JP4804543B2 - Abrasive cloth for precision processing - Google Patents

Abrasive cloth for precision processing Download PDF

Info

Publication number
JP4804543B2
JP4804543B2 JP2009000446A JP2009000446A JP4804543B2 JP 4804543 B2 JP4804543 B2 JP 4804543B2 JP 2009000446 A JP2009000446 A JP 2009000446A JP 2009000446 A JP2009000446 A JP 2009000446A JP 4804543 B2 JP4804543 B2 JP 4804543B2
Authority
JP
Japan
Prior art keywords
polishing
porous resin
cloth
polishing cloth
precision processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000446A
Other languages
Japanese (ja)
Other versions
JP2010155334A (en
Inventor
英俊 神崎
大介 弘中
久義 高森
智雄 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Asahi Kasei Fibers Corp
Original Assignee
Showa Denko KK
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Asahi Kasei Fibers Corp filed Critical Showa Denko KK
Priority to JP2009000446A priority Critical patent/JP4804543B2/en
Publication of JP2010155334A publication Critical patent/JP2010155334A/en
Application granted granted Critical
Publication of JP4804543B2 publication Critical patent/JP4804543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、高精密加工用研磨布、特にハードディスク製造工程で使用される研磨布に関する。   The present invention relates to a polishing cloth for high precision processing, and more particularly to a polishing cloth used in a hard disk manufacturing process.

近年、コンピュータ、デジタルカメラ、携帯電話、映像音楽記録再生機器等のデジタル家電の記憶装置としてハードディスク装置が用いられている。それに搭載する磁気記録媒体の高密度記録を可能とする技術として、従来の長手磁気記録方式ハードディスクに代わって、垂直磁気記録方式ハードディスクが注目されている。これらハードディスクの基板としては、ガラス基板やNi−Pメッキを施したアルミニウム基板が広く用いられている。
長手磁気記録方式ハードディスクの一般的な製法においては、基板に対して水平に磁極を配向させる必要がある。そのため磁性薄膜をコーティングする前に基板に所望の微細な凹凸パターン、すなわちテクスチャーを加工形成している。一方、垂直磁気記録方式ハードディスクでは、基板に対して垂直に磁極を配向させるため、テクスチャー加工は不要である。しかしながら、基板表面上には微細な傷、突起物、パーティクルが存在するため、それらを除去し表面を平滑化する必要がある。
2. Description of the Related Art In recent years, hard disk devices have been used as storage devices for digital home appliances such as computers, digital cameras, mobile phones, and video / music recording / playback devices. As a technology that enables high-density recording of a magnetic recording medium mounted thereon, a perpendicular magnetic recording type hard disk has attracted attention in place of a conventional longitudinal magnetic recording type hard disk. As these hard disk substrates, glass substrates and aluminum substrates with Ni-P plating are widely used.
In a general manufacturing method of a longitudinal magnetic recording type hard disk, it is necessary to orient the magnetic poles horizontally with respect to the substrate. Therefore, a desired fine uneven pattern, that is, a texture is processed and formed on the substrate before coating the magnetic thin film. On the other hand, in the perpendicular magnetic recording type hard disk, since the magnetic pole is oriented perpendicular to the substrate, the texture processing is unnecessary. However, since fine scratches, protrusions, and particles exist on the substrate surface, it is necessary to remove them and smooth the surface.

垂直磁気記録方式ハードディスクで使用する基板には、高密度記録化に伴い、その表面平滑性を確保するため、粗さを低減する要求が強まっている。基板表面の平滑性は製造工程において、主に研磨工程で使用する研磨布、研磨砥粒の種類や粒子径を選定する必要がある。近年加速度的に開発が進むハードディスクの情報記録密度向上のためには、表面平均粗さの低減が必要であり、そのためには、研磨工程の際充分な研削量が得られ、かつ、深い傷(以下、スクラッチともいう)を与えないような研磨精度の向上が極めて重要である。
これらハードディスク基板の精密加工用研磨布としては、従来から不織布を用いたものが多用されている。不織布タイプの研磨布は、基板との接触性が良く、研磨砥粒の保持性にも優れ、充分な研削量が得られる。しかしながら、不織布タイプの研磨布は、繊維の配向に起因するテクスチャー痕が基板表面に形成されるため、所望の基板表面の平滑性は必ずしも得られない。
With high-density recording, a substrate used in a perpendicular magnetic recording type hard disk has been increasingly demanded to reduce roughness in order to ensure surface smoothness. For the smoothness of the substrate surface, in the manufacturing process, it is necessary to select the type of abrasive cloth and abrasive grains used in the polishing process, and the particle diameter. In order to improve the information recording density of hard disks that have been developed at an accelerated pace in recent years, it is necessary to reduce the average surface roughness. For this purpose, a sufficient amount of grinding can be obtained during the polishing process, and deep scratches ( Hereinafter, it is extremely important to improve the polishing accuracy so as not to give a scratch.
As a polishing cloth for precision processing of these hard disk substrates, those using a nonwoven fabric have been frequently used. The nonwoven fabric type polishing cloth has good contact with the substrate, is excellent in retention of abrasive grains, and provides a sufficient amount of grinding. However, the non-woven fabric type polishing cloth does not necessarily provide the desired smoothness of the substrate surface because texture marks due to the fiber orientation are formed on the substrate surface.

近年、テクスチャー痕の形成を抑制することを目的として、多孔質樹脂を用いた研磨布が使用されるようになった。また、多孔質樹脂タイプの研磨布では、スクラッチの原因である過剰砥粒や研磨屑が気泡セルで捕集されるので、不織布タイプに比べスクラッチを生じ難いとされている(例えば、以下の特許文献1を参照のこと)。しかしながら、研磨砥粒濃度(以下、スラリー濃度ともいう)を高くするとスクラッチが著しく増加してしまい、不織布タイプの研磨布に比較して、低スラリー濃度条件でしか研磨を実施できず、充分な研削量が得られないという問題を抱えている。   In recent years, polishing cloths using porous resins have been used for the purpose of suppressing the formation of texture marks. In addition, in porous resin type polishing cloths, excess abrasive grains and polishing debris that cause scratches are collected in the bubble cell, so that scratches are less likely to occur compared to non-woven cloth types (for example, the following patents) (Ref. 1). However, when the abrasive grain concentration (hereinafter also referred to as slurry concentration) is increased, the scratches are remarkably increased, and polishing can be performed only under a low slurry concentration condition as compared with the nonwoven fabric type polishing cloth. I have a problem that I can not get the amount.

特開平11−151651号公報JP-A-11-151651

本発明が解決しようとする課題は、磁気ディスクの高精密加工用研磨布、特に、垂直磁気記録方式ハードディスク製造工程において充分な研削量が得られ、スクラッチを与えず、研磨精度の優れる精密加工用研磨布を提供することである。   The problem to be solved by the present invention is a polishing cloth for high-precision processing of magnetic disks, particularly for precision processing that provides a sufficient amount of grinding in the manufacturing process of a perpendicular magnetic recording hard disk, does not give scratches, and has excellent polishing accuracy. It is to provide an abrasive cloth.

本発明者らは、垂直磁気記録方式ハードディスクを精密加工するために用いられる研磨布について鋭意検討を進めた結果、下記の2点を満たす精密加工用研磨布が、従来の多孔質樹脂タイプの研磨布より大きな研削量が得られ、かつ、スクラッチの発生が少ないことを見出し、本発明の完成に至った:
(i)スクラッチの原因となる過剰砥粒や研磨屑を研磨界面から排除する、すなわち研磨層が過剰砥粒や研磨屑を内部に取り込み易く、かつ、外部に排出し難い構造である必要がある。
(ii)研磨工程で行われる加圧加工の際、充分な研削量とスクラッチ発生の防止を満足するためには研削量を得るために必要な圧力を均一に被研磨物に伝える、すなわち研磨布全体が適度な圧縮特性を示す必要がある。
As a result of diligent study on the polishing cloth used for precision machining of the perpendicular magnetic recording hard disk, the inventors have found that a polishing cloth for precision machining that satisfies the following two points is a conventional porous resin type polishing cloth. It was found that a larger grinding amount than that of the cloth was obtained and less scratching occurred, and the present invention was completed:
(I) Excess abrasive grains and polishing debris that cause scratches are excluded from the polishing interface, that is, the polishing layer needs to have a structure in which excessive abrasive grains and polishing debris can be easily taken into the interior and difficult to be discharged to the outside. .
(Ii) At the time of pressure processing performed in the polishing process, in order to satisfy a sufficient amount of grinding and prevention of generation of scratches, the pressure necessary to obtain the amount of grinding is uniformly transmitted to the object to be polished, that is, a polishing cloth The whole must exhibit moderate compression characteristics.

すなわち、本発明は下記の[1]〜[5]に記載の通りである:
[1]支持体の上に多孔質樹脂が積層された精密加工用研磨布であって、該多孔質樹脂の表面開孔率が5%以上40%以下、空隙率が65%以上85%以下、かつ、厚みが0.50mm以上であり、そして該研磨布全体の圧縮エネルギーが2.5gf・cm/cm以上5.5gf・cm/cm以下であることを特徴とする精密加工用研磨布。
That is, the present invention is as described in the following [1] to [5]:
[1] A polishing cloth for precision processing in which a porous resin is laminated on a support, and the surface porosity of the porous resin is 5% or more and 40% or less, and the porosity is 65% or more and 85% or less. The polishing for precision machining is characterized in that the thickness is 0.50 mm or more, and the compression energy of the entire polishing cloth is 2.5 gf · cm / cm 2 or more and 5.5 gf · cm / cm 2 or less. cloth.

[2]前記多孔質樹脂が、多孔質ポリウレタンである、前記[1]に記載の精密加工用研磨布。   [2] The precision processing polishing cloth according to [1], wherein the porous resin is porous polyurethane.

[3]前記多孔質樹脂の平均開孔径が5μm以上40μm以下である、前記[1]又は[2]に記載の精密加工用研磨布。   [3] The precision processing polishing cloth according to [1] or [2], wherein the porous resin has an average pore diameter of 5 μm or more and 40 μm or less.

[4]前記支持体が、不織布である、前記[1]〜[3]のいずれかに記載の精密加工用研磨布。   [4] The precision processing abrasive cloth according to any one of [1] to [3], wherein the support is a nonwoven fabric.

[5]前記不織布が、織編物の片面又は両面に繊維層を積層させた不織布である、前記[4]に記載の精密加工用研磨布。   [5] The precision processing abrasive cloth according to [4], wherein the nonwoven fabric is a nonwoven fabric in which a fiber layer is laminated on one side or both sides of a woven or knitted fabric.

本発明は、磁気ディスクの高精密加工に適した研磨布に関する発明であり、支持体の上に多孔質樹脂が積層された精密加工用研磨布であって、研磨層である多孔質樹脂の、表面開孔率、空隙率、厚みを特定範囲し、研磨布全体に、適度な圧縮特性をもたせることで、充分な研削量が得られ、かつ、スクラッチの発生を抑制することができるといった研磨精度の優れる精密加工用研磨布を提供することができる。
本発明における研磨層は、上記の構造を有することで、スクラッチの原因と考えられる過剰砥粒や研磨屑を内部に取り込み易く、かつ、外部に排出し難いという効果を有し、基板と研磨層が接触する研磨界面からそれらを排除することが可能である。また、研磨布全体として、適度な圧縮特性をもつことで研削量を得るために必要な圧力を均一に被研磨物に伝えることができ、充分な研削量を得ることができる。また研磨層は柔らか過ぎないため、研磨加工時に基板に押し付けられる際にもその厚み、孔容積を維持することができ、その結果、多量の過剰砥粒と研磨屑を捕集し、スクラッチの発生を防止することができる。
The present invention is an invention relating to a polishing cloth suitable for high-precision processing of a magnetic disk, and is a polishing cloth for precision processing in which a porous resin is laminated on a support, and a porous resin that is a polishing layer, Polishing accuracy such that a sufficient amount of grinding can be obtained and the generation of scratches can be suppressed by providing a specific range of surface porosity, porosity, and thickness and giving the entire polishing cloth appropriate compression characteristics. Can be provided.
The polishing layer in the present invention has the above-described structure, and therefore has the effect that it is easy to take in excess abrasive grains and polishing debris that are considered to cause scratches, and that it is difficult to discharge to the outside. It is possible to eliminate them from the polishing interface with which they come into contact. Further, since the polishing cloth as a whole has an appropriate compression characteristic, the pressure necessary for obtaining the grinding amount can be uniformly transmitted to the object to be polished, and a sufficient grinding amount can be obtained. In addition, since the polishing layer is not too soft, its thickness and pore volume can be maintained even when pressed against the substrate during polishing, and as a result, a large amount of excess abrasive grains and polishing debris are collected and scratches are generated. Can be prevented.

以下、本発明について詳細に説明する。
本発明に係る精密加工用研磨布は、多孔質樹脂と支持体を積層した多層構造シートからなり、多孔質樹脂層を研磨層として用いる。研磨層は、特定の表面開孔状態、孔容積で規定される三次元構造を有する多孔質樹脂であり、かつ、研磨布全体が特定範囲の圧縮特性を示すことにより得られる。
Hereinafter, the present invention will be described in detail.
The polishing cloth for precision processing according to the present invention comprises a multilayer structure sheet in which a porous resin and a support are laminated, and the porous resin layer is used as the polishing layer. The polishing layer is a porous resin having a three-dimensional structure defined by a specific surface opening state and a pore volume, and is obtained when the entire polishing cloth exhibits a specific range of compression characteristics.

本発明において、多孔質樹脂の表面開孔率は5%以上40%以下、好ましくは、10%以上30%以下である。多孔質樹脂の表面開孔率が5%未満の場合、過剰砥粒や研磨屑を気泡セル内に確保することが困難となる。そのため、気泡セル内に取り込めなかった過剰砥粒や研磨屑を引きずったまま研磨加工を続けてしまい、スクラッチが生じる。また、表面開孔率が5%未満の場合、研磨スラリーの吸液性と拡散性が低下することで、研磨布表面で研磨スラリーが均一に分散しないため、スクラッチや研磨加工斑が生じる。一方、表面開孔率が40%を超える場合、孔間の幅が狭くなるため樹脂部の強度は低下し、研磨加工時に樹脂の脱落が発生する。その結果、この脱落した樹脂に砥粒が凝集し、均一な加工が困難となる。   In the present invention, the surface porosity of the porous resin is 5% or more and 40% or less, preferably 10% or more and 30% or less. When the surface opening ratio of the porous resin is less than 5%, it is difficult to secure excess abrasive grains and polishing debris in the bubble cell. For this reason, the polishing process is continued while dragging excess abrasive grains and polishing debris that could not be taken into the bubble cell, resulting in scratches. Further, when the surface porosity is less than 5%, the liquid absorption and diffusibility of the polishing slurry are lowered, and the polishing slurry is not uniformly dispersed on the surface of the polishing cloth, so that scratches and polishing spots are generated. On the other hand, when the surface open area ratio exceeds 40%, the width between the holes is narrowed, so that the strength of the resin portion is lowered, and the resin is dropped during polishing. As a result, abrasive grains agglomerate in the dropped resin, making uniform processing difficult.

また、本発明において、多孔質樹脂の表面の平均開孔径は、5μm以上40μm以下であるのが好ましい。平均開孔径が5μm未満の場合、研磨スラリーを吸液することが困難であり、研磨布表面で研磨スラリーが均一に分散しないため、スクラッチや研磨加工斑が発生する。平均開孔径が40μmを超える場合、一度捕集された過剰砥粒や研磨屑が排出され易く、排出された過剰砥粒や研磨屑が基板を傷付けるため、スクラッチを抑制することが困難である。   In the present invention, the average pore diameter on the surface of the porous resin is preferably 5 μm or more and 40 μm or less. When the average pore diameter is less than 5 μm, it is difficult to absorb the polishing slurry, and the polishing slurry is not uniformly dispersed on the surface of the polishing cloth, so that scratches and polishing spots are generated. When the average hole diameter exceeds 40 μm, once collected excessive abrasive grains and polishing scraps are easily discharged, and the discharged excessive abrasive grains and polishing scraps damage the substrate, so that it is difficult to suppress scratches.

また、本発明において、多孔質樹脂の孔はスクラッチの原因となる過剰砥粒や研磨屑を捕集し、基板と研磨層が接触する研磨界面からそれらを排除する役割を担っている。そして、その捕集能力は孔容積の大きさ(多孔質樹脂層の空隙率と厚み)に比例する。捕集能力が小さい場合、すなわち、孔容積が小さい場合には、研磨界面から過剰砥粒や研磨屑を排除することができず、結果としてスクラッチを抑制することが困難となる。多孔質樹脂の空隙率が65%以上、好ましくは67%以上、更に好ましくは70%以上、厚みは0.50mm以上、好ましくは、0.55mm以上であれば、充分に大きな捕集能力を有する孔容積となるため、スクラッチを抑制することが可能である。一方、空隙率が大きすぎる場合、研磨加工時に基板に押し当てられる際に、多孔質樹脂の孔の構造や空隙を維持することが困難である。研磨加工時の正味の捕集能力は充分に高くなく、結果としてスクラッチが抑制することが困難となる。この理由から、空隙率の上限は85%以下であり、より好ましくは80%以下である。多孔質樹脂の厚みに関しては特に上限はないが、厚過ぎると巻き取った際の外径が大きくなり過ぎてしまい研磨設備にセットし難くなることや多孔質樹脂層の製造加工精度を考えると、1.00mmが一般的な上限として考えられる。   In the present invention, the pores of the porous resin play a role of collecting excess abrasive grains and polishing debris that cause scratches and removing them from the polishing interface where the substrate and the polishing layer are in contact. And the collection capability is proportional to the size of the pore volume (the porosity and thickness of the porous resin layer). When the collection capacity is small, that is, when the pore volume is small, excess abrasive grains and polishing debris cannot be excluded from the polishing interface, and as a result, it becomes difficult to suppress scratches. If the porosity of the porous resin is 65% or more, preferably 67% or more, more preferably 70% or more, and the thickness is 0.50 mm or more, preferably 0.55 mm or more, it has a sufficiently large collection ability. Since it becomes a hole volume, it is possible to suppress a scratch. On the other hand, if the porosity is too large, it is difficult to maintain the pore structure and voids of the porous resin when pressed against the substrate during polishing. The net collection ability at the time of polishing is not sufficiently high, and as a result, it becomes difficult to suppress scratches. For this reason, the upper limit of the porosity is 85% or less, more preferably 80% or less. Regarding the thickness of the porous resin, there is no particular upper limit, but if it is too thick, the outer diameter at the time of winding becomes too large and it becomes difficult to set in the polishing equipment, and the manufacturing processing accuracy of the porous resin layer, 1.00 mm is considered as a general upper limit.

多孔質樹脂の孔の形状は、多孔質樹脂の製造方法により下記2種類に大別される:
(イ)湿式凝固法による三角錐型
(ロ)乾式凝固法によるダンベル型。
より多くの過剰砥粒や研磨屑を内部に取り込むためには、孔は連通しておかなければならず、孔の深部まで直線的になっている三角錐型の孔はその点で好ましい。更に、孔径が表面から内部に向けて傾斜的に大きくなっており、過剰砥粒や研磨屑を保持し易いという点でも好ましい。一方、乾式凝固法で製造される孔は、球型の無数の微小セルが、セルよりも細い管を介してセル同士が連通しているダンベルのような構造をしている。ダンベル型の孔は三角錐型の孔よりも複雑に連通しており、一度捕集した過剰砥粒や研磨屑を外部により排出し難い。三角錐型、ダンベル型のどちらの形状でも本発明における研磨層を製造することが可能であるが、一度捕集した過剰砥粒や研磨屑を外部により排出し難く、スクラッチの発生をより抑制できるという点で孔の形状(製造方法)としては、ダンベル型(乾式凝固法)の方がより好ましい。
The shape of the pores of the porous resin is roughly classified into the following two types depending on the method for producing the porous resin:
(B) Triangular pyramid type by wet coagulation method (b) Dumbbell type by dry coagulation method.
In order to take in more excess abrasive grains and polishing debris into the interior, the holes must be communicated with each other, and a triangular pyramid-shaped hole that is straight up to the deep part of the hole is preferable in this respect. Furthermore, the hole diameter is increased from the surface toward the inside, which is preferable in that it is easy to retain excess abrasive grains and polishing scraps. On the other hand, the hole manufactured by the dry solidification method has a structure like a dumbbell in which an infinite number of spherical microcells communicate with each other through a tube thinner than the cell. The dumbbell-shaped holes communicate more complicatedly than the triangular pyramid-shaped holes, and it is difficult to discharge excess abrasive grains and polishing debris once collected. Although it is possible to manufacture the polishing layer in the present invention with either a triangular pyramid shape or a dumbbell shape, it is difficult to discharge excess abrasive grains and polishing debris once collected from the outside, and the generation of scratches can be further suppressed. In this respect, the shape of the hole (manufacturing method) is more preferably a dumbbell type (dry solidification method).

しかしながら、表面開孔状態と孔容積で規定された多孔質樹脂の三次元構造を有したのみでは、研磨加工の際の充分な研削量、かつ、スクラッチ低減を両立することが困難である。これらを両立するためには、以下に記述するように、研磨布全体が適度な圧縮特性を示すことが必要である。   However, it is difficult to achieve both a sufficient amount of grinding at the time of polishing and scratch reduction only by having a three-dimensional structure of a porous resin defined by the surface open state and the pore volume. In order to achieve both, it is necessary that the entire polishing cloth exhibits an appropriate compression characteristic as described below.

本発明に係る精密加工用研磨布全体の圧縮エネルギーは、2.5gf・cm/cm以上5.5gf・cm/cm以下であり、好ましくは3.0gf・cm/cm以上4.5gf・cm/cm以下である。圧縮エネルギーは被評価物の圧縮過程での仕事量であり、硬さを示す指標である。すなわち、圧縮エネルギーの値が大きいほど柔らかいことを意味する。圧縮エネルギーが2.5gf・cm/cm未満の場合、すなわち、研磨布が硬過ぎる場合には、研磨加工時の基板に研磨布を押し付ける際にゴムロールを介して与える圧力が大きい為、研削量は多いが多くのスクラッチが発生し易い。研磨布が適度な硬さを有していればゴムロールを介して基板に研磨布を押し付けた際、基板、研磨布、ゴムロール間の密着性が良く、圧力が均一に分散して伝達されるため精度の高い研磨加工ができる。一方、圧縮エネルギーが5.5gf・cm/cmを超える場合、すなわち、研磨布が柔らか過ぎる場合、基板、研磨布、ゴムロール間の密着性が悪く、研磨加工時のゴムロールを介して与える圧力は伝達されにくく、不均一となるため、研削量の不足と研磨加工斑が生じ易くなり加工精度が悪くなる。また、研磨加工時の基板に押し当てられる際に発生する荷重により、多孔質樹脂が柔らかすぎる場合には、その厚みが薄くなり正味の孔容積は小さくなる。孔容積が小さくなることは、過剰砥粒や研磨屑の捕集能力が低下することを意味し、結果としてスクラッチが発生し易くなる。また、多孔質樹脂が柔らか過ぎると基板と研磨布の接触面積が大きくなるため、両者間での摩擦力が増大し、スクラッチの発生や研磨加工斑の発生などを引き起こす可能性がある。さらには、多孔質樹脂の変形により樹脂由来の屑が発生しやすくなり、スクラッチの発生を引き起こす可能性がある。従ってスクラッチの発生の抑制、精度の高い研磨加工をするためには、多孔質樹脂は適度な硬さを有する必要がある。本発明における多孔質樹脂の圧縮エネルギーは、5.0gf・cm/cm以下であることが好ましい。 The compression energy of the entire polishing cloth for precision processing according to the present invention is 2.5 gf · cm / cm 2 or more and 5.5 gf · cm / cm 2 or less, preferably 3.0 gf · cm / cm 2 or more and 4.5 gf. · is cm / cm 2 or less. The compression energy is a work amount in the compression process of the object to be evaluated, and is an index indicating hardness. That is, it means that it is so soft that the value of compression energy is large. When the compression energy is less than 2.5 gf · cm / cm 2 , that is, when the polishing cloth is too hard, the pressure applied through the rubber roll when pressing the polishing cloth against the substrate at the time of polishing is large. Many scratches are likely to occur. If the polishing cloth has an appropriate hardness, when the polishing cloth is pressed against the substrate through the rubber roll, the adhesion between the substrate, the polishing cloth and the rubber roll is good and the pressure is evenly distributed and transmitted. High-precision polishing can be performed. On the other hand, when the compression energy exceeds 5.5 gf · cm / cm 2 , that is, when the polishing cloth is too soft, the adhesion between the substrate, the polishing cloth and the rubber roll is poor, and the pressure applied through the rubber roll during polishing processing is Since it is difficult to transmit and becomes non-uniform, an insufficient amount of grinding and polishing processing spots are likely to occur, resulting in poor processing accuracy. Also, if the porous resin is too soft due to the load generated when it is pressed against the substrate during polishing, the thickness is reduced and the net pore volume is reduced. A small pore volume means that the ability to collect excess abrasive grains and polishing debris is reduced, and as a result, scratches are likely to occur. In addition, if the porous resin is too soft, the contact area between the substrate and the polishing cloth increases, and the frictional force between the two increases, which may cause scratches and polishing spots. Furthermore, the deformation | transformation of porous resin becomes easy to generate | occur | produce the resin-derived waste, and may cause generation | occurrence | production of a scratch. Therefore, in order to suppress the generation of scratches and perform highly accurate polishing, the porous resin needs to have an appropriate hardness. The compression energy of the porous resin in the present invention is preferably 5.0 gf · cm / cm 2 or less.

以上のような三次元構造を有する多孔質樹脂と圧縮エネルギーを有する研磨布であれば、多孔質樹脂を用いた従来の研磨布ではスクラッチが発生してしまう高スラリー濃度条件での加工においても、スクラッチの発生が抑制でき、すなわち、充分な研削量を得ることができる。
なお、表面開孔率、空隙率、厚み、平均開孔径、圧縮エネルギーは後記の方法により測定することができる。
If it is a polishing cloth having a compressive energy and a porous resin having a three-dimensional structure as described above, even in processing in a high slurry concentration condition where scratches are generated in a conventional polishing cloth using a porous resin, Scratch generation can be suppressed, that is, a sufficient grinding amount can be obtained.
In addition, the surface open area ratio, the porosity, the thickness, the average open hole diameter, and the compression energy can be measured by the methods described later.

本発明において、支持体は短繊維不織布、長繊維不織布などの不織布である方が好ましい。一般的な支持体である織編物やフィルムに比べ、不織布は、繊度や素材、嵩密度を変えることで圧縮特性を容易に調整できる。また、ハードディスク製造工程での研磨加工では、研磨布は支持体側からゴムロールなどで基板に押し当てられる。支持体として不織布を用いた場合、不織布は適度な摩擦抵抗を有するため、ゴムロールと研磨布が研磨軌道から外れることなく安定した研磨加工が可能となる。以上の点から、支持体としては、適度な圧縮特性を示し、かつ、研磨布全体の圧縮エネルギーを容易に調整でき、適度な摩擦抵抗を有する不織布が好ましい。   In the present invention, the support is preferably a nonwoven fabric such as a short fiber nonwoven fabric or a long fiber nonwoven fabric. Compared with a woven or knitted fabric or film that is a general support, a nonwoven fabric can easily adjust the compression characteristics by changing the fineness, material, and bulk density. In the polishing process in the hard disk manufacturing process, the polishing cloth is pressed against the substrate with a rubber roll or the like from the support side. When a non-woven fabric is used as the support, the non-woven fabric has an appropriate frictional resistance, so that stable polishing can be performed without the rubber roll and the polishing cloth coming off the polishing track. In view of the above, the support is preferably a non-woven fabric that exhibits appropriate compression characteristics, can easily adjust the compression energy of the entire polishing cloth, and has appropriate frictional resistance.

支持体として用いる不織布の製造方法としては、例えばカーディングした後、クロスレイヤー、エアーレイヤー等でシート化して、針布により交絡させるニードルパンチ法、柱状水流により交絡させる乾式スパンレース法、繊維を水分散させて抄造法でシート化した後、柱状水流で交絡させる湿式スパンレース法、通常のスパンボンド法等が挙げられるがいずれでも構わない。得られる不織布の目付斑及び厚み斑が小さく、物性の等方性に優れる点で、湿式スパンレース法を使用することが好ましい。   As a method for producing a nonwoven fabric used as a support, for example, after carding, it is formed into a sheet with a cross layer, an air layer, etc., and entangled with a needle cloth method, a dry spunlace method entangled with a columnar water flow, a fiber is water A wet spunlace method, a normal spunbond method, or the like, which is dispersed and formed into a sheet by a papermaking method and then entangled with a columnar water flow, may be used. It is preferable to use the wet spunlace method from the viewpoint that the resulting non-woven fabric has small basis weight and thickness spots and is excellent in isotropy of physical properties.

本発明において、支持体は、織編物の片面又は両面に繊維層を積層させた不織布であることが好ましい。不織布状物の内部層域または裏面層域に織編物を配置し、織編物と不織シートが絡み合って容易にはがれない程度に一体に埋め込まれていることは、優れた寸法安定性が実現でき、本発明の好ましい態様といえる。さらには、目付斑、厚み斑がより小さいという点で不織布に用いる繊維の単繊維繊度は0.67デシテックス以下が好ましく、より好ましくは0.11デシテックス以下である。   In the present invention, the support is preferably a nonwoven fabric in which a fiber layer is laminated on one side or both sides of a woven or knitted fabric. Excellent dimensional stability can be achieved by arranging the woven or knitted fabric in the inner layer area or the back surface layer area of the nonwoven fabric and embedding the woven and knitted fabric and the nonwoven sheet together so that they cannot be easily entangled. It can be said that this is a preferred embodiment of the present invention. Furthermore, the monofilament fineness of the fiber used for the nonwoven fabric is preferably 0.67 dtex or less, more preferably 0.11 dtex or less, in terms of smaller basis weight and thickness spots.

本発明において、研磨層である多孔質樹脂としては、例えばポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、オレフィン系樹脂、ハロゲン系樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる。なかでも、耐磨耗性に優れ、本発明の好ましい圧縮特性を示しやすいという点でポリウレタン樹脂を用いるのが望ましい。   In the present invention, examples of the porous resin that is the polishing layer include polyurethane resin, polyamide resin, polyester resin, polycarbonate resin, acrylic resin, olefin resin, halogen resin, epoxy resin, and phenol resin. Among them, it is desirable to use a polyurethane resin because it is excellent in wear resistance and easily exhibits the preferable compression characteristics of the present invention.

本発明において多孔質樹脂を形成する製造方法は、一般的に知られるような湿式凝固法又は乾式凝固法のいずれでもよいが、先述した孔形状の違いが起因する内部に取り込んだ過剰砥粒や研磨屑の排出のし難さ、後述する表面平滑性、環境への負荷という観点から、乾式凝固法が好ましい。   In the present invention, the production method for forming the porous resin may be either a commonly known wet coagulation method or dry coagulation method, but the excessive abrasive grains incorporated in the interior due to the difference in the hole shape described above or The dry solidification method is preferable from the viewpoints of difficulty in discharging polishing scraps, surface smoothness described later, and environmental load.

湿式凝固法は支持体上に、水混和性有機溶媒に溶解させた多孔質樹脂を塗布し、次いで水を主成分とする凝固溶液との混合液中に浸漬して凝固再生させる方法である。形成された多孔質樹脂の内部には、凝固再生に伴う多数の気泡が形成されており、表層部に近づくほど、平均孔径の小さな多孔質層が緻密に形成された多孔質表面層(スキン層)が形成されている。一般的な開孔法としてはバフィング処理が挙げられるが、バフィング処理では表面開孔率を40%以下にすることが困難であるため、本発明における開孔法としては、エッチング処理が好ましい。更に、エッチング処理の方が、スクラッチの原因の一つとなるバフィング屑を発生しないという点でも好ましい。   The wet coagulation method is a method in which a porous resin dissolved in a water-miscible organic solvent is applied on a support, and then immersed in a mixed solution with a coagulation solution containing water as a main component for coagulation regeneration. Inside the formed porous resin, a large number of bubbles accompanying solidification regeneration are formed, and a porous surface layer (skin layer) in which a porous layer having a smaller average pore diameter becomes denser as it approaches the surface layer portion. ) Is formed. Although a buffing process is mentioned as a general hole-opening method, since it is difficult to make a surface hole area ratio 40% or less in a buffing process, an etching process is preferable as a hole-opening method in this invention. Further, the etching process is also preferable in that it does not generate buffing scraps that cause one of scratches.

乾式凝固法は支持体上に、多孔質樹脂エマルジョンを攪拌発泡したものを塗布し乾燥させて形成する。多孔質樹脂エマルジョンに加える添加剤、乾燥時間により平均孔径や表面開孔率を規定することが可能である。乾式凝固法ではスキン層の形成を抑制することが可能であるため、開孔を目的とした後工程は必要がなく、湿式凝固法に比べると工程が簡便であり大きなコストメリットがある。また、バフィング処理やエッチング処理を行うことで発生する多孔質樹脂表面の凹凸を抑制することができ、基板と研磨布が均一に接触し、研磨加工の高精度化が図れる。更に、有機溶媒を使用しないため環境への負荷が小さいという特長を乾式凝固法は有している。   In the dry coagulation method, a porous resin emulsion obtained by stirring and foaming is applied on a support and dried. It is possible to define the average pore diameter and the surface porosity by the additive added to the porous resin emulsion and the drying time. Since the dry solidification method can suppress the formation of the skin layer, there is no need for a post-process for the purpose of opening, and the process is simpler and has a large cost merit than the wet solidification method. Moreover, the unevenness | corrugation of the porous resin surface which generate | occur | produces by performing a buffing process or an etching process can be suppressed, a board | substrate and polishing cloth can contact uniformly, and high precision of a polishing process can be achieved. Furthermore, the dry coagulation method has a feature that the load on the environment is small because no organic solvent is used.

以下に実施例を挙げて、本発明をさらに説明するが、本発明は実施例のみに限定されるものではない。なお、測定方法、評価方法等は下記のとおりである。
(1)多孔質樹脂の表面開孔率(%)
研磨布試料表面を走査型電子顕微鏡(JSM−5610:日本電子株式会社製)で観察し、加速電圧15kVで倍率100倍の画像を撮影し、任意の箇所の気泡開孔部面積の総和を、全体の面積で割り100を乗じたものを多孔質樹脂の表面開孔率とした。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the examples. Measurement methods, evaluation methods, etc. are as follows.
(1) Surface open area ratio (%) of porous resin
The surface of the polishing cloth sample was observed with a scanning electron microscope (JSM-5610: manufactured by JEOL Ltd.), an image with an acceleration voltage of 15 kV and a magnification of 100 times was taken, The surface area ratio of the porous resin was determined by dividing the total area by 100.

(2)多孔質樹脂の空隙率(%)
積層体全体の目付から支持体の目付を差し引いたものを多孔質樹脂の厚みで割ることにより、多孔質樹脂の嵩比重(g/cm)を求めた。目付(g/m)は、JIS L 1096−1999に準拠して測定した。次いで、下式:
空隙率={1−(多孔質樹脂の嵩比重/樹脂の真比重)}×100
により多孔質樹脂の空隙率を求めた。
(2) Porosity of porous resin (%)
The bulk specific gravity (g / cm 3 ) of the porous resin was determined by dividing the weight of the entire laminate by subtracting the weight of the support from the thickness of the porous resin. The basis weight (g / m 2 ) was measured according to JIS L 1096-1999. Then the following formula:
Porosity = {1− (bulk specific gravity of porous resin / true specific gravity of resin)} × 100
Thus, the porosity of the porous resin was determined.

(3)多孔質樹脂の厚み(mm)
研磨布試料を、ウルトラミクロトーム(ULTRACUT−N:REICHERT製)を使用して断面方向にカットし、これを走査型電子顕微鏡(JSM−5610:日本電子株式会社)で観察し、加速電圧15kVで倍率100倍の画像を撮影した。任意の10点の多孔質樹脂の厚みを測定し、それらの算術平均値を多孔質樹脂の厚みとした。
(3) Thickness (mm) of porous resin
The polishing cloth sample was cut in the cross-sectional direction using an ultramicrotome (ULTRACUT-N: manufactured by REICHERT), and observed with a scanning electron microscope (JSM-5610: JEOL Ltd.), and the magnification was set at an acceleration voltage of 15 kV. A 100x image was taken. The thickness of arbitrary 10 points | pieces of porous resin was measured, and those arithmetic mean values were made into the thickness of porous resin.

(4)多孔質樹脂の平均開孔径(μm)
研磨布試料表面を走査型電子顕微鏡(JSM−5610:日本電子株式会社)で観察し、加速電圧15kVで倍率100倍の画像を撮影した。任意の50点の多孔質樹脂の開孔径を測定し、それらの算術平均値を多孔質樹脂の平均開孔径とした。
(4) Average pore diameter (μm) of porous resin
The surface of the polishing cloth sample was observed with a scanning electron microscope (JSM-5610: JEOL Ltd.), and an image with a magnification of 100 times was taken at an acceleration voltage of 15 kV. The pore diameters of 50 arbitrary porous resins were measured, and the arithmetic average value thereof was defined as the average pore diameter of the porous resin.

(5)圧縮エネルギー(gf・cm/cm
測定機器は、KES−G5(カトーテック株式会社製)を用いた。測定条件は、以下の通りである:
・SENS(記録感度):10
・力計の種類:1kg
・SPEED RANGE:0.02cm/秒
・加圧面積:2cm
・STROKE SET:5.0
・取り込み間隔:0.5
・上限荷重:250gf・cm/cm
(5) Compressive energy (gf · cm / cm 2 )
As a measuring instrument, KES-G5 (manufactured by Kato Tech Co., Ltd.) was used. The measurement conditions are as follows:
-SENS (recording sensitivity): 10
・ Type of force meter: 1kg
・ SPEED RANGE: 0.02 cm / sec ・ Pressurized area: 2 cm 2
・ STROKE SET: 5.0
・ Capture interval: 0.5
・ Upper load: 250 gf · cm / cm 2

上記の測定条件下で圧縮し、圧力と変形量の相関図から圧縮エネルギーを得た。圧縮エネルギーが大きい程、圧縮されやすい、すなわち、柔らかいことを意味する。圧縮エネルギーが小さい程硬いことを意味する。   Compression was performed under the above measurement conditions, and compression energy was obtained from a correlation diagram between pressure and deformation. It means that it is easy to compress, ie, it is soft, so that compression energy is large. It means that it is so hard that compression energy is small.

なお、研磨加工後のスクラッチ数の評価は後記の方法により測定した。
以下の実施例、比較例で作製された研磨布を38mm幅にスリットして用い、充分な研削量が得られる以下の研磨加工条件で、アルミニウム板にNi−Pメッキ後ポリッシュ加工した10枚の基板を研磨加工した。
(研磨加工条件)
・砥粒:ダイヤモンド遊離砥粒(平均粒径:0.1μm)
・スラリー供給速度:20cc/3分
・スラリー濃度:10cc/5L
・基板回転数:150rpm
・研磨布供給速度:3cm/分
・研磨加工時間:30秒/枚
・トラバース条件:振幅1mm、83回/分
・接圧:0.5kgf
The evaluation of the number of scratches after polishing was measured by the method described later.
The polishing cloths produced in the following examples and comparative examples were slit into 38 mm widths, and the following polishing conditions were used to obtain a sufficient amount of grinding. The substrate was polished.
(Polishing conditions)
・ Abrasive: Diamond loose abrasive (average particle size: 0.1 μm)
・ Slurry supply speed: 20 cc / 3 minutes ・ Slurry concentration: 10 cc / 5 L
-Substrate rotation speed: 150 rpm
Polishing cloth supply speed: 3 cm / min Polishing time: 30 seconds / sheet Traverse conditions: amplitude 1 mm, 83 times / min Contact pressure: 0.5 kgf

(スクラッチ数の評価)
研磨加工後の基板表面状態の評価は、Candela6100(カンデラ・インスツルメンツ製)を用いて10枚の基板のスクラッチ数を測定し、それらの算術平均値を求めることにより行った。
(Evaluation of the number of scratches)
The evaluation of the substrate surface state after polishing was performed by measuring the number of scratches of 10 substrates using Candela 6100 (manufactured by Candela Instruments) and obtaining the arithmetic average value thereof.

[実施例1]
直接紡糸法によって0.11デシテックスのポリエチレンテレフタレート(PET)繊維を製造し、長さ5.0mmに切断した短繊維を水中に分散せしめ抄造用スラリーとした。このスラリーを抄造し、表層目付60g/mの抄造シート(A)、及び、裏層目付25g/mの抄造シート(B)を製造した。
165デシテックス/48フィラメントのPET繊維仮撚り加工糸からなる目付量81g/mの平織物(経糸密度46本/2.54cm、緯糸密度54本/2.54cm、有撚)の両面に抄造シート(A)及び(B)を積層して、積層構造繊維シートとして、次いで高圧水流の噴射により三次元交絡不織布(C)を得た。高圧水流は、3.0mmピッチで一列に配列された直径0.2mmのノズルより、1.5MPaの圧力で連続的に噴射させ、ノズルから30mmの位置でシートに高圧水流を衝突させた後、80℃で乾燥した。
[Example 1]
0.11 dtex polyethylene terephthalate (PET) fibers were produced by a direct spinning method, and short fibers cut to a length of 5.0 mm were dispersed in water to obtain a papermaking slurry. This slurry was made to produce a paper-making sheet (A) having a surface weight per unit area of 60 g / m 2 and a paper-making sheet (B) having a back surface weight per unit area of 25 g / m 2 .
165 dtex / 48 plain weave fabric having a basis weight 81 g / m 2 made of PET fiber false twist textured yarn of filaments (warp density of 46 per 2.54 cm, weft density of 54 per 2.54 cm, chromatic twisted) papermaking sheet on both sides of (A) and (B) were laminated to obtain a three-dimensional entangled nonwoven fabric (C) as a laminated structure fiber sheet by jetting a high-pressure water flow. The high-pressure water flow was continuously ejected at a pressure of 1.5 MPa from nozzles having a diameter of 0.2 mm arranged in a row at a pitch of 3.0 mm, and after colliding the high-pressure water flow against the sheet at a position 30 mm from the nozzle, Dry at 80 ° C.

次いで、ベースレジンを含有するエマルジョンに整泡剤、発泡助剤、増粘剤、弾性付与剤、架橋剤を添加し、分散不良とならないように攪拌して安定な含浸液とした。
この含浸液を高速攪拌装置により攪拌して発泡させ、空気をできる限り小さい気泡として含ませ、上記のように発泡させた発泡コンパウンド液を、三次元交絡不織布(C)にドクターナイフコーターを用いて厚さが0.58mmになるように連続的に塗布し、基布上の発泡コンパウンド液を乾燥する乾式凝固法により多孔質ポリウレタンを形成し、精密加工用研磨布を得た。
得られた多孔質ポリウレタンの表面開孔率は15%、空隙率は80%、平均開孔径は9μm、積層体全体の圧縮エネルギーは3.8gf・cm/cmであった。
Subsequently, a foam stabilizer, a foaming assistant, a thickener, an elasticity-imparting agent, and a crosslinking agent were added to the emulsion containing the base resin, and the mixture was stirred so as not to cause poor dispersion to obtain a stable impregnating solution.
This impregnating solution is stirred and foamed with a high-speed stirrer to contain air as small bubbles as possible, and the foamed compound solution foamed as described above is applied to the three-dimensional entangled nonwoven fabric (C) using a doctor knife coater. It was continuously applied so as to have a thickness of 0.58 mm, and a porous polyurethane was formed by a dry coagulation method in which the foamed compound solution on the base fabric was dried to obtain an abrasive cloth for precision processing.
The resulting porous polyurethane had a surface porosity of 15%, a porosity of 80%, an average pore diameter of 9 μm, and a compression energy of the entire laminate of 3.8 gf · cm / cm 2 .

[実施例2]
支持体の作製は実施例1と同様に行い、多孔質ポリウレタンの形成は、N,N−ジメチルホルムアミド(DMF)の溶剤の中で重合したポリウレタンのDMF溶液を三次元交絡不織布(C)に塗付させ、これを水に浸漬してDMFを除去する湿式凝固法により作製した。また、この過程において、孔容積が大きくなるように水との置換速度を速める反応促進剤を加えた。次いで、スキン層を除去するためエッチング処理を施し、精密加工用研磨布を得た。得られた多孔質ポリウレタンの表面開孔率は9%、空隙率は75%、厚みは0.65mm、平均開孔径は13μm、積層体全体の圧縮エネルギーは4.5gf・cm/cmであった。
[Example 2]
The support was prepared in the same manner as in Example 1. The porous polyurethane was formed by applying a polyurethane DMF solution polymerized in a solvent of N, N-dimethylformamide (DMF) to the three-dimensional entangled nonwoven fabric (C). It was prepared by a wet coagulation method in which it was immersed in water to remove DMF. In this process, a reaction accelerator that increases the rate of substitution with water was added so that the pore volume was increased. Next, an etching process was performed to remove the skin layer to obtain a polishing cloth for precision processing. The obtained porous polyurethane had a surface porosity of 9%, a porosity of 75%, a thickness of 0.65 mm, an average pore diameter of 13 μm, and the compression energy of the entire laminate was 4.5 gf · cm / cm 2. It was.

[比較例1]
多孔質ポリウレタンの形成において、多孔質ポリウレタンの厚みが0.40mmとなるように乾式凝固法により形成した以外は、実施例1と同様に行った。得られた多孔質ポリウレタンの表面開孔率は21%、空隙率は73%、平均開孔径は9μm、積層体全体の圧縮エネルギーは2.1gf・cm/cmであった。
[Comparative Example 1]
The porous polyurethane was formed in the same manner as in Example 1 except that the porous polyurethane was formed by dry coagulation so that the thickness of the porous polyurethane was 0.40 mm. The obtained porous polyurethane had a surface porosity of 21%, a porosity of 73%, an average pore diameter of 9 μm, and a compression energy of the entire laminate of 2.1 gf · cm / cm 2 .

[比較例2]
支持体の作製、多孔質ポリウレタンの形成は、反応促進剤を添加していない以外は実施例2と同様に行った。次いで、スキン層を50μm除去するため、#150のバフィングペーパー(ノリタケコーテッドアブレーシブ製)を用い、ペーパー速度1001m/分で、研磨層である多孔質ポリウレタンをバフィング処理して、精密加工用研磨布を得た。得られた多孔質ポリウレタンの表面開孔率は74%、空隙率は50%、厚みは0.23mm、平均開孔径は23μm、積層体全体の圧縮エネルギーは2.3gf・cm/cmであった。
[Comparative Example 2]
The production of the support and the formation of the porous polyurethane were carried out in the same manner as in Example 2 except that no reaction accelerator was added. Next, in order to remove the skin layer by 50 μm, a # 150 buffing paper (manufactured by Noritake Coated Abrasive) was used to buff the porous polyurethane as the polishing layer at a paper speed of 1001 m / min, and polishing for precision processing. I got a cloth. The resulting porous polyurethane had a surface porosity of 74%, a porosity of 50%, a thickness of 0.23 mm, an average pore diameter of 23 μm, and a compression energy of the entire laminate of 2.3 gf · cm / cm 2. It was.

[比較例3]
多孔質ポリウレタンの厚みが0.60mm、支持体として厚さ400μmのPETフィルムを用いた以外は、比較例2と同様に作製した。得られた多孔質ポリウレタンの表面開孔率は60%、空隙率は60%、平均開孔径は18μm、積層体全体の圧縮エネルギーは1.3gf・cm/cmであった。
[Comparative Example 3]
A porous polyurethane was prepared in the same manner as Comparative Example 2 except that a PET film having a thickness of 0.60 mm and a thickness of 400 μm was used as a support. The obtained porous polyurethane had a surface porosity of 60%, a porosity of 60%, an average pore diameter of 18 μm, and a compression energy of the entire laminate of 1.3 gf · cm / cm 2 .

以上の実施例、比較例で作製された研磨布の構造及び物性を、以下の表1に示す。   The structures and physical properties of the polishing cloths produced in the above examples and comparative examples are shown in Table 1 below.

Figure 0004804543
Figure 0004804543

実施例1及び2では、比較例1〜3に比較して、スクラッチの数を抑制できており、垂直磁気記録方式ハードディスクの使用には実用可能な範囲に抑えられていることが分かる。   In Examples 1 and 2, the number of scratches can be suppressed as compared with Comparative Examples 1 to 3, and it can be seen that the practical use range for the perpendicular magnetic recording type hard disk is suppressed.

Claims (5)

支持体の上に多孔質樹脂が積層された精密加工用研磨布であって、該多孔質樹脂の表面開孔率が5%以上40%以下、空隙率が65%以上85%以下、かつ、厚みが0.50mm以上であり、そして該研磨布全体の圧縮エネルギーが2.5gf・cm/cm以上5.5gf・cm/cm以下であることを特徴とする精密加工用研磨布。 A polishing cloth for precision processing in which a porous resin is laminated on a support, wherein the porous resin has a surface porosity of 5% to 40%, a porosity of 65% to 85%, and A polishing cloth for precision processing, wherein the thickness is 0.50 mm or more, and the compression energy of the entire polishing cloth is 2.5 gf · cm / cm 2 or more and 5.5 gf · cm / cm 2 or less. 前記多孔質樹脂が多孔質ポリウレタンである、請求項1に記載の精密加工用研磨布。   The polishing cloth for precision processing according to claim 1, wherein the porous resin is porous polyurethane. 前記多孔質樹脂の平均開孔径が5μm以上40μm以下である、請求項1又は2に記載の精密加工用研磨布。   The polishing cloth for precision processing according to claim 1 or 2, wherein an average pore diameter of the porous resin is 5 µm or more and 40 µm or less. 前記支持体が不織布である、請求項1〜3のいずれか1項に記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 3, wherein the support is a nonwoven fabric. 前記不織布が、織編物の片面又は両面に繊維層を積層させた不織布である、請求項4に記載の精密加工用研磨布。   The abrasive cloth for precision processing according to claim 4, wherein the nonwoven fabric is a nonwoven fabric in which a fiber layer is laminated on one side or both sides of a woven or knitted fabric.
JP2009000446A 2009-01-05 2009-01-05 Abrasive cloth for precision processing Active JP4804543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000446A JP4804543B2 (en) 2009-01-05 2009-01-05 Abrasive cloth for precision processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000446A JP4804543B2 (en) 2009-01-05 2009-01-05 Abrasive cloth for precision processing

Publications (2)

Publication Number Publication Date
JP2010155334A JP2010155334A (en) 2010-07-15
JP4804543B2 true JP4804543B2 (en) 2011-11-02

Family

ID=42573616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000446A Active JP4804543B2 (en) 2009-01-05 2009-01-05 Abrasive cloth for precision processing

Country Status (1)

Country Link
JP (1) JP4804543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7210205B2 (en) * 2018-09-27 2023-01-23 富士紡ホールディングス株式会社 polishing pad
WO2023190428A1 (en) * 2022-03-29 2023-10-05 富士紡ホールディングス株式会社 Polishing pad, method for producing polishing pad, and method for polishing surface of optical material or semiconductor material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2854560B2 (en) * 1996-07-15 1999-02-03 有限会社アシスト Ankle anchor
JPH1156940A (en) * 1997-08-12 1999-03-02 Hiroshi Okumura Foot correcting tool
JP2006225802A (en) * 2005-02-18 2006-08-31 Sayuri Ono Calf tightening tool and leg garment

Also Published As

Publication number Publication date
JP2010155334A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
TW491757B (en) Abrasive sheet for texturing and method of producing same
KR101239720B1 (en) Abrasive cloth and method for preparing nano-fiber structure
WO2002045906A1 (en) Abrasive cloth and polishing method
WO2012029547A1 (en) Polishing cloth and method for producing same
US20100129592A1 (en) Polishing cloth and production method thereof
JP2008155358A (en) Abrasive cloth for glass texture and manufacturing method thereof
JP2009083093A (en) Polishing cloth
JP3992483B2 (en) Manufacturing method of polishing base fabric
JP4804543B2 (en) Abrasive cloth for precision processing
JP5029104B2 (en) Polishing cloth
JP2008144287A (en) Polishing cloth and method for producing the same
JP4455161B2 (en) Nonwoven fabric for polishing pad and polishing pad
JP5341447B2 (en) Textured polishing cloth
JP2002079472A (en) Abrasive sheet for working texture and manufacturing method for the same
JP2002224945A (en) Abrasive cloth
JP4423922B2 (en) Polishing cloth
JP6398467B2 (en) Sheet
JP5032472B2 (en) Abrasive cloth for precision processing
JP4254115B2 (en) Manufacturing method of polishing cloth
JP2021041483A (en) Polishing pad, manufacturing method for the same, and manufacturing method for polishing-processed product
JPWO2020138198A1 (en) Abrasive pad
JP3704992B2 (en) Magnetic recording medium texture processing tape and method of manufacturing magnetic recording medium
JP6405654B2 (en) Sheet material and method for producing the same
JP4457758B2 (en) Washed cloth
JP2006272525A (en) Method of manufacturing disk machining base fabric

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250