JP4803045B2 - Urethane cement-based composition, coated flooring and its construction method - Google Patents

Urethane cement-based composition, coated flooring and its construction method Download PDF

Info

Publication number
JP4803045B2
JP4803045B2 JP2007002283A JP2007002283A JP4803045B2 JP 4803045 B2 JP4803045 B2 JP 4803045B2 JP 2007002283 A JP2007002283 A JP 2007002283A JP 2007002283 A JP2007002283 A JP 2007002283A JP 4803045 B2 JP4803045 B2 JP 4803045B2
Authority
JP
Japan
Prior art keywords
cement
urethane
weight
composition
based composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007002283A
Other languages
Japanese (ja)
Other versions
JP2008169062A (en
Inventor
正人 藤井
功 河合
眞一 野中
優子 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2007002283A priority Critical patent/JP4803045B2/en
Publication of JP2008169062A publication Critical patent/JP2008169062A/en
Application granted granted Critical
Publication of JP4803045B2 publication Critical patent/JP4803045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Floor Finish (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、多様な施工条件でも発泡などによる外観不良がないと言った耐膨れ性、かつ圧縮強度に優れ、更に短時間で硬化し歩行が可能であり、食品工場、化学工場、機械工場などの工場床等、産業床などに適したウレタンセメント系組成物と塗り床材及びその施工方法に関する。   The present invention is excellent in blistering resistance and compression strength that there is no appearance defect due to foaming under various construction conditions, and can be cured and walked in a short time, such as a food factory, chemical factory, machine factory, etc. The present invention relates to a urethane cement-based composition suitable for industrial floors such as factory floors, coated floor materials, and a method for constructing the same.

従来の塗り床材、舗装材としては、ウレタン樹脂系、エポキシ樹脂系、メチルメタクリレート(MMA)系などの材料が用いられてきた。しかし、これらは食品工場、化学工場機械工場などの産業床用としては耐熱性、耐酸性、耐アルカリ性などが必ずしも充分ではなかった。また上記床材のなかには、溶剤を多く含む材料や臭気を強く発する材料もあり、これらの材料は、環境上好ましいものではなかった。 As a conventional coating floor material and paving material, materials such as urethane resin, epoxy resin, and methyl methacrylate (MMA) have been used. However, these products are not always sufficient in heat resistance, acid resistance, alkali resistance and the like for industrial floors such as food factories and chemical factories. In addition, some of the above flooring materials include a material containing a large amount of solvent and a material that emits strong odor, and these materials are not environmentally preferable.

そこで、水硬性セメント、骨材、水、ポリオール、および2個以上のイソシアネート基を有する化合物からなるポリウレタン系セメント組成物が提案された。(特許文献1参照)このポリウレタン系セメント組成物は現場で上記各成分を混合することにより、水とセメントの水和反応、ポリオールとイソシアネートとのウレタン化反応およびイソシアネートと水による炭酸ガスの発生を伴う尿素化反応が同時に進行するものである。この組成物が硬化すると、硬く、耐摩耗性に優れ、加えて耐熱性や耐薬品性を持つので、工場床等、産業床における耐久性に優れた床材として使用することができる。 Therefore, a polyurethane-based cement composition composed of hydraulic cement, aggregate, water, polyol, and a compound having two or more isocyanate groups has been proposed. (See Patent Document 1) This polyurethane-based cement composition mixes the above-mentioned components in the field, thereby hydrating the water and cement, urethanizing the polyol and isocyanate, and generating carbon dioxide gas from the isocyanate and water. The accompanying ureation reaction proceeds simultaneously. When this composition is cured, it is hard and excellent in wear resistance, and in addition, has heat resistance and chemical resistance. Therefore, it can be used as a floor material excellent in durability on industrial floors such as factory floors.

また、(a)窒素原子を有する活性水素化合物、(b)窒素原子を有さない活性水素化合物、(c)水、(d)湿潤分散剤及び(e)無機酸を含む分散液(A)と分子中に2個以上のイソシアネート基を有する化合物(B)と水硬性セメント(D)とを含んでなるウレタン系セメント組成物が提案された。(特許文献2参照) Also, a dispersion (A) containing (a) an active hydrogen compound having a nitrogen atom, (b) an active hydrogen compound having no nitrogen atom, (c) water, (d) a wetting dispersant and (e) an inorganic acid And a urethane-based cement composition comprising a compound (B) having two or more isocyanate groups in the molecule and a hydraulic cement (D). (See Patent Document 2)

上記のウレタン系セメント組成物は、ある程度の可使時間があり、作業性が良好であるものの、硬化に多くの時間を要するため触媒などを添加して硬化時間を短縮化した場合、低温においても発泡による外観不良の問題や機械特性が低いという問題がある。
特開平8−169744号公報 特開2006−206354公報
Although the above urethane-based cement composition has a certain pot life and good workability, it takes a lot of time to cure, so when adding a catalyst or the like to shorten the curing time, even at low temperatures There are problems of poor appearance due to foaming and low mechanical properties.
JP-A-8-169744 JP 2006-206354 A

本発明の目的は、ウレタン系セメント組成物の有する上記特徴を維持し、多様な施工条件でも発泡などによる外観不良がなく、高い圧縮機械特性を持ち、更に5℃〜40℃の雰囲気において5時間以内で硬化し、歩行が可能なウレタンセメント系組成物にあり、塗り床材又は塗り床材用下地処理材に主として用いることができ、塗り床材の施工方法を提供することにある。 The object of the present invention is to maintain the above-mentioned characteristics of the urethane-based cement composition, have no appearance defects due to foaming, etc. even under various construction conditions, have high compression mechanical properties, and further in an atmosphere of 5 ° C. to 40 ° C. for 5 hours. It is in a urethane cement-based composition that is hardened within and can be walked, and can be mainly used as a coating floor material or a base treatment material for a coating floor material, and provides a method for applying the coating floor material.

本願発明者らは、上記課題の特に発泡現象を解消する為に炭酸ガス吸収剤として一般的に用いられる酸化カルシウム、酸化マグネシウム、酸化バリウム、水酸化バリウム、水酸化マグネシウムなどの金属の酸化物、水酸化物などについて研究したが、これらはいずれも炭酸ガス吸収効果が少なく使用できないことが解った。そこで、さらに種々の化合物について鋭意研究の結果、特定の消石灰を見出し、本発明を完成するに至った。
即ち、本願発明は有機ポリイソシアネート化合物(A)、水(B)、ウレタン化触媒(C)、及びセメント(D)を含むウレタンセメント系組成物において、重油焼き法で製造される消石灰(E)を含み、かつ該消石灰(E)の含有量が組成物全体に対して0.2〜15.0重量%であり、ウレタンセメント系組成物全体に対し、前記水(B)の配合量が1〜10重量%、前記ウレタン化触媒(C)の配合量が0.01〜2重量%、前記セメント(D)の使用量が5〜30重量%であることを特徴とするウレタンセメント系組成物とこの組成物からなる塗り床材又は床材用下地処理材、更にその施工方法を提供することにある。
The inventors of the present application have disclosed oxides of metals such as calcium oxide, magnesium oxide, barium oxide, barium hydroxide, and magnesium hydroxide, which are generally used as carbon dioxide gas absorbents in order to eliminate the foaming phenomenon in particular. Although research was conducted on hydroxides and the like, it was found that none of these had a carbon dioxide absorption effect and could not be used. As a result of intensive studies on various compounds, the inventors have found specific slaked lime and have completed the present invention.
That is, the present invention relates to a slaked lime (E) produced by a heavy oil baking method in a urethane cement-based composition containing an organic polyisocyanate compound (A), water (B), a urethanization catalyst (C), and cement (D). includes, and 0.2 to 15.0 wt% der content of the total composition of the digestion lime (E) is, on the whole urethane cementitious composition, the amount of the water (B) is 1 to 10 wt%, the amount is 0.01 to 2 wt% of the urethane catalyst (C), urethane cement usage of the cement (D) is characterized by 5 to 30 wt% der Rukoto It is in providing the coating composition which consists of a composition, this composition, or the ground-treatment material for flooring, and also the construction method.

本発明の効果としては、多様な施工条件において塗膜の発泡などによる外観不良がないと言った耐膨れ性、高い圧縮機械特性に優れる性質を持ち、更に5℃〜40℃の雰囲気において5時間以内で硬化し、歩行が可能な材料を提供できるウレタンセメント系組成物、及びこの組成物からなる塗り床材又は塗り床材用下地処理材とその施工方法を提供するものである。 As an effect of the present invention, it has the property of being excellent in blistering resistance and high compression mechanical properties that there is no poor appearance due to foaming of the coating film under various construction conditions, and further in an atmosphere of 5 ° C. to 40 ° C. for 5 hours. The invention provides a urethane cement-based composition that can provide a material that can be hardened and walked within, a coated flooring material or a ground-treatment material for the coated flooring material, and a construction method thereof.

以下に本発明を更に説明する。
本発明に使用する有機ポリイソシアネート化合物(A)は、有機ポリイソシアネート化合物単独又は有機ポリイソシアネート化合物とポリオールとを有機ポリイソシアネート化合物の過剰のもとで常法により反応させることにより調製されるものである。
The present invention is further described below.
The organic polyisocyanate compound (A) used in the present invention is prepared by reacting an organic polyisocyanate compound alone or an organic polyisocyanate compound and a polyol in an ordinary manner under an excess of the organic polyisocyanate compound. is there.

有機ポリイソシアネート化合物(A)としては、例えば2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ジフェニルメタンジイソシアネート、一部をカルボジイミド化されたジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族ジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネートなどの脂肪族ジイソシアネート、キシリレンジイソシアネートなどの脂環族ジイソシアネート、ポリメリックMDI,ヘキサメチレンジイソシアネートのビュレット、トリマーなど3官能以上のイソシアネートが挙げられ、これらの1種又は2種以上の混合物を使用することができる。   Examples of the organic polyisocyanate compound (A) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, partially carbodiimidized diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, and tolylene diisocyanate. Aliphatics such as aromatic diisocyanates such as naphthalene diisocyanate, phenylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, cyclohexane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate Diisocyanate Over DOO, alicyclic diisocyanates such as xylylene diisocyanate, polymeric MDI, biuret of hexamethylene diisocyanate, trifunctional or more isocyanate such as trimers and the like, can be used those of one or more thereof.

ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリジエンポリオールなどがあげられる。
ポリエーテルポリオールとしてはエチレングリコール、プロピレングリコール、水、グリセリン、トリメチロールプロパン、ペンタエリスリトール等にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等を単独又は2種以上付加重合して得られるポリオールである。
Examples of the polyol include polyether polyol, polyester polyol, and polydiene polyol.
The polyether polyol is a polyol obtained by subjecting ethylene oxide, propylene oxide, butylene oxide or the like to ethylene glycol, propylene glycol, water, glycerin, trimethylolpropane, pentaerythritol or the like alone or by addition polymerization of two or more kinds.

ポリエステルポリオールとしては、ジカルボン酸と2価アルコールを既知の方法によって反応させて得られる化合物が挙げられる。適切なジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸及びテレフタル酸、並びにこれらの酸の混合物が挙げられる。2価アルコールの例には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール及び2,2−ジエチルトリメチレングリコールが挙げられる。 Examples of the polyester polyol include compounds obtained by reacting a dicarboxylic acid and a dihydric alcohol by a known method. Suitable dicarboxylic acids include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid and terephthalic acid, and mixtures of these acids. Examples of dihydric alcohols include ethylene glycol, propylene glycol, butanediol, hexanediol and 2,2-diethyltrimethylene glycol.

ポリジエンポリオールとしては、ポリイソプレンポリオール、ポリブタジエンポリオール、ポリクロロプレンポリオール、及びこれらに水素添加したポリオールなどが挙げられる。
前記ポリオールの分子量は、数平均分子量で300〜5,000のものが好ましい。
Examples of the polydiene polyol include polyisoprene polyol, polybutadiene polyol, polychloroprene polyol, and polyols hydrogenated thereto.
The polyol preferably has a number average molecular weight of 300 to 5,000.

有機ポリイソシアネートとポリオールを反応させる場合は、有機ポリイソシアネートの過剰のもとで常法により反応させることにより調製されるものであり、有機ポリイソシアネートとポリオールの反応比はNCO/OH比が3.0以上であることが好ましい。 When the organic polyisocyanate and the polyol are reacted, they are prepared by a conventional method under an excess of the organic polyisocyanate. The reaction ratio of the organic polyisocyanate and the polyol is an NCO / OH ratio of 3. It is preferably 0 or more.

水(B)の配合量としては、ウレタンセメント系組成物全体に対して1〜10重量%が好ましい範囲である。この水(B)は有機ポリイソシアネートと反応すると共にセメントの水和に効果を発揮する。水(B)の含有量が1重量%未満の場合、セメントの水和反応が不十分になりやすいため好ましくなく、10重量%を超える場合は余剰な水として残存しやすいために物性の発現が不十分となる傾向がある。また、水(B)だけでなく公知のポリオール例えば、ひまし油(ユーリックH−30)、ひまし油変性ポリオール及び可塑剤(フタル酸ジノニル)を併用することも好ましい。 As a compounding quantity of water (B), 1 to 10 weight% is a preferable range with respect to the whole urethane cement-type composition. This water (B) reacts with the organic polyisocyanate and exerts an effect on cement hydration. When the content of water (B) is less than 1% by weight, the hydration reaction of the cement tends to be insufficient, which is not preferable. When it exceeds 10% by weight, physical properties are manifested because it tends to remain as excess water. There is a tendency to become insufficient. It is also preferable to use not only water (B) but also a known polyol such as castor oil (Euric H-30), castor oil-modified polyol and plasticizer (dinonyl phthalate).

セメント(D)としては、公知のセメント類が使用される。この中でもポルトランドセメントが好ましい。ポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、鉄及び炭素含量の低いセメントである白色ポルトランドセメントなどがある。 Known cements are used as the cement (D). Among these, Portland cement is preferable. Examples of Portland cement include ordinary Portland cement, early-strength Portland cement, and white Portland cement, which is a cement having a low iron and carbon content.

セメント(D)の使用量としては、ウレタンセメント系組成物全体に対して5〜30重量%が好ましい。5重量%未満では発泡を起こしやすく、30重量%を越えると作業性が低下するため好ましくない。 As a usage-amount of cement (D), 5 to 30 weight% is preferable with respect to the whole urethane cement-type composition. If it is less than 5% by weight, foaming tends to occur, and if it exceeds 30% by weight, workability is lowered, which is not preferable.

ウレタンセメント系組成物において炭酸ガス吸収剤としては一般的に酸化カルシウム、酸化マグネシウム、酸化バリウム、水酸化バリウム、水酸化マグネシウムなどの金属の酸化物、水酸化物などが知られているが、これらはいずれも耐膨れ性効果が小さかった。
本願の重油焼き法で製造される消石灰(E)が、従来一般的に製造される石炭焼き法で製造される消石灰に比べて本ウレタンセメント系組成物に用いた場合は高い耐膨れ性効果を発揮するのか詳細な理由は不明であるが、石炭焼き法で製造される消石灰は製造時に塩化ナトリウムを加えているのに対して重油焼き法では塩化ナトリウムを加えないことが原因ではないとか推定している。重油焼き法の消石灰(E)の製造は、塩化ナトリウムを加えずに重油の燃焼熱を用いて一般的に1000〜1200℃の条件で製造したものである。
重油焼き法の消石灰(E)の好ましい平均粒子径はレーザー回析、散乱式粒度分布分析法で1〜20ミクロン以下である。20ミクロンを越えると耐膨れ性効果が低下する。
また重油焼き法で製造される消石灰(E)を用いることで短時間で硬化させた場合でも高い機械特性を得ることができる。
重油焼き法で製造される消石灰(E)の配合量は、ウレタンセメント系組成物全体に対して0.2〜15重量%である必要がある。好ましくは0.5〜12重量%である。
As carbon dioxide gas absorbents in urethane cement-based compositions, calcium oxide, magnesium oxide, barium oxide, barium hydroxide, magnesium hydroxide and other metal oxides and hydroxides are generally known. Each of them had a small swelling resistance effect.
When the slaked lime (E) produced by the heavy oil baking method of the present application is used in the urethane cement-based composition as compared with the slaked lime produced by the coal baking method that is generally produced conventionally, a high swelling resistance effect is obtained. Although the detailed reason is unclear, it is estimated that slaked lime produced by the coal baking method is not caused by the addition of sodium chloride in the heavy oil baking method while sodium chloride is added during the production. ing. The slaked lime (E) produced by the heavy oil baking method is generally produced under the conditions of 1000 to 1200 ° C. using the combustion heat of heavy oil without adding sodium chloride.
The preferable average particle diameter of the slaked lime (E) in the heavy oil baking method is 1 to 20 microns or less by laser diffraction and scattering type particle size distribution analysis. If it exceeds 20 microns, the swell-resistance effect is reduced.
Moreover, even when it hardens in a short time by using slaked lime (E) manufactured with a heavy oil baking method, a high mechanical characteristic can be acquired.
The compounding quantity of the slaked lime (E) manufactured by a heavy oil baking method needs to be 0.2 to 15 weight% with respect to the whole urethane cement-type composition. Preferably it is 0.5 to 12% by weight.

0.2重量%未満の場合、有機イソシアネート化合物と水が反応する際に発生する炭酸ガスの吸収効果が少なく塗膜が発泡する傾向があり、15重量%を越えると塗布作業性が著しく低下するので好ましくない。 When the amount is less than 0.2% by weight, the effect of absorbing carbon dioxide gas generated when the organic isocyanate compound reacts with water is less likely to foam. When the amount exceeds 15% by weight, the coating workability is significantly reduced. Therefore, it is not preferable.

尚、重油焼き法で製造される消石灰(E)は、使用直前に有機ポリイソシアネート化合物(A)及び水(B)と混合することが好ましい。予め有機ポリイソシアネート化合物(A)や水(B)と混合しておくと反応を起こしたり、耐膨れ性効果が低下して塗膜の膨れを発生しやすく好ましくない。 The slaked lime (E) produced by the heavy oil baking method is preferably mixed with the organic polyisocyanate compound (A) and water (B) immediately before use. If it is mixed with the organic polyisocyanate compound (A) or water (B) in advance, the reaction tends to occur, the swelling resistance effect is lowered, and swelling of the coating film is likely to occur.

ウレタン化触媒(C)としてはイソシアネート基と活性水素含有基との間に反応速度を加速するものとして知られている化合物である。
ウレタン化触媒としては、例えば有機金属化合物、金属塩及び三級アミンがあり、例として、ジブチル錫ジラウレート、ナフテン酸亜鉛、オクタン酸第一錫、塩化第二錫、オクチル酸鉛、オレイン酸カリ、2−エチルヘキサン酸コバルト、N,N−ジメチルシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N−エチルモルホリン、4−ジメチルアミノピリジン、オキシプロピル化トリエタノールアミン、β−ジエチルアミノエタノール及びN,N,N',N'−テトラキス(2−ヒドロキシ)エチレンジアミン、及びアミンを開始剤としたポリオールなどが挙げられる。
The urethanization catalyst (C) is a compound known to accelerate the reaction rate between an isocyanate group and an active hydrogen-containing group.
Examples of urethanization catalysts include organometallic compounds, metal salts and tertiary amines, such as dibutyltin dilaurate, zinc naphthenate, stannous octoate, stannic chloride, lead octylate, potassium oleate, Cobalt 2-ethylhexanoate, N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, N-ethylmorpholine, 4-dimethylaminopyridine, oxypropylated triethanolamine, β-diethylaminoethanol and N, N, Examples thereof include N ′, N′-tetrakis (2-hydroxy) ethylenediamine and a polyol using an amine as an initiator.

中でもアミンを開始剤としアルキレンオキサイドを付加したポリオールが好ましく、数平均分子量が200〜1000のポリオール化合物が触媒としては適切な作業性と硬化性を得る上で好ましく用いられる。
5〜40℃の雰囲気において5時間以内で硬化し、歩行が可能とするためにはウレタン化触媒(C)の配合量は、ウレタンセメント系組成物全体に対して0.01〜2重量%の範囲で配合することが好ましい。
Among them, a polyol having an amine as an initiator and an alkylene oxide added is preferable, and a polyol compound having a number average molecular weight of 200 to 1000 is preferably used as a catalyst for obtaining appropriate workability and curability.
In order to cure within 5 hours in an atmosphere of 5 to 40 ° C. and allow walking, the blending amount of the urethanization catalyst (C) is 0.01 to 2% by weight based on the entire urethane cement-based composition. It is preferable to mix in a range.

本発明のウレタンセメント系組成物は、さらに骨材を含むことができる。骨材としては、砂及び低粘土含量の砂利、ガラスの粉砕物珪質骨材、プラスチック及びゴムの粉砕物、プラスチック廃物などの軽量骨材、ひる石等が挙げられる。 The urethane cement-based composition of the present invention can further contain an aggregate. Aggregates include sand and low clay content gravel, crushed glass siliceous aggregates, lightweight aggregates of plastics and rubber, plastic wastes, vermiculite and the like.

これらの骨材は、セメントと混合して使用することが特に好ましい。骨材は平均粒径が0.07mm〜4cmであるものが好ましい。これらの材料は、天然の状態でも、あるいは、例えば染料や顔料や被覆材の使用により、人工的に着色されたものでもよい。
骨材はウレタンセメント系組成物全体に対して5〜80重量%使用することが作業性の点で好ましい。
These aggregates are particularly preferably used by mixing with cement. The aggregate preferably has an average particle size of 0.07 mm to 4 cm. These materials may be in the natural state or may be artificially colored, for example by using dyes, pigments or coatings.
The aggregate is preferably used in an amount of 5 to 80% by weight based on the entire urethane cement-based composition in terms of workability.

更に、本発明のウレタンセメント系組成物は、その他充填剤、反応調整剤、消泡剤、可塑剤などを含有していてもよい。 Furthermore, the urethane cement-based composition of the present invention may contain other fillers, reaction modifiers, antifoaming agents, plasticizers and the like.

充填剤としては、炭酸カルシウム、タルク、硫酸バリウムなどの無機粉体やガラス繊維、綿、羊毛、ポリエチレン繊維、ポリアミド繊維、ポリエステル繊維、ポリアクリロニトリル繊維等の天然起源又は人工起源の繊維性材料も使用できる。タルクや繊維性材料を加えることによりセメント組成物に遥変性を付与することができ、斜路や立ち面に塗装可能な材料を調整することができる。   As fillers, inorganic powders such as calcium carbonate, talc and barium sulfate, and fiber materials of natural or artificial origin such as glass fiber, cotton, wool, polyethylene fiber, polyamide fiber, polyester fiber, polyacrylonitrile fiber are also used. it can. By adding talc or a fibrous material, the cement composition can be far modified, and the material that can be applied to the ramp and the standing surface can be adjusted.

反応調整剤としては、1価アルコール、エポキシ基含有化合物等の連鎖停止剤が挙げられる。純粋なあるいは例えばパイン油のような炭化水素と混合したテルピネオールも使用できる。   Examples of the reaction regulator include chain terminators such as monohydric alcohols and epoxy group-containing compounds. Terpineol, pure or mixed with a hydrocarbon such as pine oil, can also be used.

消泡剤としては、ポリ(シロキサン)、ポリ(アルキルシロキサン)及びポリ(ジアルキルシロキサン)、ポリエチレンオリゴマーなど公知のポリオールが挙げられる。 Examples of the antifoaming agent include known polyols such as poly (siloxane), poly (alkylsiloxane) and poly (dialkylsiloxane), and polyethylene oligomer.

可塑剤としては、具体的にはフタル酸ジブチル、フタル酸ジオクチル、フタル酸ジノニル、フタル酸ブチルベンジル、リン酸トリクレジル、リン酸トリトリル、リン酸トリ(2−クロロエチル)等の公知の可塑剤が挙げられる。   Specific examples of the plasticizer include known plasticizers such as dibutyl phthalate, dioctyl phthalate, dinonyl phthalate, butyl benzyl phthalate, tricresyl phosphate, tolyl phosphate, and tri (2-chloroethyl) phosphate. It is done.

本発明の施工方法は、施工時に有機ポリイソシアネート化合物(A)と、水(B)及びウレタン化触媒(C)の混合物とを混合し、この混合物にセメント(D)及び重油焼き法で製造される消石灰(E)とを事前に混合した組成物を均一に混合してウレタンセメント組成物とし、これを基体へ施工することで行われる。 The construction method of the present invention is produced by mixing an organic polyisocyanate compound (A) with a mixture of water (B) and a urethanization catalyst (C) at the time of construction, and cement (D) and heavy oil baking method. This is carried out by uniformly mixing a composition prepared by previously mixing slaked lime (E) with a urethane cement composition and applying it to a substrate.

本発明の施工法においては、前記(A)(B)(C)(D)(E)からなる各種材料を混合する場合、セメントミキサーや強制ヘラミキサーのような混合手段を使用して、混合する方法が好ましい。また、得られた本発明のウレタンセメント系組成物は、例えば、コテ塗り、注ぎ込み、吹きつけ、その他の適切な方法で、基体に施工し、硬化させることで塗布床面とすることができる。 In the construction method of the present invention, when mixing the various materials (A), (B), (C), (D), and (E), mixing is performed using a mixing means such as a cement mixer or a forced spatula mixer. Is preferred. Moreover, the obtained urethane cement-type composition of this invention can be used as a coated floor surface by applying to a base | substrate and making it harden | cure, for example by ironing, pouring, spraying, and another suitable method.

また、本発明の基体は、主としての新設のコンクリート下地、又は補修用途の既設のコンクリート下地に施工され、土木建築物などの床面を包含するものである。   Moreover, the base | substrate of this invention is constructed | assembled on the existing concrete foundation | substrate mainly for a new installation, or a repair use, and includes floor surfaces, such as a civil engineering building.

本発明の床材とは、床に施工される材料を意味し、床を構成する材料であれば、床材用下地処理材、プライマーも包含するものである。   The flooring of the present invention means a material to be applied to the floor, and includes a flooring ground treatment material and a primer as long as the material constitutes the floor.

以下、本発明を実施例1〜2および比較例1〜5によって具体的に説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-2 and Comparative Examples 1-5, this invention is not limited to these Examples.

実験に使用した表1の原料は次のとおりである。
ウレタン化触媒(E)(ポリオールA):トリエタノールアミンにプロピレンオキシドを開環付加させて得られた分子量470のポリオキシアルキレントリオール
ウレタン化触媒(E)(ポリオールB):エチレンジアミンにプロピレンオキシド次いでエチレンオキシドを開環付加させて得られたオキシエチレン基含量40重量%、分子量500のポリオキシアルキレントリオール
The raw material of Table 1 used for experiment is as follows.
Urethane catalyst (E) (polyol A): Polyoxyalkylene triol urethanization catalyst (E) (polyol B) obtained by ring-opening addition of propylene oxide to triethanolamine: ethylenediamine, propylene oxide and then ethylene oxide Polyoxyalkylenetriol having an oxyethylene group content of 40% by weight and a molecular weight of 500, obtained by ring-opening addition of

ユーリックH−30:ヒマシ油、伊藤製油(株)製
MR−100:ポリメリックMDI、日本ポリウレタン(株)製
消石灰A:超微粉末消石灰(重油焼き)、土佐石灰(株)製
消石灰B:超微粉末消石灰(石炭焼き)、土佐石灰(株)製
Euric H-30: castor oil, Ito Oil Co., Ltd. MR-100: Polymeric MDI, Nippon Polyurethane Co., Ltd. slaked lime A: Ultra fine powder slaked lime (burned with heavy oil), Tosa Lime Co., Ltd. slaked lime B: Ultra fine Powdered slaked lime (coal baked), made by Tosa Lime Co., Ltd.

<試験方法>
<圧縮強度試験>
JIS-A-1181(2005年)の8.1に準じて試験片を作製し、1ヶ月間養生後に室温で1日間放置後圧縮試験を行う。
尚、試験片の作製、養生条件は実施例1及び比較例1、3は5℃雰囲気で行い、実施例2及び比較例2、4、5は40℃雰囲気で行う。
<耐膨れ性試験>
5℃及び40℃雰囲気で90×90cmのスレート板に混合した材料を5mm厚みでコテを用いて平滑に塗布し、2日間養生後、塗膜の膨れ有無を目視で観察する。膨れが認められない場合は○、膨れが認められる場合は×とする。
<歩行可能時間の試験>
5℃及び40℃雰囲気で90×90cmのスレート板に混合した材料を5mm厚みでコテを用いて平滑に塗布し、塗布後から塗膜の上を歩行できるまでの時間を測定する。5時間以内に運動靴で歩行しても目視では表面に何ら傷が認められないものを歩行可能性に優れるとした。
<Test method>
<Compressive strength test>
Test specimens are prepared according to 8.1 of JIS-A-1181 (2005), and after curing for 1 month, they are left at room temperature for 1 day and then subjected to a compression test.
In addition, preparation of a test piece and curing conditions are performed in Example 1 and Comparative Examples 1 and 3 in a 5 ° C atmosphere, and Examples 2 and Comparative Examples 2, 4, and 5 are performed in a 40 ° C atmosphere.
<Swelling resistance test>
The material mixed in a 90 × 90 cm slate plate at 5 ° C. and 40 ° C. is applied smoothly with a trowel with a thickness of 5 mm. After curing for 2 days, the presence or absence of swelling of the coating film is visually observed. In the case where no swelling is observed, it is indicated as “◯”.
<Examination of walking time>
A material mixed in a 90 × 90 cm slate plate in an atmosphere of 5 ° C. and 40 ° C. is smoothly applied using a trowel with a thickness of 5 mm, and the time from when it is applied until it can walk on the coating film is measured. Even if it walked with athletic shoes within 5 hours, it was considered that the thing which does not show any damage on the surface was excellent in walking ability.

<試験用組成物の調整>
実施例1〜2、比較例1〜2について
表1のNO.2、NO.3、NO.4、NO.9又はNO.10を予めディスパーで混合してA剤として保管する。
表1のNO.5、NO.6、NO.7又はNO.8を予めセメントミキサーで混合してB剤として保管する。
試験の為、NO.1及びA剤をセメントミキサーで2分間均一に混合する。その後、B剤を投入し、更に3分間均一に混合し、試験用組成物とし、硬化物を得る。
比較例3〜5について
NO.2、NO.3、NO.4、NO.9を予めディスパーで混合してA剤として保管する。
NO.5、NO.6を予めセメントミキサーで混合してB剤として保管する。
試験の際はNO.1及びA剤をセメントミキサーで2分間均一に混合する。その後、B剤を投入し、更に3分間均一に混合し、試験用組成物とし、硬化物を得る。

試験結果を表―1に示す。
<Adjustment of test composition>
About Examples 1-2 and Comparative Examples 1-2 NO.2, NO.3, NO.4, NO.9 or NO.10 of Table 1 are mixed in advance with a disper and stored as agent A.
NO.5, NO.6, NO.7 or NO.8 in Table 1 is mixed in advance with a cement mixer and stored as B agent.
For the test, mix NO.1 and A agent uniformly with a cement mixer for 2 minutes. Then, B agent is thrown in, and also it mixes uniformly for 3 minutes, it is set as a test composition, and hardened | cured material is obtained.
About Comparative Examples 3-5
NO.2, NO.3, NO.4, NO.9 are mixed in advance with a disper and stored as agent A.
NO.5 and NO.6 are mixed in advance with a cement mixer and stored as B agent.
During the test, mix NO.1 and A agent uniformly with a cement mixer for 2 minutes. Then, B agent is thrown in, and also it mixes uniformly for 3 minutes, it is set as a test composition, and hardened | cured material is obtained.

The test results are shown in Table-1.

Figure 0004803045
単位:重量部
Figure 0004803045
Unit: parts by weight

実施例1は5℃雰囲気において塗膜の膨れが認められず、歩行可能時間が5時間以内であり、更に圧縮強度も比較例に比べて高かった。
実施例2は40℃雰囲気において塗膜の膨れが認められず、歩行可能時間が5時間以内であり、更に圧縮強度も比較例に比べて高かった。
比較例1は5℃雰囲気において歩行可能時間が5時間以内であるものの塗膜の膨れが認められ圧縮強度も実施例1〜2に比べて低かった。
比較例2は40℃雰囲気において歩行可能時間が5時間以内であるものの塗膜の膨れが認められ圧縮強度も実施例1〜2に比べて低かった。
比較例3〜5は5℃又は40℃雰囲気において塗膜の膨れが認められ、圧縮強度も実施例に比べて低かった。
In Example 1, no swelling of the coating film was observed in an atmosphere of 5 ° C., the walking time was within 5 hours, and the compressive strength was higher than that of the comparative example.
In Example 2, no swelling of the coating film was observed in an atmosphere of 40 ° C., the walking time was within 5 hours, and the compressive strength was higher than that of the comparative example.
In Comparative Example 1, although the walkable time was within 5 hours in a 5 ° C. atmosphere, the coating film was swollen and the compressive strength was lower than in Examples 1-2.
Although the comparative example 2 was walking time within 40 hours in 40 degreeC atmosphere, the swelling of the coating film was recognized and the compressive strength was also low compared with Examples 1-2.
In Comparative Examples 3 to 5, swelling of the coating film was observed in an atmosphere of 5 ° C. or 40 ° C., and the compressive strength was lower than that of the Examples.

Claims (5)

有機ポリイソシアネート化合物(A)、水(B)、ウレタン化触媒(C)、及びセメント(D)を含むウレタンセメント系組成物において、重油焼き法で製造される消石灰(E)を含み、かつ該消石灰(E)の含有量が組成物全体に対して0.2〜15.0重量%であり、ウレタンセメント系組成物全体に対し、前記水(B)の配合量が1〜10重量%、前記ウレタン化触媒(C)の配合量が0.01〜2重量%、前記セメント(D)の使用量が5〜30重量%であることを特徴とするウレタンセメント系組成物。 A urethane cement-based composition comprising an organic polyisocyanate compound (A), water (B), a urethanization catalyst (C), and cement (D), comprising slaked lime (E) produced by a heavy oil baking method, and 0.2 to 15.0 wt% der content relative to the entire composition of slaked lime (E) is, on the whole urethane cementitious composition, the water (B) amount is 1 to 10% by weight of the amount is 0.01 to 2 wt% of a urethane catalyst (C), urethane cementitious composition usage and wherein 5 to 30 wt% der Rukoto of the cement (D). ウレタン化触媒(C)が、アミンを開始剤としてアルキレンオキサイドを付加したポリオールであり、数平均分子量が200〜1000の化合物であることを特徴とする請求項1記載のウレタンセメント系組成物。 The urethane cement composition according to claim 1, wherein the urethanization catalyst (C) is a polyol having an alkylene oxide added with an amine as an initiator, and a compound having a number average molecular weight of 200 to 1,000. 5〜40℃の雰囲気下において塗布後5時間以内で硬化し、歩行が可能なことを特徴とする請求項1又は2記載のウレタンセメント系組成物。 The urethane cement-based composition according to claim 1 or 2, which is cured within 5 hours after application in an atmosphere of 5 to 40 ° C and is capable of walking. 請求項1〜3のいずれかに記載のウレタンセメント系組成物からなる塗り床材。 A coating floor material comprising the urethane cement-based composition according to any one of claims 1 to 3. 施工時に有機ポリイソシアネート化合物(A)と、水(B)及びウレタン化触媒(C)を含む成分とを混合し、次いで、この混合物とセメント(D)及び重油焼き法で製造される消石灰(E)とを均一に混合し、基体へ施工することを特徴とする床施工方法。(ウレタンセメント系組成物全体に対し、前記水(B)の配合量が1〜10重量%、前記ウレタン化触媒(C)の配合量が0.01〜2重量%、前記セメント(D)の使用量が5〜30重量%、前記消石灰(E)の含有量が0.2〜15.0重量%である。) At the time of construction, an organic polyisocyanate compound (A) is mixed with components containing water (B) and a urethanization catalyst (C), and then this mixture is mixed with cement (D) and heavy oil baking method (E Is uniformly mixed and applied to the substrate. (For the entire urethane cement-based composition, the amount of the water (B) is 1 to 10% by weight, the amount of the urethanization catalyst (C) is 0.01 to 2% by weight, and the cement (D) The amount used is 5 to 30% by weight, and the content of the slaked lime (E) is 0.2 to 15.0% by weight.)
JP2007002283A 2007-01-10 2007-01-10 Urethane cement-based composition, coated flooring and its construction method Active JP4803045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002283A JP4803045B2 (en) 2007-01-10 2007-01-10 Urethane cement-based composition, coated flooring and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002283A JP4803045B2 (en) 2007-01-10 2007-01-10 Urethane cement-based composition, coated flooring and its construction method

Publications (2)

Publication Number Publication Date
JP2008169062A JP2008169062A (en) 2008-07-24
JP4803045B2 true JP4803045B2 (en) 2011-10-26

Family

ID=39697515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002283A Active JP4803045B2 (en) 2007-01-10 2007-01-10 Urethane cement-based composition, coated flooring and its construction method

Country Status (1)

Country Link
JP (1) JP4803045B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157504B1 (en) 2010-04-28 2012-06-15 케이엠비(주) Environment Friendly Elastic Mortar
JP5833876B2 (en) * 2011-10-03 2015-12-16 株式会社エフコンサルタント Curable composition
EP2944622A1 (en) 2014-05-16 2015-11-18 Sika Technology AG Three component composition for the manufacture of polyurethane cementitious hybrid flooring or coating with improved surface gloss
JP6995475B2 (en) * 2016-12-27 2022-02-04 コベストロ、ドイチュラント、アクチエンゲゼルシャフト Non-yellowing cement-based polyurethane foam composite and its manufacturing method
KR101956233B1 (en) * 2018-09-07 2019-03-08 빌드켐 주식회사 Moltar composition of polyurea resin composition and method of working the same
CN109762140B (en) * 2018-12-11 2021-06-08 江苏凯伦建材股份有限公司 Curing agent composition for epoxy mortar and preparation method thereof
WO2024075775A1 (en) * 2022-10-07 2024-04-11 東ソー株式会社 Polyurethane-resin-forming composition, and film sealing material and film module each obtained using said polyurethane-resin-forming composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569306B2 (en) * 1993-12-28 2004-09-22 富士川建材工業株式会社 Inorganic finishing material composition and method using the same
JPH08169744A (en) * 1994-12-15 1996-07-02 Asahi Glass Co Ltd Cement composition
JPH11292655A (en) * 1998-04-17 1999-10-26 Asahi Kasei Metals Kk Aluminium powder for blowing agent for light weight (foamed) concrete, and its aqueous paste composition
JP2003261363A (en) * 2002-03-08 2003-09-16 Oji Paper Co Ltd Method of driving lime burning apparatus while preventing coating and coating preventive
JP4280094B2 (en) * 2003-03-26 2009-06-17 アイカ工業株式会社 Construction method of resin cement composition and resin cement hardened layer
JP4940553B2 (en) * 2005-01-26 2012-05-30 Dic株式会社 Urethane cement composition, flooring and paving materials

Also Published As

Publication number Publication date
JP2008169062A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4803045B2 (en) Urethane cement-based composition, coated flooring and its construction method
KR100892247B1 (en) Environmentally friendly polyurethane cement composition
JP4940553B2 (en) Urethane cement composition, flooring and paving materials
JP5130723B2 (en) Urethane cement-based composition, flooring and its construction method
JP2003524693A (en) Use of aqueous polyurethane dispersions in formulations for crack seal coating systems
JP2011127288A (en) Method of manufacturing pavement body for outdoor facilities, surface finishing material used in the same, and the pavement body for outdoor facilities obtained by the same
US3450653A (en) Polyurethane elastomeric sealants
JPH08169744A (en) Cement composition
JP7104967B2 (en) Surface treatment agent and bonding method using the same
KR101039376B1 (en) Inorganic polyurethan waterproofing material and waterproof method thereof
JP2022043979A (en) Polyurethane resin composition, elastic paving material, mold frame material, waterproof material, floor material and composite elastic material
JP4569326B2 (en) Urethane cement composition, flooring and paving materials
CN113396133A (en) Multi-component composition for producing polyurethane/urea cement hybrid systems
JP3149413B1 (en) Room temperature curable pavement material
JP2002194281A (en) Composition for two-pack polyurethane coating film waterproof material
KR101103930B1 (en) Fluorine modified tarurethane waterproofing material and manufacturing method thereof, construction method for waterproofing using fluorine modified tarurethane waterproofing material
JPH08169740A (en) Dispersion liquid and its use
JPH0649975A (en) Waterproof coating method of structure
JP3924699B2 (en) Floor structure and its construction method
JP2001026630A (en) Polyurethane resin composition and production thereof
KR20110131330A (en) Road the packing composition
IL47584A (en) Urea copolymer compositions containing silica fillers
JP7398228B2 (en) Set of main agent and hardening agent, waterproofing material and its construction method
JP4363742B2 (en) Polyol resin composition and polymer cement curable composition using the same
JP3459135B2 (en) Surface pretreatment agent for powdery rubber, method for producing agglomerate of powdery rubber using said surface pretreatment agent, and aggregate for powdery rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4803045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250