JP4799731B2 - Negative electrode structure of lithium ion battery and manufacturing method thereof - Google Patents

Negative electrode structure of lithium ion battery and manufacturing method thereof Download PDF

Info

Publication number
JP4799731B2
JP4799731B2 JP2000387104A JP2000387104A JP4799731B2 JP 4799731 B2 JP4799731 B2 JP 4799731B2 JP 2000387104 A JP2000387104 A JP 2000387104A JP 2000387104 A JP2000387104 A JP 2000387104A JP 4799731 B2 JP4799731 B2 JP 4799731B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion battery
electrode structure
catalytic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000387104A
Other languages
Japanese (ja)
Other versions
JP2002190296A (en
Inventor
和靖 中根
敏博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2000387104A priority Critical patent/JP4799731B2/en
Publication of JP2002190296A publication Critical patent/JP2002190296A/en
Application granted granted Critical
Publication of JP4799731B2 publication Critical patent/JP4799731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、リチウムイオン電池の負極構造およびその製造方法に関し、更に詳細には、リチウムイオン二次電池に好適に使用され、電気容量および充放電特性等の各物性を向上させ得る負極構造と、該負極構造を製造する方法に関するものである。
【0002】
【従来の技術】
従来、小型で充電が可能な二次電池として、鉛蓄電池、ニッケル・カドミウム蓄電池や、ニッケル・水素蓄電池その他の電池が好適に採用されている。しかし近年の電子機器の小形化および軽量化の要請に伴い、よりエネルギー密度の高い電池、すなわち高い電気容量を有すると共に、環境負荷が少くて安全な二次電池が求められている。
【0003】
これらの要求に応えるに、充分な性能の電池として、リチウムイオン電池が挙げられる。このリチウムイオン電池は、軽量性、電圧、電気容量、充放電特性およびサイクル特性等で優れた特性を有し、その使用用途としては、例えばパーソナルコンピュータ、カメラ一体型VTRおよび携帯電話、データ端末機器等の民生用電子機器の電源等が挙げられる。
【0004】
前記リチウムイオン電池は、負極活物質として金属リチウムを用いておらず、リチウムイオンのドープ・アンドープを行ない得る物質を用いた二次電池であり、リチウムイオンを正極体と負極体との間で往来させることにより充放電を行なうものである。このため正極活物質および負極活物質の形態が変化しない特徴を有する。
【0005】
従来一般的に知られている円筒形のリチウムイオン電池は、図8に示す如く、シート状の正極体60と負極体62との間に、セパレータ64を挟んで渦巻状としたスパイラル構造となっており、該セパレータ64を介して正極体60と負極体62との間をリチウムイオンが行き来することで、充放電がなされる構造となっている。また図9に示す如く、前記正極体60は、正極活物質60aおよび正極集電体60bにより構成され、該正極活物質60aとしてはリチウムおよびコバルトからなる複合金属酸化物(LiCoO2)が、また該正極集電体60bとしてはアルミニウム箔が好適に採用されている。更に負極体62は、負極活物質62aおよび負極集電体62bにより構成され、該負極活物質62aとしては所要の炭素質物質が、該負極集電体62bとしては銅箔が好適に採用されている。
【0006】
前記負極体62を構成する負極活物質62aは、その容量がリチウムイオン電池の電気容量に比例することが判明しているので、できる限り多い方がよい。また同じく負極体62を構成する負極集電体62bは、前述の負極活物質62aの容量を増大させると共に、速やかなリチウムイオンの容易な移動を許容するために、可能な限り薄い方がよい。
【0007】
【発明が解決すべき課題】
前記負極体62は、一般的に採用されている製造方法によれば、前記負極集電体62bに、バインダを混合した炭素質物質等の負極活物質62aを塗布することで製造されている。このように前記バインダを使用するときは、その量が充分でないと前記負極活物質62aが負極集電体62bから剥離し易くなり、結果として電気容量が低下してしまう。そこで前記バインダの量を増やすと、前記負極活物質62aの量は相対的に減少するため、やはり充分な電気容量の確保が困難となってしまう。
【0008】
また前記負極集電体62bに、充分なバインダを混合した多量の負極活物質62aを塗布すれば確実な接着がなされるが、その反面で厚くなりすぎた負極活物質62aが自重により負極集電体62bから剥離してしまう畏れがある。また、同時に多量の負極活物質62aを構造的に支持するため、前記負極集電体62bを厚くする必要性を生じ、結果として同一体積内での負極活物質容量が相対的に減少し、電気容量が低下してしまう欠点が指摘される。
【0009】
前述の製造方法以外に、負極集電体62bに負極活物質62aとなる炭素質物質をCVD(化学的蒸着法)やCVI(化学気相浸透法)の如き化学気相反応を利用して蒸着する方法が知られている。ニッケル等の触媒として作用する金属層が形成されていない場合には、前述の各方法により蒸着・析出された炭素の結晶性が低く、無秩序な原子配列を構成したり、または多結晶の集合体となったりするため、総じて結晶性が低く、結果として充放電特性が悪化してしまう問題を内在している。
【0010】
更に別の製造方法として、例えば箔状またはメッシュ形状をなす負極集電体62bとして金属ニッケル等の触媒作用金属を使用し、この負極集電体62bの周りに炭化水素または一部に種々の特性基を含む炭化水素化合物を熱分解して炭素層とした負極活物質62aを析出させ、図10に示す構造の負極体62を得る方法が、特開平8−162098号公報および特開平9−17418号公報に開示されている。これらの方法によれば、前述の如きバインダは必要とされず、かつ負極活物質62aである炭素層は前記触媒作用金属の作用により黒鉛構造をとるので、二次電池として高い電気容量と優れた充放電特性とが得られる。しかし負極活物質62aは、負極集電体62bの外表面側に順次層状に形成されている(図10(a)参照)だけなので、析出時に発生した内部応力または充放電に伴って発生する繰り返し応力変動等により、経時的に負極集電体6bから該負極活物質62aが剥離したり(図10(b)参照)、層状構造をなしている負極活物質62aが該負極活物質62aの層間で剥離して(図10(c)参照)しまい、電気容量が低下する欠点が指摘される。
【0011】
【発明の目的】
この発明は、前述した従来技術に係る二次電池の負極構造およびその製造方法に内在していた欠点に鑑み、これを好適に解決すべく提案されたものであって、導管を有する針葉樹の幹を炭化させて得た格子状基材に導電性を付与して負極集電体となし、この負極集電体に触媒作用金属層を形成し、この触媒作用金属層に層状の炭素層からなる負極活物質を形成することで、電気容量、充放電特性およびサイクル特性等に優れ、構造的に該負極活物質が負極集電体から剥離し難いリチウムイオン電池の負極構造と、これを製造する方法とを提供することを目的とする。
【0012】
【課題を解決するための手段】
前記課題を克服し、所期の目的を達成するため本願の発明は、負極活物質として炭素を用いるリチウムイオン電池の負極構造において、
導管を有する樹木を炭化させてなる格子状基材および該格子状基材に画成される各導管跡の内表面に積層的に形成した導電層からなる負極集電体と、
前記導電層の内表面に積層的に形成した触媒作用金属層と、
前記触媒作用金属層の内表面に積層的に形成した層状の炭素層からなる負極活物質とから構成したことを特徴とする。
【0013】
前記課題を克服し、所期の目的を達成するため本願の別の発明は、負極活物質として炭素を用いたリチウムイオン電池の負極構造の製造方法において、
導管を有する樹木を炭化させることで格子状基材とし、
この格子状基材に画成される各導管跡の内表面に導電層を積層的に形成して負極集電体とし、
前記導電層の内表面に触媒作用金属層を積層させ、
次いで前記触媒作用金属層の内表面に炭素層を層状に形成することで、前記負極集電体に負極活物質を積層形成したことを特徴とする。
【0014】
【発明の実施の形態】
次に、本発明に係るリチウムイオン電池の負極構造およびその製造方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
【0015】
本願の発明者は、被子植物、殊に松、杉、桧等の針葉樹に代表される樹木が、円柱状または多角形状の導管細胞が縦に並ばせて上下に相通する管状の導管を有している事実に着眼した。すなわち前記導管を有する樹木を炭化させることで該導管が格子状となった基材が得られるので、この格子状基材を基として負極集電体を作製し、次いで該負極集電体に、無電解メッキ、電解メッキまたは化学気相反応の何れかにより触媒作用金属層を積層的に形成し、更に化学気相反応により炭素質物質から炭素層を層状に形成することで、構造的に剥離が生じ難く、かつ充放電特性に優れると共に、電気容量を向上させた負極体が得られることを知見したものである。
【0016】
図1は、本発明の好適な実施例に係る電池の負極体を示す横断平面図である。
この負極体10は、正極との間の物理的に遮断するセパレータ(図示せず)を介してリチウムイオンを受け入れ電子を放出する負極活物質14と、この負極活物質14から放出された電子を電池外に送出する負極集電体12とから基本的に構成される。
【0017】
前記負極集電体12は、前述の格子状基材20と、この基材20を基としてその上に形成される所定厚さの導電層22とからなり、該格子状基材20は、幹に多数の微細な導管を有する、例えばスギ、マツ、ヒノキ等の針葉樹の、例えば幹を前記導管に対して垂直に切断し、熱処理を加えて炭素化することで得られる。この際、前記導管部分は、格子状基材20の導管跡20aとなる。前記針葉樹の幹における導管の幹に対する断面積的な割合は略90%以上であり、これら幹から得られる格子状基材20における導管跡20aの割合である導管跡率、すなわち負極体10における負極活物質14の割合も略90%以上の高率となる。
【0018】
前記格子状基材20は、電子を抵抗なく流電させ得る負極集電体12のベースとして作用するだけでなく、前記負極体10に構造的剛性を提供するものでもある。従ってその形状としては、外部からの応力に対応し得る、例えばハニカム形状或いは三角形または四角形等の多角形形状が好適である。実際、前述した針葉樹の幹からは、複雑な円柱状または多角形状を略規則的に有して、構造的剛性を充分に有する格子状基材20が得られる。
【0019】
前記導電層22は、電子の導通性を充分に備える負極集電体12の実質的な本体となる部分であり、前記格子状基材20の導電性を高めるために形成される。具体的には化学気相反応を用いることで、炭素塊である前記格子状基材20の内表面に対して0.5〜5μm程度の厚さとなるように欠損なく、均一に高い密着性(化学的親和性)をもって形成される。その材質としては、例えば窒化チタンまたは炭化チタン等が好適である。前述した層厚さが薄すぎると集電体としての電気導通性が悪化、すなわち抵抗が大きくなってしまい、また厚すぎると導管跡20aが必要以上に狭まってしまって、前記負極活物質14の量が相対的に減少してしまうので注意が必要である。
【0020】
前記負極活物質14は、前記導管跡20aに対して、プロパンガス等の炭化水素、すなわち炭素質物質を化学気相反応により熱分解させて蒸着・充填して得られる黒鉛結晶構造を有する炭素層32からなり、この炭素層32に黒鉛結晶構造、すなわち配向性を付与するために、予め前記負極集電体12上には触媒作用金属層30が形成される。
【0021】
前記触媒作用金属層30は、導電層22により充分な導電化がなされた前記負極集電体12に対して、無電解メッキ、電解メッキまたは化学気相反応を利用して0.01〜3μm程度形成される。この触媒作用金属層30は、前述の如く、負極活物質14の大部分を占める炭素層32を、該触媒作用金属層30を介在させて前記負極集電体12に積層させた際に、黒鉛結晶構造を持って積層させるために必須のものである。代表的には、ニッケル、鉄またはコバルト等が挙げられ、その付与が無電解メッキで行なえると共に、安価でかつ無電解メッキ浴の管理が容易なニッケルが殊に好適である。また前述した層厚さが厚すぎると導管跡20aが必要以上に狭まってしまって、炭素層の容量が相対的に減少してしまうので注意が必要である。
【0022】
前記炭素層32は、負極活物質14の実体部分、すなわち正極からセパレータを介してドープまたはアンドープされるリチウムイオンを受け入れまたは放出する部分を形成し、化学気相反応を利用して炭素質物質を熱分解・蒸着することで前記触媒作用金属層30上に形成される。この炭素層32は、前述の如く、触媒作用金属層30上に積層的に形成されるものであり、このため該炭素層32を構成する炭素の結晶構造は、黒鉛結晶構造、すなわち配向性を有するものとなる。そしてこの配向性によって、電池の性能評価では欠かせない充放電特性は大きく向上するものである。
【0023】
【製造方法】
本発明に係るリチウムイオン電池の負極構造の製造方法は、図2および図3に示す如く、集電体形成工程S1、触媒作用金属層付与工程S2、活物質形成工程S3および最終工程S4の各工程に大きく分かれる。集電体形成工程S1は、所定の針葉樹の幹を炭素化して格子状基材20を得る炭素化段階S11と、得られた格子状基材20の内表面に化学気相反応を利用して導電層22を形成する導電層付与段階S12とからなる。
【0024】
前記炭素化段階S11では、前述した通り、導管を有する針葉樹の幹から格子状基材20を製造するが(図3(a)参照)、従来知られている、例えばアルゴン、窒素等の不活性気体雰囲気下において、温度1,000℃程度、時間4時間程度の条件により炭化を施す強制還元雰囲気炭化法等の何れの方法でも採用可能である。
【0025】
前記導電層付与段階S12では、前記炭素化段階S11で得られた格子状基材20の内表面に導電層22を積層的に形成するが(図3(b)参照)、この際、使用される従来公知の化学気相反応装置の一例を図4に示す。この化学気相反応装置40は、反応部42、原料供給部44、真空ポンプ46およびリザーバータンク48から基本的に構成される。前記反応部42は、反応容器50と、この反応容器50を制御下に加熱する電気炉等の加熱手段52とからなる。前記原料供給部44は、本導電層付与段階S12においては、前記導電層22を形成する四塩化チタン、窒素ガスおよび水素ガス等の必要に応じた複数のガス供給源44aを備えている。また後述の触媒作用金属層付与工程S2および活物質形成工程S3についても本化学気相反応装置40が好適に使用されるが、この際には前記原料供給部44として、例えば希釈ガスとしての水素ガスまたは窒素ガス並びに炭素供給源としてのメタンガス、プロパンガスまたはアセチレンガス等の複数のガス供給源44aが備えられる。前記真空ポンプ46は、前記反応容器50内を所定の真空状態にする等の手段であり、前記リザーバータンク48は、複数の各ガス供給源44aから供給され所定割合にされた混合ガスを一時的に保持するものである。またガスが流通する各流通経路の主要箇所には、制御下に該流通経路を開閉する電磁弁等のバルブ54が設けられている。
【0026】
前記導電層22の形成手順としては、
▲1▼前記炭素化段階S11で得られた格子状基材20を反応容器50内に接触しないように固定する。
▲2▼該反応容器50内を加熱手段52を使用して800〜1,100℃程度の所定温度とすると共に、真空ポンプ46を駆動させ所定の真空状態とする。
▲3▼そして、所定の混合ガスを前記原料供給部44の各ガス供給源44aを開放して作製し(場合によっては、得られた混合ガスを塩化チタンの飽和器等に流通させる)、リザーバータンク48に一時的に貯留する。
▲4▼得られた混合ガスを一気に反応容器50内に供給し、所定時間(1〜2秒程度)保持させ、前記格子状基材20の露出している内表面に該混合ガスを層として蒸着させる。
▲5▼前記反応容器50内の反応済み混合ガスを真空ポンプ46により排気する。
を一巡として、所要厚さの導電層22が形成されるまで繰り返す。
【0027】
このようにして格子状基材20上に積層的に導電層22が積層的に形成され、導管跡20aに充分な構造的強度および導電度を発現し得る負極集電体12が得られる。
【0028】
前記集電体形成工程S1に引き続いて行なわれる触媒作用金属層付与工程S2は、該集電体形成工程S1で得られた負極集電体12上に無電解メッキ、電解メッキまたは化学気相反応により触媒作用金属層30を付与する工程である(図3(c)参照)。
【0029】
前記触媒作用金属層付与工程S2は、選択される触媒作用金属の種類により好適な付与方法(▲1▼化学気相反応、▲2▼無電解メッキまたは▲3▼電解メッキ)が異なる。また▲1▼化学気相反応、▲2▼無電解メッキまたは▲3▼電解メッキにより具体的な方法が異なるが、▲1▼化学気相反応について使用される化学気相反応装置および気相反応方法は、前述の「導電層付与段階S12」で使用されたものと殆ど同様であり、原料供給部44に配置されるガス供給源44aの種類および得られる混合ガス等が異なるだけなので記載を省略する。▲2▼無電解メッキまたは▲3▼電解メッキについても従来公知の方法が採用されるが、夫々概略を以下説明する。
【0030】
▲2▼無電解メッキの場合:無電解メッキ反応に触媒性を持つパラジウム等の触媒金属のコロイドを、浸漬、ディッピング、スプレー塗布または刷毛塗り等の方法により、前記負極集電体12の表面に付与・吸着させる。前記触媒金属のコロイドは、触媒金属化合物の水溶性の塩を溶解し、界面活性剤を加えて激しく撹拌しながら、還元剤を添加することで得られる。界面活性剤には様々なものがあるが、陰イオン性または陽イオン性界面活性剤が好適であり、例えば石けん、高級アルコール硫酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等、ラウリルトリメチルアンモニウムクロライドまたはアルキルベンジルジメチルアンモニウムクロライド等が使用される。
【0031】
次いで、キレート剤等により安定化させたニッケル等の触媒作用金属イオンと、該イオンを還元し得る還元剤とを適切なpHおよび温度の条件下で共存させた無電解の触媒作用金属メッキ浴中に、前記触媒金属が付与された負極集電体12を浸漬させる。浸漬により、先に吸着させた触媒金属が核となり析出反応が進行し、所定厚の触媒作用金属層30が付与される。また前記還元剤を無電解の触媒作用金属メッキ浴中に共存させず、前記触媒作用金属層30付与後に還元だけを水素雰囲気を使用する等して行なうようにしてもよい。
【0032】
▲3▼電解メッキの場合:前述の▲2▼無電解メッキの場合から触媒金属の付与を行なわず、ニッケル金属等の触媒作用金属をキレート剤等により安定化させ、適切なpHおよび温度の条件とした電解の触媒作用金属メッキ浴に前記負極集電体12を浸漬させ、所定厚の触媒作用金属層30が付与される。また▲2▼無電解メッキの場合と同様に、還元剤を電解の触媒作用金属メッキ浴中に共存させず、触媒作用金属層30付与後に還元だけを行なってもよい。
【0033】
前記触媒作用金属層付与工程S2の次に施される活物質形成工程S3は、前記触媒作用金属層30上に化学気相反応により炭素層32を付与する工程である。本工程を経ることで、前記負極集電体12上に負極活物質14が形成される。
【0034】
前記活物質形成工程S3は、その表面に触媒作用金属層30が形成された負極集電体12上に、例えばメタンや、プロパン等の炭素質物質ガスおよび水素ガスを用いることで、化学気相反応により該炭素質物質ガスを熱分解炭素として層状に付与した所定厚の炭素層32を積層的に得る段階である。ここで所定厚の炭素層32の付与は、すなわち導管跡20aへの負極活物質14の充填を意味する。この際に使用される化学気相反応装置および気相反応方法は、前述の「導電層付与段階S12」で使用されたものと殆ど同様であるので、その記載は省略する。但し気相反応を行なう真空度、温度および混合ガス保持時間等の諸条件については相違があり、炭素層蒸着のための最適な設定(例えば真空度10Torr以下、温度600〜1,100℃および混合ガス保持時間0.2〜5sec)が必要となる。
【0035】
また前記炭素層32の層厚さは、図3(d)および(e)に示す如く、化学気相反応の繰り返しに従って、格子状の前記負極集電体12を構成する導管跡20a側から(図3(d)参照)、内部へ向かって次第積層して厚くなっていくが(図3(e)参照)、該導管跡20aを完全に埋めることなく、0.5〜2μm程度の導管跡20aを残して該化学気相反応を終了する。このように残された導管跡20aは、セパレータを介してドープ・アンドープされるリチウムイオンの流通路となる。なおここで用いられる化学気相反応一巡で得られる層厚さは非常に微少量であるため、通常10,000〜30,000回程度の繰り返しが必要である。
【0036】
このように四方を囲まれた導管跡20aを、その四方から化学気相反応によって積層的に炭素層32を蒸着させて順次埋めていくため、外部から応力が掛かった場合、互いに異なった方向に向いた炭素層32,32同士が該応力を相殺し合う構造となる。従って、負極活物質14が負極集電体12から剥離し難い負極体10が得られる。これに伴い、前記負極集電体12自体の構造的剛性も補強されることになるので、より薄い該負極集電体12の採用によっても充分な構造的剛性を得ることがきる。すなわちより大容量の負極活物質14の充填が可能となり、電気容量が向上する。
【0037】
ここまでに施された集電体形成工程S1、触媒作用金属層付与工程S2、および活物質形成工程S3により、格子状基材20から、構造的剛性、電気容量および充放電特性を向上させた負極体10得ることができる。最終的に施される最終工程S4は、前記負極体10への最終的な仕上げおよび検査等が行なわれる。
【0038】
【実験例】
以下に実施例に係る電池の製造方法と、この方法により得られた負極を有する電池の電気容量および充放電特性等の評価についての実験例を示すが、本発明に係るリチウムイオン電池の負極構造およびその製造方法は、この実験例に限定されるものではない。
【0039】
(試験体の作製) 以下に製造方法を前述の各段階毎に従って説明する。
【0040】
1.試験体A
集電体形成工程S1
炭素化段階S11:市販のヒノキ材を、導管を有する針葉樹の幹として使用し、アルゴン雰囲気下において、温度1,000℃、時間4時間の条件で炭素化する。炭素化後の格子状基材となった際の形状が、約2×1×0.1cmになるようにする。
【0041】
導電層付与段階S12:図4に示す化学気相反応装置等を使用して、得られた格子状基材を反応容器50内に固定後、温度:850℃、混合ガス保持時間:1秒、使用混合ガスの組成:窒素10%、水素88%および1級塩化チタン濃度2%の条件で反応させ、窒化チタンが1μm厚に蒸着形成されるまで繰り返し行ない、負極集電体を得た。
【0042】
触媒作用金属層付与工程S2
得られた負極集電体に対して、スズパラジウム塩化物錯体(商品名 キャタリストC;奥野製薬製)30ml/lおよび35%塩酸溶液200ml/lからなる触媒液に対して、温度30℃、時間3分間の条件で浸漬し、その後40℃の98%硫酸溶液100ml/lでスズ分を除去し、更に水洗を施してパラジウム金属微粒子を表面に付着させた。その後、無電解ニッケル(商品名 化学ニッケルHR-T;奥野製薬製)の標準濃度を使用して、温度30℃、時間20分の条件でメッキを施した。最後にこれを、水素雰囲気中で温度400℃、時間30分の条件で還元して触媒作用金属層を形成した。
【0043】
活物質形成工程S3
図4に係る化学気相反応装置等を使用して、得られた触媒作用金属層が形成された負極集電体を反応容器50内に固定後、温度:750℃、混合ガス保持時間:1秒、蒸着繰り返し回数:20,000回、使用混合ガスの組成:プロパン30%(市販品)および水素70%(純度99%)の条件で反応させ、負極活物質として炭素層を層状に蒸着・充填した負極体を得た。
【0044】
最終工程S4:実験に係る各測定には必要ないので省略した。
【0045】
(比較試験体の作製)
2.比較試験体B:前述の試験体Aを作製する際に、触媒作用金属層の形成だけ行なわなかった負極活性物質。
3.比較試験体C:従来公知の構造、ここではメッシュ状ニッケル金属を負極集電体として採用し、前述の炭素層形成工程S32と同様の方法で得られた負極活物質。
4.比較試験体D:市販の電池用黒鉛を使用した負極活性物質。
【0046】
(各種物性の測定およびその結果)
前述の製造方法で得られた負極体について、以下の各物性の測定を施した。
【0047】
▲1▼負極活物質を構成する炭素層の配向性:
試験体Aおよび比較試験体Bについて、負極活物質を構成する炭素層の配向性をX線回折により確認した。
図5に測定して得られた結果を示す。ここから、触媒作用金属層上に蒸着させた炭素層については、高い配向性を有する黒鉛結晶構造持っていることが確認された。なお図5に関して、図5(a)および図5(b)は、夫々試験体Aを構成する炭素層のX線回折図および比較試験体Bを構成する炭素層のX線回折図であり、図5(a)に係るX線回折図から、ピークの鋭い、すなわち配向性の高い炭素層が試験体Aに形成されていることが確認された。
【0048】
▲2▼充放電特性:
試験体A、比較試験体Bおよび比較試験体Dについて、3極セルを用いた充放電特性の評価を行なった。本測定において、対極および参照極にはリチウム箔を用い、電解液としては、その比率を1:1としたエチレンカーボネートおよびジエチルカーボネートの混合溶媒に対して、1mol/lの過塩素酸リチウムを溶解させたものを使用した。また充放電特性の試験条件としては、充放電の1サイクルが12時間になるように電流値を設定し、電圧0〜1.5V間を測定した。その結果を図6に示す。ここから試験体Aの充放電特性は、比較試験体Bの充放電特性に較べてよいものであることが確認され、前述の「▲1▼負極活物質を構成する炭素層の配向性」で得られた結果も裏付けるものとなった。なお前記試験体Aの結果は、比較試験体D(市販の電池用黒鉛使用)とほぼ同一であり、市販品と同一以上の充放電特性を有するものであることも併せて確認された。
【0049】
▲3▼電気容量:
試験体A、比較試験体Cおよび比較試験体Dについて、前述の「▲2▼充放電特性」のデータおよび各種物性データ(負極体の重量および体積並びに負極活物質の重量、体積および密度等)より電気容量に関する各物性値を算出した結果を下記の表1に示す。ここから触媒作用金属層上に炭素層を蒸着させて得られた試験体Aの電気容量に関する各物性は、比較試験体D(市販品の電池用黒鉛を負極活物質として使用したもの)と略同等であり、電流容量の1.3倍程度の向上が確認された。
【0050】
【表1】

Figure 0004799731
【0051】
▲4▼サイクル特性:
試験体Aおよび比較試験体Cについて、計100回の充放電を行ない、10回毎の充放電が完了した時点で夫々充放電特性を、前述の「▲2▼充放電特性」に記載の方法で測定し、図7に示す充放電回数(サイクル数)と電気容量との関係を得た。ここから比較試験体Cに較べて試験体Aでは、サイクル特性の低下は確認されなかった。この相違は、電流、すなわち電子の流れの基となるリチウムイオンが、充電時に負極活物質である炭素層層間へのドープが原因とされる、該炭素層の剥離の容易性による。従って、微細な格子構造を有し、内側に掛かる応力が構造的に分散されて剥離が起き難い、本発明に係る負極構造では、良好なサイクル特性が得られた。
【0052】
前記試験体Aだけでなく、以下に記載する製造方法により、試験体Bおよび試験体Cと、同様の比較試験体とを夫々作製し、同様に各種物性の測定を行なった。
【0053】
2.試験体B
集電体形成工程S1
炭素化段階S11:市販のヒノキ材を、導管を有する針葉樹の幹として使用し、アルゴン雰囲気下において、温度1,000℃、時間4時間の条件で炭素化する。炭素化後の格子状基材となった際の形状が、約2×1×0.1cmになるようにする。
導電層付与段階S12:図4に係る化学気相反応装置等を使用して、得られた格子状基材を反応容器50内に固定後、温度:850℃、混合ガス保持時間:1秒、使用混合ガスの組成:窒素10%、水素88%および1級塩化チタン濃度2%の条件で反応させ、窒化チタンが1μm厚に蒸着形成されるまで繰り返し行ない、負極集電体を得た。
触媒作用金属層付与工程S2、活物質形成工程S3および最終工程S4:前述した試験体Aの場合と同様であるので省略した。
【0054】
3.試験体C
集電体形成工程S1
炭素化段階S11:市販のヒノキ材を、導管を有する針葉樹の幹として使用し、アルゴン雰囲気下において、温度1,000℃、時間4時間の条件で炭素化する。炭素化後の格子状基材となった際の形状が、約2×1×0.1cmになるようにする。
導電層付与段階S12:図4に係る化学気相反応装置等を使用して、得られた格子状基材を反応容器50内に固定後、温度:850℃、混合ガス保持時間:1秒、使用混合ガスの組成:窒素10%、水素88%および1級塩化チタン濃度2%の条件で反応させ、窒化チタンが1μm厚に蒸着形成されるまで繰り返し行ない、負極集電体を得た。
触媒作用金属層付与工程S2、活物質形成工程S3および最終工程S4:前述した試験体Aの場合と同様であるので省略した。
【0055】
試験体Bおよび試験体Cの各物性測定の結果、何れの試験体についても、前記試験体Aと同様の結果が得られた。従って、本発明に係る製造方法により製造される負極構造は、何れも従来の負極構造に較べて、高い電気容量、充放電特性およびサイクル性等を達成していることが確認された。
【0056】
【発明の効果】
以上説明した如く、本発明に係るリチウムイオン電池の負極構造およびその製造方法によれば、針葉樹等の導管を有する樹木を炭化することで、負極集電体の基となる格子状基材を作製し、この格子状基材の導管跡の内表面に導電層と触媒作用金属層と負極活物質となる炭素層とを化学気相反応等を利用して、順次積層させて負極体を得るので、高い電気容量、優れた充放電特性およびサイクル特性等と、負極活物質が負極集電体から剥離し難い構造とを達成し得る。
【図面の簡単な説明】
【図1】 本発明の好適な実施例に係るリチウムイオン電池の負極構造を示す横断平面図である。
【図2】 実施例に係るリチウムイオン電池の負極構造を製造する工程を示すフローチャート図である。
【図3】 図2に示すリチウムイオン電池の負極構造を製造する工程を各工程毎に示す工程図である。
【図4】 実施例に係るリチウムイオン電池の負極構造の製造方法に好適に使用される化学気相反応装置の一例を示す概略図である。
【図5】 試験体Aおよび比較試験体Bの20〜30°の配向性を示すX線回折図である。
【図6】 試験体A、比較試験体Bおよび比較試験体Dの充放電特性を、電気容量と電圧とで示す充放電曲線図である。
【図7】 試験体Aおよび比較試験体Cのサイクル特性をサイクル数と電気容量とで示すサイクル特性図である。
【図8】 従来の技術に係る電池の負極構造を切り欠き、展開して示す斜視図である。
【図9】 図8の正極体および負極体の積層構造を拡大して示す断面図である。
【図10】 負極集電体として触媒作用金属を使用した負極構造を示す断面図である。
【符号の説明】
12 負極集電体
14 負極活物質
20 格子状基材
20a 導管跡
22 導電層
30 触媒作用金属層
32 炭素層[0001]
BACKGROUND OF THE INVENTION
This invention lithium ion More particularly, the negative electrode structure of a battery and a method for manufacturing the same, and a negative electrode structure that can be suitably used for a lithium ion secondary battery and can improve various physical properties such as electric capacity and charge / discharge characteristics, and the negative electrode structure are manufactured It is about the method.
[0002]
[Prior art]
Conventionally, lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and other batteries are suitably employed as secondary batteries that are small and can be charged. However, with the recent demands for downsizing and weight reduction of electronic devices, there is a demand for a battery having a higher energy density, that is, a secondary battery that has a high electric capacity and has a low environmental load and is safe.
[0003]
Lithium ion batteries can be cited as batteries with sufficient performance to meet these requirements. This lithium ion battery has excellent characteristics such as lightness, voltage, electric capacity, charge / discharge characteristics, and cycle characteristics, and uses thereof include, for example, personal computers, camera-integrated VTRs and mobile phones, and data terminal devices. Power supply of consumer electronic devices such as
[0004]
The lithium ion battery is a secondary battery that does not use metallic lithium as a negative electrode active material but uses a material that can dope and undope lithium ions, and lithium ions are transferred between the positive electrode body and the negative electrode body. Charging / discharging is performed. For this reason, it has the characteristic that the form of a positive electrode active material and a negative electrode active material does not change.
[0005]
A conventionally known cylindrical lithium ion battery has a spiral structure in which a separator 64 is sandwiched between a sheet-like positive electrode body 60 and a negative electrode body 62 as shown in FIG. In this structure, lithium ions are transferred between the positive electrode body 60 and the negative electrode body 62 through the separator 64, so that charging / discharging is performed. As shown in FIG. 9, the positive electrode body 60 is composed of a positive electrode active material 60a and a positive electrode current collector 60b. The positive electrode active material 60a is a composite metal oxide (LiCoO) composed of lithium and cobalt. 2 However, an aluminum foil is suitably employed as the positive electrode current collector 60b. Further, the negative electrode body 62 is composed of a negative electrode active material 62a and a negative electrode current collector 62b, and a required carbonaceous material is suitably adopted as the negative electrode active material 62a, and a copper foil is suitably adopted as the negative electrode current collector 62b. Yes.
[0006]
Since the capacity of the negative electrode active material 62a constituting the negative electrode body 62 has been found to be proportional to the electric capacity of the lithium ion battery, it should be as large as possible. Similarly, the negative electrode current collector 62b constituting the negative electrode body 62 is preferably as thin as possible in order to increase the capacity of the negative electrode active material 62a described above and to allow easy easy movement of lithium ions.
[0007]
[Problems to be Solved by the Invention]
According to a generally adopted manufacturing method, the negative electrode body 62 is manufactured by applying a negative electrode active material 62a such as a carbonaceous material mixed with a binder to the negative electrode current collector 62b. Thus, when the binder is used, if the amount is not sufficient, the negative electrode active material 62a is easily peeled off from the negative electrode current collector 62b, resulting in a decrease in electric capacity. Therefore, when the amount of the binder is increased, the amount of the negative electrode active material 62a is relatively decreased, so that it is difficult to secure a sufficient electric capacity.
[0008]
Further, if a large amount of the negative electrode active material 62a mixed with a sufficient binder is applied to the negative electrode current collector 62b, the negative electrode current collector 62a is surely adhered. There is a fear of peeling from the body 62b. At the same time, since a large amount of the negative electrode active material 62a is structurally supported, it is necessary to increase the thickness of the negative electrode current collector 62b. As a result, the capacity of the negative electrode active material within the same volume is relatively decreased, The disadvantage that capacity decreases is pointed out.
[0009]
In addition to the manufacturing method described above, a carbonaceous material serving as the negative electrode active material 62a is deposited on the negative electrode current collector 62b using a chemical vapor reaction such as CVD (chemical vapor deposition) or CVI (chemical vapor infiltration). How to do is known. When a metal layer that acts as a catalyst such as nickel is not formed, the crystallinity of the carbon deposited and deposited by the above-mentioned methods is low, forming a disordered atomic arrangement, or a polycrystal aggregate Therefore, the problem is that the crystallinity is generally low, and as a result, the charge / discharge characteristics are deteriorated.
[0010]
As another manufacturing method, for example, a catalytic metal such as metallic nickel is used as the negative electrode current collector 62b having a foil shape or a mesh shape, and hydrocarbons or a part of various characteristics are provided around the negative electrode current collector 62b. A method of obtaining a negative electrode body 62 having a structure shown in FIG. 10 by precipitating a negative electrode active material 62a having a carbon layer by thermally decomposing a hydrocarbon compound containing a group is disclosed in JP-A-8-162098 and JP-A-9-17418. It is disclosed in the gazette. According to these methods, the binder as described above is not required, and the carbon layer as the negative electrode active material 62a has a graphite structure due to the action of the catalytic metal, so that it has a high electric capacity and an excellent secondary battery. Charge / discharge characteristics can be obtained. However, since the negative electrode active material 62a is only formed in a layered manner on the outer surface side of the negative electrode current collector 62b (see FIG. 10 (a)), the negative electrode active material 62a is repeatedly generated due to internal stress generated during deposition or charge / discharge. The negative electrode active material 62a is peeled off from the negative electrode current collector 6b over time due to stress fluctuation or the like (see FIG. 10B), or the negative electrode active material 62a having a layered structure is formed between the layers of the negative electrode active material 62a. Is pointed out (see FIG. 10 (c)), and the electric capacity decreases.
[0011]
OBJECT OF THE INVENTION
The present invention has been proposed in view of the drawbacks inherent in the negative electrode structure of a secondary battery and a method for manufacturing the same according to the above-described prior art. The lattice-like base material obtained by carbonizing is made into a negative electrode current collector by providing conductivity, a catalytic metal layer is formed on the negative electrode current collector, and the catalytic metal layer is composed of a layered carbon layer By forming the negative electrode active material, it has excellent electric capacity, charge / discharge characteristics, cycle characteristics, etc., and the negative electrode active material is structurally difficult to peel from the negative electrode current collector. lithium ion It aims at providing the negative electrode structure of a battery, and the method of manufacturing this.
[0012]
[Means for Solving the Problems]
In order to overcome the above problems and achieve the intended purpose, Tomorrow In the negative electrode structure of a lithium ion battery using carbon as the negative electrode active material,
A negative electrode current collector comprising a lattice-shaped substrate obtained by carbonizing a tree having a conduit, and a conductive layer formed in a laminated manner on the inner surface of each conduit trace defined in the lattice-shaped substrate;
A catalytic metal layer formed in a laminated manner on the inner surface of the conductive layer;
It is characterized by comprising a negative electrode active material comprising a layered carbon layer formed on the inner surface of the catalytic metal layer.
[0013]
In order to overcome the above-mentioned problems and achieve the intended purpose, another issue of the present application will be described. Tomorrow Of lithium ion batteries using carbon as the negative electrode active material Of negative electrode structure In the manufacturing method,
Lattice-like base material by carbonizing trees with conduits,
A negative electrode current collector is formed by laminating a conductive layer on the inner surface of each conduit trace defined in the lattice-shaped substrate,
Laminating a catalytic metal layer on the inner surface of the conductive layer;
Next, a negative electrode active material is laminated on the negative electrode current collector by forming a carbon layer on the inner surface of the catalytic metal layer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, according to the present invention lithium ion A negative electrode structure of a battery and a manufacturing method thereof will be described below with reference to the accompanying drawings by way of preferred examples.
[0015]
The inventor of the present application has an angiosperm, in particular, a tree represented by conifers such as pine, cedar and oak, having a tubular conduit in which cylindrical or polygonal conduit cells are arranged vertically and communicate with each other vertically. Focused on the fact that. That is, by carbonizing the tree having the conduit, a base material in which the conduit is in a lattice shape is obtained. Therefore, a negative electrode current collector is prepared based on the lattice-shaped base material, and then the negative electrode current collector is used. Structurally delamination by forming a catalytic metal layer in layers by either electroless plating, electrolytic plating or chemical vapor reaction, and then forming a carbon layer from carbonaceous material in layers by chemical vapor reaction It has been found that a negative electrode body that is not easily generated and has excellent charge / discharge characteristics and an improved electric capacity can be obtained.
[0016]
FIG. 1 is a cross-sectional plan view showing a negative electrode body of a battery according to a preferred embodiment of the present invention.
The negative electrode body 10 includes a negative electrode active material 14 that accepts lithium ions and releases electrons through a separator (not shown) that physically blocks the positive electrode, and electrons emitted from the negative electrode active material 14. It is basically composed of a negative electrode current collector 12 sent out of the battery.
[0017]
The negative electrode current collector 12 includes the above-described lattice-shaped substrate 20 and a conductive layer 22 having a predetermined thickness formed on the substrate 20, and the lattice-shaped substrate 20 includes a trunk. For example, it is obtained by cutting a trunk of a conifer such as cedar, pine, cypress, etc., having a number of fine conduits, perpendicularly to the conduit, and carbonizing by applying heat treatment. At this time, the conduit portion becomes a conduit trace 20 a of the lattice-like base material 20. The ratio of the cross-sectional area of the trunk of the conifer to the trunk of the conduit is approximately 90% or more, and the conduit trace ratio which is the ratio of the conduit trace 20a in the lattice-like base material 20 obtained from these trunks, that is, the negative electrode in the negative electrode body 10 The ratio of the active material 14 is also as high as about 90% or more.
[0018]
The lattice-shaped substrate 20 not only functions as a base of the negative electrode current collector 12 that can flow electrons without resistance, but also provides structural rigidity to the negative electrode body 10. Therefore, as the shape, for example, a honeycomb shape or a polygonal shape such as a triangle or a quadrangle that can cope with external stress is preferable. In fact, from the above-described coniferous trunk, a lattice-like substrate 20 having a complicated columnar shape or polygonal shape substantially regularly and having sufficient structural rigidity is obtained.
[0019]
The conductive layer 22 is a portion that becomes a substantial main body of the negative electrode current collector 12 having sufficient electron conductivity, and is formed to increase the conductivity of the lattice-shaped substrate 20. Specifically, by using a chemical gas phase reaction, uniform and high adhesion without defects so as to have a thickness of about 0.5 to 5 μm with respect to the inner surface of the lattice-like substrate 20 which is a carbon block ( Formed with chemical affinity). As the material, for example, titanium nitride or titanium carbide is suitable. If the layer thickness is too thin, the electrical conductivity as the current collector is deteriorated, that is, the resistance is increased, and if it is too thick, the conduit trace 20a is narrowed more than necessary. Care should be taken because the amount will be relatively reduced.
[0020]
The negative electrode active material 14 is a carbon layer having a graphite crystal structure obtained by thermally decomposing a hydrocarbon such as propane gas, that is, a carbonaceous material by a chemical vapor reaction and depositing and filling the conduit trace 20a. In order to impart a graphite crystal structure, that is, orientation to the carbon layer 32, a catalytic metal layer 30 is previously formed on the negative electrode current collector 12.
[0021]
The catalytic metal layer 30 is formed by using electroless plating, electrolytic plating, or chemical vapor reaction with respect to the negative electrode current collector 12 that has been made sufficiently conductive by the conductive layer 22. 0.01 About 3 μm is formed. As described above, the catalytic metal layer 30 is formed of graphite when the carbon layer 32 occupying most of the negative electrode active material 14 is laminated on the negative electrode current collector 12 with the catalytic metal layer 30 interposed therebetween. Indispensable for stacking with a crystal structure. Typically, nickel, iron, cobalt and the like can be mentioned. Nickel which can be applied by electroless plating and is inexpensive and easy to manage the electroless plating bath is particularly suitable. In addition, if the layer thickness is too thick, the conduit trace 20a is narrowed more than necessary, so that the capacity of the carbon layer is relatively reduced.
[0022]
The carbon layer 32 forms a substantial part of the negative electrode active material 14, that is, a part that receives or releases lithium ions doped or undoped from the positive electrode through the separator, and uses a chemical vapor reaction to form a carbonaceous material. It is formed on the catalytic metal layer 30 by pyrolysis and vapor deposition. As described above, the carbon layer 32 is formed on the catalytic metal layer 30 in a stacked manner. For this reason, the carbon crystal structure constituting the carbon layer 32 has a graphite crystal structure, that is, orientation. It will have. This orientation greatly improves the charge / discharge characteristics that are indispensable for battery performance evaluation.
[0023]
【Production method】
According to the present invention lithium ion As shown in FIGS. 2 and 3, the manufacturing method of the negative electrode structure of the battery is largely divided into a current collector forming step S1, a catalytic metal layer providing step S2, an active material forming step S3, and a final step S4. The current collector forming step S1 uses a carbonization step S11 in which a predetermined coniferous trunk is carbonized to obtain a lattice-shaped substrate 20, and a chemical vapor reaction is applied to the inner surface of the obtained lattice-shaped substrate 20. A conductive layer application step S12 for forming the conductive layer 22 is included.
[0024]
In the carbonization step S11, as described above, the lattice-like base material 20 is manufactured from the trunk of a conifer having a conduit (see FIG. 3 (a)), which is conventionally known, for example, inert such as argon and nitrogen. Any method such as a forced reduction atmosphere carbonization method in which carbonization is performed under conditions of a temperature of about 1,000 ° C. and a time of about 4 hours in a gas atmosphere can be employed.
[0025]
In the conductive layer application step S12, the conductive layer 22 is formed in a laminated manner on the inner surface of the lattice-shaped substrate 20 obtained in the carbonization step S11 (see FIG. 3B). An example of a conventionally known chemical vapor reaction apparatus is shown in FIG. The chemical vapor reaction apparatus 40 basically includes a reaction unit 42, a raw material supply unit 44, a vacuum pump 46, and a reservoir tank 48. The reaction unit 42 includes a reaction vessel 50 and heating means 52 such as an electric furnace for heating the reaction vessel 50 under control. The raw material supply unit 44 is provided with a plurality of gas supply sources 44a as needed, such as titanium tetrachloride, nitrogen gas, and hydrogen gas, which form the conductive layer 22, in the conductive layer application step S12. The chemical vapor phase reactor 40 is also preferably used for the catalytic metal layer providing step S2 and the active material forming step S3 described later. In this case, as the raw material supply unit 44, for example, hydrogen as a diluent gas is used. A plurality of gas supply sources 44a such as methane gas, propane gas, or acetylene gas as a gas or nitrogen gas and a carbon supply source are provided. The vacuum pump 46 is means for bringing the inside of the reaction vessel 50 into a predetermined vacuum state, and the reservoir tank 48 temporarily supplies the mixed gas supplied from each of the plurality of gas supply sources 44a to a predetermined ratio. It is something to hold. In addition, a valve 54 such as an electromagnetic valve that opens and closes the flow path under control is provided at a main portion of each flow path through which the gas flows.
[0026]
As a procedure for forming the conductive layer 22,
{Circle around (1)} The lattice-like substrate 20 obtained in the carbonization step S <b> 11 is fixed so as not to come into contact with the reaction vessel 50.
{Circle around (2)} The inside of the reaction vessel 50 is heated to a predetermined temperature of about 800 to 1,100 ° C. using the heating means 52 and the vacuum pump 46 is driven to a predetermined vacuum state.
(3) Then, a predetermined mixed gas is prepared by opening each gas supply source 44a of the raw material supply unit 44 (in some cases, the obtained mixed gas is circulated to a titanium chloride saturator or the like), and a reservoir It is temporarily stored in the tank 48.
(4) The obtained mixed gas is supplied into the reaction vessel 50 at a stretch and held for a predetermined time (about 1 to 2 seconds), and the mixed gas is formed as a layer on the exposed inner surface of the lattice-like substrate 20. Evaporate.
(5) The reacted mixed gas in the reaction vessel 50 is exhausted by the vacuum pump 46.
Is repeated until the conductive layer 22 having the required thickness is formed.
[0027]
In this way, the conductive layer 22 is formed on the lattice-shaped substrate 20 in a stacked manner, and the negative electrode current collector 12 capable of exhibiting sufficient structural strength and conductivity in the conduit trace 20a is obtained.
[0028]
The catalytic metal layer providing step S2 performed subsequent to the current collector forming step S1 includes electroless plating, electrolytic plating, or chemical vapor reaction on the negative electrode current collector 12 obtained in the current collector forming step S1. This is a step of applying the catalytic metal layer 30 (see FIG. 3C).
[0029]
In the catalytic metal layer application step S2, a suitable application method ((1) chemical vapor reaction, (2) electroless plating or (3) electrolytic plating) differs depending on the type of catalytic metal selected. The specific method differs depending on (1) chemical vapor reaction, (2) electroless plating or (3) electrolytic plating, but (1) chemical vapor reaction apparatus and vapor reaction used for chemical vapor reaction. The method is almost the same as that used in the above-mentioned “conductive layer application step S12”, and the description is omitted because only the type of gas supply source 44a arranged in the raw material supply unit 44 and the obtained mixed gas are different. To do. Conventionally known methods are employed for (2) electroless plating or (3) electrolytic plating, each of which will be outlined below.
[0030]
(2) In the case of electroless plating: A colloid of catalytic metal such as palladium having catalytic properties in electroless plating reaction is applied to the surface of the negative electrode current collector 12 by a method such as dipping, dipping, spray coating or brush coating. Apply and adsorb. The catalyst metal colloid can be obtained by dissolving a water-soluble salt of a catalyst metal compound, adding a surfactant and adding a reducing agent while stirring vigorously. There are various types of surfactants, and anionic or cationic surfactants are preferable, such as soap, sodium higher alcohol sulfate, sodium alkylbenzene sulfonate, sodium polyoxyethylene alkyl ether sulfate, and lauryl. Trimethylammonium chloride or alkylbenzyldimethylammonium chloride is used.
[0031]
Then, in an electroless catalytic metal plating bath in which a catalytic metal ion such as nickel stabilized by a chelating agent and the like and a reducing agent capable of reducing the ion coexist at an appropriate pH and temperature. Then, the negative electrode current collector 12 provided with the catalyst metal is immersed. By soaking, the catalytic metal previously adsorbed serves as a nucleus to cause a precipitation reaction, and a catalytic metal layer 30 having a predetermined thickness is provided. Alternatively, the reducing agent may not be coexisted in the electroless catalytic metal plating bath, and only reduction may be performed after applying the catalytic metal layer 30 by using a hydrogen atmosphere or the like.
[0032]
(3) In the case of electrolytic plating: The catalyst metal is not applied from the case of (2) electroless plating described above, and the catalytic metal such as nickel metal is stabilized with a chelating agent, etc. The negative electrode current collector 12 is immersed in the electrocatalytic metal plating bath as described above, and a catalytic metal layer 30 having a predetermined thickness is provided. Further, as in the case of (2) electroless plating, the reducing agent may not be allowed to coexist in the electrocatalytic metal plating bath, but only reduction may be performed after the catalytic metal layer 30 is applied.
[0033]
The active material forming step S3 performed next to the catalytic metal layer applying step S2 is a step of applying a carbon layer 32 on the catalytic metal layer 30 by a chemical vapor reaction. Through this step, the negative electrode active material 14 is formed on the negative electrode current collector 12.
[0034]
In the active material forming step S3, a chemical gas phase is formed by using a carbonaceous material gas such as methane or propane and a hydrogen gas on the negative electrode current collector 12 having the catalytic metal layer 30 formed on the surface thereof. This is a step of obtaining a carbon layer 32 having a predetermined thickness obtained by layering the carbonaceous material gas as pyrolytic carbon by a reaction. Here, the provision of the carbon layer 32 having a predetermined thickness means the filling of the negative electrode active material 14 into the conduit trace 20a. Since the chemical vapor phase reaction apparatus and the vapor phase reaction method used in this case are almost the same as those used in the above-mentioned “conductive layer application step S12”, description thereof is omitted. However, there are differences in various conditions such as the degree of vacuum, temperature and mixed gas holding time for performing the gas phase reaction, and optimum settings for carbon layer deposition (for example, the degree of vacuum is 10 Torr or less, the temperature is 600 to 1,100 ° C. and the mixing is performed) Gas holding time of 0.2 to 5 sec) is required.
[0035]
Further, as shown in FIGS. 3D and 3E, the thickness of the carbon layer 32 is determined from the side of the conduit trace 20a constituting the grid-shaped negative electrode current collector 12 in accordance with the repeated chemical vapor reaction ( (Refer to FIG. 3 (d)), and gradually thicken toward the inside (refer to FIG. 3 (e)), but the conduit trace of about 0.5 to 2 μm without completely filling the conduit trace 20a. The chemical vapor phase reaction is completed leaving 20a. The conduit trace 20a left in this way becomes a flow path for lithium ions doped and undoped through the separator. Note that the layer thickness obtained in one round of the chemical vapor phase reaction used here is very small, and therefore it is usually necessary to repeat 10,000 to 30,000 times.
[0036]
In this way, the conduit trace 20a surrounded by the four sides is sequentially filled by depositing the carbon layer 32 in a stacked manner by chemical vapor reaction from the four sides, so that when stress is applied from the outside, the conduit traces 20a are in different directions. The carbon layers 32, 32 facing each other have a structure that cancels out the stress. Therefore, the negative electrode body 10 in which the negative electrode active material 14 is difficult to peel from the negative electrode current collector 12 is obtained. Along with this, the structural rigidity of the negative electrode current collector 12 itself is also reinforced, so that sufficient structural rigidity can be obtained even by adopting the thinner negative electrode current collector 12. so wear. That is, a larger capacity of the negative electrode active material 14 can be filled, and the electric capacity is improved.
[0037]
The structural rigidity, electric capacity, and charge / discharge characteristics were improved from the lattice-like substrate 20 by the current collector forming step S1, the catalytic metal layer providing step S2, and the active material forming step S3 performed so far. The negative electrode body 10 can be obtained. In the final step S4 that is finally performed, final finishing and inspection of the negative electrode body 10 are performed.
[0038]
[Experimental example]
Examples of the production method of the battery according to the examples and the evaluation of the electric capacity and charge / discharge characteristics of the battery having the negative electrode obtained by this method are shown below. lithium ion The negative electrode structure of the battery and the manufacturing method thereof are not limited to this experimental example.
[0039]
(Preparation of Specimen) A manufacturing method will be described below in accordance with each of the aforementioned steps.
[0040]
1. Specimen A
Current collector forming step S1
Carbonization step S11: A commercially available cypress wood is used as a trunk of a conifer having a conduit, and carbonized under conditions of a temperature of 1,000 ° C. and a time of 4 hours under an argon atmosphere. The shape of the carbonized lattice-like base material is about 2 × 1 × 0.1 cm.
[0041]
Conductive layer application step S12: After fixing the obtained lattice-shaped substrate in the reaction vessel 50 using the chemical vapor phase reactor shown in FIG. 4, the temperature: 850 ° C., the mixed gas holding time: 1 second, Composition of used mixed gas: Reaction was carried out under conditions of nitrogen 10%, hydrogen 88% and primary titanium chloride concentration 2%, and repeated until titanium nitride was deposited to a thickness of 1 μm to obtain a negative electrode current collector.
[0042]
Catalytic metal layer application step S2
With respect to the obtained negative electrode current collector, a temperature of 30 ° C. with respect to a catalyst solution composed of 30 ml / l of tin palladium chloride complex (trade name Catalyst C; manufactured by Okuno Seiyaku) and 200 ml / l of 35% hydrochloric acid solution, After immersion for 3 minutes, the tin content was removed with 100 ml / l of a 98% sulfuric acid solution at 40 ° C., and further washed with water to deposit palladium metal fine particles on the surface. Thereafter, plating was performed using a standard concentration of electroless nickel (trade name Chemical Nickel HR-T; manufactured by Okuno Seiyaku) at a temperature of 30 ° C. for 20 minutes. Finally, this was reduced in a hydrogen atmosphere at a temperature of 400 ° C. for 30 minutes to form a catalytic metal layer.
[0043]
Active material forming step S3
After fixing the obtained negative electrode current collector on which the catalytic metal layer is formed in the reaction vessel 50 using the chemical vapor phase reactor or the like according to FIG. 4, the temperature: 750 ° C., the mixed gas holding time: 1 Second, the number of repetitions of vapor deposition: 20,000 times, the composition of the mixed gas used: the reaction was carried out under the conditions of 30% propane (commercial product) and 70% hydrogen (purity 99%), and the carbon layer was deposited in layers as the negative electrode active material. A filled negative electrode body was obtained.
[0044]
Final step S4: Omitted because it is not necessary for each measurement related to the experiment.
[0045]
(Preparation of comparative specimen)
2. Comparative Specimen B: A negative electrode active material in which the catalytic metal layer was not formed when the above-mentioned Specimen A was prepared.
3. Comparative test body C: A negative electrode active material obtained by the same method as in the carbon layer forming step S32 described above, employing a conventionally known structure, here, a mesh-like nickel metal as the negative electrode current collector.
4). Comparative test body D: Negative electrode active substance using commercially available graphite for batteries.
[0046]
(Measurement of various physical properties and results)
The following physical properties were measured for the negative electrode body obtained by the production method described above.
[0047]
(1) Orientation of the carbon layer constituting the negative electrode active material:
For Specimen A and Comparative Specimen B, the orientation of the carbon layer constituting the negative electrode active material was confirmed by X-ray diffraction.
FIG. 5 shows the results obtained by measurement. From this, it was confirmed that the carbon layer deposited on the catalytic metal layer has a graphite crystal structure having high orientation. 5A and 5B are an X-ray diffraction diagram of a carbon layer composing the test body A and an X-ray diffraction diagram of a carbon layer composing the comparative test body B, respectively. From the X-ray diffraction diagram according to FIG. 5A, it was confirmed that a carbon layer having a sharp peak, that is, a highly oriented carbon layer was formed on the specimen A.
[0048]
(2) Charging / discharging characteristics:
The test body A, the comparative test body B, and the comparative test body D were evaluated for charge / discharge characteristics using a triode cell. In this measurement, lithium foil was used for the counter electrode and the reference electrode, and 1 mol / l lithium perchlorate was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate whose ratio was 1: 1 as the electrolyte. What was let to use was used. Moreover, as a test condition of charge / discharge characteristics, a current value was set so that one cycle of charge / discharge was 12 hours, and a voltage between 0 and 1.5V was measured. The result is shown in FIG. From this, it was confirmed that the charge / discharge characteristics of the test specimen A may be compared with the charge / discharge characteristics of the comparative test specimen B, and the above-mentioned “(1) orientation of the carbon layer constituting the negative electrode active material” The results obtained were also supported. The result of the test specimen A was almost the same as that of the comparative test specimen D (use of commercially available battery graphite), and it was also confirmed that the test specimen A had charge / discharge characteristics equal to or higher than those of the commercial product.
[0049]
(3) Electric capacity:
About the test body A, the comparative test body C, and the comparative test body D, the above-mentioned “(2) charge / discharge characteristics” data and various physical property data (weight and volume of the negative electrode body and weight, volume and density of the negative electrode active material, etc.) Table 1 below shows the results of calculating physical property values related to electric capacity. Each physical property relating to the electric capacity of the specimen A obtained by vapor-depositing a carbon layer on the catalytic metal layer is approximately the same as that of the comparative specimen D (commercially available battery graphite as a negative electrode active material). It was confirmed that the current capacity was improved by about 1.3 times.
[0050]
[Table 1]
Figure 0004799731
[0051]
(4) Cycle characteristics:
The test body A and the comparative test body C were charged and discharged 100 times in total, and the charging / discharging characteristics were obtained at the time when charging / discharging every 10 times was completed, and the method described in “(2) Charging / discharging characteristics” above. The relationship between the number of charge / discharge cycles (cycle number) and the electric capacity shown in FIG. 7 was obtained. From here, compared with the comparative test body C, in the test body A, the fall of cycling characteristics was not confirmed. This difference is due to the ease of exfoliation of the carbon layer, which is caused by the doping of the current, that is, the lithium ion that is the basis of the flow of electrons, between the carbon layer layers as the negative electrode active material during charging. Therefore, it has a fine lattice structure, the stress applied to the inside is structurally dispersed, and peeling does not easily occur. In the negative electrode structure according to the present invention, good cycle characteristics were obtained.
[0052]
Not only the test body A but also the test body B and the test body C and the similar comparative test body were produced by the manufacturing method described below, and various physical properties were measured in the same manner.
[0053]
2. Specimen B
Current collector forming step S1
Carbonization step S11: A commercially available cypress wood is used as a trunk of a conifer having a conduit, and carbonized under conditions of a temperature of 1,000 ° C. and a time of 4 hours under an argon atmosphere. The shape of the carbonized lattice-like base material is about 2 × 1 × 0.1 cm.
Conductive layer application step S12: After fixing the obtained lattice-shaped substrate in the reaction vessel 50 using the chemical vapor phase reactor or the like according to FIG. 4, the temperature: 850 ° C., the mixed gas holding time: 1 second, Composition of used mixed gas: Reaction was carried out under conditions of nitrogen 10%, hydrogen 88% and primary titanium chloride concentration 2%, and repeated until titanium nitride was deposited to a thickness of 1 μm to obtain a negative electrode current collector.
Catalytic metal layer application step S2, active material formation step S3, and final step S4: The same as in the case of the specimen A described above, and thus omitted.
[0054]
3. Specimen C
Current collector forming step S1
Carbonization step S11: A commercially available cypress wood is used as a trunk of a conifer having a conduit, and carbonized under conditions of a temperature of 1,000 ° C. and a time of 4 hours under an argon atmosphere. The shape of the carbonized lattice-like base material is about 2 × 1 × 0.1 cm.
Conductive layer application step S12: After fixing the obtained lattice-shaped substrate in the reaction vessel 50 using the chemical vapor phase reactor or the like according to FIG. 4, the temperature: 850 ° C., the mixed gas holding time: 1 second, Composition of used mixed gas: Reaction was carried out under conditions of nitrogen 10%, hydrogen 88% and primary titanium chloride concentration 2%, and repeated until titanium nitride was deposited to a thickness of 1 μm to obtain a negative electrode current collector.
Catalytic metal layer application step S2, active material formation step S3, and final step S4: The same as in the case of the specimen A described above, and thus omitted.
[0055]
As a result of measuring the physical properties of the test body B and the test body C, the same result as the test body A was obtained for any of the test bodies. Therefore, it was confirmed that the negative electrode structure manufactured by the manufacturing method according to the present invention achieved higher electric capacity, charge / discharge characteristics, cycleability, and the like than the conventional negative electrode structure.
[0056]
【The invention's effect】
As described above, according to the present invention. lithium ion According to the negative electrode structure of a battery and the manufacturing method thereof, a grid-like base material that is a base of a negative electrode current collector is produced by carbonizing a tree having a conduit such as conifers, and Since a negative electrode body is obtained by sequentially laminating a conductive layer, a catalytic metal layer, and a carbon layer serving as a negative electrode active material on the inner surface using a chemical vapor reaction or the like, a high electric capacity, excellent charge / discharge characteristics and Cycle characteristics and the like, and a structure in which the negative electrode active material is difficult to peel from the negative electrode current collector can be achieved.
[Brief description of the drawings]
FIG. 1 relates to a preferred embodiment of the present invention. lithium ion It is a cross-sectional top view which shows the negative electrode structure of a battery.
FIG. 2 relates to the embodiment lithium ion It is a flowchart figure which shows the process of manufacturing the negative electrode structure of a battery.
FIG. 3 shows in FIG. lithium ion It is process drawing which shows the process of manufacturing the negative electrode structure of a battery for every process.
FIG. 4 is related to an example. lithium ion It is the schematic which shows an example of the chemical vapor phase reactor used suitably for the manufacturing method of the negative electrode structure of a battery.
FIG. 5 is an X-ray diffraction diagram showing 20-30 ° orientation of test specimen A and comparative test specimen B.
FIG. 6 is a charge / discharge curve diagram showing charge / discharge characteristics of a test specimen A, a comparative test specimen B, and a comparative test specimen D in terms of electric capacity and voltage.
FIG. 7 is a cycle characteristic diagram showing the cycle characteristics of the test specimen A and the comparative test specimen C by the number of cycles and the electric capacity.
FIG. 8 is a perspective view showing a negative electrode structure of a battery according to a conventional technique by cutting away and developing the negative electrode structure.
9 is an enlarged cross-sectional view showing a laminated structure of the positive electrode body and the negative electrode body of FIG.
FIG. 10 is a cross-sectional view showing a negative electrode structure using a catalytic metal as a negative electrode current collector.
[Explanation of symbols]
12 Negative electrode current collector
14 Negative electrode active material
20 Lattice substrate
20a Trace of conduit
22 Conductive layer
30 Catalytic metal layer
32 carbon layer

Claims (14)

負極活物質(14)として炭素を用いるリチウムイオン電池の負極構造において、
導管を有する樹木を炭化させてなる格子状基材(20)および該格子状基材(20)に画成される各導管跡(20a)の内表面に積層的に形成した導電層(22)からなる負極集電体(12)と、
前記導電層(22)の内表面に積層的に形成した触媒作用金属層(30)と、
前記触媒作用金属層(30)の内表面に積層的に形成した層状の炭素層(32)からなる負極活物質(14)とから構成した
ことを特徴とするリチウムイオン電池の負極構造。
In the negative electrode structure of a lithium ion battery using carbon as the negative electrode active material (14),
A grid-like substrate (20) obtained by carbonizing a tree having a conduit, and a conductive layer (22) formed in a laminated manner on the inner surface of each conduit trace (20a) defined in the grid-like substrate (20) A negative electrode current collector (12) comprising:
A catalytic metal layer (30) formed in a laminated manner on the inner surface of the conductive layer (22);
A negative electrode structure for a lithium ion battery, comprising: a negative electrode active material (14) comprising a layered carbon layer (32) formed on the inner surface of the catalytic metal layer (30).
前記導管を有する樹木は、針葉樹である請求項1記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to claim 1, wherein the tree having the conduit is a conifer. 前記導電層(22)および炭素層(32)は、夫々化学気相反応により形成される請求項1または2記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to claim 1 or 2, wherein the conductive layer (22) and the carbon layer (32) are each formed by a chemical vapor reaction. 前記触媒作用金属層(30)は、無電解メッキ、電解メッキまたは化学気相反応の何れかにより形成される請求項1〜3の何れか一項に記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to any one of claims 1 to 3, wherein the catalytic metal layer (30) is formed by any one of electroless plating, electrolytic plating, and chemical vapor reaction. 前記導電層(22)の材質として、窒化チタンまたは炭化チタンが使用される請求項1〜4の何れか一項に記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to any one of claims 1 to 4, wherein titanium nitride or titanium carbide is used as a material of the conductive layer (22). 前記導電層(22)の厚さは、0.5〜5μmである請求項1〜5の何れか一項に記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to any one of claims 1 to 5, wherein the conductive layer (22) has a thickness of 0.5 to 5 µm. 前記触媒作用金属層(30)として、金属ニッケルが使用される請求項1〜6の何れか一項に記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to any one of claims 1 to 6, wherein metallic nickel is used as the catalytic metal layer (30). 前記触媒作用金属層(30)の厚さは、0.01〜3μmである請求項1〜7の何れか一項に記載のリチウムイオン電池の負極構造。The negative electrode structure of a lithium ion battery according to any one of claims 1 to 7, wherein the thickness of the catalytic metal layer (30) is 0.01 to 3 µm. 負極活物質(14)として炭素を用いたリチウムイオン電池の負極構造の製造方法において、
導管を有する樹木を炭化させることで格子状基材(20)とし、
この格子状基材(20)に画成される各導管跡(20a)の内表面に導電層(22)を積層的に形成して負極集電体(12)とし、
前記導電層(22)の内表面に触媒作用金属層(30)を積層させ、
次いで前記触媒作用金属層(30)の内表面に炭素層(32)を層状に形成することで、前記負極集電体(12)に負極活物質(14)を積層形成した
ことを特徴とするリチウムイオン電池の負極構造の製造方法。
In the method for producing a negative electrode structure of a lithium ion battery using carbon as the negative electrode active material (14),
Lattice-like base material (20) by carbonizing the tree with the conduit,
A negative electrode current collector (12) is formed by laminating a conductive layer (22) on the inner surface of each conduit mark (20a) defined in the lattice-shaped substrate (20),
Laminating a catalytic metal layer (30) on the inner surface of the conductive layer (22),
Next, a negative electrode active material (14) is laminated on the negative electrode current collector (12) by forming a layer of carbon layer (32) on the inner surface of the catalytic metal layer (30). A method for producing a negative electrode structure of a lithium ion battery.
前記導管を有する樹木は、針葉樹から選択される請求項9記載のリチウムイオン電池の負極構造の製造方法。The method for producing a negative electrode structure for a lithium ion battery according to claim 9, wherein the tree having the conduit is selected from conifers. 前記導電層(22)および炭素層(32)の形成は、夫々化学気相反応によりなされる請求項9または10記載のリチウムイオン電池の負極構造の製造方法。The method of manufacturing a negative electrode structure for a lithium ion battery according to claim 9 or 10, wherein the conductive layer (22) and the carbon layer (32) are formed by chemical vapor reaction. 前記触媒作用金属層(30)の形成は、無電解メッキ、電解メッキまたは化学気相反応の何れかによりなされる請求項9〜11の何れか一項に記載のリチウムイオン電池の負極構造の製造方法。The production of the negative electrode structure of a lithium ion battery according to any one of claims 9 to 11, wherein the formation of the catalytic metal layer (30) is performed by any one of electroless plating, electrolytic plating, and chemical vapor reaction. Method. 前記触媒作用金属層(30)は、無電解メッキにより金属ニッケルから形成される請求項9〜12の何れか一項に記載のリチウムイオン電池の負極構造の製造方法。The method for producing a negative electrode structure for a lithium ion battery according to any one of claims 9 to 12, wherein the catalytic metal layer (30) is formed from metallic nickel by electroless plating. 前記触媒作用金属層(30)は、電解メッキにより金属ニッケルから形成される請求項9〜12の何れか一項に記載のリチウムイオン電池の負極構造の製造方法。The method for producing a negative electrode structure of a lithium ion battery according to any one of claims 9 to 12, wherein the catalytic metal layer (30) is formed from metallic nickel by electrolytic plating.
JP2000387104A 2000-12-20 2000-12-20 Negative electrode structure of lithium ion battery and manufacturing method thereof Expired - Fee Related JP4799731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387104A JP4799731B2 (en) 2000-12-20 2000-12-20 Negative electrode structure of lithium ion battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000387104A JP4799731B2 (en) 2000-12-20 2000-12-20 Negative electrode structure of lithium ion battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002190296A JP2002190296A (en) 2002-07-05
JP4799731B2 true JP4799731B2 (en) 2011-10-26

Family

ID=18854096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387104A Expired - Fee Related JP4799731B2 (en) 2000-12-20 2000-12-20 Negative electrode structure of lithium ion battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4799731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390336B2 (en) * 2009-10-22 2014-01-15 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
TWI563716B (en) * 2014-07-16 2016-12-21 Prologium Technology Co Ltd Anode electrode
KR20240041069A (en) * 2022-09-22 2024-03-29 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, rechargeable lithium battery, and all-solid rechargeable battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158047B2 (en) * 1988-06-08 2001-04-23 シャープ株式会社 Electrode and method of manufacturing electrode
JPH027360A (en) * 1988-06-27 1990-01-11 Sharp Corp Electrode and manufacture thereof
JP3204291B2 (en) * 1994-07-21 2001-09-04 シャープ株式会社 Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3581474B2 (en) * 1995-03-17 2004-10-27 キヤノン株式会社 Secondary battery using lithium
JP3719790B2 (en) * 1995-10-03 2005-11-24 呉羽化学工業株式会社 Non-aqueous solvent secondary battery electrode carbonaceous material, method for producing the same, and nonaqueous solvent secondary battery
JP3565994B2 (en) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 Carbonaceous material for electrode of non-aqueous solvent secondary battery, method for producing the same, and non-aqueous solvent secondary battery
JPH10312794A (en) * 1997-05-13 1998-11-24 Etsuro Kato Negative electrode of lithium ion secondary battery and manufacture thereof

Also Published As

Publication number Publication date
JP2002190296A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
Zhang et al. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode
Liu et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium–sulfur batteries
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
KR101692687B1 (en) Thin film electrochemical energy storage device with three-dimensional anodic structure
KR101036164B1 (en) composite electrode and method for manufacturing the same
US20120034524A1 (en) Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
Yang et al. Single-cluster Au as an usher for deeply cyclable Li metal anodes
US20100151318A1 (en) Three-dimensional battery with hybrid nano-carbon layer
US20120154983A1 (en) Method of Fabrication of Carbon Nanofibers on Nickel Foam
Yue et al. Facile preparation of Mn 3 O 4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries
WO2020214695A2 (en) Improvements to atomic layer deposition on high-aspect-ratio electrode structures
Li et al. A Lean‐Zinc and Zincophilic Anode for Highly Reversible Zinc Metal Batteries
Gong et al. Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: Will carbon-based hosts win this race?
Zheng et al. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries
KR102114208B1 (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
JP4799731B2 (en) Negative electrode structure of lithium ion battery and manufacturing method thereof
CN112072118A (en) Lithium metal negative electrode composite current collector, preparation method thereof and lithium ion battery
US20220359859A1 (en) Carbon nanotube carpet on and grown from copper
KR101060288B1 (en) composite electrode and method for manufacturing the same
CN116888789A (en) Artificial solid electrolyte interface layer material and use thereof
CN108288714B (en) A kind of modified copper foil electrode of graphene for silicon-based anode power battery
EP4038672A1 (en) Electrode, electrochemical cell and methods of forming the same
KR20190038519A (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
CN110867326A (en) Copper sulfide-foamed nickel three-dimensional composite material and preparation method thereof
Lai et al. 3D Carbon Fiber Skeleton Film Modified with Gradient Cu Nanoparticles as Auxiliary Anode Regulates Dendrite‐Free, Bottom‐Up Zinc Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees