adjacent meandering pipes. However, the configuration of the present invention is not limited to such a form. For example, the convex portions 30 and 40 may be formed so as to be shifted by a half phase in the longitudinal direction or the horizontal direction, and the meandering tube may not be configured. (However, not shown). In the case of such a configuration, the high-temperature fluid flows between adjacent convex portions, and a more complicated high-temperature fluid chamber is formed.

なお、図1には示していないが、これらの凸部30,40には、積層方向の山部及び谷部に相当する箇所にエンボス31,41を形成しておくことが好ましい(図2A及び図2B参照)。その場合、コアプレート13,14の組15を積層すると、上下一対のエンボス31,41が相互に当接して、低温流体室内に円柱状の柱体が形成される。これらの柱体によりコアプレート13,14が積層方向に支えられ、プレート強度が向上する。   Although not shown in FIG. 1, it is preferable to form embosses 31 and 41 on these convex portions 30 and 40 at locations corresponding to the crests and troughs in the stacking direction (see FIG. 2A and FIG. 2A). (See FIG. 2B). In that case, when the set 15 of the core plates 13 and 14 is laminated, the pair of upper and lower embosses 31 and 41 come into contact with each other to form a columnar column in the cryogenic fluid chamber. The core plates 13 and 14 are supported in the stacking direction by these pillars, and the plate strength is improved.

また、図2Bに示すように、凸部30,40を構成する各壁面に、さらに凹凸を設けて第二凸部50を形成し、蛇行管内を複雑な構造とすることが好ましい。すなわち、同図に示す大きな凸部30,40には、水平方向に沿って連続する小さな第二凸部50が複数形成され、これらが同方向に対して平行に配列されている。そのため、蛇行管内にはより複雑な流路が形成されている。但し、本発明は、かかる構成に限定されるものではなく、凸部30,40と異なり第二凸部50を不連続的に形成してもよく、また、第二凸部50の形状、方向及び配列等は適宜設計することとする。例えば、第二凸部50を凸部30,40の蛇行方向と直交する方向に沿って連続的若しくは不連続的に形成したり、或いは凸部30,40の蛇行方向に沿って連続的若しくは不連続的に形成してもよい。   Further, as shown in FIG. 2B, it is preferable that the wall surfaces constituting the convex portions 30 and 40 are further provided with irregularities to form the second convex portions 50 so that the inside of the meandering pipe has a complicated structure. That is, the large convex portions 30 and 40 shown in the figure are formed with a plurality of small second convex portions 50 that are continuous in the horizontal direction, and these are arranged in parallel to the same direction. Therefore, a more complicated flow path is formed in the meandering tube. However, the present invention is not limited to such a configuration, and unlike the protrusions 30 and 40, the second protrusion 50 may be formed discontinuously, and the shape and direction of the second protrusion 50 The arrangement and the like are appropriately designed. For example, the second convex portion 50 is formed continuously or discontinuously along the direction perpendicular to the meandering direction of the convex portions 30 and 40, or continuously or non-continuously along the meandering direction of the convex portions 30 and 40. You may form continuously.

以上の構成によれば、一対のコアプレート13,14の組15には、水平方向及び積層方向に蛇行する蛇行管が形成されており、その管内に高温流体室が構成され、蛇行管同士で挟まれた領域には低温流体室が構成されている。蛇行管は、フィンに代替する複雑な流路を形成し、これにより伝熱面積が増加する。また、各流体室における出入口間の長さ(パス長)も増加し、熱交換効率の向上に寄与する(同コストでは約10〜20%向上)。従って、フィンを削減したプレート積層型熱交換器100,200においても、フィンを設けた場合と同等の熱交換効率を維持することが可能となり、すべての組15においてフィンを完全に廃止することもできる。また、フィンの削減により、部品点数の低減、及びコスト削減も可能となる。   According to the above configuration, the set 15 of the pair of core plates 13 and 14 is formed with the meandering pipe meandering in the horizontal direction and the stacking direction, and the high-temperature fluid chamber is formed in the pipe, A cryogenic fluid chamber is formed in the sandwiched area. The serpentine tube forms a complex flow path that replaces the fins, thereby increasing the heat transfer area. Moreover, the length (path length) between the entrances and exits in each fluid chamber also increases, and contributes to the improvement of heat exchange efficiency (in the same cost, about 10 to 20% improvement). Accordingly, even in the plate stack type heat exchangers 100 and 200 with the fins reduced, it is possible to maintain the same heat exchange efficiency as when the fins are provided, and the fins can be completely abolished in all the sets 15. it can. Further, the number of parts can be reduced and the cost can be reduced by reducing the number of fins.

なお、プレート積層型熱交換器100,200は、高温流体が蛇行管内を長手方向一端側から他端側に向けて流れるように構成されており、チューブ式熱交換器と類似の構造を有する。しかし、プレート積層型熱交換器100,200は、複雑な流路が形成されており、この点でチューブ式熱交換器の構造と相違する。つまり、チューブ式熱交換器では、各流体室が直管状のチューブ管で構成されており、その構造上、該チューブ管を水平方向及び積層方向に蛇行させて蛇行管とすることが困難である。そのため、チューブ式熱交換器の場合、チューブ管内及びチューブ管同士で挟まれた領域に複雑な流路を形成することができない。ところが、本発明に係るプレート積層型熱交換器100,200の場合には、コアプレート13,14を積層するだけで、複雑な流路を形成することが可能となる。   The plate laminated heat exchangers 100 and 200 are configured such that a high-temperature fluid flows in the meandering pipe from one end side to the other end side in the longitudinal direction, and has a structure similar to that of a tube heat exchanger. However, the plate laminated heat exchangers 100 and 200 are formed with complicated flow paths, and are different from the structure of the tube heat exchanger in this respect. That is, in the tube-type heat exchanger, each fluid chamber is configured by a straight tube tube, and due to its structure, it is difficult to meander the tube tube in the horizontal direction and the stacking direction to form a meander tube. . Therefore, in the case of a tube-type heat exchanger, a complicated flow path cannot be formed in a tube tube or in a region sandwiched between tube tubes. However, in the case of the plate stacked heat exchangers 100 and 200 according to the present invention, it is possible to form a complicated flow path by simply stacking the core plates 13 and 14.

===参考例===
次に、図3及び図4を参照しながら、本発明の参考例について説明する。図3はプレート積層型熱換器300の主要部を示す概略説明図、図4はプレート積層型熱換器400の主要部を示す概略説明図である。なお、上記実施形態と同一若しくは類似の箇所には同一の符号を付している。
=== Reference Example ===
Next, a reference example of the present invention will be described with reference to FIGS. FIG. 3 is a schematic explanatory view showing the main part of the plate laminated heat exchanger 300, and FIG. 4 is a schematic explanatory view showing the main part of the plate laminated heat exchanger 400. In addition, the same code | symbol is attached | subjected to the same or similar location as the said embodiment.

図3に示すように、プレート積層型熱換器300は、図2Bに示したプレート積層型熱交換器200とほぼ同様の構成を有しているが、プレートに形成した凸部30,40の断面形状が断面略半円形である点で、図2Bに示した構成と異なっている。   As shown in FIG. 3, the plate laminated heat exchanger 300 has substantially the same configuration as that of the plate laminated heat exchanger 200 shown in FIG. 2B, but the projections 30 and 40 formed on the plate. It differs from the configuration shown in FIG. 2B in that the cross-sectional shape is a substantially semicircular cross-section.

凸部30,40同士は、上記実施形態と同様、いずれも長手方向に沿って同位相で蛇行し、一対のコアプレート13,14の組15には、同位相の凸部30,40同士の壁面で囲繞されてなる蛇行管が形成されている。この蛇行管は、断面略円形状であり、フィンに代替する複雑な流路を構成する。従って、本実施形態においても、第一実施形態と同様の効果を奏し、伝熱面積が増加する。また、各流体室における出入口間の長さ(パス長)も増加し、熱交換効率の向上に寄与する。 The convex portions 30 and 40 meander in the same phase along the longitudinal direction as in the above embodiment, and the pair 15 of the core plates 13 and 14 has the same phase of the convex portions 30 and 40. A meandering tube surrounded by a wall surface is formed. This meandering pipe has a substantially circular cross section and constitutes a complicated flow path that replaces the fins. Therefore, also in this embodiment, there exists an effect similar to 1st embodiment, and a heat transfer area increases. Moreover, the length (path length) between the entrances and exits in each fluid chamber also increases, contributing to the improvement of heat exchange efficiency.

一方、図4に示すように、凸部30,40同士は、長手方向に沿って逆位相で蛇行するように構成してもよい(図4(a)参照)。その場合、凸部30の水平方向の山部が凸部40の水平方向の谷部に対応し、凸部30の谷部が凸部40の山部に対応する(図4(b)参照)。なお、図4(b)は図4(a)を上方から視た概略説明図であるが、同図には図4(a)に示した第二凸部50を図示していない。   On the other hand, as shown in FIG. 4, the protrusions 30 and 40 may be configured to meander in opposite phases along the longitudinal direction (see FIG. 4A). In that case, the horizontal crests of the convex portions 30 correspond to the horizontal trough portions of the convex portions 40, and the trough portions of the convex portions 30 correspond to the crest portions of the convex portions 40 (see FIG. 4B). . FIG. 4B is a schematic explanatory view of FIG. 4A viewed from above, but the second convex portion 50 shown in FIG. 4A is not shown in FIG.

以上の構成によれば、一対のコアプレート13,14の組15には、高温流体が交差攪拌する複雑な流路が形成されることとなり、熱交換効率が著しく向上する。従って、フィンを設けた場合と同等の熱交換効率を維持することが容易となり、また、すべての組15においてフィンを完全に廃止することも容易となる。   According to the above configuration, a complicated flow path in which the high-temperature fluid cross-stirs is formed in the pair 15 of the pair of core plates 13 and 14, and the heat exchange efficiency is remarkably improved. Therefore, it becomes easy to maintain heat exchange efficiency equivalent to the case where fins are provided, and it becomes easy to completely eliminate fins in all the sets 15.

実施形態に係るプレート積層型熱交換器の全体を示す概略分解斜視図である。 It is a general | schematic disassembled perspective view which shows the whole plate laminated | stacked heat exchanger which concerns on one Embodiment. プレート積層型熱交換器の主要部を示す概略説明図であり、(a)は斜視図、(b)側面図である。It is a schematic explanatory drawing which shows the principal part of a plate lamination type heat exchanger, (a) is a perspective view, (b) It is a side view. 図2の凸部に凹凸を設けて第二凸部を形成した場合のプレート積層型熱交換器の主要部を示す概略説明図であり、(a)は斜視図、(b)は拡大斜視図である。It is a schematic explanatory drawing which shows the principal part of a plate lamination type heat exchanger at the time of providing an unevenness | corrugation in the convex part of FIG. 2, and (a) is a perspective view, (b) is an enlarged perspective view. It is. 参考例に係るプレート積層型熱交換器の主要部を示す概略説明図である。It is a schematic explanatory drawing which shows the principal part of the plate lamination type heat exchanger which concerns on a reference example . 凸部同士が長手方向に沿って逆位相で蛇行する場合のプレート積層型熱交換器の主要部を示す概略説明図であり、(a)は拡大斜視図、(b)は上面図である。It is a schematic explanatory drawing which shows the principal part of a plate lamination type heat exchanger in case convex parts meander in a reverse phase along a longitudinal direction, (a) is an enlarged perspective view, (b) is a top view. 従来のプレート積層型熱交換器の全体を示す概略分解斜視図である。It is a general | schematic disassembled perspective view which shows the whole conventional plate lamination type heat exchanger.

符号の説明Explanation of symbols

13,14 コアプレート
15 コア(一対のコアプレートの組)
30,40 凸部
50 第二凸部
100,200,300,400 プレート積層型熱交換器
13, 14 Core plate 15 Core (a pair of core plates)
30, 40 Convex part 50 Second convex part 100, 200, 300, 400 Plate laminated heat exchanger

Claims (2)

前後のエンドプレート間に複数のコアプレートの組を積層し、その外周フランジ部同士をロウ付けすることで、エンドプレート及びコアプレートで囲われた内部を高温流体が流れる高温流体室と低温流体が流れる低温流体室とに画成し、各流体室を前部側エンドプレートにそれぞれ突設した一対の循環パイプに連通させてなるプレート積層型熱交換器であって、
前記コアプレートは、平板状のプレートの片面側に前記高温流体の流れ方向に沿って連続的に蛇行する波状の凸部を複数形成し、さらにこのプレートを積層方向に山部と谷部とが配置されるとともに、該山部及び該谷部が前記流れ方向に沿って周期的に繰り返されるように湾曲形成したものであり、
一対の前記コアプレートは、それらのコアプレートを前記凸部と反対側の他面側同士が相互に向き合い、それぞれに形成した前記凸部同士が逆向きに対をなすとともに、前記積層方向の前記山部同士及び前記谷部同士を相互に重ね合わせるようにして組み付けてなり、
前記凸部は、前記流れ方向と直交する方向に山部と谷部とが形成され、該山部及び該谷部が前記流れ方向に沿って周期的に繰り返されるように蛇行し、該山部及び該谷部がそれぞれ前記積層方向の山部及び谷部に対応するように湾曲形成してなり、
一対の前記コアプレートに形成された前記凸部同士は、前記流れ方向に沿って同位相で蛇行し、
一対の前記コアプレートの組には、同位相の前記凸部同士の壁面で囲繞されてなる蛇行管が形成され、該蛇行管により前記高温流体が流れる前記流体室が構成されていることを特徴とするプレート積層型熱交換器。
By laminating a set of core plates between the front and rear end plates and brazing the outer peripheral flanges, the high temperature fluid chamber and the low temperature fluid flow through the inside surrounded by the end plate and the core plate. A plate-stacked heat exchanger defined by flowing low-temperature fluid chambers, each fluid chamber communicating with a pair of circulation pipes protruding from the front end plate,
The core plate is formed with a plurality of wavy convex portions continuously meandering along the flow direction of the high-temperature fluid on one side of a flat plate, and the plate has a crest and a trough in the stacking direction. Are arranged and curved so that the peaks and valleys are periodically repeated along the flow direction,
The pair of core plates, the other side of the core plate opposite to the convex portions face each other, the convex portions formed on each other make a pair in the opposite direction, and the stacking direction of the core plate Ri Na to each other and the valley between assembled so as to superimpose one another crest,
The convex portion is formed such that a crest and a trough are formed in a direction perpendicular to the flow direction, and the crest and the trough are meandered so as to be repeated periodically along the flow direction. And the valleys are curved so as to correspond to the peaks and valleys in the stacking direction, respectively.
The convex portions formed on the pair of core plates meander in the same phase along the flow direction,
A pair of the core plates is formed with a meandering tube surrounded by the wall surfaces of the convex portions having the same phase, and the meandering tube constitutes the fluid chamber through which the high-temperature fluid flows. A plate stack type heat exchanger.
請求項1に記載の積層型熱交換器において、
前記凸部を構成する各壁面に、凹凸を設けたことを特徴とするプレート積層型熱交換器。
The stacked heat exchanger according to claim 1, wherein
An uneven plate is provided on each wall surface constituting the convex portion.
JP2006016861A 2006-01-25 2006-01-25 Plate stack heat exchanger Active JP4810242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016861A JP4810242B2 (en) 2006-01-25 2006-01-25 Plate stack heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016861A JP4810242B2 (en) 2006-01-25 2006-01-25 Plate stack heat exchanger

Publications (2)

Publication Number Publication Date
JP2007198660A JP2007198660A (en) 2007-08-09
JP4810242B2 true JP4810242B2 (en) 2011-11-09

Family

ID=38453429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016861A Active JP4810242B2 (en) 2006-01-25 2006-01-25 Plate stack heat exchanger

Country Status (1)

Country Link
JP (1) JP4810242B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054162A1 (en) 2007-10-23 2009-04-30 Tokyo Roki Co. Ltd. Plate-stacking type heat exchanger
FR2950682B1 (en) * 2009-09-30 2012-06-01 Valeo Systemes Thermiques CONDENSER FOR MOTOR VEHICLE WITH ENHANCED INTEGRATION
JP5727327B2 (en) * 2011-08-08 2015-06-03 株式会社神戸製鋼所 Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180269U (en) * 1986-05-02 1987-11-16
JPS63271098A (en) * 1987-04-30 1988-11-08 Mitsubishi Heavy Ind Ltd Counterflow type plate finned heat exchanger
JP3527704B2 (en) * 2000-12-20 2004-05-17 株式会社日阪製作所 Plate heat exchanger
JP2005195190A (en) * 2003-12-26 2005-07-21 Toyo Radiator Co Ltd Multiplate heat exchanger

Also Published As

Publication number Publication date
JP2007198660A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5194011B2 (en) Plate stack heat exchanger
JP5194010B2 (en) Plate stack heat exchanger
US7334631B2 (en) Heat exchanger
JP5331701B2 (en) Plate stack heat exchanger
US20150083379A1 (en) Plate heat exchanger and refrigeration cycle system including the same
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
JP2010114174A (en) Core structure for heat sink
JP4916857B2 (en) Pressure resistant heat exchanger
JP4810242B2 (en) Plate stack heat exchanger
JP2009103360A (en) Plate laminated heat exchanger
JP2010121925A (en) Heat exchanger
RU95391U1 (en) SHELL-TUBE HEAT EXCHANGER
JP2005195190A (en) Multiplate heat exchanger
JP4759367B2 (en) Laminate heat exchanger
CN210718781U (en) Heat exchanger plate and plate heat exchanger
US20130048261A1 (en) Heat exhanger
JP2006258411A (en) Heat exchanger and its manufacturing method
JP6435487B2 (en) Heat exchanger
JP2012013310A (en) Heat exchanger
JP2009103359A (en) Plate laminated heat exchanger
KR20240103773A (en) Heat exchanger
JP2005265312A (en) Laminate type heat-exchanger
KR200444685Y1 (en) Plate type heat exchanging unit
JP2006038336A (en) High temperature heat exchanger
JP2011185498A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4810242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250