JP4805244B2 - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method Download PDF

Info

Publication number
JP4805244B2
JP4805244B2 JP2007318125A JP2007318125A JP4805244B2 JP 4805244 B2 JP4805244 B2 JP 4805244B2 JP 2007318125 A JP2007318125 A JP 2007318125A JP 2007318125 A JP2007318125 A JP 2007318125A JP 4805244 B2 JP4805244 B2 JP 4805244B2
Authority
JP
Japan
Prior art keywords
exchange membrane
deionized water
exchanger
chamber
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007318125A
Other languages
Japanese (ja)
Other versions
JP2009136825A (en
Inventor
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2007318125A priority Critical patent/JP4805244B2/en
Publication of JP2009136825A publication Critical patent/JP2009136825A/en
Application granted granted Critical
Publication of JP4805244B2 publication Critical patent/JP4805244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、半導体、液晶、製薬、食品工業等の各種産業、民生用ないし研究施設等において利用される電気式脱イオン水製造装置及び脱イオン水の製造方法の技術に関する。   The present invention relates to a technique for an electric deionized water production apparatus and a deionized water production method used in various industries such as semiconductors, liquid crystals, pharmaceuticals, and food industries, consumer use, and research facilities.

脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られている。しかし、この方法では、イオン交換樹脂がイオンで飽和されたときに、通常薬剤によって再生を行う。このような再生処理は、処理操作上の不利であり、このような点を解消するため、薬剤による再生が不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。   As a method for producing deionized water, a method of performing deionization by passing water to be treated through an ion exchange resin has been known. However, in this method, when the ion exchange resin is saturated with ions, regeneration is usually performed with a drug. Such regeneration treatment is disadvantageous in processing operation, and in order to eliminate such a point, a deionized water production method by an electric deionization method that does not require regeneration by a chemical agent has been established and has been put into practical use. .

このような脱塩処理を行う電気式脱イオン水製造装置(EDI)においては、陽極と陰との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室とが配置される。通常、脱塩室及び濃縮室は複数組配置される。そして、電気式脱イオン水製造装置によって脱イオン水を製造する場合、陽極と陰極間に直流電流を流した状態で、イオン交換体が充填された脱塩室内に被処理水を、濃縮室に濃縮水を通水させることによって、被処理水中のイオンを濃縮水中に移動させ、脱イオン水を得る。   In an electric deionized water production apparatus (EDI) that performs such desalting treatment, an ion exchanger is partitioned between an anode and a shade by a cation exchange membrane on one side and an anion exchange membrane on the other side. And a concentrating chamber on both sides of the desalting chamber via a cation exchange membrane and an anion exchange membrane. Usually, a plurality of sets of desalting chambers and concentrating chambers are arranged. When deionized water is produced by an electric deionized water production apparatus, water to be treated is placed in a demineralization chamber filled with an ion exchanger in a state where a direct current is passed between the anode and the cathode. By passing the concentrated water, ions in the water to be treated are moved into the concentrated water to obtain deionized water.

ここで、脱塩室に流入させる被処理水中の硬度が高い場合、例えば、水道水または水道水をRO膜処理した水を被処理水として用いると、濃縮室のアニオン交換膜面に硬度スケールが発生しやすい。すなわち、被処理水中に炭酸成分と硬度成分が含まれていると、電気式脱イオン水製造装置の濃縮室に移動したカルシウムイオンやマグネシウムイオンが濃縮室のアニオン交換膜面で炭酸イオン等と結合し、炭酸カルシウムや炭酸マグネシウム等の硬度スケールを生じやすい。   Here, when the hardness of the water to be treated flowing into the desalination chamber is high, for example, when tap water or water obtained by subjecting tap water to RO membrane treatment is used as the water to be treated, a hardness scale is formed on the anion exchange membrane surface of the concentration chamber. Likely to happen. In other words, if the water to be treated contains a carbonate component and a hardness component, calcium ions and magnesium ions that have moved to the concentration chamber of the electric deionized water production apparatus are combined with carbonate ions etc. on the anion exchange membrane surface of the concentration chamber. However, it is easy to produce hardness scales such as calcium carbonate and magnesium carbonate.

特許文献1には、濃縮室のアニオン交換膜側に特定構造のアニオン交換体を配置する電気式脱イオン水製造装置が提案されている。この特許文献1の装置によれば、OHイオンの濃縮液への拡散希釈が、多孔性アニオン交換体表面より促進され、多孔性アニオン交換体表面におけるOHイオン濃度の速やかな低減が図られる。他方、硬度成分イオンは、多孔性アニオン交換体の内部に侵入し難くなり、OHイオンと硬度成分イオンとが接触し反応する機会が低減されるため、硬度成分の析出や蓄積が抑制される。   Patent Document 1 proposes an electric deionized water production apparatus in which an anion exchanger having a specific structure is disposed on the anion exchange membrane side of a concentration chamber. According to the apparatus of Patent Document 1, diffusion dilution of OH ions into a concentrated liquid is promoted from the surface of the porous anion exchanger, and the OH ion concentration on the surface of the porous anion exchanger can be quickly reduced. On the other hand, hardness component ions are less likely to enter the interior of the porous anion exchanger, and the opportunity for OH ions and hardness component ions to contact and react with each other is reduced, so that precipitation and accumulation of hardness components are suppressed.

しかし、被処理水中の炭酸(遊離炭酸、重炭酸イオン、炭酸イオンの総称)が脱塩室から陽極側のアニオン交換膜を介して濃縮室へ移動すると、(詳細は後述するが)濃縮室内のアニオン交換体はHCO形となる。そして、HCO形のアニオン交換体に電流が流れると、HCO (及びCO 2−)が電場によってカチオン交換膜近傍まで引き寄せられるが、カチオン交換膜を透過することはできず、カチオン交換膜近傍で濃縮される。また、水素イオンがカチオン交換膜を透過してくるため、カチオン交換膜付近のpHは低くなる。そうすると、水と炭酸ガス(CO)が発生し、カチオン交換膜近傍に高濃度炭酸ガス含有水溶液層が形成される。そして、炭酸ガスは、拡散によってカチオン交換膜10を透過して脱塩室へ移動(逆拡散)してしまう。すなわち、一旦被処理水中から除去された炭酸が、炭酸ガスとして被処理水中に再度溶解される、いわゆる炭酸の逆拡散が発生し、脱塩室から排出される処理水が炭酸成分で汚染される。 However, when carbonic acid in the water to be treated (generic name for free carbonate, bicarbonate ion, carbonate ion) moves from the desalting chamber to the concentration chamber via the anion exchange membrane on the anode side (details will be described later), The anion exchanger is in the HCO 3 form. Then, a current flows through the anion exchanger of HCO 3 form, HCO 3 - (and CO 3 2-) but are attracted to the cation exchange membrane near by the electric field, can not be transmitted through the cation exchange membrane, a cation exchange It is concentrated near the membrane. Further, since hydrogen ions permeate the cation exchange membrane, the pH in the vicinity of the cation exchange membrane is lowered. Then, water and carbon dioxide (CO 2 ) are generated, and a high-concentration carbon dioxide-containing aqueous solution layer is formed in the vicinity of the cation exchange membrane. Then, the carbon dioxide gas permeates through the cation exchange membrane 10 by diffusion and moves (back diffuses) to the desalting chamber. That is, carbon dioxide once removed from the water to be treated is dissolved again as carbon dioxide gas in the water to be treated, so-called reverse diffusion of carbonic acid occurs, and the treated water discharged from the desalting chamber is contaminated with carbonic acid components. .

特許文献2では、濃縮室に充填されたアニオン交換樹脂とカチオン交換膜との間に強塩基性アニオン基を有さない水透過性体を設けることにより、炭酸の逆拡散の発生を抑制する電気式脱イオン水製造装置が提案されている。この特許文献2の装置によれば、HCO 等が水透過性体でブロックされ、カチオン交換膜近傍にまで拡散することを防止して、炭酸の逆拡散を防止することができる。 In Patent Document 2, by providing a water permeable body having no strongly basic anion group between an anion exchange resin and a cation exchange membrane filled in a concentrating chamber, A deionized water production system has been proposed. According to the apparatus of Patent Document 2, it is possible to prevent the reverse diffusion of carbonic acid by preventing HCO 3 − and the like from being blocked by the water permeable material and diffusing to the vicinity of the cation exchange membrane.

また、特許文献3には、濃縮室にアニオン交換樹脂及びカチオン交換樹脂を充填することにより、炭酸の逆拡散の発生を抑制する電気式脱イオン水製造装置が提案されている。この特許文献3の装置によれば、カチオンおよびアニオンの両方が濃縮室内で移動可能になり、炭酸の逆拡散を比較的小さくして、かつスケールの発生も少なくできる。   Patent Document 3 proposes an electric deionized water production apparatus that suppresses the occurrence of reverse diffusion of carbonic acid by filling an anion exchange resin and a cation exchange resin in a concentration chamber. According to the apparatus of Patent Document 3, both the cation and the anion can move in the concentration chamber, so that the reverse diffusion of carbon dioxide can be made relatively small and the generation of scale can be reduced.

特開2001−225078号公報Japanese Patent Laid-Open No. 2001-225078 特開2004−358440号公報JP 2004-358440 A 特開2004−34004号公報JP 2004-34004 A

本発明の目的は、上記と異なる構成で炭酸の逆拡散の発生を抑制し、高水質の脱イオン水を得ることができる電気式脱イオン水製造装置及び脱イオン水の製造方法を提供することにある。   An object of the present invention is to provide an electric deionized water production apparatus and a deionized water production method capable of suppressing the occurrence of reverse diffusion of carbonic acid with a configuration different from the above and obtaining high-quality deionized water. It is in.

本発明は、陽極と陰極との間に、前記陰極側に配置されるカチオン交換膜と前記陽極側に配置されるアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられる濃縮室とを配置する電気式脱イオン水製造装置であって、前記濃縮室には、前記濃縮室の陰極側にアニオン交換膜があり、前記濃縮室の陽極側にカチオン交換膜があり、前記濃縮室の陰極側にあるアニオン交換膜と前記陽極側にあるカチオン交換膜との間にはアニオン交換体が充填され、前記濃縮室のアニオン交換体と前記濃縮室の陽極側にあるカチオン交換膜との間に、モノリス状有機多孔質カチオン交換体を配置し、前記モノリス状有機多孔質カチオン交換体は、気泡状のマクロポア同士が重なり合い、前記重なり合った部分に開口部を有する連続気泡構造である。 The present invention is a demineralization chamber that is partitioned between an anode and a cathode by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side, and filled with an ion exchanger; the cation exchange membrane, wherein through the anion exchange membrane a electrodeionization water producing apparatus of placing the enrichment chamber that is provided on both sides of the desalting compartment, the concentrated compartment, the concentrating chamber An anion exchange membrane on the cathode side, a cation exchange membrane on the anode side of the concentration chamber, and an anion exchanger between the anion exchange membrane on the cathode side of the concentration chamber and the cation exchange membrane on the anode side The monolithic organic porous cation exchanger is disposed between the anion exchanger in the concentration chamber and the cation exchange membrane on the anode side of the concentration chamber, and the monolithic organic porous cation exchanger is A bubble-like macropore Overlap, a continuous pore structure having an opening in the overlapped portions.

また、前記電気式脱イオン水製造装置において、前記開口部の平均直径は20〜200μmの範囲であることが好ましい。   Moreover, in the said electrical deionized water manufacturing apparatus, it is preferable that the average diameter of the said opening part is the range of 20-200 micrometers.

また、前記電気式脱イオン水製造装置において、前記モノリス状有機多孔質カチオン交換体の全細孔容積は0.5〜5ml/gの範囲であることが好ましい。   In the electric deionized water production apparatus, the monolithic organic porous cation exchanger preferably has a total pore volume in the range of 0.5 to 5 ml / g.

また、前記電気式脱イオン水製造装置において、前記モノリス状有機多孔質カチオン交換体の厚さは、1mm以上であることが好ましい。   Moreover, in the said electrical deionized water manufacturing apparatus, it is preferable that the thickness of the said monolithic organic porous cation exchanger is 1 mm or more.

また、前記電気式脱イオン水製造装置において、前記モノリス状有機多孔質カチオン交換体のイオン交換量は、0.5mg当量/g乾燥多孔質体以上であることが好ましい。   In the electric deionized water production apparatus, the monolithic organic porous cation exchanger preferably has an ion exchange amount of 0.5 mg equivalent / g dry porous body or more.

また、前記電気式脱イオン水製造装置において、前記モノリス状有機多孔質カチオン交換体の骨格部を構成する材料は、架橋構造を有する有機ポリマーであり、前記有機ポリマーは、前記モノリス状有機多孔質カチオン交換体の全構成単位に対して0.3〜20モル%の範囲の架橋構造単位を有することが好ましい。   In the electric deionized water production apparatus, the material constituting the skeleton of the monolithic organic porous cation exchanger is an organic polymer having a cross-linked structure, and the organic polymer is the monolithic organic porous material. It is preferable to have a cross-linked structural unit in the range of 0.3 to 20 mol% with respect to all structural units of the cation exchanger.

また、前記電気式脱イオン水製造装置において、前記モノリス状有機多孔質カチオン交換体の断面積中の前記骨格部の面積は、単位断面積当たり3〜50%の範囲であることが好ましい。   In the electric deionized water production apparatus, the area of the skeleton in the cross-sectional area of the monolithic organic porous cation exchanger is preferably in the range of 3 to 50% per unit cross-sectional area.

また、前記電気式脱イオン水製造装置において、前記骨格部の厚さは、0.8〜40μmの範囲であることが好ましい。   Moreover, in the said electrical deionized water manufacturing apparatus, it is preferable that the thickness of the said skeleton part is the range of 0.8-40 micrometers.

また、本発明は、陽極と陰極との間に、前記陰極側に配置されるカチオン交換膜と前記陽極側に配置されるアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられる濃縮室と、を配置し、前記濃縮室には、前記濃縮室の陰極側にアニオン交換膜があり、前記濃縮室の陽極側にカチオン交換膜があり、前記濃縮室の陰極側にあるアニオン交換膜と前記陽極側にあるカチオン交換膜との間にはアニオン交換体が充填された電気式脱イオン水製造装置を利用して脱イオン水を製造する脱イオン水の製造方法であって、前記濃縮室のアニオン交換体と前記濃縮室の陽極側にあるカチオン交換膜との間に、前記モノリス状有機多孔質カチオン交換体を配置する。
Further, the present invention provides a desalination chamber partitioned between an anode and a cathode by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side and filled with an ion exchanger. When the cation exchange membrane, wherein through the anion exchange membrane arranged, and enrichment chamber that is provided on both sides of the depletion chamber, the concentrated compartment, an anion exchange membrane on the cathode side of the concentrate chamber There is a cation exchange membrane on the anode side of the concentrating chamber, and an electric desorption filled with an anion exchanger between the anion exchange membrane on the cathode side of the concentrating chamber and the cation exchange membrane on the anode side. A deionized water production method for producing deionized water using an ionic water production apparatus, wherein the monolith is disposed between an anion exchanger in the concentration chamber and a cation exchange membrane on the anode side of the concentration chamber. An organic porous cation exchanger

本発明は、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを配置する電気式脱イオン水製造装置であって、前記濃縮室のアニオン交換体と前記カチオン交換膜との間に、気泡状のマクロポア同士が重なり合い、前記重なり合った部分に開口部を有する連続気泡構造のモノリス状有機多孔質カチオン交換体を配置するものである。これによって、炭酸の逆拡散の発生を抑制し、高水質の脱イオン水を得ることができる。   The present invention includes a desalting chamber partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger, the cation exchange membrane, and the anion exchange An electric deionized water production apparatus in which a concentration chamber provided on both sides of the demineralization chamber via a membrane and filled with an anion exchanger is disposed, the anion exchanger in the concentration chamber and the cation exchange membrane Between the two, bubble-like macropores overlap each other, and an open cell monolithic organic porous cation exchanger having an opening at the overlapped portion is disposed. Thereby, generation | occurrence | production of the reverse diffusion of a carbonic acid can be suppressed and high-quality deionized water can be obtained.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本実施形態に係る電気式脱イオン水製造装置には、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とが配置される。ここで、本実施形態に係る電気式脱イオン水製造装置の脱塩室は、上記構成を有するものであれば、単一の脱塩室であっても、例えば、当該カチオン交換膜と当該アニオン交換膜との間に位置する中間イオン交換膜により2つの小脱塩室に区画された脱塩室であって、被処理水が2つの小脱塩室を順次流れるように構成されたものであってもよい。この2つの小脱塩室に区画された脱塩室を用いると、被処理水の脱塩処理を効率よく行うことが可能になる。   In the electric deionized water production apparatus according to the present embodiment, a desalting solution is partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger. A chamber and a concentration chamber provided on both sides of the desalting chamber via the cation exchange membrane and the anion exchange membrane and filled with an anion exchanger are disposed. Here, as long as the demineralization chamber of the electric deionized water production apparatus according to the present embodiment has the above configuration, for example, the cation exchange membrane and the anion A desalination chamber partitioned into two small desalination chambers by an intermediate ion exchange membrane positioned between the exchange membranes and configured to allow water to be treated to flow sequentially through the two small desalination chambers. There may be. If the desalting chamber divided into these two small desalting chambers is used, it becomes possible to efficiently perform desalting treatment of the water to be treated.

以下に説明する本実施形態では、カチオン交換膜とアニオン交換膜との間に位置する中間イオン交換膜により2つの小脱塩室に区画された脱塩室を例とする。   In the present embodiment described below, a desalting chamber divided into two small desalting chambers by an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane is taken as an example.

図1は、本実施形態に係る電気式脱イオン水製造装置の概略構成図である。電気式脱イオン水製造装置1には、カチオン交換膜10と、中間イオン交換膜12と、アニオン交換膜14とが互いに離間して交互に配置され、中間イオン交換膜12とアニオン交換膜14とで区画される第一小脱塩室d1,d3,d5及びカチオン交換膜10と中間イオン交換膜12とで区画される第二小脱塩室d2,d4,d6が形成されている。第一小脱塩室d1と第二小脱塩室d2とで脱塩室D1、第一小脱塩室d3と第二小脱塩室d4とで脱塩室D2、第一小脱塩室d5と第二小脱塩室d6とで脱塩室D3とする。また、脱塩室D1とD2、D2とD3のそれぞれの間に位置するアニオン交換膜14とカチオン交換膜10とで形成される部分は、濃縮水を流すための濃縮室16(16a,16b)とする。これを順次に併設して図1中、左より脱塩室D1、濃縮室16a、脱塩室D2、濃縮室16b、脱塩室D3が形成されている。なお、図1の脱塩室及び濃縮室の数は一例であって、これに限定されない。また、濃縮室は、必要に応じて脱塩室と後述する電極室との間にも設けられる。   FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to this embodiment. In the electric deionized water production apparatus 1, the cation exchange membrane 10, the intermediate ion exchange membrane 12, and the anion exchange membrane 14 are alternately arranged apart from each other, and the intermediate ion exchange membrane 12, the anion exchange membrane 14, The first small desalting chambers d1, d3, d5 and the second small desalting chambers d2, d4, d6 partitioned by the cation exchange membrane 10 and the intermediate ion exchange membrane 12 are formed. The first small desalination chamber d1 and the second small desalination chamber d2 are the desalination chamber D1, the first small desalination chamber d3 and the second small desalination chamber d4 are the desalination chamber D2, and the first small desalination chamber d2. A desalting chamber D3 is defined by d5 and the second small desalting chamber d6. A portion formed by the anion exchange membrane 14 and the cation exchange membrane 10 located between the desalting chambers D1 and D2 and D2 and D3 is a concentration chamber 16 (16a, 16b) for flowing concentrated water. And By sequentially arranging these, a desalting chamber D1, a concentrating chamber 16a, a desalting chamber D2, a concentrating chamber 16b, and a desalting chamber D3 are formed from the left in FIG. In addition, the number of the desalting chambers and the concentration chambers in FIG. 1 is an example, and is not limited thereto. Further, the concentration chamber is also provided between the desalting chamber and an electrode chamber, which will be described later, as necessary.

図1に示す第一小脱塩室d1,d3,d5には、アニオン交換体20が充填され、第二小脱塩室d2,d4,d6には、アニオン交換体及びカチオン交換体の混合体18(以下、混合体18と呼ぶ)が充填されている。しかし、第一小脱塩室d1,d3,d5及び第二小脱塩室d2,d4,d6に充填されるイオン交換体は、必ずしも上記に制限されるものではなく、脱塩処理の目的に応じて適宜選択されればよい。   The first small desalting chambers d1, d3, and d5 shown in FIG. 1 are filled with an anion exchanger 20, and the second small desalting chambers d2, d4, and d6 are a mixture of an anion exchanger and a cation exchanger. 18 (hereinafter referred to as the mixture 18). However, the ion exchanger filled in the first small desalting chambers d1, d3, d5 and the second small desalting chambers d2, d4, d6 is not necessarily limited to the above, and for the purpose of desalting treatment. It may be appropriately selected depending on the case.

本実施形態の中間イオン交換膜12はアニオン交換膜であるが、特に制限されるものではない。   The intermediate ion exchange membrane 12 of the present embodiment is an anion exchange membrane, but is not particularly limited.

濃縮室16a,16bには、アニオン交換体22が充填されている。濃縮室16a,16bにアニオン交換体22を充填することで、濃縮室16a,16bのカチオン交換膜10面に炭酸が拡散して、カチオン交換膜10面に硬度スケールが発生するのを防止でき、また高伝導度のアニオン交換体22が存在することで印加電圧を低電圧化することができる。   The concentration chambers 16 a and 16 b are filled with an anion exchanger 22. By filling the concentration chambers 16a and 16b with the anion exchanger 22, it is possible to prevent carbon dioxide from diffusing on the surface of the cation exchange membrane 10 of the concentration chambers 16a and 16b and generating a hardness scale on the surface of the cation exchange membrane 10, Further, the presence of the high conductivity anion exchanger 22 can reduce the applied voltage.

また、濃縮室16a,16bには、アニオン交換体22とカチオン交換膜10との間に、モノリス状有機多孔質カチオン交換体23が配置されている。本実施形態のモノリス状有機多孔質カチオン交換体23は、気泡状のマクロポア同士が重なり合い、重なり合った部分に開口部(メソポア、ミクロポア等)を有する連続気泡構造である。したがって、マクロポア等の連続気泡及びマクロポア同士が重なり合った部分の開口部が形成されないメッシュ状物、不織布、織布等の多孔質カチオン交換体とは異なるものである。モノリス状有機多孔質カチオン交換体23には、マクロポア及び開口部により、濃縮水の流路が形成されている。   In addition, a monolithic organic porous cation exchanger 23 is disposed between the anion exchanger 22 and the cation exchange membrane 10 in the concentration chambers 16a and 16b. The monolithic organic porous cation exchanger 23 of the present embodiment has an open cell structure in which bubble-shaped macropores overlap with each other and an opening (mesopore, micropore, etc.) is formed in the overlapped portion. Therefore, it is different from porous cation exchangers such as mesh-like materials, non-woven fabrics, woven fabrics, etc., in which openings of portions where open pores such as macropores and macropores overlap are not formed. In the monolithic organic porous cation exchanger 23, a flow path of concentrated water is formed by macropores and openings.

図2は、本実施形態に係る濃縮室の構成の一例を示す分解斜視図である。図2に示すように、濃縮室16a,16bには、脱塩室(D1,D2)のアニオン交換膜14と別の脱塩室(D2,D3)のカチオン交換膜10との間に枠体25が配置され、枠体25のくり抜かれた部分に、アニオン交換体22が充填されている。また、枠体25とカチオン交換膜10との間にモノリス状有機多孔質カチオン交換体23が配置されている。枠体25とアニオン交換膜14、枠体25とモノリス状有機多孔質カチオン交換体23、モノリス状有機多孔質カチオン交換体23とカチオン交換膜10はそれぞれ封着されている。また、本実施形態では、枠体25とカチオン交換膜10との間に別の枠体を配置し、当該枠体のくり抜かれた部分にモノリス状有機多孔質カチオン交換体23が配置されていてもよい。なお、イオン交換膜は通常比較的柔らかいものであるため、アニオン交換膜14と枠体25との封着時には、アニオン交換膜14が湾曲して、枠体25のくり抜かれた部分に充填されたアニオン交換体22の充填層が不均一となりやすい。これを防止するため、枠体25の空間部に複数のリブ(不図示)が縦設されてもよい。また、図では省略するが、枠体25に濃縮水の流入口及び流出口が付設されている。   FIG. 2 is an exploded perspective view showing an example of the configuration of the concentration chamber according to the present embodiment. As shown in FIG. 2, the concentrating chambers 16a and 16b have a frame between the anion exchange membrane 14 in the desalting chamber (D1, D2) and the cation exchange membrane 10 in another desalting chamber (D2, D3). 25 is disposed, and an anion exchanger 22 is filled in a hollowed portion of the frame body 25. A monolithic organic porous cation exchanger 23 is disposed between the frame 25 and the cation exchange membrane 10. The frame 25 and the anion exchange membrane 14, the frame 25 and the monolithic organic porous cation exchanger 23, the monolithic organic porous cation exchanger 23 and the cation exchange membrane 10 are sealed. Moreover, in this embodiment, another frame is arrange | positioned between the frame 25 and the cation exchange membrane 10, and the monolithic organic porous cation exchanger 23 is arrange | positioned at the hollowed-out part of the said frame. Also good. Since the ion exchange membrane is usually relatively soft, when the anion exchange membrane 14 and the frame 25 are sealed, the anion exchange membrane 14 is curved and filled into the hollowed out portion of the frame 25. The packed bed of anion exchanger 22 tends to be non-uniform. In order to prevent this, a plurality of ribs (not shown) may be provided vertically in the space of the frame body 25. Although not shown in the figure, the frame 25 is provided with an inlet and an outlet of concentrated water.

脱塩室D1,D2,D3も上記同様に枠体を用いて、枠体のくり抜かれた部分にイオン交換体が充填される構成であることが好ましい。すなわち、カチオン交換膜10及び中間イオン交換膜12との間、中間イオン交換膜12とアニオン交換膜14との間に枠体が配置され、各枠体のくり抜かれた部分にイオン交換体が充填される。また各枠体とカチオン交換膜10、中間イオン交換膜12、アニオン交換膜14とは、封着される。   It is preferable that the desalting chambers D1, D2, and D3 also have a configuration in which the frame body is used similarly to the above and the ion exchanger is filled in the hollowed portion of the frame body. That is, a frame is disposed between the cation exchange membrane 10 and the intermediate ion exchange membrane 12, and between the intermediate ion exchange membrane 12 and the anion exchange membrane 14, and the ion exchanger is filled in the hollowed portion of each frame. Is done. Further, each frame, the cation exchange membrane 10, the intermediate ion exchange membrane 12, and the anion exchange membrane 14 are sealed.

両端の脱塩室D1,D3の両外側と両電極(陰極24,陽極26)との間の空間をそれぞれ電極室28,30として、ここに電極水(本実施形態では濃縮水)が通水される。なお、電極室28,30には、必要に応じてカチオン交換体、アニオン交換体等が充填されてもよい。図1の例では、電極室28にアニオン交換体32が、電極室30にカチオン交換体34が配設されているが、これに限らない。   Spaces between both outer sides of the desalting chambers D1 and D3 at both ends and both electrodes (cathode 24, anode 26) are respectively used as electrode chambers 28 and 30, and electrode water (concentrated water in the present embodiment) flows therethrough. Is done. The electrode chambers 28 and 30 may be filled with a cation exchanger, an anion exchanger, or the like as necessary. In the example of FIG. 1, the anion exchanger 32 is disposed in the electrode chamber 28 and the cation exchanger 34 is disposed in the electrode chamber 30, but the present invention is not limited thereto.

図1の電気式脱イオン水製造装置1において、被処理水が流入するための第一流入ライン36が、第一小脱塩室d1,d3,d5の入口にそれぞれ接続され、第一小脱塩室d1,d3,d5の出口からの被処理水が流出するための第一流出ライン38が、第二小脱塩室d2,d4,d6の入口へ被処理水が流入するための第二流入ライン40に接続されている。処理水が流出するための第二流出ライン42が、第二小脱塩室d2,d4,d6の出口にそれぞれ接続されている。上記構成によって、被処理水は、まず、第一小脱塩室d1,d3,d5に供給され、脱塩処理される。そして、第一小脱塩室d1,d3,d5を通過した被処理水が、第二小脱塩室d2,d4,d6に供給され、さらに脱塩処理されて処理水として排出される。なお、被処理水の通水経路は、上記に制限されるものではなく、例えば、混合体18が充填された第二小脱塩室d2,d4,d6からアニオン交換体20が充填された第一小脱塩室d1,d3,d5へ被処理水が通水されてもよい。   In the electric deionized water production apparatus 1 of FIG. 1, first inflow lines 36 through which treated water flows are connected to the inlets of the first small demineralization chambers d1, d3, d5, respectively. A first outflow line 38 for flowing out the water to be treated from the outlets of the salt chambers d1, d3, d5 is a second for flowing the water to be treated into the inlets of the second small desalting chambers d2, d4, d6. It is connected to the inflow line 40. A second outflow line 42 through which the treated water flows out is connected to the outlets of the second small desalting chambers d2, d4, d6, respectively. With the above configuration, the water to be treated is first supplied to the first small desalting chambers d1, d3, and d5 and desalted. And the to-be-processed water which passed 1st small desalination chamber d1, d3, d5 is supplied to 2nd small desalination chamber d2, d4, d6, is further desalted, and is discharged | emitted as treated water. The flow path of the water to be treated is not limited to the above, and for example, the second anion exchanger 20 filled with the anion exchanger 20 from the second small desalting chambers d2, d4, d6 filled with the mixture 18 is used. The treated water may be passed through the small desalting chambers d1, d3, and d5.

また、濃縮水流入ライン48は、濃縮室16a,16bの入口にそれぞれ接続され、濃縮水流出ライン50は、濃縮室16a,16bの出口にそれぞれ接続されている。電極水流入ラインは、濃縮水流入ライン48と同一のラインとし、電極室28,30の入口にそれぞれ接続され、電極水流出ラインは、濃縮水流出ライン50と同一のラインとし、電極室28,30の出口にそれぞれ接続されている。本実施形態では、電極水流入ライン及び濃縮水流入ライン48、電極水流出ライン及び濃縮水流出ライン50をそれぞれ同一のラインとしているが、異なるラインとしてもよい。また、濃縮水及び電極水として流入させる溶液を同じものとして通水させているが、これに限られず、濃縮水及び電極水を異なる溶液としてもよい。   The concentrated water inflow line 48 is connected to the inlets of the concentrating chambers 16a and 16b, respectively, and the concentrated water outflow line 50 is connected to the outlets of the concentrating chambers 16a and 16b, respectively. The electrode water inflow line is the same line as the concentrated water inflow line 48 and is connected to the inlets of the electrode chambers 28 and 30, respectively. The electrode water outflow line is the same line as the concentrated water outflow line 50, and the electrode chambers 28, 30 Each is connected to 30 outlets. In the present embodiment, the electrode water inflow line and the concentrated water inflow line 48, the electrode water outflow line and the concentrated water outflow line 50 are the same line, but they may be different lines. Moreover, although the solution made to flow in as concentrated water and electrode water is made to pass through as the same thing, it is not restricted to this, It is good also considering concentrated water and electrode water as a different solution.

また、本実施形態では、第一小脱塩室d1,d3,d5に流入する被処理水の流れ方向及び第二小脱塩室d2,d4,d6に流入する被処理水の流れ方向は共に下降方向であり、濃縮水の流れ方向はその逆の上昇方向であるが、これに制限されない。   In this embodiment, the flow direction of the water to be treated flowing into the first small desalination chambers d1, d3, d5 and the flow direction of the water to be treated flowing into the second small desalination chambers d2, d4, d6 are both. Although it is a downward direction, the flow direction of concentrated water is the reverse upward direction, but is not limited thereto.

本実施形態に係る電気式脱イオン水製造装置1によって、脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陰極24と陽極26間に直流電流を流した状態で、第一流入ライン36から被処理水を流入させると共に、濃縮水流入ライン48から濃縮水を流入させる。第一流入ライン36から流入した被処理水は、第一小脱塩室d1,d3,d5を流れ、アニオン交換体20の充填層を通過する際に炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)、シリカ等のアニオンが除去される。更に、第一小脱塩室d1,d3,d5の第一流出ライン38を通った被処理水は、第二小脱塩室d2,d4,d6の第二流入ライン40を流れ、混合体18の充填層を通過する際にカチオン及びアニオンが除去され、処理水(脱イオン水)が第二流出ライン42から得られる。また、濃縮水流入ライン48から流入した濃縮水は、各濃縮室16a,16bを流れ、カチオン交換膜10及びアニオン交換膜14を介して移動してくるイオンを受取り、イオンを濃縮した濃縮水として濃縮水流出ライン50から流出される。さらに、濃縮水流入ライン48(電極水流入ライン)から流入した電極水は、濃縮水流出ライン50(電極水流出ライン)から流出される。上述の運転によって、被処理水中の不純物イオンが除去された処理水(脱イオン水)が得られる。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 1 according to this embodiment will be described below. First, in a state where a direct current is passed between the cathode 24 and the anode 26, water to be treated is introduced from the first inflow line 36 and concentrated water is introduced from the concentrated water inflow line 48. The water to be treated that flows in from the first inflow line 36 flows through the first small desalting chambers d1, d3, and d5, and is carbonated (free carbonic acid, bicarbonate ions, carbonate ions when passing through the packed bed of the anion exchanger 20). ), Anions such as silica are removed. Furthermore, the water to be treated that has passed through the first outflow line 38 of the first small desalting chambers d1, d3, d5 flows through the second inflow line 40 of the second small desalting chambers d2, d4, d6, and the mixture 18. When passing through the packed bed, cations and anions are removed, and treated water (deionized water) is obtained from the second outflow line 42. Further, the concentrated water flowing in from the concentrated water inflow line 48 flows through the concentration chambers 16a and 16b, receives ions moving through the cation exchange membrane 10 and the anion exchange membrane 14, and is used as concentrated water in which the ions are concentrated. It flows out from the concentrated water outflow line 50. Furthermore, the electrode water flowing in from the concentrated water inflow line 48 (electrode water inflow line) flows out from the concentrated water outflow line 50 (electrode water outflow line). By the above operation, treated water (deionized water) from which impurity ions in the water to be treated have been removed is obtained.

先に流入する第一小脱塩室d1,d3,d5のアニオン交換体20にて捕捉される炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)は、水酸化物イオンやアニオン交換体20に捕捉された他のアニオン成分と共に陽極側のアニオン交換膜14を通過し、濃縮室16a,16bへと移動する。濃縮室16a,16bのアニオン交換体22は、移動してきた炭酸によりHCO形のアニオン交換体となる。仮に、本実施形態とは異なり、濃縮室16a,16b内のアニオン交換体22とカチオン交換膜10との間にモノリス状有機多孔質カチオン交換体23が配置されていない状態で、HCO形のアニオン交換体に電流が流れると、HCO (及びCO 2−)は電場によってカチオン交換膜10近傍まで引き寄せられるが、カチオン交換膜10を透過することはできず、カチオン交換膜10近傍で濃縮される。これによって、カチオン交換膜10を隔てて濃縮室16a,16b(濃厚側)と第一小脱塩室d3,d5(希薄側)との間にHCO (及びCO 2−)の急な濃度勾配が発生する。また、カチオン交換膜10からは水素イオンが透過してくるため、濃縮室16a,16bのカチオン交換膜10近傍のpHは低くなる。そうすると、水と炭酸ガス(CO)が発生し、カチオン交換膜10近傍に高濃度炭酸ガス含有水溶液層が形成され、炭酸ガスは、拡散によってカチオン交換膜10を透過して第二小脱塩室d4,d6へ移動(逆拡散)してしまう。これにより第二小脱塩室d4,d6から排出される最終処理水が炭酸で汚染されることになる。 Carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion) trapped by the anion exchanger 20 in the first small desalting chambers d1, d3, d5 flowing in first is captured by the hydroxide ion or the anion exchanger 20. It passes through the anion exchange membrane 14 on the anode side together with the other anion components thus formed, and moves to the concentration chambers 16a and 16b. The anion exchanger 22 in the concentrating chambers 16a and 16b becomes an HCO 3 type anion exchanger by the carbon dioxide that has moved. Unlike the present embodiment, in the state where the monolithic organic porous cation exchanger 23 is not disposed between the anion exchanger 22 and the cation exchange membrane 10 in the concentration chambers 16a and 16b, the HCO 3 type When an electric current flows through the anion exchanger, HCO 3 (and CO 3 2− ) is attracted to the vicinity of the cation exchange membrane 10 by an electric field, but cannot pass through the cation exchange membrane 10, and in the vicinity of the cation exchange membrane 10. Concentrated. As a result, the HCO 3 (and CO 3 2− ) suddenly moves between the concentration chambers 16a and 16b (rich side) and the first small desalting chambers d3 and d5 (lean side) across the cation exchange membrane 10. A concentration gradient occurs. Further, since hydrogen ions permeate from the cation exchange membrane 10, the pH in the vicinity of the cation exchange membrane 10 in the concentration chambers 16a and 16b is lowered. Then, water and carbon dioxide (CO 2 ) are generated, and a high-concentration carbon dioxide-containing aqueous solution layer is formed in the vicinity of the cation exchange membrane 10, and the carbon dioxide permeates through the cation exchange membrane 10 by diffusion and becomes the second small desalting. It moves (reverse diffusion) to the chambers d4 and d6. As a result, the final treated water discharged from the second small desalting chambers d4 and d6 is contaminated with carbonic acid.

これに対し、本実施形態では、濃縮室16a,16b内のアニオン交換体22とカチオン交換膜10との間にモノリス状有機多孔質カチオン交換体23が配置されているため、濃縮室16a,16b内のアニオン交換体22はカチオン交換膜10と接触していない。したがって、高濃度炭酸ガス含有水溶液層は、カチオン交換膜10から離れて、主にアニオン交換体22と接するモノリス状有機多孔質カチオン交換体23表面又は内部に形成される。また、上記でも説明したようにモノリス状有機多孔質カチオン交換体23のマクロポア及び開口部は、濃縮水が通過する流路であるため、モノリス状有機多孔質カチオン交換体23表面又は内部の炭酸ガスは、カチオン交換膜10に接する前に濃縮水と共に濃縮室16a,16bから流出される。また、モノリス状有機多孔質カチオン交換体23表面又は内部の炭酸ガスが、カチオン交換膜10に到達したとしても、モノリス状有機多孔質カチオン交換体23内で希薄化(低濃度化)されているため、カチオン交換膜10を透過する炭酸ガスの量は大きく低減される。   On the other hand, in this embodiment, since the monolithic organic porous cation exchanger 23 is disposed between the anion exchanger 22 and the cation exchange membrane 10 in the concentration chambers 16a and 16b, the concentration chambers 16a and 16b. The anion exchanger 22 is not in contact with the cation exchange membrane 10. Therefore, the high-concentration carbon dioxide-containing aqueous solution layer is formed on the surface or inside of the monolithic organic porous cation exchanger 23 that is separated from the cation exchange membrane 10 and mainly in contact with the anion exchanger 22. In addition, as described above, the macropores and openings of the monolithic organic porous cation exchanger 23 are channels through which concentrated water passes, and therefore the surface of the monolithic organic porous cation exchanger 23 or carbon dioxide on the inside thereof. Flows out of the concentration chambers 16a and 16b together with the concentrated water before coming into contact with the cation exchange membrane 10. Moreover, even if carbon dioxide gas on the surface or inside of the monolithic organic porous cation exchanger 23 reaches the cation exchange membrane 10, it is diluted (lowered in concentration) in the monolithic organic porous cation exchanger 23. Therefore, the amount of carbon dioxide that permeates the cation exchange membrane 10 is greatly reduced.

また、本実施形態のモノリス状有機多孔質カチオン交換体23は、イオン交換基(カチオン交換基)が分散しているため、単にモノリス状の有機多孔質体を濃縮室16a,16b内のアニオン交換体22とカチオン交換膜10との間に配置するものより、電気式脱イオン水製造装置1の電気抵抗を低くすることができる。また、モノリス状有機多孔質カチオン交換体23は、その他のメッシュ状物、不織布、織布等の多孔質カチオン交換体よりも充填率が高いため、その他のメッシュ状物、不織布、織布等の多孔質カチオン交換体を配置するよりも、電気式脱イオン水製造装置1の電気抵抗を低くすることができる。   Further, since the monolithic organic porous cation exchanger 23 of the present embodiment has ion exchange groups (cation exchange groups) dispersed therein, the monolithic organic porous body is simply exchanged with anions in the concentration chambers 16a and 16b. The electrical resistance of the electrical deionized water production apparatus 1 can be made lower than that disposed between the body 22 and the cation exchange membrane 10. The monolithic organic porous cation exchanger 23 has a higher filling rate than other cation exchangers such as other mesh-like materials, nonwoven fabrics, and woven fabrics. The electric resistance of the electric deionized water production apparatus 1 can be made lower than that of disposing a porous cation exchanger.

また、被処理水を第一小脱塩室に充填されたアニオン交換体から第二小脱塩室に充填された混合体(アニオン交換体及びカチオン交換体)の順で接触させる構成では、炭酸の逆拡散現象が起こると、最終処理の第二小脱塩室に炭酸が移動するため、処理水が炭酸で汚染され易い。しかし、上記モノリス状有機多孔質カチオン交換体を濃縮室のアニオン交換体とカチオン交換体との間に配置することにより、炭酸の逆拡散現象が抑制されるため、このような構成でも最終処理水の炭酸汚染を防止することができる。また、脱塩室に充填された混合体によって、アニオン及びカチオンの両方のイオン除去が行え、高品位の脱イオン水を得ることができる。   In the configuration in which the water to be treated is contacted in the order of the anion exchanger filled in the first small desalting chamber to the mixture (anion exchanger and cation exchanger) filled in the second small desalting chamber, When the reverse diffusion phenomenon occurs, the carbonic acid moves to the second small desalting chamber of the final treatment, so that the treated water is easily contaminated with carbonic acid. However, by disposing the monolithic organic porous cation exchanger between the anion exchanger and the cation exchanger in the concentration chamber, the reverse diffusion phenomenon of carbon dioxide is suppressed. Carbon dioxide contamination can be prevented. In addition, the mixture filled in the desalting chamber can remove both anions and cations, and high-quality deionized water can be obtained.

次に、本実施形態のモノリス状有機多孔質カチオン交換体の物性、製法等について説明する。   Next, the physical properties, production method and the like of the monolithic organic porous cation exchanger of the present embodiment will be described.

モノリス状有機多孔質カチオン交換体23は、気泡状のマクロポア同士が重なり合い、重なり合った部分に開口部(メソポア、ミクロポア等)を有する連続気泡構造である。そして、開口部の平均直径は、20〜200μmの範囲であることが好ましく、8〜80μmの範囲であることがより好ましい。開口部の平均直径が20μmより小さいと、モノリス状有機多孔質カチオン交換体23を流れる濃縮水の圧力損失が高くなり、モノリス状有機多孔質カチオン交換体23内で発生した炭酸ガスを濃縮水と共に排水させることが困難となる場合がある。また、開口部の平均直径が200μmより大きいと、モノリス状有機多孔質カチオン交換体23の強度が低下する場合や、充填率が低くなり電気式脱イオン水製造装置の電気抵抗が高くなる場合がある。また、マクロポアの平均直径は特に制限されるものではないが、2〜5000μmの範囲であることが好ましい。また、マクロポア同士の重なりは、特に制限されるものではないが、1個のマクロポアで1〜12個、多くのものは3〜10個である。   The monolithic organic porous cation exchanger 23 has an open-cell structure in which bubble-shaped macropores overlap each other and an opening (mesopore, micropore, etc.) is formed in the overlapped portion. And it is preferable that the average diameter of an opening part is the range of 20-200 micrometers, and it is more preferable that it is the range of 8-80 micrometers. When the average diameter of the openings is smaller than 20 μm, the pressure loss of the concentrated water flowing through the monolithic organic porous cation exchanger 23 becomes high, and the carbon dioxide gas generated in the monolithic organic porous cation exchanger 23 is combined with the concentrated water. It may be difficult to drain. In addition, if the average diameter of the openings is larger than 200 μm, the strength of the monolithic organic porous cation exchanger 23 may decrease, or the filling rate may decrease and the electrical resistance of the electrical deionized water production apparatus may increase. is there. The average diameter of the macropores is not particularly limited, but is preferably in the range of 2 to 5000 μm. Further, the overlap between the macropores is not particularly limited, but 1 to 12 for one macropore, and 3 to 10 for many.

また、モノリス状有機多孔質カチオン交換体23は、全細孔容積が、0.5〜5ml/gの範囲であることが好ましい。全細孔容積が、0.5ml/gより小さいと、上記と同様に濃縮水の圧力損失が高くなり、モノリス状有機多孔質カチオン交換体23内で発生した炭酸ガスを濃縮水と共に排水させることが困難となる場合がある。また、全細孔容積が、5ml/gより大きい場合には、モノリス状有機多孔質カチオン交換体23の強度低下、電気式脱イオン水製造装置の電気抵抗の増加、又は炭酸ガスがモノリス状有機多孔質カチオン交換体23を移動(アニオン交換体22側からカチオン交換膜10側へ移動)する量が増加し、炭酸の逆拡散を抑制することが困難となる場合がある。   The monolithic organic porous cation exchanger 23 preferably has a total pore volume in the range of 0.5 to 5 ml / g. When the total pore volume is smaller than 0.5 ml / g, the pressure loss of the concentrated water increases as described above, and the carbon dioxide generated in the monolithic organic porous cation exchanger 23 is drained together with the concentrated water. May be difficult. When the total pore volume is larger than 5 ml / g, the strength of the monolithic organic porous cation exchanger 23 is decreased, the electric resistance of the electric deionized water production apparatus is increased, or the carbon dioxide gas is monolithic organic. The amount of movement of the porous cation exchanger 23 (moving from the anion exchanger 22 side to the cation exchange membrane 10 side) increases, and it may be difficult to suppress the reverse diffusion of carbonic acid.

また、モノリス状有機多孔質カチオン交換体23の厚さは、1mm以上であることが好ましい。厚さが1mmより小さいと、モノリス状有機多孔質カチオン交換体23の強度低下又は炭酸ガスがモノリス状有機多孔質カチオン交換体23を移動(アニオン交換体22側からカチオン交換膜10側へ移動)する量が増加し、炭酸の逆拡散を抑制することが困難となる場合がある。また、モノリス状有機多孔質カチオン交換体23の厚さは、濃縮室16a,16bの厚さに対して1/4以下に設定されることが好ましい。   The thickness of the monolithic organic porous cation exchanger 23 is preferably 1 mm or more. If the thickness is smaller than 1 mm, the strength of the monolithic organic porous cation exchanger 23 is reduced or the carbon dioxide gas moves through the monolithic organic porous cation exchanger 23 (moves from the anion exchanger 22 side to the cation exchange membrane 10 side). The amount to be increased may make it difficult to suppress the reverse diffusion of carbonic acid. Moreover, it is preferable that the thickness of the monolithic organic porous cation exchanger 23 is set to 1/4 or less with respect to the thickness of the concentration chambers 16a and 16b.

また、モノリス状有機多孔質カチオン交換体23は、0.5mg当量/乾燥多孔質体以上のイオン交換量を有することが好ましい。イオン交換量が0.5mg当量/乾燥多孔質体より小さいと、電気式脱イオン水製造装置の電気抵抗が増加する場合がある。   The monolithic organic porous cation exchanger 23 preferably has an ion exchange amount of 0.5 mg equivalent / dry porous body or more. When the ion exchange amount is smaller than 0.5 mg equivalent / dry porous body, the electric resistance of the electric deionized water production apparatus may increase.

また、モノリス状有機多孔質カチオン交換体23の骨格部(連続気泡を形成する部分)を構成する材料は、架橋構造を有する有機ポリマーである。架橋構造を有する有機ポリマーは、モノリス状有機多孔質カチオン交換体23の全構成単位に対して0.3〜20モル%の架橋構造単位を有することが好ましい。架橋構造単位が0.3モル%より小さいと、モノリス状有機多孔質カチオン交換体23の強度が低下する場合がある。また、架橋構造単位が20モル%より大きいと、カチオン交換基の導入が困難となり、電気式脱イオン水製造装置の電気抵抗が増加する場合がある。有機ポリマーの種類は、特に制限されるものではなく、例えば、ポリスチレン、ポリ(α−メチルスチレン)等のスチレン系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化オレフィン)、ポリアクリロニトリル等のニトリル系ポリマー、ポリメタクリル酸メチル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー、ポリビニルベンジルクロライド、スチレン−ジビニルベンゼン共重合体、ビニルベンジルクロライド−ジビニルベンゼン共重合体等の芳香族ビニルポリマー等が挙げられる。上記ポリマーは、単独のモノマーを重合させて得られるホモポリマーでも、複数のモノマーを重合させて得られるコポリマーであってもよく、また、2種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマーの中では、カチオン交換基の導入の容易性と機械的強度の高さから、芳香族ビニルポリマーであることが好ましく、特にスチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体であることがより好ましい。   Moreover, the material which comprises the frame | skeleton part (part which forms an open cell) of the monolithic organic porous cation exchanger 23 is an organic polymer which has a crosslinked structure. The organic polymer having a crosslinked structure preferably has 0.3 to 20 mol% of crosslinked structural units with respect to all the structural units of the monolithic organic porous cation exchanger 23. If the cross-linking structural unit is less than 0.3 mol%, the strength of the monolithic organic porous cation exchanger 23 may be lowered. On the other hand, when the cross-linking structural unit is larger than 20 mol%, it is difficult to introduce a cation exchange group, and the electric resistance of the electric deionized water production apparatus may increase. The type of the organic polymer is not particularly limited. For example, styrene-based polymers such as polystyrene and poly (α-methylstyrene), polyolefins such as polyethylene and polypropylene, poly (polychlorides such as polychloride and polytetrafluoroethylene, Halogenated olefins), nitrile polymers such as polyacrylonitrile, (meth) acrylic polymers such as polymethyl methacrylate and polyethyl acrylate, polyvinylbenzyl chloride, styrene-divinylbenzene copolymer, vinylbenzyl chloride-divinylbenzene Examples thereof include aromatic vinyl polymers such as polymers. The polymer may be a homopolymer obtained by polymerizing a single monomer, a copolymer obtained by polymerizing a plurality of monomers, or a blend of two or more polymers. . Among these organic polymers, an aromatic vinyl polymer is preferable from the viewpoint of easy introduction of a cation exchange group and high mechanical strength, and particularly, a styrene-divinylbenzene copolymer or a vinylbenzyl chloride-divinylbenzene copolymer. More preferably, it is a polymer.

また、モノリス状有機多孔質カチオン交換体23の断面積中の骨格部の面積は、単位断面積当たり3〜50%であることが好ましい。単位断面積当たりの骨格部の面積は、モノリス状有機多孔質カチオン交換体23の断面積をSEMにより撮影し、得られた断面写真から、目視、画像解析等により求められる。骨格部の面積が、単位断面積当たり3%より小さいと、モノリス状有機多孔質カチオン交換体23の強度が低下する場合がある。骨格部の面積が、単位断面積当たり50%より大きいと、モノリス状有機多孔質カチオン交換体23を流れる濃縮水の圧力損失が高くなり、モノリス状有機多孔質カチオン交換体23内で発生した炭酸ガスを濃縮水と共に排水させることが困難となる場合がある。   The area of the skeleton in the cross-sectional area of the monolithic organic porous cation exchanger 23 is preferably 3 to 50% per unit cross-sectional area. The area of the skeleton part per unit cross-sectional area is obtained by photographing the cross-sectional area of the monolithic organic porous cation exchanger 23 with an SEM and visually or by image analysis from the obtained cross-sectional photograph. If the area of the skeleton is less than 3% per unit cross-sectional area, the strength of the monolithic organic porous cation exchanger 23 may be reduced. When the area of the skeleton is larger than 50% per unit cross-sectional area, the pressure loss of the concentrated water flowing through the monolithic organic porous cation exchanger 23 increases, and the carbonic acid generated in the monolithic organic porous cation exchanger 23 increases. It may be difficult to drain the gas together with the concentrated water.

また、モノリス状有機多孔質カチオン交換体23の骨格部の厚さは、0.8〜40μmの範囲であることが好ましい。骨格部の厚さが、0.8μmより小さいと、上記同様に濃縮水の圧力損失が高くなり、モノリス状有機多孔質カチオン交換体23内で発生した炭酸ガスを濃縮水と共に排水させることが困難となる場合がある。また、骨格部の厚さが、40μmより大きいと、モノリス状有機多孔質カチオン交換体23の強度が低下する場合がある。なお、本実施形態に係るモノリス状有機多孔質カチオン交換体23の連続気泡構造は、SEM写真で比較的容易に観察することができる。   The thickness of the skeleton of the monolithic organic porous cation exchanger 23 is preferably in the range of 0.8 to 40 μm. When the thickness of the skeleton is less than 0.8 μm, the pressure loss of the concentrated water increases as described above, and it is difficult to drain the carbon dioxide gas generated in the monolithic organic porous cation exchanger 23 together with the concentrated water. It may become. Moreover, when the thickness of the skeleton is larger than 40 μm, the strength of the monolithic organic porous cation exchanger 23 may be lowered. In addition, the open cell structure of the monolithic organic porous cation exchanger 23 according to the present embodiment can be observed relatively easily with an SEM photograph.

上記モノリス状有機多孔質カチオン交換体23の製造方法としては、特に制限されず、カチオン交換基を含む成分を一段階でモノリス状有機多孔質体にする方法、カチオン交換基を含まない成分によりモノリス状有機多孔質体を形成し、その後、カチオン交換基を導入する方法などが挙げられる。モノリス状有機多孔質カチオン交換体23の製造方法の一例を次に示す。ここでは、モノリス状有機多孔質カチオン交換体23は、カチオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤を混合し、油中水滴型エマルジョンを得、これを重合させて製造される。   The production method of the monolithic organic porous cation exchanger 23 is not particularly limited, and the monolithic organic porous body is obtained by a method in which a component containing a cation exchange group is converted into a monolithic organic porous body in one step. For example, a method of forming a porous organic porous material and then introducing a cation exchange group can be used. An example of a method for producing the monolithic organic porous cation exchanger 23 is as follows. Here, the monolithic organic porous cation exchanger 23 is obtained by mixing an oil-soluble monomer not containing a cation exchange group, a surfactant, water, and a polymerization initiator as necessary to obtain a water-in-oil emulsion. It is manufactured by polymerizing.

カチオン交換基を含まない油溶性モノマーとしては、カルボン酸基、スルホン酸基、リン酸等のカチオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーを指すものである。これらモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、本実施形態においては、ジビニルベンゼン等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜20モル%とすることが、後の工程でカチオン交換基量を多く導入する際に、必要な機械的強度が得られる点で好ましい。   The oil-soluble monomer that does not contain a cation exchange group refers to a lipophilic monomer that does not contain a cation exchange group such as a carboxylic acid group, a sulfonic acid group, and phosphoric acid, has low solubility in water, and is lipophilic. Specific examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more. However, in this embodiment, a crosslinkable monomer such as divinylbenzene is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 20 mol% in the total oil-soluble monomer. When introducing a large amount of cation exchange groups in this step, it is preferable in that necessary mechanical strength can be obtained.

界面活性剤は、カチオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート等の非イオン界面活性剤、ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルベタイン等の両性界面活性剤等を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。また、必ずしも必須ではないが、モノリス状有機多孔質カチオン交換体23の気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール、ステアリン酸等のカルボン酸、オクタン、ドデカン等の炭化水素を系内に共存させてもよい。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no cation exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, cationic surfactants such as distearyldimethylammonium chloride, amphoteric surfactants such as lauryldimethylbetaine, etc. Can be used. These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%. Although not necessarily essential, in order to control the bubble shape and size of the monolithic organic porous cation exchanger 23, alcohols such as methanol and stearyl alcohol, carboxylic acids such as stearic acid, and hydrocarbons such as octane and dodecane. May coexist in the system.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, potassium persulfate, ammonium persulfate, Examples thereof include hydrogen oxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide. However, in some cases, there is a system in which the polymerization proceeds only by heating or light irradiation without adding a polymerization initiator, and in such a system, the addition of the polymerization initiator is unnecessary.

カチオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤を混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing a cation exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. The oil-soluble monomer, the surfactant, and the oil-soluble component that is the oil-soluble polymerization initiator and the water-soluble component that is the water-soluble polymerization initiator are uniformly and separately dissolved, and then the respective components are mixed. The method of mixing can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間、加熱重合させればよく、開始剤として過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0〜30℃で1〜48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去して多孔質体を得る。   Various conditions can be selected as the polymerization conditions for polymerizing the water-in-oil emulsion thus obtained depending on the type of monomer and the initiator system. For example, when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate, or the like is used as a polymerization initiator, it can be heated and polymerized at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere. When hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, etc. are used as initiators, polymerization can be carried out at 0-30 ° C. for 1-48 hours in a sealed container under an inert atmosphere. That's fine. After completion of the polymerization, the content is taken out and subjected to Soxhlet extraction with a solvent such as isopropanol to remove the unreacted monomer and the remaining surfactant to obtain a porous material.

重合工程で得られた多孔質体にカチオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、カチオン交換基としてスルホン酸基を導入する方法としては、多孔質体がスチレン−ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法、多孔質体にラジカル開始基や連鎖移動基を導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法、同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing a cation exchange group into the porous body obtained at the superposition | polymerization process, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group as a cation exchange group, if the porous body is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid, a porous body Introducing radical initiator groups and chain transfer groups into the graft polymerized sodium styrene sulfonate and acrylamide-2-methylpropane sulfonic acid. Similarly, after graft polymerization of glycidyl methacrylate, sulfonic acid groups are introduced by functional group conversion. And the like.

上記電気式脱イオン水製造装置では、被処理水を第一小脱塩室d1,d3,d5に充填されたアニオン交換体20から接触させる構成を例示している。本実施形態では、脱塩室に充填されたイオン交換体の通水順序及び脱塩室に充填されるイオン交換体等は特に制限されるものではないが、下記に第一小脱塩室にカチオン交換体を充填し、第二小脱塩室にアニオン交換体を充填し、被処理水をカチオン交換体からアニオン交換体の順で接触させる電気式脱イオン水製造装置について説明する。   In the said electrical deionized water manufacturing apparatus, the structure which contacts the to-be-processed water from the anion exchanger 20 with which the 1st small demineralization chamber d1, d3, d5 was filled is illustrated. In the present embodiment, the water flow order of the ion exchanger filled in the desalting chamber and the ion exchanger filled in the desalting chamber are not particularly limited, but are described below in the first small desalting chamber. An electric deionized water production apparatus will be described in which a cation exchanger is filled, an anion exchanger is filled in the second small desalting chamber, and the water to be treated is brought into contact in the order of the cation exchanger to the anion exchanger.

図3は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図3に示す第一小脱塩室d1,d3,d5は、カチオン交換膜10と中間イオン交換膜12とで区画され、第二小脱塩室d2,d4,d6は、中間イオン交換膜12とアニオン交換膜14とで区画されている。また、図3に示す第一小脱塩室d1,d3,d5には、カチオン交換体46が充填され、第二小脱塩室d2,d4,d6には、アニオン交換体20が充填されている。また、本実施形態において、中間イオン交換膜12は、アニオン交換膜であるが、アニオン交換膜に制限されるものではない。また、濃縮室16a,16b及び電極室28,30は、図1の電気式脱イオン水製造装置1と同様の構成であるため説明を省略する。   FIG. 3 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. The first small desalting chambers d1, d3, d5 shown in FIG. 3 are partitioned by the cation exchange membrane 10 and the intermediate ion exchange membrane 12, and the second small desalting chambers d2, d4, d6 are the intermediate ion exchange membrane 12. And an anion exchange membrane 14. Further, the first small desalting chambers d1, d3, d5 shown in FIG. 3 are filled with a cation exchanger 46, and the second small desalting chambers d2, d4, d6 are filled with an anion exchanger 20. Yes. In the present embodiment, the intermediate ion exchange membrane 12 is an anion exchange membrane, but is not limited to an anion exchange membrane. Moreover, since the concentration chambers 16a and 16b and the electrode chambers 28 and 30 have the same configuration as the electric deionized water production apparatus 1 in FIG.

図3の電気式脱イオン水製造装置2において、被処理水が流入するための第一流入ライン36が、第一小脱塩室d1,d3,d5の入口にそれぞれ接続され、第一小脱塩室d1,d3,d5の出口からの被処理水が流出するための第一流出ライン38が、第二小脱塩室d2,d4,d6の入口へ被処理水が流入するための第二流入ライン40に接続されている。処理水が流出するための第二流出ライン42が、第二小脱塩室d2,d4,d6の出口にそれぞれ接続されている。上記構成によって、被処理水は、まず、第一小脱塩室d1,d3,d5に供給され、脱塩処理される。そして、第一小脱塩室d1,d3,d5を通過した被処理水が、第二小脱塩室d2,d4,d6に供給され、さらに脱塩処理されて処理水として排出される。また、濃縮水流入ライン48、濃縮水流出ライン50等の構成は、図1の電気式脱イオン水製造装置1と同様の構成であるため説明を省略する。   In the electric deionized water production apparatus 2 of FIG. 3, the first inflow lines 36 through which the water to be treated flows are connected to the inlets of the first small demineralization chambers d1, d3, d5, respectively. A first outflow line 38 for flowing out the water to be treated from the outlets of the salt chambers d1, d3, d5 is a second for flowing the water to be treated into the inlets of the second small desalting chambers d2, d4, d6. It is connected to the inflow line 40. A second outflow line 42 through which the treated water flows out is connected to the outlets of the second small desalting chambers d2, d4, d6, respectively. With the above configuration, the water to be treated is first supplied to the first small desalting chambers d1, d3, and d5 and desalted. And the to-be-processed water which passed 1st small desalination chamber d1, d3, d5 is supplied to 2nd small desalination chamber d2, d4, d6, is further desalted, and is discharged | emitted as treated water. Moreover, since the structure of the concentrated water inflow line 48, the concentrated water outflow line 50, etc. is the same structure as the electric deionized water manufacturing apparatus 1 of FIG. 1, description is abbreviate | omitted.

本実施形態に係る電気式脱イオン水製造装置2によって脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陰極24と陽極26間に直流電流を流した状態で、第一流入ライン36から被処理水を流入させると共に、濃縮水流入ライン48から濃縮水を流入させる。第一流入ライン36から流入した被処理水は、第一小脱塩室d1,d3,d5を流れ、カチオン交換体46の充填層を通過する際にカチオンが除去される。更に、第一小脱塩室d1,d3,d5の第一流出ライン38を通った被処理水は、第二小脱塩室d2,d4,d6の第二流入ライン40を通って、第二小脱塩室d2,d4,d6を流れ、アニオン交換体20の充填層を通過する際に炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)、シリカ等のアニオンが除去され、処理水(脱イオン水)が第二流出ライン42から得られる。また、濃縮水流入ライン48から流入した濃縮水は、各濃縮室16a,16bを流れ、カチオン交換膜10及びアニオン交換膜14を介して移動してくるイオンを受取り、イオンを濃縮した濃縮水として濃縮水流出ライン50から流出される。さらに濃縮水流入ライン48(電極水流入ライン)から流入した電極水は、濃縮水流出ライン50(電極水流出ライン)から流出される。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 2 according to this embodiment will be described below. First, in a state where a direct current is passed between the cathode 24 and the anode 26, water to be treated is introduced from the first inflow line 36 and concentrated water is introduced from the concentrated water inflow line 48. The treated water that has flowed from the first inflow line 36 flows through the first small desalting chambers d1, d3, and d5, and the cations are removed when passing through the packed bed of the cation exchanger 46. Furthermore, the treated water that has passed through the first outflow line 38 of the first small desalting chambers d1, d3, d5 passes through the second inflow line 40 of the second small desalting chambers d2, d4, d6, When flowing through the small desalting chambers d2, d4, d6 and passing through the packed bed of the anion exchanger 20, anions such as carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion), silica and the like are removed, and treated water (deionized) Water) is obtained from the second outlet line 42. Further, the concentrated water flowing in from the concentrated water inflow line 48 flows through the concentration chambers 16a and 16b, receives ions moving through the cation exchange membrane 10 and the anion exchange membrane 14, and is used as concentrated water in which the ions are concentrated. It flows out from the concentrated water outflow line 50. Furthermore, the electrode water flowing in from the concentrated water inflow line 48 (electrode water inflow line) flows out from the concentrated water outflow line 50 (electrode water outflow line).

上記で説明したように、第二小脱塩室d2,d4,d6のアニオン交換体20にて捕捉される炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)は、水酸化物イオンやアニオン交換体20に捕捉された他のアニオン成分と共に陽極側のアニオン交換膜14を通過し、濃縮室16a,16bへと移動する。本実施形態では、濃縮室16a,16b内のアニオン交換体22とカチオン交換膜10との間にモノリス状有機多孔質カチオン交換体23が配置されているため、上記でも説明したように高濃度炭酸ガス含有水溶液層は、アニオン交換体22と接するモノリス状有機多孔質カチオン交換体23表面又は内部で発生し、炭酸ガスは、カチオン交換膜10に接する前に濃縮水と共に濃縮室16a,16bから流出される。また、炭酸ガスが、カチオン交換膜10に到達したとしても、モノリス状有機多孔質カチオン交換体23内で希薄化(低濃度化)されているため、カチオン交換膜10を透過する炭酸の量は大きく低減される。したがって、炭酸ガスがカチオン交換膜10を介して第一小脱塩室d3,d5へ移動し、被処理水中に逆拡散することを抑制することができる。   As explained above, carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion) trapped by the anion exchanger 20 in the second small desalting chambers d2, d4, d6 is hydroxide ions or anion exchangers. The other anion component trapped by 20 passes through the anion exchange membrane 14 on the anode side and moves to the concentration chambers 16a and 16b. In the present embodiment, the monolithic organic porous cation exchanger 23 is disposed between the anion exchanger 22 and the cation exchange membrane 10 in the concentration chambers 16a and 16b. The gas-containing aqueous solution layer is generated on or inside the monolithic organic porous cation exchanger 23 in contact with the anion exchanger 22, and the carbon dioxide gas flows out of the concentration chambers 16 a and 16 b together with the concentrated water before contacting the cation exchange membrane 10. Is done. Even if the carbon dioxide gas reaches the cation exchange membrane 10, the amount of carbon dioxide permeating the cation exchange membrane 10 is reduced because it is diluted (lowered in concentration) in the monolithic organic porous cation exchanger 23. It is greatly reduced. Therefore, it is possible to suppress the carbon dioxide gas from moving to the first small desalting chambers d3 and d5 through the cation exchange membrane 10 and backdiffusing into the water to be treated.

本実施形態において、第一小脱塩室d1,d3,d5または第二小脱塩室d2,d4,d6の厚さは特に制限されないが、第一小脱塩室d1,d3,d5の厚さを0.8〜600mm、好ましくは2〜100mm、第二小脱塩室d2,d4,d6の厚さを0.8〜600mm、好ましくは6〜100mmとすれば、低い電気抵抗及び高い電流効率が得られる点で好適である。第一小脱塩室d1,d3,d5の厚さが0.8mm未満では滞留時間を充分に確保できず、水質が悪化しやすい。また、600mmを越えると電気抵抗が大きすぎて装置の安定運転に支障を来しやすくなる。また、同様に第二小脱塩室d2,d4,d6の厚さが0.8mm未満では滞留時間を充分に確保できず、水質が悪化しやすい。また、600mmを越えると電流効率の上昇に比べて電気抵抗の上昇が顕著となりやすい。   In the present embodiment, the thickness of the first small desalting chambers d1, d3, d5 or the second small desalting chambers d2, d4, d6 is not particularly limited, but the thickness of the first small desalting chambers d1, d3, d5. If the thickness is 0.8 to 600 mm, preferably 2 to 100 mm, and the thickness of the second small desalting chambers d2, d4, and d6 is 0.8 to 600 mm, preferably 6 to 100 mm, low electrical resistance and high current This is preferable in that efficiency can be obtained. If the thickness of the first small desalting chambers d1, d3, d5 is less than 0.8 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 600 mm, the electric resistance is too large, and the stable operation of the apparatus tends to be hindered. Similarly, if the thickness of the second small desalting chambers d2, d4, d6 is less than 0.8 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 600 mm, the increase in electrical resistance tends to be more significant than the increase in current efficiency.

アニオン交換体(20,32)、カチオン交換体(34,46)として用いられるイオン交換体としては、イオン交換樹脂、イオン交換繊維などイオン交換機能を有する物質であればいずれでもよく、また、それらを組み合わせたものであってもよい。   The ion exchanger used as the anion exchanger (20, 32) and cation exchanger (34, 46) may be any substance having an ion exchange function, such as an ion exchange resin or an ion exchange fiber. May be combined.

濃縮室16a,16bに充填されるアニオン交換体22としては、例えば強塩基性アニオン交換体が挙げられる。また、アニオン交換体の形態としては、アニオン交換樹脂、アニオン交換繊維及び特開2002−306976号公報記載の有機多孔質アニオン交換体等が挙げられる。強塩基性アニオン交換体は一部に弱塩基性アニオン交換基が含まれていてもよい。アニオン交換樹脂は、遊離炭酸濃度が低くても反応が十分におき、スケール発生を抑制できるという利点を有する。また、アニオン交換樹脂の粒径が均一であると、濃縮室の差圧が低くなる点で好ましい。   Examples of the anion exchanger 22 filled in the concentration chambers 16a and 16b include a strongly basic anion exchanger. Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and organic porous anion exchangers described in JP-A No. 2002-306976. The strong basic anion exchanger may partially contain a weak basic anion exchange group. The anion exchange resin has an advantage that the reaction is sufficiently performed even when the free carbonic acid concentration is low, and scale generation can be suppressed. Moreover, it is preferable that the particle size of the anion exchange resin is uniform in that the differential pressure in the concentration chamber is reduced.

濃縮室16a,16bの厚さとしては、特に制限されるものではないが、0.5mm〜60mmが好ましく、特に1mm〜10mmが好ましい。0.5mm未満であると、たとえアニオン交換体22を充填してもスケール発生抑制効果が得られにくくなり、通水差圧も上昇しやすい。一方、60mmを越えると、電気抵抗が高くなり、消費電力が増大しやすくなる。   Although it does not restrict | limit especially as thickness of the concentration chambers 16a and 16b, 0.5 mm-60 mm are preferable, and 1 mm-10 mm are especially preferable. If it is less than 0.5 mm, even if the anion exchanger 22 is filled, it becomes difficult to obtain an effect of suppressing the occurrence of scale, and the water flow differential pressure tends to increase. On the other hand, if it exceeds 60 mm, the electrical resistance increases and the power consumption tends to increase.

なお、電気式脱イオン水製造装置において、処理量(SV、LV)、通電量、その他運転条件は、被処理水の性状などに応じて適宜設定することができる。   In the electric deionized water production apparatus, the treatment amount (SV, LV), the energization amount, and other operating conditions can be appropriately set according to the properties of the water to be treated.

本実施形態において、処理対象となる被処理水としては特に制限はないが、炭酸成分を多く含む被処理水であっても、最終処理水の炭酸汚染を防止することができる。炭酸成分を多く含む被処理水としては、例えば水道水または水道水をRO膜等で処理した水等が挙げられる。国内の水道水では通常炭酸成分の他に硬度成分が含まれるが、本実施形態によれば、濃縮室16a,16bへアニオン交換体22が充填されているため、濃縮室16a,16bに移動したCa2+イオンやMg2+イオンが濃縮室16a,16bのアニオン交換膜14面で炭酸イオン(CO 2−)と結合して硬度スケールを生じることはほとんどなく、濃縮室16a,16bにおいて流路閉塞などが起こることもほとんどない。 In the present embodiment, the water to be treated that is to be treated is not particularly limited, but even water to be treated that contains a large amount of carbonic acid components can prevent carbonation of the final treated water. Examples of water to be treated containing a large amount of carbonic acid component include tap water or water obtained by treating tap water with an RO membrane or the like. Domestic tap water usually contains a hardness component in addition to a carbonic acid component, but according to the present embodiment, the anion exchanger 22 is filled in the concentrating chambers 16a and 16b, so that they have moved to the concentrating chambers 16a and 16b. Ca 2+ ions and Mg 2+ ions are hardly combined with carbonate ions (CO 3 2− ) on the surface of the anion exchange membrane 14 in the concentration chambers 16a and 16b to form a hardness scale, and the flow path is blocked in the concentration chambers 16a and 16b. There is almost no such thing.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

図4は、濃縮室から脱塩室に移動する炭酸成分量を測定するための試験セルを示す概略構成図である。図4に示すように、アニオン交換樹脂56が充填された陰極室58と、カチオン交換樹脂60が充填された陽極室62との間に、アニオン交換膜64及び第一カチオン交換膜66で区画された室にアニオン交換樹脂56が充填され、アニオン交換樹脂56と第一カチオン交換膜66との間にモノリス状有機多孔質カチオン交換樹脂54を配置した濃縮室68、第一カチオン交換膜66及び第二カチオン交換膜70で区画された室にカチオン交換樹脂60が充填された脱塩室72とを有する試験セル3を準備し、以下の条件で濃縮室68から脱塩室72に移動する炭酸成分量を測定した。実施例1では、脱塩室72及び電極室(58,62)に超純水を通水させると共に、濃縮室68にNaHCO溶液(炭酸イオン濃度30mg−CaCO/L)を通水させた。 FIG. 4 is a schematic configuration diagram showing a test cell for measuring the amount of carbonic acid components moving from the concentration chamber to the desalting chamber. As shown in FIG. 4, an anion exchange membrane 64 and a first cation exchange membrane 66 are partitioned between a cathode chamber 58 filled with an anion exchange resin 56 and an anode chamber 62 filled with a cation exchange resin 60. The concentration chamber 68, the first cation exchange membrane 66, and the first cation exchange membrane 66 in which the monolithic organic porous cation exchange resin 54 is disposed between the anion exchange resin 56 and the first cation exchange membrane 66 are filled with the anion exchange resin 56. A test cell 3 having a demineralization chamber 72 filled with a cation exchange resin 60 in a chamber partitioned by a dication exchange membrane 70 is prepared, and a carbonic acid component that moves from the concentration chamber 68 to the demineralization chamber 72 under the following conditions The amount was measured. In Example 1, ultrapure water was passed through the desalting chamber 72 and the electrode chambers (58, 62), and a NaHCO 3 solution (carbonate concentration 30 mg-CaCO 3 / L) was passed through the concentration chamber 68. .

実施例2は、濃縮室68にCO含有溶液(炭酸イオン濃度30mg−CaCO/L)を通水させたこと以外は、実施例1と同様の条件で行った。
<使用したイオン交換体>
モノリス状有機多孔質カチオン交換樹脂:開口部の平均直径は62μm、全細孔容積は2.26ml/g、カチオン交換樹脂の厚さは2mm、イオン交換量は0.64mg当量/g乾燥多孔質体(4.7mg当量/g湿潤多孔質体)、水分保有能力は87%、3モル%の架橋構造単位、単位断面積当たりの骨格部の面積30%
カチオン交換樹脂:ロームアンドハース社製、アンバーライトIRA402BL
アニオン交換樹脂:ロームアンドハース社製、アンバーライトIRA402BL
第一カチオン交換膜、第二カチオン交換膜:株式会社アストム製、C66−10F
アニオン交換膜:株式会社アストム製、AHA
<EDIサイズ>
試験セル:縦10cm×幅10cm×厚さ8mm
<流量条件>
超純水、NaHCO溶液、CO含有溶液:8000ml/hr
<電流条件>
定電流:0.5A/dm
Example 2 was performed under the same conditions as Example 1 except that the CO 2 -containing solution (carbonate ion concentration 30 mg-CaCO 3 / L) was passed through the concentration chamber 68.
<Ion exchanger used>
Monolithic organic porous cation exchange resin: average diameter of openings is 62 μm, total pore volume is 2.26 ml / g, cation exchange resin thickness is 2 mm, ion exchange amount is 0.64 mg equivalent / g dry porous Body (4.7 mg equivalent / g wet porous body), moisture retention capacity is 87%, 3 mol% cross-linked structural unit, skeleton area per unit cross-sectional area 30%
Cation exchange resin: manufactured by Rohm and Haas, Amberlite IRA402BL
Anion exchange resin: Rohm and Haas, Amberlite IRA402BL
First cation exchange membrane, second cation exchange membrane: manufactured by Astom Co., Ltd., C66-10F
Anion exchange membrane: manufactured by Astom Co., Ltd., AHA
<EDI size>
Test cell: 10cm long x 10cm wide x 8mm thick
<Flow conditions>
Ultrapure water, NaHCO 3 solution, CO 2 -containing solution: 8000 ml / hr
<Current conditions>
Constant current: 0.5 A / dm 2

比較例1は、濃縮室68のアニオン交換樹脂56と第一カチオン交換膜66との間にモノリス状有機多孔質カチオン交換樹脂54を配置していないこと以外は、実施例1と同様の条件で行った。   Comparative Example 1 is the same as in Example 1 except that the monolithic organic porous cation exchange resin 54 is not disposed between the anion exchange resin 56 and the first cation exchange membrane 66 in the concentration chamber 68. went.

比較例2は、濃縮室68のアニオン交換樹脂56と第一カチオン交換膜66との間にモノリス状有機多孔質カチオン交換樹脂54を配置していないこと以外は、実施例2と同様の条件で行った。   Comparative Example 2 is the same as in Example 2 except that the monolithic organic porous cation exchange resin 54 is not disposed between the anion exchange resin 56 and the first cation exchange membrane 66 in the concentration chamber 68. went.

実施例1,2及び比較例1,2の脱塩室から排出される処理水(超純水)中の炭酸量を測定した。具体的には、アルテナ社製のTOC計(A−1000)にて処理水中の無機炭素(IC)を測定し、これを炭酸として、処理水中の炭酸量を測定した。比較例1及び比較例2の脱塩室から排出される処理水には、8400μg−CaCO/hr、9000μg−CaCO/hrの炭酸成分が含まれていた。一方、実施例1及び実施例2の脱塩室から排出される処理水には、340μg−CaCO/hr、380μg−CaCO/hrの炭酸成分が含まれていたが、比較例1及び比較例2より炭酸成分の量が大幅に抑えられた。すなわち、濃縮室のアニオン交換樹脂とカチオン交換膜との間にモノリス状有機多孔質カチオン交換樹脂を配置することによって、濃縮室の炭酸成分がカチオン交換膜を介して脱塩室に移動することを抑制できることを確認した。 The amount of carbonic acid in the treated water (ultra pure water) discharged from the desalting chambers of Examples 1 and 2 and Comparative Examples 1 and 2 was measured. Specifically, inorganic carbon (IC) in the treated water was measured with a TOC meter (A-1000) manufactured by Altena, and the amount of carbonic acid in the treated water was measured using this as carbonic acid. The treated water discharged from the desalting chambers of Comparative Example 1 and Comparative Example 2 contained carbonic acid components of 8400 μg-CaCO 3 / hr and 9000 μg-CaCO 3 / hr. On the other hand, the treated water discharged from the desalting chambers of Example 1 and Example 2 contained carbonic acid components of 340 μg-CaCO 3 / hr and 380 μg-CaCO 3 / hr. From Example 2, the amount of carbonic acid component was significantly reduced. That is, by disposing a monolithic organic porous cation exchange resin between the anion exchange resin and the cation exchange membrane in the concentration chamber, the carbonic acid component in the concentration chamber moves to the desalting chamber via the cation exchange membrane. It was confirmed that it could be suppressed.

本実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on this embodiment. 本実施形態に係る濃縮室の構成の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of a structure of the concentration chamber which concerns on this embodiment. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 濃縮室から脱塩室に移動する炭酸成分量を測定するための試験セルを示す概略構成図である。It is a schematic block diagram which shows the test cell for measuring the amount of carbonic acid components which moves to a desalination chamber from a concentration chamber.

符号の説明Explanation of symbols

1,2 電気式脱イオン水製造装置、3 試験セル、10,66,70 カチオン交換膜、12 中間イオン交換膜、14,64 アニオン交換膜、16a,16b,68 濃縮室、18 混合体、20,22,32 アニオン交換体、23 モノリス状有機多孔質カチオン交換体、24 陰極、25 枠体、26 陽極、28,30,58,62 電極室、34,46 カチオン交換体、36 第一流入ライン、38 第一流出ライン、40 第二流入ライン、42 第二流出ライン、48 濃縮水流入ライン、50 濃縮水流出ライン、54 モノリス状有機多孔質カチオン交換樹脂、56 アニオン交換樹脂、60 カチオン交換樹脂、72,D1,D2,D3 脱塩室、d1,d3,d5 第一小脱塩室、d2,d4,d6 第二小脱塩室。   1, 2 Electric deionized water production apparatus, 3 test cell, 10, 66, 70 cation exchange membrane, 12 intermediate ion exchange membrane, 14, 64 anion exchange membrane, 16a, 16b, 68 concentration chamber, 18 mixture, 20 , 22, 32 Anion exchanger, 23 monolithic organic porous cation exchanger, 24 cathode, 25 frame, 26 anode, 28, 30, 58, 62 electrode chamber, 34, 46 cation exchanger, 36 first inflow line 38 First outflow line, 40 Second inflow line, 42 Second outflow line, 48 Concentrated water inflow line, 50 Concentrated water outflow line, 54 Monolithic organic porous cation exchange resin, 56 Anion exchange resin, 60 Cation exchange resin 72, D1, D2, D3 desalting chamber, d1, d3, d5 first small desalting chamber, d2, d4, d6 second small desalting chamber.

Claims (9)

陽極と陰極との間に、前記陰極側に配置されるカチオン交換膜と前記陽極側に配置されるアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられる濃縮室とを配置する電気式脱イオン水製造方法であって、
前記濃縮室には、前記濃縮室の陰極側にアニオン交換膜があり、前記濃縮室の陽極側にカチオン交換膜があり、前記濃縮室の陰極側にあるアニオン交換膜と前記陽極側にあるカチオン交換膜との間にはアニオン交換体が充填され、
前記濃縮室のアニオン交換体と前記濃縮室の陽極側にあるカチオン交換膜との間に、モノリス状有機多孔質カチオン交換体を配置し、
前記モノリス状有機多孔質カチオン交換体は、気泡状のマクロポア同士が重なり合い、前記重なり合った部分に開口部を有する連続気泡構造であることを特徴とする電気式脱イオン水製造装置。
A demineralization chamber partitioned between an anode and a cathode by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side and filled with an ion exchanger; and the cation exchange membrane the a electrodeionization water producing method through the anion exchange membrane to place the enrichment chamber that is provided on both sides of the depletion chamber,
The concentration chamber has an anion exchange membrane on the cathode side of the concentration chamber, a cation exchange membrane on the anode side of the concentration chamber, and an anion exchange membrane on the cathode side of the concentration chamber and a cation on the anode side. An anion exchanger is filled between the exchange membrane,
A monolithic organic porous cation exchanger is disposed between the anion exchanger in the concentration chamber and the cation exchange membrane on the anode side of the concentration chamber ,
The monolithic organic porous cation exchanger has an open cell structure in which bubble-shaped macropores overlap each other and an opening is formed in the overlapped portion.
請求項1記載の電気式脱イオン水製造装置であって、前記開口部の平均直径は20〜200μmの範囲であることを特徴とする電気式脱イオン水製造装置。   It is an electrical deionized water manufacturing apparatus of Claim 1, Comprising: The average diameter of the said opening part is the range of 20-200 micrometers, The electrical deionized water manufacturing apparatus characterized by the above-mentioned. 請求項1又は2記載の電気式脱イオン水製造装置であって、前記モノリス状有機多孔質カチオン交換体の全細孔容積は0.5〜5ml/gの範囲であることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein the total pore volume of the monolithic organic porous cation exchanger is in the range of 0.5 to 5 ml / g. Type deionized water production equipment. 請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置であって、前記モノリス状有機多孔質カチオン交換体の厚さは、1mm以上であることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 3, wherein the monolithic organic porous cation exchanger has a thickness of 1 mm or more. Ionized water production equipment. 請求項1〜4のいずれか1項に記載の電気式脱イオン水製造装置であって、前記モノリス状有機多孔質カチオン交換体のイオン交換量は、0.5mg当量/g乾燥多孔質体以上であることを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-4, Comprising: The ion exchange amount of the said monolithic organic porous cation exchanger is 0.5 mg equivalent / g dry porous body or more An electrical deionized water production apparatus characterized by the above. 請求項1〜5のいずれか1項に記載の電気式脱イオン水製造装置であって、前記モノリス状有機多孔質カチオン交換体の骨格部を構成する材料は、架橋構造を有する有機ポリマーであり、前記有機ポリマーは、前記モノリス状有機多孔質カチオン交換体の全構成単位に対して0.3〜20モル%の範囲の架橋構造単位を有することを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-5, Comprising: The material which comprises the frame | skeleton part of the said monolithic organic porous cation exchanger is an organic polymer which has a crosslinked structure. The organic polymer has a cross-linked structural unit in the range of 0.3 to 20 mol% with respect to all the structural units of the monolithic organic porous cation exchanger. 請求項6に記載の電気式脱イオン水製造装置であって、前記モノリス状有機多孔質カチオン交換体の断面積中の前記骨格部の面積は、単位断面積当たり3〜50%の範囲であることを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of Claim 6, Comprising: The area of the said frame | skeleton part in the cross-sectional area of the said monolithic organic porous cation exchanger is the range of 3-50% per unit cross-sectional area. An electrical deionized water production apparatus. 請求項6又は7に記載の電気式脱イオン水製造装置であって、前記骨格部の厚さは、0.8〜40μmの範囲であることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 6 or 7, wherein the skeleton has a thickness in a range of 0.8 to 40 µm. 陽極と陰極との間に、前記陰極側に配置されるカチオン交換膜と前記陽極側に配置されるアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられる濃縮室と、を配置し、前記濃縮室には、前記濃縮室の陰極側にアニオン交換膜があり、前記濃縮室の陽極側にカチオン交換膜があり、前記濃縮室の陰極側にあるアニオン交換膜と前記陽極側にあるカチオン交換膜との間にはアニオン交換体が充填された電気式脱イオン水製造装置を利用して脱イオン水を製造する脱イオン水の製造方法であって、
前記濃縮室のアニオン交換体と前記濃縮室の陽極側にあるカチオン交換膜との間に、請求項1〜8のいずれか1項に記載のモノリス状有機多孔質カチオン交換体を配置することを特徴とする脱イオン水の製造方法。
A demineralization chamber partitioned between an anode and a cathode by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side and filled with an ion exchanger; and the cation exchange membrane , through said anion exchange membrane arranged, and enrichment chamber that is provided on both sides of the depletion chamber, the the concentrating chamber, there is an anion exchange membrane on the cathode side of the concentrate compartment, the concentrating chamber Utilizing an electric deionized water production apparatus that has a cation exchange membrane on the anode side and is filled with an anion exchanger between the anion exchange membrane on the cathode side of the concentration chamber and the cation exchange membrane on the anode side A method for producing deionized water to produce deionized water,
The monolithic organic porous cation exchanger according to any one of claims 1 to 8 is disposed between the anion exchanger in the concentration chamber and the cation exchange membrane on the anode side of the concentration chamber. A method for producing deionized water.
JP2007318125A 2007-12-10 2007-12-10 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP4805244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318125A JP4805244B2 (en) 2007-12-10 2007-12-10 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318125A JP4805244B2 (en) 2007-12-10 2007-12-10 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2009136825A JP2009136825A (en) 2009-06-25
JP4805244B2 true JP4805244B2 (en) 2011-11-02

Family

ID=40868035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318125A Expired - Fee Related JP4805244B2 (en) 2007-12-10 2007-12-10 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP4805244B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960288B2 (en) * 2008-03-24 2012-06-27 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
JP5116710B2 (en) * 2009-03-10 2013-01-09 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5137896B2 (en) * 2009-05-12 2013-02-06 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5145305B2 (en) * 2009-09-18 2013-02-13 オルガノ株式会社 Electric deionized water production equipment
JP5379025B2 (en) * 2010-01-06 2013-12-25 オルガノ株式会社 Electric deionized water production equipment
JP2012081373A (en) * 2010-10-07 2012-04-26 Panasonic Corp Water softener and hot water supplying device including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225078A (en) * 1999-12-10 2001-08-21 Asahi Glass Co Ltd Electric regeneration type deionized water making apparatus and deionized water making method using the same
JP4633955B2 (en) * 2001-04-13 2011-02-16 オルガノ株式会社 Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
JP3773190B2 (en) * 2002-05-15 2006-05-10 オルガノ株式会社 Electric deionized water production equipment
JP3794354B2 (en) * 2002-07-08 2006-07-05 栗田工業株式会社 Electrodeionization equipment
JP4363587B2 (en) * 2003-06-09 2009-11-11 オルガノ株式会社 Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4609924B2 (en) * 2004-07-02 2011-01-12 オルガノ株式会社 Electric deionized water production equipment
JP4855068B2 (en) * 2005-12-28 2012-01-18 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
JP2009136825A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP3781361B2 (en) Electric deionized water production equipment
JP4805244B2 (en) Electric deionized water production apparatus and deionized water production method
KR100980989B1 (en) Electric deionized water-producing apparatus
JP4633955B2 (en) Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
JP4453982B2 (en) Method for producing composite porous ion exchanger
JP4065664B2 (en) Electric desalination equipment
EP1386938B1 (en) Electrodeionization water purification device
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
WO2003097536A1 (en) Electric demineralizer
JP5116710B2 (en) Electric deionized water production apparatus and deionized water production method
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5864649B2 (en) Electric deionized water production equipment
ES2706071T3 (en) Improved electrodeionization module and device
JP2004321930A (en) Chemical filter
JP2003190820A (en) Electric demineralizing apparatus
JP7266029B2 (en) Ultrapure water production method, ultrapure water production system and ion exchanger filling module
JP5431195B2 (en) Electric deionized water production equipment
JP3727586B2 (en) Electric desalination equipment
JP2003190821A (en) Electric demineralizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees