JP4800262B2 - Rain water separator and continuous falling dust measuring device - Google Patents

Rain water separator and continuous falling dust measuring device Download PDF

Info

Publication number
JP4800262B2
JP4800262B2 JP2007150909A JP2007150909A JP4800262B2 JP 4800262 B2 JP4800262 B2 JP 4800262B2 JP 2007150909 A JP2007150909 A JP 2007150909A JP 2007150909 A JP2007150909 A JP 2007150909A JP 4800262 B2 JP4800262 B2 JP 4800262B2
Authority
JP
Japan
Prior art keywords
particle
particles
sampling port
port
particle sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007150909A
Other languages
Japanese (ja)
Other versions
JP2008304277A (en
Inventor
信明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007150909A priority Critical patent/JP4800262B2/en
Publication of JP2008304277A publication Critical patent/JP2008304277A/en
Application granted granted Critical
Publication of JP4800262B2 publication Critical patent/JP4800262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、大気中粒子の量や濃度を計測する装置に関し、降雨時の雨水が大気中粒子の計測装置内に浸入することを防止するための雨水分離装置、及び、その雨水分離装置を備えた連続式降下粉塵計測装置に関するものである。   The present invention relates to an apparatus for measuring the amount and concentration of atmospheric particles, and includes a rainwater separation apparatus for preventing rainwater from entering the atmospheric particle measurement apparatus, and the rainwater separation apparatus. The present invention relates to a continuous falling dust measuring device.

種々の生産活動・消費活動に伴って発生する大気中の降下粉塵や粒子状浮遊物質(SPM)等の大気中粒子は、重大な環境汚染項目のひとつとみなされており、その実態把握と対策が社会から強く求められている。降下粉塵とは大気中を自由落下しうる比較的粗大な大気中粒子であり、SPMとは直径10μm以下の微小な大気中粒子である。大気中粒子の実態把握のためには正確な大気中粒子計測機器を開発して製造することが重要である。特に、具体的な環境対策を策定する場合には、特定の気象条件とそれに対応した短時間での大気中粉塵量測定値の組み合わせで問題箇所を探索する手法が有効であり、そのためには、大気中の粉塵計測を少なくとも1時間間隔で計測する必要がある。   Atmospheric particles such as falling dust in the atmosphere and particulate suspended matter (SPM) generated by various production and consumption activities are regarded as one of the serious environmental pollution items. Is strongly demanded by society. Falling dust is relatively coarse atmospheric particles that can freely fall in the atmosphere, and SPM is minute atmospheric particles having a diameter of 10 μm or less. It is important to develop and manufacture an accurate atmospheric particle measuring instrument to grasp the actual state of atmospheric particles. In particular, when formulating specific environmental measures, it is effective to search for problem areas by combining specific weather conditions and corresponding measurement values of atmospheric dust in a short period of time. It is necessary to measure dust in the atmosphere at intervals of at least one hour.

この様な目的で、大気中粒子を大気とともに吸引して、吸引大気中のSPM質量をβ線吸収法等によって計測することにより大気中SPM濃度の一定時間ごとの時系列推移を算出するSPM計が、例えば、特許文献1に開示されている。その概略を、図1を用いて説明する。   For this purpose, an SPM meter that calculates the time-series transition of the SPM concentration in the atmosphere at regular intervals by sucking atmospheric particles together with the atmosphere and measuring the SPM mass in the suction atmosphere by the β-ray absorption method or the like. However, it is disclosed in Patent Document 1, for example. The outline will be described with reference to FIG.

粉塵粒子を含んだ大気は、粒子採取口1からブロワまたは圧縮機6によって装置内に吸引される。吸引された粉塵を含んだ大気は、粒子採取口直後に配置された粗大粒子フィルタ3によって10μmを超える粗大な粒子が除去される。粗大粒子フィルタにはグリース塗布したインパクタ等が用いられ、除去した粗大粒子は、装置外に廃棄される。粗大粒子フィルタを通過したSPMのみを含む大気は、粒子採取口1から気流路2を通ってβ線吸収式質量測定装置等を含む計測部4内に流入し、空気中の粉塵のみが捕集フィルタ5上に捕集される。捕集粉塵に対して一定時間β線吸収式の質量計測が実施される。β線吸収式質量測定は、乾式・非破壊的に高速で微量の試料の質量を計測できる利点があり、1時間程度以内の短周期での連続粉塵計測で最も広く採用される方法である。質量測定が終了した後、捕集フィルタ送り装置14を作動させて粉塵の付着した部位の捕集フィルタをβ線吸収式質量測定器から回収するとともに、次の測定用に、未使用の捕集フィルタ部位をβ線吸収式質量測定器内に送りこむ。フィルタ材質としては測定精度の観点からメンブラン状のフッ素樹脂膜が用いられることが多く、また、経済的なガラス繊維布が用いられることもある。図1では捕集フィルタとしてテープ状のものを用い、また、捕集フィルタ送り装置として、未使用のテープ状の捕集フィルタを予めロール状に巻いたものを送り出し、粒子捕集済みのテープ状捕集フィルタをロール状に巻き取る機構を用いている。捕集フィルタ4によって粉塵の大半を除去された吸気は、β線吸収測定中は、気流路2を通って外気中にそのまま放出される。大気の吸引中に捕集フィルタ上の部分的な目詰まりが生じることによって、配管系の圧力抵抗は刻々と変化するので、この影響を補償する様に、吸引流量は、流量制御装置9等を用いて一定に制御される。SPM計が捕集の対象とするのは、自由落下することなく大気流れにほぼ完全に追従する微小な粒子であるので、SPM計には粒子採取口の形状に特段の制約はない。このため、降雨時の粒子採取口からの雨水浸水を防止するため、粒子採取口は、通常、水平方向、または、下方に開口を有する構造とするか、粒子採取口の上方に雨除けの覆いを設置する。   The atmosphere containing dust particles is sucked into the apparatus from the particle sampling port 1 by a blower or a compressor 6. In the air containing the sucked dust, coarse particles exceeding 10 μm are removed by the coarse particle filter 3 arranged immediately after the particle collection port. For the coarse particle filter, a greased impactor or the like is used, and the removed coarse particles are discarded outside the apparatus. The atmosphere containing only the SPM that has passed through the coarse particle filter flows from the particle sampling port 1 through the air flow path 2 into the measuring unit 4 including the β-ray absorption mass measuring device, and only dust in the air is collected. It is collected on the filter 5. Β-ray absorption mass measurement is performed on the collected dust for a certain period of time. β-ray absorption mass measurement has the advantage of being able to measure the mass of a small amount of sample at a high speed in a dry and non-destructive manner, and is the most widely adopted method for continuous dust measurement in a short period of about 1 hour or less. After the mass measurement is completed, the collection filter feeding device 14 is operated to collect the dust collection filter from the β-ray absorption mass measuring instrument, and an unused collection for the next measurement. The filter part is fed into the β-ray absorption mass measuring instrument. As a filter material, a membrane-like fluororesin film is often used from the viewpoint of measurement accuracy, and an economical glass fiber cloth is sometimes used. In FIG. 1, a tape-shaped filter is used as the collection filter, and an unused tape-shaped collection filter wound in advance in a roll shape is sent out as the collection filter feeding device to collect the collected tape. A mechanism that winds the collection filter into a roll is used. The intake air from which most of the dust is removed by the collection filter 4 is discharged as it is into the outside air through the air flow path 2 during the β-ray absorption measurement. Since partial clogging on the collection filter occurs during suction of the air, the pressure resistance of the piping system changes every moment, so that the suction flow rate is controlled by the flow rate control device 9 etc. to compensate for this effect. It is controlled to be constant. Since the SPM meter collects fine particles that follow the atmospheric flow almost completely without free falling, the SPM meter has no particular restrictions on the shape of the particle sampling port. For this reason, in order to prevent rainwater inundation from the particle sampling port during rainfall, the particle sampling port usually has a structure having an opening in the horizontal direction or below, or a rain shield covering above the particle sampling port. Is installed.

採取した大気中粒子の粒径分布を連続的に把握しうる装置として、特許文献2に開示された、レーザ光を粉塵に照射してその散乱光を測定することにより粒度分布を求める手法が開示されている。   As an apparatus capable of continuously grasping the particle size distribution of collected atmospheric particles, a method disclosed in Patent Document 2 for obtaining the particle size distribution by irradiating dust with laser light and measuring the scattered light is disclosed. Has been.

一方、粗大な粒子である降下粉塵も含めた大気中粒子を測定対象とする場合にはSPM計を用いることはできない。粗大な大気中粒子を直接的、かつ、連続的に測定する装置として、連続式降下粉塵計が考案されている。市販されている装置の概要を図2に示す。
これは、基本構造として、SPM計の吸引端に、上方に開口を有する円錐ろうと状の粒子採取口1を付与したものである。大気中を自由落下する粗大粒子は、この粒子採取口の中に落下して、計測器に捕集される。さらに、実質的な外気の吸引を行わないようにするため、粒子採取口末端から吸引された大気は主循環気流路11を通って装置内を循環し、除塵フィルタ10によって除塵された後、粒子採取口内に吐出される機構になっている。この装置では粒子採取口が上方に開口を有しているため、雨天時にはここから雨水が装置内に浸入する可能性がある。装置内に雨水が浸入した場合、捕集した粒子の質量計測精度を悪化させるだけでなく、精密な電気機器である計測器を故障させる可能性があるので、雨水の装置内への浸入を防止しなければならない。
On the other hand, the SPM meter cannot be used when measuring particles in the atmosphere including falling dust that is coarse particles. As a device for directly and continuously measuring coarse atmospheric particles, a continuous falling dust meter has been devised. An outline of a commercially available apparatus is shown in FIG.
As a basic structure, a conical wax-like particle sampling port 1 having an opening upward is provided at the suction end of the SPM meter. Coarse particles that fall freely in the atmosphere fall into the particle collection port and are collected by a measuring instrument. Further, in order not to suck the substantial outside air, the air sucked from the end of the particle sampling port circulates in the apparatus through the main circulation air flow path 11 and is removed by the dust removing filter 10. It is a mechanism that is discharged into the sampling port. In this apparatus, since the particle sampling port has an opening upward, rainy water may enter the apparatus during rainy weather. If rainwater enters the device, it not only degrades the mass measurement accuracy of the collected particles, but also may damage the measuring instrument, which is a precision electrical device, preventing rainwater from entering the device. Must.

従来技術においては、電気式感雨計等の降雨を検知する装置を用いて、降雨発生時には蓋機構等を作動させて粒子採取口を閉鎖する機構が採用されていた。具体的には、連続式粉塵計は、感雨計34、粒子採取口蓋35、並びに、粒子採取口蓋駆動機構32を具備し、感雨計によって降雨を検知した場合には粒子採取口駆動装置を作動させて粒子採取口蓋を移動させて粒子採取口を覆い、降雨が検知されない場合には、粒子採取口蓋を移動させて、粒子採取口を外気に開放するものである。この機構は、降雨が長時間継続する場合には雨水の浸入対策として効果的である。   In the prior art, a mechanism that uses a device for detecting rainfall, such as an electric rain gauge, to close a particle sampling port by operating a lid mechanism or the like when rain occurs. Specifically, the continuous dust meter is provided with a rain gauge 34, a particle collection mouth cover 35, and a particle collection mouth drive mechanism 32. When rain is detected by the rain gauge, the particle collection mouth drive device is provided. The particle sampling port is moved to cover the particle sampling port, and when rain is not detected, the particle sampling port is moved to open the particle sampling port to the outside air. This mechanism is effective as a countermeasure against the intrusion of rainwater when rainfall continues for a long time.

しかし、降雨の開始から、感雨計が降雨を自動的に感知するまで数分程度の時間遅れが発生することが原理的に避けられない。これは、次の理由による。代表的な構造の感雨計は露天の感雨面が水で濡れた際に、感雨面の電気抵抗変化を検出して降雨と認識する。つまり、感雨面の降雨による濡れと単なる結露による濡れを区別できない。晴天夜間時には感雨面は放射冷却効果によって気温よりも一般に低温になる。このとき、感雨面が周囲大気の露点よりも低温であれば、降雨がなくても感雨面が結露によって濡れて、感雨計は降雨発生と誤認識してしまう。この現象を防ぐため、感雨計は一般的に加熱装置によって加熱されて、降雨のない場合には感雨面温度を周囲大気の露点以上に維持する様に設定されている。尚、周囲大気の温度は、外気温度計30によって計測される。   However, in principle, it is inevitable that there will be a delay of several minutes from the start of rainfall until the rain gauge automatically senses the rain. This is due to the following reason. A rain gauge with a typical structure detects a change in electrical resistance on a rain sensitive surface when the rain sensitive surface of an outdoor surface gets wet. In other words, it is not possible to distinguish wetness due to rain on the rain sensitive surface from wetness due to simple condensation. During a clear night, the rain sensitive surface is generally cooler than the temperature due to the radiative cooling effect. At this time, if the rain sensitive surface is at a lower temperature than the dew point of the surrounding atmosphere, the rain sensitive surface gets wet by condensation even if there is no rain, and the rain gauge misrecognizes that rain has occurred. In order to prevent this phenomenon, the rain gauge is generally heated by a heating device, and is set so as to maintain the rain sensitive surface temperature above the dew point of the surrounding air when there is no rainfall. The ambient air temperature is measured by the outside air thermometer 30.

特開2006−3090号公報JP 2006-3090 A 特開2004−117005号公報JP 2004-117005 A

しかし、連続粉塵計のこのような雨天対策機構には、以下の理由で雨滴の計測器内部への浸入をもたらす問題がある。即ち、降雨の開始直後には、感雨計の感雨面に雨滴が付着しても、感雨面の表面温度が高いために雨滴が容易に蒸発してしまい、降雨を検知することができない。この後、一定時間降雨が継続して感雨面が雨滴によって冷却され続けると、感雨計に予め設定された上限供給熱量では感雨面温度を目標値に維持できなくなり、感雨面温度が低下する。この結果、感雨面での雨滴の蒸発が抑制されて感雨面が濡れるので感雨計が降雨を検知することができるようになる。   However, such a rainy weather countermeasure mechanism of the continuous dust meter has a problem that causes raindrops to enter the measuring instrument for the following reasons. In other words, immediately after the start of rainfall, even if raindrops adhere to the rain sensitive surface of the rain gauge, the rain drops easily evaporate because the surface temperature of the rain sensitive surface is high, and it is impossible to detect rain. . After this, if it continues to rain for a certain period of time and the rain sensitive surface continues to be cooled by raindrops, the rain sensitive surface temperature cannot be maintained at the target value with the upper limit supply heat amount preset in the rain gauge, and the rain sensitive surface temperature descend. As a result, evaporation of raindrops on the rain sensitive surface is suppressed and the rain sensitive surface becomes wet, so that the rain gauge can detect rain.

従来技術において、降雨開始から感雨計の降雨感知までの時間は数分程度以上となる場合があり、この期間に粒子採取口内に落下した雨滴は、全て計測部まで浸入してしまう。特に、粒子採取口開口面積が比較的大きく、円錐ろうと状の粒子採取口で採取物を末端側に収束して供給する連続粉塵計の場合、わずかの降雨量でも末端部で大量の水量に収束される結果、計測部浸水への影響が大きい。これ以外にも、集中豪雨発生時等には、降雨開始直後でも雨量が極めて大きいため、感雨計が降雨開始後直ちに降雨を検知して粒子採取口を閉鎖するように粒子採取口の蓋を操作しても、閉鎖作業を行う間の時間に大量の雨滴が粒子採取口内部に浸入してしまう問題も存在する。   In the prior art, the time from the start of rainfall until the rain sensor detects the rain may be about several minutes or more, and all the raindrops that fall into the particle sampling port during this period enter the measuring unit. In particular, in the case of a continuous dust meter that has a relatively large particle sampling port opening area and supplies the collected sample to the end side through a conical funnel-shaped particle sampling port, even a small amount of rainfall converges to a large amount of water at the end. As a result, the influence on the flooding of the measurement unit is great. In addition to this, in the case of heavy rain, the rainfall is extremely large even immediately after the start of rainfall.Therefore, the rain gauge detects the rain immediately after the start of rainfall and closes the particle sampling port so that the particle sampling port is closed. Even if the operation is performed, there is a problem that a large amount of raindrops enter the particle collection port during the closing operation.

このように、従来技術においては、連続粉塵計の粒子採取口に雨滴が浸入して計測部が浸水する現象を完全に防ぐことはできない問題があった。   Thus, in the prior art, there has been a problem that it is not possible to completely prevent the phenomenon that raindrops enter the particle sampling port of the continuous dust meter and the measuring unit is submerged.

そこで本発明においては、上方に向けた開口部を有し且つろうと状の粒子採取口を有する大気中粒子の計測装置に適用され、降雨開始時に雨滴が計測部に浸入させないようにする雨水分離装置、及び、当該雨水分離装置を備えた連続式降下粉塵装置を提供することを目的とする。   Therefore, in the present invention, a rainwater separator that is applied to an atmospheric particle measuring device that has an upward opening and a funnel-shaped particle sampling port, and prevents raindrops from entering the measuring unit at the start of rainfall. And it aims at providing the continuous type falling dust apparatus provided with the said rainwater separation apparatus.

本発明者の降下粉塵計測に関する研究の結果、以下の解決方法を発明するに至った。   As a result of the inventor's research on falling dust measurement, the inventors have invented the following solution.

[第1発明]
上方に向けた開口部を有し且つろうと状の粒子採取口と、降雨を検出する感雨計と、前記感雨計の検出結果に基づいて降雨時に前記粒子採取口の開口部を閉じる蓋機構と、前記粒子採取口内に存在する大気中粒子を、前記粒子採取口の下端から大気と共に前記粒子採取口の下流に備えられる気流路を通して吸引する吸引装置と、前記気流路の途中に設けられて前記吸引された大気中粒子の総数または総質量を時系列的に計測する計測部とを備えた大気中粒子の計測装置に用いる雨水分離装置であって、
上端が前記粒子採取口の下端に接続され、前記気流路と同軸に配置された直管状の雨水の導水管と、
前記導水管の内部又は下方に位置し、上端が吸気口となり前記導水管の軸心に対して軸心が略平行または略同軸に配置されると共に下端が前記気流路に接続され、且つ、外径が前記導水管の内径よりも小さい、直管状の吸気管とを備えたことを特徴とする雨水分離装置である。
[First invention]
A funnel-shaped particle sampling port having an upward opening, a rain gauge for detecting rain, and a lid mechanism for closing the particle sampling port opening during rain based on the detection result of the rain gauge A suction device for sucking air particles present in the particle sampling port from the lower end of the particle sampling port through the air channel provided downstream of the particle sampling port together with the atmosphere, and provided in the middle of the air channel A rainwater separator used in an atmospheric particle measuring device comprising a measuring unit that measures the total number or total mass of the sucked atmospheric particles in time series,
A straight tubular rainwater conduit pipe having an upper end connected to a lower end of the particle sampling port and disposed coaxially with the air flow path;
Located inside or below the water conduit, the upper end serves as an intake port, the shaft center is arranged substantially parallel or substantially coaxial with the axis of the water guide tube, the lower end is connected to the air flow path, and the outside A rainwater separator having a straight tubular intake pipe having a diameter smaller than the inner diameter of the water guide pipe.

粒子採取口にフィルタを設置するような分離方法では、大気中を落下する雨滴と粗大な降下粉塵とを分離して、降下粉塵のみを大気中粒子の計測装置内に取り込むことはできない。そこで、本発明では、雨滴と降下粉塵が固体壁に衝突した際の挙動の違いを利用して、雨滴と降下粉塵を分離する。   In a separation method in which a filter is installed at the particle sampling port, raindrops falling in the atmosphere and coarse falling dust cannot be separated and only the falling dust cannot be taken into the atmospheric particle measuring device. Therefore, in the present invention, the raindrop and the falling dust are separated using the difference in behavior when the raindrop and the falling dust collide with the solid wall.

即ち、固体である降下粉塵は、固体壁に衝突しても、反発や再飛散させることにより、固体壁にあまり付着させないことができる。これに対し、液体である雨滴は、固体壁に衝突すると、一般には反発や再飛散せずに壁面に付着して流下する。本発明では、上方に向けた開口部を有し且つろうと状の粒子採取口を固体壁として用い、雨滴と粗大な降下粉塵を固体壁に衝突させて、雨滴を分離する。   That is, the falling dust that is solid can be hardly adhered to the solid wall by repelling or re-scattering even if it collides with the solid wall. On the other hand, when raindrops that are liquids collide with a solid wall, they generally adhere to the wall surface and flow down without being repelled or re-scattered. In the present invention, the raindrops are separated by colliding the raindrops and coarse falling dust with the solid wall using the funnel-shaped particle sampling port having the opening facing upward as the solid wall.

一般に屋外では常時、0.1m/s程度以上の風が吹いている。この有風時には、雨滴と降下粉塵は、風にのって水平方向の速度成分を有しつつ落下する。この雨滴および粗大な降下粉塵は、粒子採取口に進入すると、自身の水平方向の慣性によって大部分が風下側の粒子採取口内壁面に衝突する。   Generally, winds of about 0.1 m / s or more are constantly blowing outdoors. When there is a wind, raindrops and falling dust fall on the wind while having a horizontal speed component. When these raindrops and coarse falling dust enter the particle sampling port, most of them collide with the inner wall surface of the particle sampling port on the leeward side due to their horizontal inertia.

その結果、降雨のない場合には、粗大な降下粉塵は乾燥した固体壁に衝突した後、固体壁から離脱して吸気口に吸引され、計測部に到達できる。   As a result, when there is no rain, coarse falling dust collides with the dry solid wall, then leaves the solid wall, is sucked into the intake port, and can reach the measuring unit.

一方、降雨時には、雨滴は壁面に衝突して付着、流下し、吸気口より外側を通って系外に排出される。有風時には降雨があっても雨滴の大部分が粒子採取口の内壁に付着するので、粒子採取口の下端に存在する吸気口に雨滴が直接落下することはほとんどない。   On the other hand, when it rains, raindrops collide with the wall surface, adhere and flow down, and are discharged out of the system through the outside of the intake port. Even when there is rainfall, most of the raindrops adhere to the inner wall of the particle sampling port, so that the raindrop hardly falls directly to the intake port located at the lower end of the particle sampling port.

尚、直径数μm程度の微小な粒子は、気流への追従性が粗大な粒子よりも高く、吸気口に直接落下するものも存在する。しかし、地表付近で直径数μm程度の微小な雨滴が存在することはまれであり、地表近傍では雨滴は全て粗大な粒子とみなすことができる。   Note that fine particles having a diameter of about several μm are higher in the followability to the airflow than particles having coarseness, and some particles fall directly to the intake port. However, minute raindrops with a diameter of several μm are rarely present near the ground surface, and all raindrops can be regarded as coarse particles near the ground surface.

また、降雨の開始から粒子採取口蓋が閉止するまでの時間遅れは必ず存在するので、従来の装置では、降雨開始直後に、雨滴が粒子採取口に進入することは避けられない。   In addition, since there is always a time delay from the start of rainfall to the closing of the particle collection port cover, it is inevitable that raindrops enter the particle collection port immediately after the start of rainfall.

本発明では、粒子採取口に雨滴が進入することを前提に、降雨開始時から粒子採取口蓋が閉止するまでの間に、この雨滴が計測部に到達しないように、途中で雨滴を分離する機能を有するものである。   In the present invention, on the premise that raindrops enter the particle sampling port, the function of separating the raindrops on the way so that the raindrops do not reach the measurement section from the start of the rain until the particle sampling port lid closes It is what has.

さらに、本発明においては、降雨のないときに測定対象である降下粉塵の捕集を雨滴分離器が妨げないことも重要な性能である。ここで、例えば、下端に樋を備えたルーバを雨水分離装置として適用した場合を想定してみる。ルーバとは、気象庁指定の百葉箱の側壁の様に、複数の帯板を鉛直方向に対して傾斜を有するように、かつ、互いに平行に配置した通気性のある壁面である。このルーバを横倒しして粒子採取口入口の上に配置し、ルーバの各帯板下端の下方に略水平に樋を設ける。ルーバ上に降雨があると、雨滴は、帯板に衝突して個々の帯板に沿って流下した後、帯板の下端から落下し、樋に捕集される。樋の側面を採取口の外部に開放しておけば、樋に捕集された雨水は、やがて採取口の外部に排出される。   Furthermore, in the present invention, it is also an important performance that the raindrop separator does not interfere with the collection of the falling dust that is the measurement object when there is no rain. Here, for example, assume a case where a louver provided with a ridge at the lower end is applied as a rainwater separator. A louver is an air-permeable wall surface in which a plurality of strips are arranged in parallel with each other so as to be inclined with respect to the vertical direction, like the side wall of a Hyakuba box designated by the Japan Meteorological Agency. The louver is laid down and placed on the particle sampling port entrance, and a ridge is provided substantially horizontally below the lower end of each strip plate of the louver. When there is rainfall on the louver, the raindrops collide with the strips and flow down along the individual strips, and then fall from the lower ends of the strips and are collected in the hail. If the side of the kite is opened to the outside of the sampling port, the rainwater collected in the kite will eventually be discharged to the outside of the sampling port.

しかし、この様に凹凸が多く、かつ、表面積の大きい構造では、降下粉塵粒子のルーバ表面や樋への降下粉塵の一部の不可避的な付着、滞留、並びに、樋からの流出による降下粉塵粒子捕集率(外気から吸気口へ粒子が到達する割合)の低下が避けられない。本発明では粒子の衝突する固体壁はろうと状の滑らかな粒子採取口内面のみなので、このような粒子捕集率の低下を最小限に抑制することができる。   However, in such a structure with many irregularities and a large surface area, dust particles falling due to unavoidable adhesion and retention of falling dust particles on the louver surface and soot, and outflow from soot. A decrease in the collection rate (the rate at which particles reach the inlet from the outside air) is inevitable. In the present invention, since the solid wall on which the particles collide is only the inner surface of the smooth particle sampling port in the form of a funnel, such a decrease in the particle collection rate can be minimized.

つまり、本発明は、自然の風力を利用した簡易な構造で、降雨開始時から粒子採取口蓋が閉止するまでの間の雨水の吸気口への浸入を極力防止し、かつ、降雨のない場合には高い捕集効率で降下粉塵を吸気口に捕集できる卓越した効果を発揮できる。   In other words, the present invention has a simple structure using natural wind power, and prevents rainwater from entering the intake port from the start of rainfall until the particle collection lid is closed, and when there is no rainfall. Can exhibit the outstanding effect of collecting falling dust at the inlet with high collection efficiency.

[第2発明]
第1発明において、前記吸気管の吸気口よりも上流に、前記粒子採取口内部で発生する水平面内旋廻気流を抑制するための旋廻流抑制機構を有することを特徴とする雨水分離装置である。
[Second invention]
The rainwater separator according to the first aspect of the present invention has a swirl flow suppressing mechanism for suppressing a swirling air flow in a horizontal plane generated inside the particle sampling port upstream of the intake port of the intake pipe.

[第3発明]
第1発明又は第2発明において、前記導水管の少なくとも下端部からその下方に位置する前記吸気管に亘って、前記導水管の下端と前記吸気管との間に生じる隙間からの大気の流通を防止するための覆いを設けることを特徴とする雨水分離装置である。
[Third invention]
In the 1st invention or the 2nd invention, the circulation of the atmosphere from the gap which arises between the lower end of the water conduit and the intake pipe extends from at least the lower end portion of the water conduit to the intake pipe located therebelow. A rainwater separator is provided with a cover for preventing the rainwater.

[第4発明]
第3発明において、前記覆いには前記吸気管上端の吸気口よりも低い位置に排水口を有し、当該排水口に排水ポンプが接続されていることを特徴とする雨水分離装置である。
[Fourth Invention]
3rd invention WHEREIN: It has a drain outlet in the position lower than the inlet port of the said intake pipe upper end in the said cover, The drainage pump is connected to the said drain port, It is a rain-water separator characterized by the above-mentioned.

[第5発明]
第1発明〜第4発明のいずれかの雨水分離装置を備えた連続式降下粉塵計測装置であって、
上方に向けた開口を有すると共に、下端が気流路と接続されている、ろうと状の粒子採取口と、
前記粒子採取口内に存在する大気中粒子を大気と共に前記粒子採取口の下端から前記気流路を通して吸引するための吸引装置と、
前記粒子採取口の後段に設けられ、前記粒子採取口から吸引された前記大気中粒子を粗大粒子と微小粒子に分ける分級器と、
前記分級器の後段に並列に設けられ、前記分級後の粗大粒子と微小粒子をそれぞれ、一定時間ごとに捕集面が更新されるテープ状又はカートリッジ交換式の捕集フィルタに捕集して、当該捕集されたそれぞれの粒子の質量を質量測定器によって連続計測し、前記分級後の粗大粒子と微小粒子それぞれにおける質量総量の時間変化を計測する、又は更に、前記計測された粗大粒子と微小粒子それぞれの質量総量の時間変化から前記粗大粒子の粉塵降下速度及び前記微小粒子の大気中濃度を算出する、粗大粒子計測部及び微小粒子計測部と、
前記計測部の後段に設けられ、前記捕集フィルタに捕集されなかった粒子を前記計測後の吸引された大気から除塵する除塵フィルタと、
前記粒子採取口、前記分級器、前記粗大粒子計測部及び微小粒子計測部、及び前記除塵フィルタを、この順番に接続し、前記吸引された大気を順次通す気流路と、
前記除塵後の大気を前記粒子採取口内に排気する循環気流路と、
前記気流路又は前記循環気流路の流路中に設けられた前記吸気装置と、
前記粗大粒子計測部及び前記微小粒子計測部を通過する気流量をそれぞれ所定の値に制御する流量制御装置と、
を備えていることを特徴とする、連続式降下粉塵計測装置である。
[Fifth invention]
A continuous falling dust measuring device including the rainwater separation device according to any one of the first to fourth inventions,
A funnel-shaped particle sampling port having an opening facing upward and having a lower end connected to the air flow path;
A suction device for sucking air particles present in the particle sampling port together with the atmosphere from the lower end of the particle sampling port through the air flow path;
A classifier that is provided at a subsequent stage of the particle sampling port, and classifies the atmospheric particles sucked from the particle sampling port into coarse particles and fine particles;
Provided in parallel in the subsequent stage of the classifier, each of the coarse particles and fine particles after the classification are collected in a tape-like or cartridge-exchangeable collection filter whose collection surface is updated at regular intervals, The mass of each collected particle is continuously measured by a mass measuring instrument, and the time change of the total mass of each of the coarse particles and fine particles after classification is measured, or further, the measured coarse particles and fine particles are measured. A coarse particle measurement unit and a fine particle measurement unit, which calculate the dust falling speed of the coarse particles and the concentration of the fine particles in the atmosphere from the time variation of the total mass of each particle,
A dust removal filter that is provided at a subsequent stage of the measurement unit and removes particles that have not been collected by the collection filter from the aspirated air after the measurement;
The particle sampling port, the classifier, the coarse particle measuring unit and the fine particle measuring unit, and the dust filter are connected in this order, and an air flow path for sequentially passing the sucked air,
A circulating air flow path for exhausting the air after dust removal into the particle sampling port;
The intake device provided in the flow path of the air flow path or the circulation air flow path;
A flow rate control device that controls the air flow rate passing through the coarse particle measurement unit and the fine particle measurement unit to a predetermined value, and
Is a continuous type falling dust measuring device.

本発明により、上方に開口を有する粒子採取口を有する大気中粒子の測定装置において、降雨開始から感雨計の降雨検知による粒子採取口蓋の閉止までの間に、測定装置の計測部に雨水が浸入することを大幅に抑制でき、浸水による機器故障を回避することができるようになる。   According to the present invention, in an apparatus for measuring atmospheric particles having a particle sampling port having an opening on the upper side, rainwater is added to the measurement unit of the measuring device between the start of rainfall and the closing of the particle sampling port by the rain detection of the rain gauge. It is possible to greatly suppress the intrusion, and it is possible to avoid equipment failure due to water immersion.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

[第1発明]
図3を用いて第1発明を説明する。図3は、本発明の雨水分離装置43を、大気中粒子の計測装置の1つである連続式降下粉塵測定装置に適用した例である。
[First invention]
The first invention will be described with reference to FIG. FIG. 3 shows an example in which the rainwater separation device 43 of the present invention is applied to a continuous falling dust measuring device which is one of atmospheric particle measuring devices.

本発明の雨水分離装置43は、筐体45の外部に設置された粒子採取口1の下端に接続された導水管37と、その導水管37の内部又は下方に、外径が導水管37の内径よりも小さく、且つ、上端に吸気口44を有する吸気管38を備えている(図では導水管37の内部に吸気管38が備えられた例を示している)。   The rainwater separation device 43 of the present invention includes a water conduit 37 connected to the lower end of the particle sampling port 1 installed outside the housing 45, and an outer diameter of the water conduit 37 inside or below the water conduit 37. An intake pipe 38 that is smaller than the inner diameter and has an intake port 44 at the upper end is provided (in the figure, an example in which the intake pipe 38 is provided inside the water conduit 37 is shown).

そして、導水管37の内面と吸気管38の外面との間には、雨水が通過することができる隙間が設けられている。   A gap through which rainwater can pass is provided between the inner surface of the water conduit 37 and the outer surface of the intake pipe 38.

粒子採取口1と導水管37は、筐体に接続した導水管支え46によって位置を保持される。吸気管37は筐体45の内部と外部を連結し、その下端は気流路11に接続されている。図3では吸気口44が導水管37の内部に位置する場合を示している。   The position of the particle sampling port 1 and the water conduit 37 is held by a water conduit support 46 connected to the housing. The intake pipe 37 connects the inside and the outside of the housing 45, and its lower end is connected to the air flow path 11. FIG. 3 shows a case where the intake port 44 is located inside the water conduit 37.

ここで、導水管37の粒子採取口1の下端への接続方法としては、溶接、ろう付け、または、締結等を用いることができる。   Here, welding, brazing, fastening, or the like can be used as a method for connecting the water conduit 37 to the lower end of the particle sampling port 1.

粒子採取口1内に進入した大気中粒子は、下流で吸引装置(ブロワまたは圧縮機)6に結合された吸気管37に、大気とともに吸引され、計測部4に流入して粒子個数、粒径、または、質量を計測される。   The particles in the atmosphere that have entered the particle sampling port 1 are sucked together with the atmosphere into an intake pipe 37 that is connected to a suction device (blower or compressor) 6 downstream, and flow into the measuring unit 4 to enter the number of particles and the particle size. Or the mass is measured.

計測部4を通過した大気は、流量制御装置9および除塵装置(除塵フィルタ)10を経由して吸引装置(ブロワまたは圧縮機)6から流出した後、粒子採取口1内に吐出される。   The air that has passed through the measurement unit 4 flows out of the suction device (blower or compressor) 6 via the flow rate control device 9 and the dust removal device (dust removal filter) 10, and is then discharged into the particle sampling port 1.

導水管37から吸引装置6を経由して粒子採取口1まで送られる大気は、気流路(循環気流路)11を通じて搬送される。   The air sent from the water conduit 37 to the particle sampling port 1 via the suction device 6 is conveyed through the air flow path (circulation air flow path) 11.

また、従来技術と同様の降雨時粒子採取口蓋開閉機構(感雨計34、粒子採取口蓋35、粒子採取口蓋駆動装置32等)を有する。   Further, it has a rain particle collecting palate opening / closing mechanism (rain gauge 34, particle collecting palate 35, particle collecting palate driving device 32, etc.) similar to the prior art.

粒子採取口内面と接続した導水管37は、吸気管38と略同軸に、かつ、吸気管外面との間に間隙を有するように配置され、雨水分離装置43を構成する。この際、導水管37と吸気管38とは同軸から多少ずれても構わないが、非降雨時の粒子採取特性の風速依存性を減じるために、同軸且つ間隙を均一として系が軸対称となるように設置することが好ましい。   The water conduit 37 connected to the inner surface of the particle sampling port is disposed so as to be substantially coaxial with the intake pipe 38 and to have a gap between the outer surface of the intake pipe and constitute a rainwater separator 43. At this time, the water guide pipe 37 and the intake pipe 38 may be slightly deviated from the same axis. However, in order to reduce the wind speed dependency of the particle collection characteristics at the time of non-rainfall, the system is axisymmetric with the same axis and uniform gap. It is preferable to install as described above.

粒子採取口内に進入した外気は、吸引されることによって吸気管吸気口44から計測装置内に流入する。粒子採取口内に外気とともに進入した大気中粒子も、外気とともに吸気管吸気口から計測装置内に流入する。これは、次の理由による。   The outside air that has entered the particle collection port flows into the measuring device from the intake pipe intake port 44 by being sucked. Atmospheric particles that have entered the particle collection port together with the outside air also flow into the measurement device from the intake pipe intake port together with the outside air. This is due to the following reason.

まず、直径数十μm程度以下の比較的微小な大気中粒子については、このような粒子は、大気運動への追従性が高いので外気流れとともに吸気口44に吸引され易いからである。次に、数百μm以上の粗大な固体粒子の場合、このような粒子は、外気流に追従しにくく、大気中を自由落下して粒子採取口内面に接触する。この際、粒子採取口内面は固体粒子が付着しにくい特性に一般に設計されているため、粗大粒子は、内面で反発されつつ中央下方の吸気口に収束し、最終的に吸気口に進入する。また、粒子採取口内面に一部の粗大粒子が付着したとしても、粒子採取口内部に存在する気流によってこのような粒子は容易に再飛散し、大部分が吸気口に進入するからである。   First, with respect to relatively minute atmospheric particles having a diameter of about several tens of μm or less, such particles are easy to be sucked into the intake port 44 together with the outside air flow because of their high followability to atmospheric motion. Next, in the case of coarse solid particles of several hundred μm or more, such particles are difficult to follow the external airflow, fall freely in the atmosphere, and come into contact with the inner surface of the particle sampling port. At this time, since the inner surface of the particle collection port is generally designed to have a characteristic that solid particles are difficult to adhere, the coarse particles are repelled on the inner surface and converge to the intake port below the center, and finally enter the intake port. Further, even if some coarse particles adhere to the inner surface of the particle sampling port, such particles are easily re-scattered by the air flow existing inside the particle sampling port, and most of the particles enter the intake port.

一方、降雨時の雨滴は、通常数百μm程度以上の粗大な液体粒子であり、粗大な固体粒子と同様に、粒子採取口に進入した当該液体粒子の大部分が粒子採取口内面と接触する。しかし、固体粗大粒子の場合と異なり、液体の粗大粒子は、粒子採取口内面に衝突しても、反発されることも、再飛散することもなく粒子採取口内壁面に沿って下方に流下して導水管内壁に沿って系外に排出される。導水管は筐体外部に存在するので、導水管の排水は、そのまま地面まで流下する。尚、導水管からの排水を筐体外部に導く流路を別途、設ければ、導水管を筐体内部に、配置することもできる。   On the other hand, the raindrops at the time of rain are usually coarse liquid particles of about several hundred μm or more, and like the coarse solid particles, most of the liquid particles entering the particle collection port come into contact with the inner surface of the particle collection port. . However, unlike the case of solid coarse particles, the liquid coarse particles flow down along the inner wall of the particle collection port without being repelled or re-scattered even if they collide with the inner surface of the particle collection port. It is discharged out of the system along the inner wall of the conduit. Since the water guide pipe exists outside the casing, the water discharged from the water guide pipe flows down to the ground as it is. In addition, if the flow path which guides the waste_water | drain from a water conduit to the exterior of a housing | casing is provided separately, a water conduit can also be arrange | positioned inside a housing | casing.

ところで、単に雨水を分離することのみが目的であるならば、導水管37の内部又は下方に吸気管38が設置される必要はなく、例えば、図9に示す様な管軸が交差する様な構成も可能である。しかし、この図の構成の場合、吸気管44の直前で、導水管内気流の向きが急変するため、粗大粒子が気流の方向の急変に追従できず、雨滴とともに、導水管出口方向に排出され、降下粉塵の捕集効率(吸気管に流入する降下粉塵の、粒子採取口を通過した降下粉塵に対する割合)が大幅に低下することから、大気中粒子の濃度計測時の精度を悪化させるため、採用することはできない。   By the way, if it is only intended to separate rainwater, it is not necessary to install the intake pipe 38 inside or below the water guide pipe 37. For example, the pipe axes as shown in FIG. Configuration is also possible. However, in the case of the configuration of this figure, the direction of the airflow in the conduit pipe changes immediately before the intake pipe 44, so that coarse particles cannot follow the sudden change in the direction of the airflow, and are discharged along with raindrops toward the outlet of the conduit pipe, Adopted because the collection efficiency of falling dust (ratio of falling dust flowing into the intake pipe to the falling dust passing through the particle sampling port) is greatly reduced, and this deteriorates the accuracy when measuring the concentration of particles in the atmosphere. I can't do it.

一方、導水管37の内部又は下方に吸気管38が設置される場合、特に、吸気管38と導水管37の軸が互いに平行、より望ましくは同軸となるように配置すれば、吸気口直前での気流の変化は最小限にとどまるので、降下粉塵の捕集効率の低下を大きく抑制することができる。   On the other hand, when the intake pipe 38 is installed inside or below the water guide pipe 37, in particular, if the intake pipe 38 and the water guide pipe 37 are arranged so that the axes of the intake pipe 38 and the water guide pipe 37 are parallel to each other, and more preferably coaxial with each other, immediately before the intake port. Since the change in the air flow is minimal, it is possible to greatly suppress the decrease in the dust collection efficiency.

従って、本発明においては、吸気管と導水管は、軸が互いに平行であることが好ましく、さらに、同軸であることがより好ましい。   Therefore, in the present invention, the intake pipe and the water guide pipe are preferably parallel to each other, and more preferably coaxial.

尚、軸を平行又は同軸に配置するにあたっては、装置の通常の製作精度範囲で、傾いたり、ずれたりしても構わない。例えば、平行や同軸とするにあたって、設計上または加工上の便宜のために、導水管軸心と吸気管軸心を完全な平行ではなく、軸心間に小さな角度がついても構わない。導水管の軸心が鉛直方向の場合、吸気管の軸心が鉛直方向から5°程度傾斜しても吸気管と導水管の間に隙間が維持される限り、吸気口での粒子採取効率への影響は軽微であるためである。また、傾斜角範囲が5°〜10°である場合には、吸気口での粒子採取効率が20%程度低下する場合があるが、所要測定精度条件が緩やかな場合には適用できる。   Note that when the axes are arranged in parallel or coaxially, they may be tilted or deviated within the normal manufacturing accuracy range of the apparatus. For example, in order to make it parallel or coaxial, for the convenience of design or processing, the water guide pipe axis and the intake pipe axis may not be completely parallel, but a small angle may be formed between the axes. If the axis of the water conduit is in the vertical direction, even if the axis of the intake pipe is tilted about 5 ° from the vertical direction, as long as a gap is maintained between the intake pipe and the water conduit, the particle collection efficiency at the intake port will be improved. This is because the influence of is minor. Further, when the tilt angle range is 5 ° to 10 °, the particle collection efficiency at the intake port may be reduced by about 20%, but it can be applied when the required measurement accuracy condition is moderate.

すなわち、本発明においては、吸気管と導水管は、上述の意味で、軸が互いに略平行に配置され、更には、略同軸に配置されることが好ましい。尚、吸気管を導水管の下方に配置する場合は、内部に配置する場合に比べて、傾きやずれに対する効果の低下は小さい傾向がある。   That is, in the present invention, the intake pipe and the water guide pipe are preferably arranged so that the axes thereof are substantially parallel to each other and further, are substantially coaxial in the above-described meaning. In addition, when arrange | positioning an intake pipe below a water conduit, compared with the case where it arrange | positions inside, there exists a tendency for the fall of the effect with respect to inclination or a shift | offset | difference to be small.

このように、本発明においては、簡易な構造によって、降雨のないときには測定対象である大気中固体粒子を計測部に吸引し、また、降雨のあるときには計測を阻害する雨滴は計測部に吸引しないという雨水分離効果が発揮される。尚、降雨時には粒子採取口内面は一般に濡れているので、ここに接触した大気中固体粒子は、反発も再飛散もせず、計測部には吸引されない。しかし、降雨時の大半の期間では、粒子採取口蓋が粒子採取口を覆って粒子採取口が外気と遮断されているので、このような期間に大気中固体粒子の計測を正確に行うことにはそもそも意味がなく、特に問題ない。本発明の主たる狙いは、降雨の開始時に装置内部の計測部に雨水を侵入させないことである。   As described above, in the present invention, with a simple structure, solid particles in the atmosphere as a measurement target are sucked into the measurement unit when there is no rain, and raindrops that impede measurement are not sucked into the measurement unit when there is rain. The rainwater separation effect is demonstrated. In addition, since the inner surface of the particle sampling port is generally wet during rain, the solid particles in the air that come into contact therewith are neither repelled nor re-scattered and sucked into the measuring unit. However, during most periods of rainfall, the particle sampling palate covers the particle sampling port and the particle sampling port is blocked from the outside air. There is no problem in the first place and there is no problem. The main aim of the present invention is to prevent rainwater from entering the measuring section inside the apparatus at the start of rainfall.

吸気管から吸引を行う際には、吸気管と導水管の間隙を通って一部の空気が流入することが避けられない。また、粒子採取口内を落下した粒子の一部はこの間隙を通って系外に流出してしまう。   When performing suction from the intake pipe, it is inevitable that a part of the air flows through the gap between the intake pipe and the water guide pipe. Also, some of the particles that have fallen through the particle collection port will flow out of the system through this gap.

これらの現象は、計測の外乱になりうるので、この間隙の悪影響を極力低下させるために間隙は狭い方が望ましい。一方、極端に狭い間隙では、降雨時の雨滴排水能力が不十分で吸気管に雨水があふれて流入する惧れがある。そこで、この間隙は、0.1mmから10mmの範囲に設定されることが好ましい。   Since these phenomena can cause measurement disturbances, it is desirable that the gap is narrow in order to reduce the adverse effects of the gap as much as possible. On the other hand, when the gap is extremely narrow, rainwater drainage capacity during raining is insufficient, and rainwater may flow into the intake pipe. Therefore, this gap is preferably set in the range of 0.1 mm to 10 mm.

また、間隙の吸気管軸方向長さは、間隙の通気抵抗を増大させて間隙を通じて吸気管に吸引される空気割合を低減させるために、長いことが望ましい。一方、極端に長い間隙は、装置を巨大化させるので問題である。そこで、この間隙の長さは、5mmから500mmに設定されることが好ましい。   Also, the length of the gap in the intake pipe axial direction is desirably long in order to increase the airflow resistance of the gap and reduce the proportion of air sucked into the intake pipe through the gap. On the other hand, an extremely long gap is a problem because it enlarges the apparatus. Therefore, the length of the gap is preferably set to 5 mm to 500 mm.

吸気管の内径は、壁面への粒子付着性と装置全体の大きさの観点から、例えば、直径2〜50mmとすることができる。吸気管内面の材質は、大気中粒子の付着しにくいものとして、ステンレス鋼等の金属、セラミックス、ガラス、または、フッ素樹脂等の合成樹脂を用いることができる。導水管内面は、通気性がなく、かつ、排水性を損なうことのない構造であることが重要であり、表面を平滑化できる材料、例えばステンレス鋼等の金属を用いることができる。   The inner diameter of the intake pipe can be set to, for example, 2 to 50 mm in diameter from the viewpoint of particle adhesion to the wall surface and the size of the entire apparatus. As the material of the inner surface of the intake pipe, it is possible to use a metal such as stainless steel, ceramics, glass, or a synthetic resin such as a fluororesin, as it is difficult for particles in the air to adhere. It is important that the inner surface of the water conduit has no air permeability and does not impair drainage, and a material that can smooth the surface, such as a metal such as stainless steel, can be used.

[第2発明]
図4を用いて第2発明を説明する。本発明は、図3の装置に旋回流抑制器41を付加したものである。
[Second invention]
The second invention will be described with reference to FIG. In the present invention, a swirl flow suppressor 41 is added to the apparatus shown in FIG.

粒子採取口から吸引された気流に強い旋回流成分(すなわち、吸気管中心軸を回転軸とした気流成分)が存在すると次のような問題が存在するので、この成分は抑制されるべきである。まず、旋回流成分は吸気流中の固体粒子を吸気管中心軸からみて半径方向外側に押しやる効果があり、粒子が計測部に達する前に壁面に付着し易くなり、粒子捕集率の低下や粒子捕集の時間遅れ等の悪影響を招くからである。次に、様々な目的で、吸気した大気中粒子をサイクロンやバーチャルインパクタなどの分級器を用いて分級する場合があり、旋回流成分はこの分級特性に悪影響を与えるからである。特に、円錐ろうと状の粒子採取口の場合、粒子採取口入口で発生する不可避的な微小な旋回流が、下方に吸引されつつ回転半径を減じる間に角運動保存効果によって旋回流の旋回速度が急激に上昇するので、旋回流抑制の必要性は特に大きい。   If there is a strong swirl flow component (that is, an airflow component with the central axis of the intake pipe as the rotation axis) in the airflow sucked from the particle sampling port, the following problems exist, and this component should be suppressed: . First, the swirl component has the effect of pushing the solid particles in the intake flow radially outward as viewed from the central axis of the intake pipe, making it easier for the particles to adhere to the wall surface before reaching the measurement section, and reducing the particle collection rate. This is because adverse effects such as time delay of particle collection are caused. Next, for various purposes, inhaled atmospheric particles may be classified using a classifier such as a cyclone or a virtual impactor, and the swirling flow component adversely affects the classification characteristics. In particular, in the case of a conical funnel-shaped particle sampling port, the inevitable minute swirling flow generated at the particle sampling port inlet is sucked downward, and the rotational speed of the swirling flow is reduced by the angular motion preserving effect while reducing the turning radius. Since it rises rapidly, the necessity of swirling flow suppression is especially great.

旋回流抑制器は、少なくとも計測部の上流に設置すべきである。さらに、分級器が存在する場合には分級器よりも上流に設置する。また旋回流の抑制は、粒子採取口の末端以降の下流で行うことが効果的である。   The swirl flow suppressor should be installed at least upstream of the measuring unit. Furthermore, when a classifier exists, it is installed upstream from the classifier. Further, it is effective to suppress the swirling flow downstream after the end of the particle sampling port.

旋回流抑制器の構造は、旋回流成分を抑制できればどのようなものでもよいが、旋回流の垂直方向に壁面を設けて旋回流を阻害する方法が簡易、かつ、軸方向流れを阻害しにくいので望ましい。例えば、図4に示す、管内主流と略平行方向に配置された複数の薄板を組み合わせた構造にすることができる。導水管や吸気管内部にこの構造の旋回流抑制器を設ける場合には、旋回流抑制器を管内に挿入し、旋回流抑制器の外周を管内壁にろう付けするなどして接合すればよい。   The structure of the swirl flow suppressor may be any structure as long as the swirl flow component can be suppressed, but the method of blocking the swirl flow by providing a wall surface in the vertical direction of the swirl flow is simple and hardly hinders the axial flow. So desirable. For example, the structure shown in FIG. 4 can be combined with a plurality of thin plates arranged in a direction substantially parallel to the main flow in the pipe. When the swirl flow suppressor having this structure is provided inside the water conduit or the intake pipe, the swirl flow suppressor may be inserted into the pipe and joined by brazing the outer periphery of the swirl flow suppressor to the inner wall of the pipe. .

また、雨水排水性を考慮して、旋回流抑制器の外周側ほど下端が下方に位置する構造にしてもよい。例えば、導水管内に旋回流抑制器を設ける場合、大部分の雨滴は粒子採取口に衝突して導水管へと流下するものの、残りの雨滴の一部は、旋回流抑制器の半径方向中心部に付着することが避けられない。この旋回流抑制器の半径方向中心部を薄板に沿って流下した雨滴は、旋回流抑制器の下端に到達すると、表面張力の効果によって、その位置から雨滴が離脱せずに、下端のより低い位置に下端を伝わってさらに流下する。このため、旋回流抑制器の外周ほど下端を下方に位置させることによって、中心付近の薄板に沿って流下した雨滴は、外周部下端に集められて導水管内壁に接触した後、導水管内壁を伝ってさらに流下し、最終的に系外に排出される。この結果、旋回流抑制器の半径方向中心部に付着した雨滴であっても、吸気管内に落下することはない。   In consideration of rainwater drainage, the lower end of the swirl flow suppressor may be positioned below the outer peripheral side. For example, when a swirl flow suppressor is provided in a water conduit, most raindrops collide with the particle sampling port and flow down to the water conduit, but some of the remaining raindrops are in the radial center of the swirl flow suppressor. It is inevitable to adhere to. When the raindrops flowing down the central part in the radial direction of the swirl flow suppressor along the thin plate reach the lower end of the swirl flow suppressor, the raindrop does not leave from the position due to the effect of surface tension, and the lower of the lower end It flows down the lower end to the position. For this reason, by positioning the lower end downward as the outer periphery of the swirl flow suppressor, the raindrops flowing down along the thin plate near the center are collected at the lower end of the outer periphery and contact the inner wall of the conduit, and then the inner wall of the conduit Then it flows down further and is finally discharged out of the system. As a result, even raindrops attached to the central portion in the radial direction of the swirl flow suppressor do not fall into the intake pipe.

旋回流抑制器を構成する薄板の寸法は、十分な耐風強度を持ち、軸方向流れを阻害しない観点から、厚み0.1〜5mmにすることが好ましい。軸方向長さは、2〜100mmにすることが好ましい。軸方向長さ2mm未満の旋回流抑制器の場合、旋回流抑制効果が低い問題があり、また、極端に長い旋回流抑制器の場合、装置が巨大化させてしまうからである。   The thickness of the thin plate constituting the swirl flow suppressor is preferably 0.1 to 5 mm from the viewpoint of having sufficient wind resistance and not hindering the axial flow. The axial length is preferably 2 to 100 mm. This is because the swirling flow suppressor having an axial length of less than 2 mm has a problem that the swirling flow suppressing effect is low, and in the case of an extremely long swirling flow suppressor, the device is enlarged.

旋回流抑制器の材質は、大気中粒子の付着しにくいものとして、ステンレス鋼等の金属、セラミックス、ガラス、または、フッ素樹脂等の合成樹脂を用いることができる。   As the material of the swirl flow suppressor, a metal such as stainless steel, ceramics, glass, or a synthetic resin such as a fluororesin can be used as a material to which particles in the air hardly adhere.

[第3発明]
図5を用いて第3発明を説明する。本発明は、図4の装置で、導水管下端よりも吸気管上端(吸気口)を下方に配置し、さらに、導水管下端と吸気管上端の周囲を覆い39で囲って雨水分離装置としたものである
[Third invention]
The third invention will be described with reference to FIG. In the apparatus of FIG. 4, the upper end of the intake pipe (intake port) is disposed below the lower end of the water conduit, and the periphery of the lower end of the water guide pipe and the upper end of the intake pipe is covered with 39 to form a rainwater separator. Is a thing

前述のように、図3の構造の場合、吸気管と導水管間の間隙を通じて空気や大気中粒子が流通することによる計測への悪影響が生じる場合がある。しかし、図5の構造にすれば、粒子採取口内から吸引された気流及び大気中固体粒子の大部分は、半径方向に縮流して吸気管に進入することができる。また、降雨時に導水管内壁に沿って流下した雨水は、縮流する周囲大気にほとんど追従せずに吸気管の外側に落下する。この結果、雨水から大気中粒子を分離して計測部に吸引することができる。覆いには、吸気管に粒子採取口以外から流入する空気量を抑制する効果がある。   As described above, in the case of the structure shown in FIG. 3, there is a case where an adverse effect is caused on the measurement due to air and atmospheric particles flowing through the gap between the intake pipe and the water guide pipe. However, with the structure shown in FIG. 5, most of the airflow sucked from the inside of the particle collection port and the solid particles in the atmosphere can flow in the radial direction and enter the intake pipe. In addition, rainwater that has flowed down along the inner wall of the water conduit during rainfall falls outside the intake pipe without substantially following the contracting ambient air. As a result, atmospheric particles can be separated from rainwater and sucked into the measurement unit. The cover has an effect of suppressing the amount of air flowing into the intake pipe from other than the particle sampling port.

覆い39内に落下した雨水は、覆い39下部に設けられた排水口40から排出する。覆い39からの雨水の排出は、排水口40を常時開放して重力による自然流出であってもよいし、降雨のないときに排水口40が開口していることによる覆い39内の汚染を防止する等のために、排水口40に開閉弁と、覆い39内の水量を検知する検知器を設置して、覆い内に水の存在するときのみ前記開閉弁を開放して覆い内の雨水を排水してもよい。   The rainwater that has fallen into the cover 39 is discharged from a drain port 40 provided at the bottom of the cover 39. The drainage of rainwater from the cover 39 may be a natural outflow due to gravity by always opening the drainage port 40, or preventing contamination inside the cover 39 due to the opening of the drainage port 40 when there is no rain. For this purpose, an opening / closing valve and a detector for detecting the amount of water in the cover 39 are installed at the drain port 40, and the opening / closing valve is opened only when water is present in the cover, and rainwater in the cover is removed. You may drain.

吸気管外径は、導水管内径以下でなければならない。望ましくは、0.5〜5mmの径差(直径)である。吸気管上端(吸気口)は、吸気口への気流の縮流を安定化させるために導水管下端よりも下方であることが望ましく、1〜50mmの軸方向距離にすることができる。   The outside diameter of the intake pipe must be less than the inside diameter of the conduit. Desirably, the diameter difference (diameter) is 0.5 to 5 mm. The upper end of the intake pipe (intake port) is desirably lower than the lower end of the water conduit in order to stabilize the contraction of the airflow to the intake port, and can be set to an axial distance of 1 to 50 mm.

尚、設計の便宜などの観点から、吸気管上端を導水管下端と同一高さ、または、導水管下端よりも上方に設置することもできる。この場合には、吸気口への粒子の捕集効率が低下しがちになるが、雨水分離機能上は問題ない。   In addition, from the viewpoint of convenience of design, the upper end of the intake pipe can be installed at the same height as the lower end of the water guide pipe or above the lower end of the water guide pipe. In this case, the efficiency of collecting particles at the air inlet tends to be lowered, but there is no problem in the rainwater separation function.

排水口上端は、排水性を確保するために、吸気管吸気口よりも下方であることが必要であり、例えば、1〜100mmの軸方向距離(鉛直方向距離)にすることができる。排水口の大きさは、排水性と耐漏風性の観点から、例えば、直径1〜10mmとすることができる。覆いの内容積は、瞬時に大量の雨水が覆い内に浸入した場合に一時的に雨水を貯留するために大きいことが望ましく、かつ、排水口からの排水流量を高めるための水頭圧を確保するために軸方向に長いことが望ましい。従って、覆いの内容積を、1×10−4〜1×10−2とすることが好ましい。 The upper end of the drainage port needs to be lower than the intake pipe intake port in order to ensure drainage, and can be, for example, an axial distance (vertical direction distance) of 1 to 100 mm. The size of the drainage port can be set to, for example, 1 to 10 mm in diameter from the viewpoint of drainage and wind leakage resistance. The inner volume of the cover should be large enough to temporarily store rainwater when a large amount of rainwater enters the cover instantaneously, and ensure the head pressure to increase the drainage flow rate from the drain outlet. Therefore, it is desirable to be long in the axial direction. Therefore, it is preferable that the inner volume of the cover is 1 × 10 −4 to 1 × 10 −2 m 3 .

覆いの材質は、十分な強度を有し、雨水の排水性が高く、固体粒子の付着性の低いものが望ましい。例えば、ステンレス鋼等の金属製、アクリル等の合成樹脂製、セラミックス製、または、ソーダガラス等のガラス製にすることができる。   The covering material is preferably a material having sufficient strength, high rainwater drainage, and low solid particle adhesion. For example, it can be made of a metal such as stainless steel, a synthetic resin such as acrylic, a ceramic, or a glass such as soda glass.

[第4発明]
図6を用いて第4発明を説明する。本発明は、図5の装置で、排水口40に排水ポンプ42を追加したものである。図5の装置では、瞬時に大量の雨水が覆い内に流入した場合に備えて覆いの内容積を大きく設定しておく必要がある。本発明では、排水ポンプ42を排水口に設置して、一定流量で空気、または、雨水を系外に排出することにより、覆いの必要内容積を減じて装置を小型化させることができる。
[Fourth Invention]
The fourth invention will be described with reference to FIG. In the present invention, a drain pump 42 is added to the drain port 40 in the apparatus of FIG. In the apparatus of FIG. 5, it is necessary to set a large volume of the cover in preparation for a case where a large amount of rainwater flows into the cover instantaneously. In the present invention, by installing the drain pump 42 at the drain outlet and discharging air or rain water out of the system at a constant flow rate, the required internal volume of the cover can be reduced and the apparatus can be miniaturized.

例えば、覆いの内容積を、3×10−6〜1×10−4とすることができる。 For example, the internal volume of the cover can be set to 3 × 10 −6 to 1 × 10 −4 m 3 .

排水ポンプは、感雨計によって降雨を検出して降雨時のみ運転してもよいが、前述のような降雨検出の時間遅れの悪影響を排除するために、常時運転してもよい。排水ポンプを常時運転すると、粒子採取口からの吸気の一部も系外に排出されてしまい、計測精度に悪影響を与えうる。しかし、瞬時の大量雨水に備えて排出しなければならない流量は、高々、1×10−4/minであり、一方、一般的な大気中粒子計測装置での吸気流量は、1×10−2/min以上であるので、この悪影響は、無視されうる。排水ポンプの形式はどのようなものでも適用できるが、一定流量での排出の可能な、ベーンポンプ等の体積型ポンプを用いることができる。排水ポンプの流量は、1×10−5〜1×10−4/minであることが望ましいが、計器の設置場所で想定される気象条件から適宜判断して、この範囲外としてもかまわない。 The drainage pump may be operated only when it is rained by detecting rain with a rain gauge, but may be operated at all times in order to eliminate the adverse effects of the time delay of rain detection as described above. If the drainage pump is always operated, a part of the intake air from the particle sampling port is also discharged out of the system, which may adversely affect the measurement accuracy. However, the flow rate that must be discharged in preparation for a momentary amount of rainwater is at most 1 × 10 −4 m 3 / min, while the intake flow rate in a general atmospheric particle measuring device is 1 × 10 6. This adverse effect can be ignored since it is −2 m 3 / min or higher. Any type of drainage pump can be applied, but a volumetric pump such as a vane pump capable of discharging at a constant flow rate can be used. The flow rate of the drainage pump is preferably 1 × 10 −5 to 1 × 10 −4 m 3 / min, but it may be outside this range, as determined appropriately from the weather conditions assumed at the installation location of the instrument. Absent.

[第5発明]
図7を用いて第5発明を説明する。採取口中の粒子は、雨水分離装置43を通過して吸気管に吸引され分級器8に到達する。ここで、粒子は、自由落下しうる粗大な粒子である降下粉塵と、これより小径の微小粒子に分級される。分級された粒子は、それぞれ粗大粒子様分岐気流路12と微小粒子様分岐気流路13に分けられ、それぞれ粗大粒子用計測部20と微小粒子用計測部21に流入して捕集フィルタ5上に捕集され、β線吸収式質量計測器や振動素子式マイクロ天秤等によって、質量を連続的に計測される。捕集フィルタによって粒子の大半を除去された大気は、粗大粒子様分岐気流路12と微小粒子様分岐気流路13の合流した主循環気流路を通って除塵フィルタ10によってさらに除塵されて清浄化された後、ブロワ6によって粒子採取口1内に吐出される。流路全体の流量制御は、流量計と調整弁を備えた流量制御装置9によりなされる。
[Fifth invention]
The fifth invention will be described with reference to FIG. The particles in the sampling port pass through the rainwater separator 43 and are sucked into the intake pipe and reach the classifier 8. Here, the particles are classified into falling dust, which is coarse particles that can fall freely, and fine particles having a smaller diameter. The classified particles are divided into a coarse particle-like branched air flow channel 12 and a fine particle-like branched air flow channel 13, respectively, and flow into the coarse particle measuring unit 20 and the fine particle measuring unit 21, respectively, and onto the collection filter 5. The collected mass is continuously measured by a β-ray absorption mass measuring instrument, a vibration element type micro balance, or the like. The air from which most of the particles have been removed by the collection filter is further dedusted and purified by the dust filter 10 through the main circulation air passage where the coarse particle-like branch air passage 12 and the fine particle-like branch air passage 13 merge. After that, the particles are discharged into the particle sampling port 1 by the blower 6. The flow control of the entire flow path is performed by a flow control device 9 including a flow meter and an adjustment valve.

このように、吸引した粒子を降下粉塵(粗大粒子)と微小粒子に予め分けて質量計測を行うことにより、降下粉塵降下速度とそれ以外のSPM濃度の時間推移を測定することができる。そもそも、降下粉塵降下速度を算出するための粗大粒子捕集量は、粒子採取口の面積に比例する量であり、一方、SPM濃度を算出するためのSPM捕集量は、吸気流量に比例する量である。このため、降下粉塵とSPMを区別せずに捕集し、これを全て降下粉塵に対応する捕集量とみなした場合、SPMの捕集量分の測定誤差を生じる。この測定誤差は、外気中SPM濃度と吸気流量に依存するので、予測して補正することは困難である。本発明ではこの測定誤差の原因となる微小粒子を、予め降下粉塵降下速度の測定対象から除外しているので、降下粉塵降下速度の測定精度が高い。さらに、健康影響が大きいといわれている、微小なSPMの大気中濃度の多寡の傾向も同時に計測することができる。   Thus, the time transition of the falling dust falling speed and other SPM concentrations can be measured by dividing the sucked particles into falling dust (coarse particles) and fine particles and performing mass measurement in advance. In the first place, the coarse particle collection amount for calculating the falling dust falling speed is an amount proportional to the area of the particle sampling port, whereas the SPM collection amount for calculating the SPM concentration is proportional to the intake air flow rate. Amount. For this reason, when the falling dust and the SPM are collected without being distinguished, and all of these are regarded as the collected amount corresponding to the falling dust, a measurement error corresponding to the collected amount of the SPM occurs. Since this measurement error depends on the outside air SPM concentration and the intake air flow rate, it is difficult to predict and correct. In the present invention, the fine particles that cause this measurement error are excluded in advance from the measurement target of the falling dust falling speed, and therefore the measurement accuracy of the falling dust falling speed is high. Furthermore, it is possible to simultaneously measure a tendency of a large amount of minute SPM concentration in the atmosphere, which is said to have a great health effect.

(実施例1)
図3に示す構造の降下粉塵計測装置を屋外で運用して降下粉塵の連続測定を行った。粒子採取口1は、入口直径200mmの円錐ろうと状のステンレス鋼構造であり、ろうとを円錐とみなした場合の頂角を25°(鉛直方向長さ約450mm)とした。
Example 1
The falling dust measuring device having the structure shown in FIG. 3 was operated outdoors to perform continuous measurement of falling dust. The particle collection port 1 has a conical wax-like stainless steel structure with an inlet diameter of 200 mm, and the apex angle when the wax is regarded as a cone is 25 ° (vertical length: about 450 mm).

循環気流の粒子採取口1への吐出方法は、粒子採取口1の外縁全周に沿って設けられたヘッドタンクによりヘッドタンク内部を均圧化し、粒子採取口1内縁全周に沿って設けられ、前記ヘッドタンクに接続したスリット状のノズルを通じて粒子採取口入口直下に、全周均一に、粒子採取口内面に沿って下向きに吐出した。具体的には、粒子採取口の末端に内径22mmのステンレス鋼製導水管37を接続し、導水管37と同一の中心軸をもち、外径20mm、内径18mmのステンレス鋼製吸気管38を設置した。導水管37と吸気管38の中心軸方向(鉛直方向)での重なりを50mmとした。その他全ての気流路11内面も、ステンレス鋼製とした。   The method of discharging the circulating air flow to the particle sampling port 1 is that the pressure inside the head tank is equalized by the head tank provided along the entire outer periphery of the particle sampling port 1 and provided along the entire inner periphery of the particle sampling port 1. Then, it was discharged downward along the inner surface of the particle collection port uniformly and directly around the inlet of the particle collection port through a slit-like nozzle connected to the head tank. Specifically, a stainless steel water conduit 37 having an inner diameter of 22 mm is connected to the end of the particle sampling port, and a stainless steel intake pipe 38 having the same central axis as the water conduit 37 and having an outer diameter of 20 mm and an inner diameter of 18 mm is installed. did. The overlap of the water guide pipe 37 and the intake pipe 38 in the central axis direction (vertical direction) was 50 mm. The inner surfaces of all other air flow paths 11 were also made of stainless steel.

試験用に、導水管37の下端には図示しない容量100Lの密閉可能なポリエチレン容器を設置し、導水管37下端と前記ポリエチレン容器の間をビニールチューブで繋いで、粒子採取口1内に落下して導水管37から排出された雨水のみを前記ポリエチレン容器に捕集蓄積した。前記ポリエチレン容器に貯留された雨水量の増加量を1回の降雨ごとに手作業で計測、記録した。循環気流量が1Nm/時間となるように制御して粒子採取口1内の大気中粒子を大気とともに吸気管38から吸引し、計測部4において市販のβ線吸収式質量計測器によって質量計測を行った。 For the test, a sealable polyethylene container having a capacity of 100 L (not shown) is installed at the lower end of the water conduit 37 and the lower end of the water conduit 37 and the polyethylene container are connected by a vinyl tube and dropped into the particle sampling port 1. Only the rainwater discharged from the water conduit 37 was collected and accumulated in the polyethylene container. The increase in the amount of rainwater stored in the polyethylene container was manually measured and recorded for each rainfall. The circulating air flow rate is controlled to be 1 Nm 3 / hour to suck the atmospheric particles in the particle sampling port 1 from the intake pipe 38 together with the atmosphere, and the measurement unit 4 measures the mass with a commercially available β-ray absorption mass meter. Went.

質量計測のために粒子を捕集する捕集フィルタ5は、多孔質で幅20mmの白色フッ素樹脂テープとし、このうち、直径10mmの範囲で粒子を捕集するように、上下に分割された気流路端が質量測定中にはフッ素樹脂テープを挟み込むように流路を設定した。質量計測器を用いて1時間ごとに連続的に捕集粒子の質量を計測し、結果を電子データとして保存した。捕集フィルタ送り装置14として、ロールの送り出し・巻き取り機構を採用し、1時間ごとに間欠的に粒子捕集済み捕集フィルタを送り出した。除塵フィルタ10は、1μm用の汎用繊維状フィルタの下流に0.3μm用のセラミックフィルタを設置して、排気の清浄化を図った。また、市販の感雨計34を用いて降雨を検知し、降雨時には粒子採取口蓋35が粒子採取口1入口に覆い、粒子採取口内を外気と遮断するようにした。   The collection filter 5 for collecting particles for mass measurement is made of a porous white fluororesin tape having a width of 20 mm. Among these, the airflow divided up and down so as to collect particles within a diameter of 10 mm. The flow path was set so that the path end sandwiched the fluororesin tape during mass measurement. The mass of the collected particles was continuously measured every hour using a mass measuring instrument, and the results were stored as electronic data. As the collection filter feeding device 14, a roll feeding / winding mechanism was adopted, and the collection filter with the particles collected intermittently was sent out every hour. The dust removal filter 10 was provided with a ceramic filter for 0.3 μm downstream of a general-purpose fiber filter for 1 μm to clean the exhaust. Further, the rain was detected by using a commercially available rain gauge 34, and at the time of rain, the particle collection port cover 35 covered the particle collection port 1 inlet so as to block the inside of the particle collection port from the outside air.

本装置を用いて6ヶ月間の連続自動測定を実施した。この間、計測器内への雨水浸入による設備故障は一度も発生しなかった。また、前記ポリエチレン容器に採取された雨水は、1回の降雨当たりの平均で0.3mL、最大で100mLであった。さらに、前記ポリエチレン容器に採取された雨水中に含まれた粒子、即ち、粒子採取口から導水管から漏出した大気中粒子の総質量は、計測器によって質量計測された粒子の総質量の15%であった。   Continuous automatic measurement for 6 months was performed using this apparatus. During this time, no equipment failure occurred due to rainwater intrusion into the measuring instrument. Moreover, the average amount of rainwater collected in the polyethylene container was 0.3 mL per rainfall, and the maximum was 100 mL. Further, the total mass of particles contained in the rainwater collected in the polyethylene container, that is, the atmospheric particles leaked from the water conduit through the particle collection port is 15% of the total mass of the particles measured by the measuring instrument. Met.

(比較例1)
図9に示す雨水分離装置を用い、これ以外を実施例1と同様の条件として試験を実施した。雨水分離装置43の構造は、導水管37壁に開口し、ここを通して導水管37内部に吸気管38を挿入し、前記導水管37の開口部と吸気管38の隙間を溶接してふさぐとともに、吸気管38を導水管37に固定した。導水管37の軸心は鉛直方向、吸気管38の軸心には水平から15°の傾斜を設けた。
(Comparative Example 1)
The test was carried out using the rainwater separator shown in FIG. 9 under the same conditions as in Example 1 except for the above. The structure of the rainwater separation device 43 is open to the wall of the conduit pipe 37, through which the intake pipe 38 is inserted into the conduit pipe 37, and the gap between the opening of the conduit pipe 37 and the intake pipe 38 is welded and sealed, The intake pipe 38 was fixed to the water guide pipe 37. The axis of the water guide pipe 37 is provided in the vertical direction, and the axis of the intake pipe 38 is provided with an inclination of 15 ° from the horizontal.

その結果、前記ポリエチレン容器に採取された雨水は、1回の降雨当たりの平均で0.3mLであり、6ヶ月間の連続操業で雨水浸水による設備故障は発生しなかった。しかし、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の150%であり、吸気口での粒子捕集効率が、導水管と吸気管が同軸の場合に比べて著しく低下した。   As a result, the average amount of rainwater collected in the polyethylene container was 0.3 mL per rainfall, and no equipment failure due to rainwater inundation occurred during continuous operation for 6 months. However, the total mass of the particles contained in the rainwater collected in the polyethylene container is 150% of the total mass of the particles measured by the measuring instrument, and the particle collection efficiency at the intake port is And the intake pipe was significantly lower than the coaxial case.

(比較例2)
実施例1と同様の試験を、雨水分離装置のない装置で実施した。その結果、6ヶ月間で計3回の雨水浸入による設備故障を発生した。故障発生時に計測部を分解して浸水量を調査した結果、いずれの事故においても少なくとも7mL以上の雨水の浸入が認められた。実施例1で観測された1回ごとの降雨での前記ポリエチレン容器の雨水捕集増加量は、雨水分離装置のない本比較例の装置では、直接、計測部に浸入する。故障頻度からみて、本比較例の装置では、平均的な降雨では装置故障に至る大量の計測部への浸水は発生しないものの、実施例1での雨水最大捕集量(即ち、100mL。これは故障発生時の計測部浸水量7mLよりもはるかに多い)発生時相当の降雨の場合には容易に雨水浸水による設備故障が発生すると考えられる。この様な実施例1での雨水最大捕集量発生時相当の降雨は、長期間の運転を行えば一定頻度で発生することは避けられないので、本比較例の装置では長期間の運転を浸水事故無しに実施することが困難であることが判明した。
(Comparative Example 2)
The same test as in Example 1 was carried out in an apparatus without a rainwater separator. As a result, equipment failure occurred due to rainwater intrusion three times in total for 6 months. As a result of disassembling the measuring section and investigating the amount of water in the event of a failure, intrusion of at least 7 mL of rainwater was observed in all accidents. The increase in the amount of rainwater collected in the polyethylene container in each rainfall observed in Example 1 directly enters the measuring unit in the apparatus of this comparative example without a rainwater separator. In view of the failure frequency, in the device of this comparative example, the average amount of rain does not cause inundation of a large amount of measurement units that would lead to device failure, but the maximum amount of rainwater collected in Example 1 (that is, 100 mL. In case of rain equivalent to the time of occurrence), it is considered that the equipment failure easily occurs due to rainwater inundation. Since the rain corresponding to the maximum amount of rainwater collected in Example 1 is inevitably generated at a constant frequency if the operation is performed for a long period of time, the apparatus of this comparative example can be operated for a long period of time. It turned out to be difficult to implement without inundation.

(実施例2)
図4に示す旋回流抑制器41を設置し、これ以外をすべて実施例1と同様の条件で試験を実施した。旋回流抑制器は、板厚0.3mm長さ30mmのステンレス鋼板を上面からみて板の端面が十文字になる様に組み合わせて構成され、導水管の直上に設置された。その結果、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の7%であった。
(Example 2)
The swirl flow suppressor 41 shown in FIG. 4 was installed, and all other tests were performed under the same conditions as in Example 1. The swirl flow suppressor was configured by combining a stainless steel plate having a plate thickness of 0.3 mm and a length of 30 mm so that the end surface of the plate becomes a cross shape when viewed from above, and was installed immediately above the water conduit. As a result, the total mass of the particles contained in the rainwater collected in the polyethylene container was 7% of the total mass of the particles measured by the measuring instrument.

(実施例3)
図5に示す雨水分離装置43を設置し、これ以外をすべて実施例1と同様の条件で試験を実施した。旋回流抑制器41は、実施例2と同様のものを用いた。導水管37及び吸気管38の径及び材質は、実施例1と同様のものを用い、導水管下37端から下方に5mmの位置に吸気口44を設置した。覆い43は、高さ100mmで内容積0.0005mの組立式箱型のステンレス鋼製とし、底面に直径8mmの排水口40を設けた。覆い43は、導水管壁に外側からネジ止めした。覆い43と導水管外壁や吸気管外壁との間の隙間は、パテを用いて閉止した。排水口にビニールチューブの一端を接続し、他端を前記ポリエチレン容器に挿入して、覆い43からの排水をポリエチレン容器に捕集できるようにした。
(Example 3)
The rainwater separator 43 shown in FIG. 5 was installed, and all other tests were performed under the same conditions as in Example 1. As the swirl flow suppressor 41, the same one as in Example 2 was used. The diameter and material of the water guide pipe 37 and the intake pipe 38 were the same as those in Example 1, and the air inlet 44 was installed at a position 5 mm below the end of the water guide pipe 37. The cover 43 is made of an assembling-type box-type stainless steel having a height of 100 mm and an internal volume of 0.0005 m 3 , and a drain port 40 having a diameter of 8 mm is provided on the bottom surface. The cover 43 was screwed to the water conduit wall from the outside. A gap between the cover 43 and the outer wall of the conduit pipe or the outer wall of the intake pipe was closed using a putty. One end of the vinyl tube was connected to the drainage port, and the other end was inserted into the polyethylene container so that the drainage from the cover 43 could be collected in the polyethylene container.

その結果、前記ポリエチレン容器に採取された雨水は、1回の降雨当たりの平で均0.33mLであった。また、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の3%であった。   As a result, the amount of rainwater collected in the polyethylene container was 0.33 mL on average per rainfall. Moreover, the total mass of the particles contained in the rainwater collected in the polyethylene container was 3% of the total mass of the particles measured by the measuring instrument.

(実施例4)
図6に示す雨水分離装置43を設置し、これ以外をすべて実施例1と同様の条件で試験を実施した。旋回流抑制器41は、実施例2と同様のものを用いた。導水管37及び吸気管38の径及び材質は、実施例1と同様のものを用い、導水管37下端から下方に5mmの位置に吸気口44を設置した。覆い43は、内容積0.00005mの組立式箱型のステンレス鋼製とし、底面に直径3mmの排水口40を設け、た。排水口にはベーンポンプを設置し、流量0.00005m/minの流量で、常時、覆い43内部の空気または水を系外に排出した。ペーンポンプ42の吐出口にビニールチューブの一端を接続し、他端を前記ポリエチレン容器に挿入して、覆い43からの排水をポリエチレン容器に捕集できるようにした。
Example 4
The rainwater separator 43 shown in FIG. 6 was installed, and all other tests were performed under the same conditions as in Example 1. As the swirl flow suppressor 41, the same one as in Example 2 was used. The diameter and material of the water guide pipe 37 and the intake pipe 38 were the same as those in Example 1, and the air inlet 44 was installed at a position 5 mm below the lower end of the water guide pipe 37. Cover 43, a prefabricated box-type stainless steel having an inner volume of 0.00005M 3, the provided drain outlet 40 having a diameter of 3mm on the bottom, was. A vane pump was installed at the drain outlet, and air or water inside the cover 43 was always discharged out of the system at a flow rate of 0.00005 m 3 / min. One end of a vinyl tube was connected to the discharge port of the pane pump 42, and the other end was inserted into the polyethylene container so that drainage from the cover 43 could be collected in the polyethylene container.

その結果、前記ポリエチレン容器に採取された雨水は、1回の降雨当たりの平均で0.33mLであった。また、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の3%であった。   As a result, the average amount of rainwater collected in the polyethylene container was 0.33 mL per rainfall. Moreover, the total mass of the particles contained in the rainwater collected in the polyethylene container was 3% of the total mass of the particles measured by the measuring instrument.

(実施例5)
図7に示す構造の降下粉塵計測装置を屋外で運用して降下粉塵の連続測定を行った。粒子採取口、循環気流の粒子採取口への吐出方法、導水管、吸気管、雨水分離装置、感雨計、旋回流抑制器、粒子採取口蓋、粒子採取口蓋駆動装置、並びに、前記ポリエチレン容器は、実施例4と同様にした。また、実施例4と同様の構造の旋回流抑制器を、導水管内に設置した。
(Example 5)
The falling dust measuring apparatus having the structure shown in FIG. 7 was operated outdoors to continuously measure falling dust. Particle collection port, method for discharging circulating airflow to particle collection port, water conduit, intake pipe, rainwater separator, rain meter, swirl flow suppressor, particle collection lid, particle collection lid drive device, and polyethylene container In the same manner as in Example 4. A swirl flow suppressor having the same structure as that of Example 4 was installed in the water conduit.

更に、吸気管38と計測部4の間に分級器8としてバーチャルインパクタを設置し、ここに流入する循環気流量が1Nm/時間となるように制御した。分級器8では、比重1相当の粒子について直径5μm以下の大気流れによく追従する微小粒子を含む気流を微小粒子用分岐気流路13に、また、それ以外の大気中を自由落下しうる粗大粒子(即ち降下粉塵)を含む気流を微小粒子用分岐気流路12に分流(分級)した。 Further, a virtual impactor was installed as a classifier 8 between the intake pipe 38 and the measuring unit 4 and controlled so that the circulating air flow rate flowing into the classifier 8 was 1 Nm 3 / hour. In the classifier 8, air particles containing fine particles that closely follow the atmospheric flow with a diameter of 5 μm or less with respect to particles having a specific gravity of 1 are passed through the branch air flow channel 13 for fine particles, and coarse particles that can fall freely in the other air. The airflow containing (that is, falling dust) was divided (classified) into the branched air channel 12 for fine particles.

微小粒子用計測部21及び粗大粒子用計測部20がそれぞれ対応する分岐気流路上に設置され、それぞれ独立に質量計測を行った。各計測部での個々の質量計測は、実施例4と同様の方法で行った。このように大気中粒子を分級することにより、吸引によって大気中粒子を採取した場合でも、大気中粒子のうちの降下粉塵のみの粉塵降下速度を測定することができた。尚、粗大粒子用計測部での粒子質量測定値と微小粒子計測部での質量測定値を合算して、これを全て降下粉塵降下速度に対応するものとして算出した降下粉塵降下速度は、粗大粒子計測部での粒子質量測定値から求めた妥当な降下粉塵降下速度の平均約2倍であった。   The fine particle measurement unit 21 and the coarse particle measurement unit 20 were installed on the corresponding branched air flow paths, and mass measurement was performed independently. Individual mass measurement in each measurement unit was performed in the same manner as in Example 4. By classifying the atmospheric particles in this way, even when the atmospheric particles were collected by suction, it was possible to measure the dust falling speed of only the falling dust among the atmospheric particles. Note that the dust fall rate calculated by adding the particle mass measurement value at the coarse particle measurement unit and the mass measurement value at the fine particle measurement unit, all corresponding to the dust fall rate, is the coarse particle It was about twice the average of the appropriate dust fall speed determined from the measured particle mass at the measurement section.

このように、採取したSPMを降下粉塵降下速度に合算すること大きな測定誤差の生じることが判明した。それぞれの質量計測部を通過した分岐流路中の大気は、再び1本の主循環気流路11に合流し、除塵フィルタ10によって除塵された後、ブロワまたは圧縮機6で昇圧されて、粒子採取口内に吐出した。本装置を用いて6ヶ月間の連続自動測定を実施した。この間、計測器内への雨水浸入による設備故障は一度も発生しなかった。   Thus, it has been found that adding the collected SPM to the falling dust falling speed causes a large measurement error. The air in the branch flow passages that has passed through each mass measurement unit joins again to one main circulation air flow passage 11 and is removed by the dust removal filter 10 and then pressurized by the blower or the compressor 6 to collect particles. It was discharged into the mouth. Continuous automatic measurement for 6 months was performed using this apparatus. During this time, no equipment failure occurred due to rainwater intrusion into the measuring instrument.

また、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の3%であった。   Moreover, the total mass of the particles contained in the rainwater collected in the polyethylene container was 3% of the total mass of the particles measured by the measuring instrument.

(実施例6)
図8に示す構造の降下粉塵計測装置を屋外で運用して降下粉塵の連続測定を行った。粒子採取口、導水管、吸気管、雨水分離装置、感雨計、旋回流抑制器、粒子採取口蓋、粒子採取口蓋駆動装置、流量制御装置、並びに、前記ポリエチレン容器は、実施例4と同様にした。
(Example 6)
The falling dust measuring apparatus having the structure shown in FIG. 8 was operated outdoors to perform continuous measurement of falling dust. A particle sampling port, a water conduit, an intake pipe, a rainwater separator, a rain gauge, a swirl flow suppressor, a particle sampling port, a particle sampling port driving device, a flow rate control device, and the polyethylene container are the same as in Example 4. did.

ブロワ6によって吸気管から吸引された大気中の粒子は、レーザー散乱式のパーティクルカウンタ47に流入し、粒子数と粒子体積を計測される。大気の吸気流量は、流量制御装置9によって制御される。   Particles in the atmosphere sucked from the intake pipe by the blower 6 flow into the laser scattering type particle counter 47, and the number of particles and the particle volume are measured. The air intake flow rate is controlled by the flow rate control device 9.

パーティクルカウンタを流出した大気及び大気中の粒子は、排気気流路48を経由して系外に排出される。この系では、循環気流路が存在しないため、厳密には粒子採取口1から外気の実質的な吸引を行うことになるので、採取される降下粉塵量は吸引流量の影響を受けるとともに、より微小な降下粉塵が吸引によってより多く採取され易いという降下粉塵採取特性の誤差を生じる。そこで、この誤差を無視できる程度に減じるために、粒子採取口入口での吸引速度が、現地でのデポジットゲ−ジ測定によって求めた代表的な降下粉塵の平均的な重力沈降速度よりも十分小さくなるようにブロワの吸引流量を設定した。具体的には、試験実施地点でのデポジットゲージ測定結果から、現地での降下粉塵の重力沈降速度は、0.01m/s以上相当の大きさのものが99.9質量%を占めることが判明したので、粒子採取口入口での入口断面垂直方向の吸引速度を0.001m/s以下になるようにプロワの吸引流量を1.5L/minに設定した。   The atmosphere and the particles in the atmosphere that have flowed out of the particle counter are discharged out of the system via the exhaust air passage 48. In this system, since there is no circulating air flow path, strictly speaking, the outside air is substantially sucked from the particle sampling port 1, so that the amount of dust fall collected is affected by the suction flow rate and is more minute. This causes an error in the falling dust collection characteristic that more falling dust is more likely to be collected by suction. Therefore, in order to reduce this error to a negligible level, the suction speed at the inlet of the particle sampling port is sufficiently smaller than the average gravitational settling speed of typical falling dust obtained by on-site deposit gauge measurement. The suction flow rate of the blower was set so that Specifically, from the result of deposit gauge measurement at the test site, it was found that the gravitational settling speed of falling dust at the site accounted for 99.9% by mass with a magnitude equivalent to 0.01 m / s or more. Therefore, the suction flow rate of the prowa was set to 1.5 L / min so that the suction speed in the vertical direction of the inlet cross section at the inlet of the particle sampling port was 0.001 m / s or less.

また、粒子採取口内面に沿った循環気流の吐出がなく粒子採取口内面での清掃効果がないため、このままでは粒子採取口内面に接触した降下粉塵は粒子採取口内面容易に付着して吸気管に捕集されない。そこで、粒子採取口外面に振動装置49として市販のノッカを設置し、10sごとにノッカを起動させて粒子採取口を振動させることによって粒子採取口内面に付着した降下粉塵を吸気管方向に落下させ、粒子採取口面積に比例した降下粉塵量を吸気管に捕集できるようにした。   In addition, since there is no discharge of the circulating airflow along the inner surface of the particle sampling port and there is no cleaning effect on the inner surface of the particle sampling port, the dust falling on the inner surface of the particle sampling port easily adheres to the inner surface of the particle sampling port as it is. Not collected. Therefore, a commercially available knocker is installed on the outer surface of the particle sampling port as the vibration device 49, and the knocker is activated every 10 s to vibrate the particle sampling port, thereby dropping the dust falling on the inner surface of the particle sampling port toward the intake pipe. The amount of dust falling in proportion to the particle sampling area can be collected in the intake pipe.

その結果、前記ポリエチレン容器に採取された雨水中に含まれた粒子の総質量は、計測器によって質量計測された粒子の総質量の25%であった。   As a result, the total mass of the particles contained in the rainwater collected in the polyethylene container was 25% of the total mass of the particles measured by the measuring instrument.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

従来技術の模式図である。It is a schematic diagram of a prior art. 他の従来技術の模式図である。It is a schematic diagram of another prior art. 第1発明の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of embodiment of 1st invention. 第2発明の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of embodiment of 2nd invention. 第3発明の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of embodiment of 3rd invention. 第4発明の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of embodiment of 4th invention. 第5発明の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of embodiment of 5th invention. 第4発明の別の実施形態の一例を示した模式図である。It is the schematic diagram which showed an example of another embodiment of 4th invention. 不適切な構造の雨水分離装置の一例を示した模式図である。It is the schematic diagram which showed an example of the rainwater separation apparatus of the inappropriate structure.

符号の説明Explanation of symbols

1 ・・・粒子採取口
2 ・・・気流路
3 ・・・粗大粒子フィルタ
4 ・・・計測部
5 ・・・捕集フィルタ
6 ・・・吸引装置(ブロワまたは圧縮機)
8 ・・・分級器
9 ・・・流量制御装置
10・・・除塵フィルタ
11・・・気流路(主循環気流路)
12・・・粗大粒子用分岐気流路
13・・・微小粒子用分岐気流路
14・・・捕集フィルタ送り装置
20・・・粗大粒子用計測部
21・・・微小粒子用計測部
30・・・外気温度計
31・・・温度制御装置
32・・・粒子採取口蓋駆動装置
34・・・感雨計
35・・・粒子採取口蓋
37・・・導水管
38・・・吸気管
39・・・覆い
40・・・排水口
41・・・旋廻流抑制器(旋廻流抑制板)
42・・・排水ポンプ
43・・・雨水分離装置
44・・・吸気口
45・・・筐体
46・・・導水管支え
47・・・パーティクルカウンタ
48・・・排気気流路
49・・・振動装置
DESCRIPTION OF SYMBOLS 1 ... Particle collection port 2 ... Air flow path 3 ... Coarse particle filter 4 ... Measurement part 5 ... Collection filter 6 ... Suction device (blower or compressor)
8 ... Classifier 9 ... Flow control device 10 ... Dust filter 11 ... Air flow path (main circulation air flow path)
DESCRIPTION OF SYMBOLS 12 ... Branch air channel for coarse particles 13 ... Branch air channel for fine particles 14 ... Collection filter feeding device 20 ... Measuring unit for coarse particles 21 ... Measuring unit for fine particles 30 ...・ Outside air thermometer 31 ... Temperature control device 32 ... Particle collection palate drive device 34 ... Rainometer 35 ... Particle collection palate 37 ... Water guide pipe 38 ... Intake pipe 39 ... Cover 40 ... Drain port 41 ... Swirl flow suppressor (Swirl flow control plate)
42 ... Drain pump 43 ... Rainwater separator 44 ... Intake port 45 ... Case 46 ... Water pipe support 47 ... Particle counter 48 ... Exhaust air flow path 49 ... Vibration apparatus

Claims (5)

上方に向けた開口部を有し且つろうと状の粒子採取口と、降雨を検出する感雨計と、前記感雨計の検出結果に基づいて降雨時に前記粒子採取口の開口部を閉じる蓋機構と、前記粒子採取口内に存在する大気中粒子を、前記粒子採取口の下端から大気と共に前記粒子採取口の下流に備えられる気流路を通して吸引する吸引装置と、前記気流路の途中に設けられて前記吸引された大気中粒子の総数または総質量を時系列的に計測する計測部とを備えた大気中粒子の計測装置に用いる雨水分離装置であって、
上端が前記粒子採取口の下端に接続された直管状の雨水の導水管と、
前記導水管の内部又は下方に位置し、上端が吸気口となり前記導水管の軸心に対して軸心が略平行または略同軸に配置されると共に下端が前記気流路に接続され、且つ、外径が前記導水管の内径よりも小さい、直管状の吸気管と、
を備えたことを特徴とする、雨水分離装置。
A funnel-shaped particle sampling port having an upward opening, a rain gauge for detecting rain, and a lid mechanism for closing the particle sampling port opening during rain based on the detection result of the rain gauge A suction device for sucking air particles present in the particle sampling port from the lower end of the particle sampling port through the air channel provided downstream of the particle sampling port together with the atmosphere, and provided in the middle of the air channel A rainwater separator used in an atmospheric particle measuring device comprising a measuring unit that measures the total number or total mass of the sucked atmospheric particles in time series,
A straight tubular rainwater conduit having an upper end connected to the lower end of the particle sampling port;
Located inside or below the water conduit, the upper end serves as an intake port, the shaft center is arranged substantially parallel or substantially coaxial with the axis of the water guide tube, the lower end is connected to the air flow path, and the outside A straight tubular intake pipe having a diameter smaller than the inner diameter of the water conduit;
A rainwater separation device characterized by comprising:
前記吸気管の吸気口よりも上流に、前記粒子採取口内部で発生する水平面内旋廻気流を抑制するための旋廻流抑制機構を有することを特徴とする請求項1に記載の雨水分離装置。   The rainwater separation device according to claim 1, further comprising a swirl flow suppressing mechanism for suppressing a swirling airflow in a horizontal plane that is generated inside the particle sampling port, upstream of the intake port of the intake pipe. 前記導水管の少なくとも下端部からその下方に位置する前記吸気管に亘って、前記導水管の下端と前記吸気管との間に生じる隙間からの大気の流通を防止するための覆いを設けることを特徴とする請求項1又は2に記載の雨水分離装置。   Providing a cover for preventing air from flowing through a gap formed between the lower end of the water conduit and the intake pipe, extending from at least the lower end of the water conduit to the intake pipe located below the water intake pipe. The rainwater separator according to claim 1 or 2, characterized in that 前記覆いには前記吸気管上端の吸気口よりも低い位置に排水口を有し、当該排水口に排水ポンプが接続されていることを特徴とする請求項3に記載の雨水分離装置。   The rainwater separator according to claim 3, wherein the cover has a drainage port at a position lower than the intake port at the upper end of the intake pipe, and a drainage pump is connected to the drainage port. 請求項1〜4のいずれか1項に記載の雨水分離装置を備えた連続式降下粉塵計測装置であって、
上方に向けた開口を有すると共に、下端が気流路と接続されている、ろうと状の粒子採取口と、
前記粒子採取口内に存在する大気中粒子を大気と共に前記粒子採取口の下端から前記気流路を通して吸引するための吸引装置と、
前記粒子採取口の後段に設けられ、前記粒子採取口から吸引された前記大気中粒子を粗大粒子と微小粒子に分ける分級器と、
前記分級器の後段に並列に設けられ、前記分級後の粗大粒子と微小粒子をそれぞれ、一定時間ごとに捕集面が更新されるテープ状又はカートリッジ交換式の捕集フィルタに捕集して、当該捕集されたそれぞれの粒子の質量を質量測定器によって連続計測し、前記分級後の粗大粒子と微小粒子それぞれにおける質量総量の時間変化を計測する、又は更に、前記計測された粗大粒子と微小粒子それぞれの質量総量の時間変化から前記粗大粒子の粉塵降下速度及び前記微小粒子の大気中濃度を算出する、粗大粒子計測部及び微小粒子計測部と、
前記計測部の後段に設けられ、前記捕集フィルタに捕集されなかった粒子を前記計測後の吸引された大気から除塵する除塵フィルタと、
前記粒子採取口、前記分級器、前記粗大粒子計測部及び微小粒子計測部、及び前記除塵フィルタを、この順番に接続し、前記吸引された大気を順次通す気流路と、
前記除塵後の大気を前記粒子採取口内に排気する循環気流路と、
前記気流路又は前記循環気流路の流路中に設けられた前記吸気装置と、
前記粗大粒子計測部及び前記微小粒子計測部を通過する気流量をそれぞれ所定の値に制御する流量制御装置と、
を備えていることを特徴とする、連続式降下粉塵計測装置。
A continuous falling dust measuring device comprising the rainwater separator according to any one of claims 1 to 4,
A funnel-shaped particle sampling port having an opening facing upward and having a lower end connected to the air flow path;
A suction device for sucking air particles present in the particle sampling port together with the atmosphere from the lower end of the particle sampling port through the air flow path;
A classifier that is provided at a subsequent stage of the particle sampling port, and classifies the atmospheric particles sucked from the particle sampling port into coarse particles and fine particles;
Provided in parallel in the subsequent stage of the classifier, each of the coarse particles and fine particles after the classification are collected in a tape-like or cartridge-exchangeable collection filter whose collection surface is updated at regular intervals, The mass of each collected particle is continuously measured by a mass measuring instrument, and the time change of the total mass of each of the coarse particles and fine particles after classification is measured, or further, the measured coarse particles and fine particles are measured. A coarse particle measurement unit and a fine particle measurement unit, which calculate the dust falling speed of the coarse particles and the concentration of the fine particles in the atmosphere from the time variation of the total mass of each particle,
A dust removal filter that is provided at a subsequent stage of the measurement unit and removes particles that have not been collected by the collection filter from the aspirated air after the measurement;
The particle sampling port, the classifier, the coarse particle measuring unit and the fine particle measuring unit, and the dust filter are connected in this order, and an air flow path for sequentially passing the sucked air,
A circulating air flow path for exhausting the air after dust removal into the particle sampling port;
The intake device provided in the flow path of the air flow path or the circulation air flow path;
A flow rate control device that controls the air flow rate passing through the coarse particle measurement unit and the fine particle measurement unit to a predetermined value, and
A continuous type falling dust measuring device characterized by comprising:
JP2007150909A 2007-06-06 2007-06-06 Rain water separator and continuous falling dust measuring device Expired - Fee Related JP4800262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150909A JP4800262B2 (en) 2007-06-06 2007-06-06 Rain water separator and continuous falling dust measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150909A JP4800262B2 (en) 2007-06-06 2007-06-06 Rain water separator and continuous falling dust measuring device

Publications (2)

Publication Number Publication Date
JP2008304277A JP2008304277A (en) 2008-12-18
JP4800262B2 true JP4800262B2 (en) 2011-10-26

Family

ID=40233134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150909A Expired - Fee Related JP4800262B2 (en) 2007-06-06 2007-06-06 Rain water separator and continuous falling dust measuring device

Country Status (1)

Country Link
JP (1) JP4800262B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589935A (en) * 2012-03-08 2012-07-18 中国科学院新疆生态与地理研究所 Atmosphere dust-fall observation method
CN105004646A (en) * 2015-03-27 2015-10-28 南京林业大学 Indoor artificial rainfall-simulation testing system
KR101846494B1 (en) * 2017-04-07 2018-04-06 부경대학교 산학협력단 Developing a technique to estimate vertical velocities from Parsivel-measured drop spectra
KR20190123964A (en) * 2018-04-25 2019-11-04 주식회사 히타치엘지 데이터 스토리지 코리아 Dust sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870244B2 (en) 2009-04-01 2012-02-08 新日本製鐵株式会社 Horizontal component collector and method for measuring horizontal component of dust fall in the atmosphere
WO2010113520A1 (en) * 2009-04-01 2010-10-07 新日本製鐵株式会社 Device and method for continuously measuring horizontal flux of falling particulate matter in atmosphere
KR101126350B1 (en) * 2011-11-18 2012-03-16 주식회사 한국에스지티 Error checking system for digital map
BE1020655A3 (en) * 2012-04-30 2014-02-04 Mc Ta Bvba METHOD FOR MEASURING DUST IMMISSION AND MEASURING DEVICE FOR MEASURING DUST IMMISSION ACCORDING TO THIS METHOD.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136915Y2 (en) * 1980-02-04 1986-10-25
JPH0621848B2 (en) * 1986-11-27 1994-03-23 新日本製鐵株式会社 Falling dust measurement device
JP2004117005A (en) * 2002-09-24 2004-04-15 Ricoh Co Ltd Particle size distribution measuring method
JP2006003090A (en) * 2004-06-15 2006-01-05 Dkk Toa Corp Suspended particulate matter measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589935A (en) * 2012-03-08 2012-07-18 中国科学院新疆生态与地理研究所 Atmosphere dust-fall observation method
CN105004646A (en) * 2015-03-27 2015-10-28 南京林业大学 Indoor artificial rainfall-simulation testing system
CN105004646B (en) * 2015-03-27 2018-05-22 南京林业大学 A kind of indoors artificial simulated rain trails system
KR101846494B1 (en) * 2017-04-07 2018-04-06 부경대학교 산학협력단 Developing a technique to estimate vertical velocities from Parsivel-measured drop spectra
KR20190123964A (en) * 2018-04-25 2019-11-04 주식회사 히타치엘지 데이터 스토리지 코리아 Dust sensor
KR102490311B1 (en) 2018-04-25 2023-01-20 주식회사 히타치엘지 데이터 스토리지 코리아 Dust sensor

Also Published As

Publication number Publication date
JP2008304277A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4800262B2 (en) Rain water separator and continuous falling dust measuring device
KR101290843B1 (en) Device and method for continuously measuring horizontal flux of falling particulate matter in atmosphere
JP4879921B2 (en) Continuous collection device for atmospheric fallout
KR101260166B1 (en) Horizontal component catcher of dustfall in atmosphere and measuring method of horizontal component
JP4795295B2 (en) Continuous falling dust measuring device
JP2008224332A (en) Device and method for measuring continuous falling dust
CN101540088B (en) Smoke detector
CN106626034A (en) Concrete sample curing room
CN206960173U (en) A kind of airborne particulate harvester
KR102290065B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
US20070227036A1 (en) Airflow Indicator for a Dryer Exhaust Vent
KR101403387B1 (en) Auto Measuring Apparatus for Rain
JPS63134933A (en) Instrument for measuring descending dust
CN105651657A (en) Inside-annealing-furnace dust concentration online measurement apparatus and inside-annealing-furnace dust concentration online measurement method
JP2561345Y2 (en) Continuous scattering dust measurement device
JP3827706B2 (en) Precipitation intensity meter
Mandrioli Aerobiology-pollen sampling, influence of climate, pollen sources and pollen calendar
CN209060716U (en) Granulator system cyclone reinforces dust-extraction unit
CN211698249U (en) Automatic collecting and measuring device for atmospheric horizontal precipitation
CN220003439U (en) Waste powder collection bin of cyclone testing platform for bonding powder coating
JP5236555B2 (en) smoke detector
CN116429989A (en) Atmospheric environment detecting system
CN112816268A (en) Air microorganism collector
GB2373576A (en) Sampling and collecting aerosols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4800262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees