JP4799635B2 - 液体デシカント再生装置及びデシカント除湿空調装置 - Google Patents

液体デシカント再生装置及びデシカント除湿空調装置 Download PDF

Info

Publication number
JP4799635B2
JP4799635B2 JP2009096916A JP2009096916A JP4799635B2 JP 4799635 B2 JP4799635 B2 JP 4799635B2 JP 2009096916 A JP2009096916 A JP 2009096916A JP 2009096916 A JP2009096916 A JP 2009096916A JP 4799635 B2 JP4799635 B2 JP 4799635B2
Authority
JP
Japan
Prior art keywords
desiccant
solution
stage regenerator
dehumidifying
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009096916A
Other languages
English (en)
Other versions
JP2010247022A (ja
Inventor
允煥 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009096916A priority Critical patent/JP4799635B2/ja
Publication of JP2010247022A publication Critical patent/JP2010247022A/ja
Application granted granted Critical
Publication of JP4799635B2 publication Critical patent/JP4799635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、デシカント溶液の除湿能力を再生する液体デシカント再生装置及びこの再生装置を備えたデシカント除湿空調装置に関するものである。
従来より、デシカント除湿空調装置は、フロン系冷媒を使用しないこと、消費電力が少ないこと、排熱など低質エネルギーが利用可能であること、除菌・殺菌作用があることなどの特徴がある。中でも、デシカント(除湿剤)として液体を用いる装置は、固体を使用するものに比べて除湿能力が高く、最近特に注目されている。この種の液体デシカントを使用した除湿装置は、デシカント水溶液を除湿器と再生器との間で循環させて処理空気の除湿を行っている。具体的には、除湿器では処理空気を除湿器内部に取り入れ、ノズルから噴出させたデシカント溶液(濃溶液)の微細な液滴と接触させて処理空気中の水分を溶液中に吸着させ、除湿する。水分を吸着したことによって濃度が薄くなり、除湿能力が低下したデシカント溶液(希溶液)は再生器へと送られる。再生器では、吸湿能力が低下した希溶液を加熱し、水分を放出しやすい状態としてノズルから噴出させ、その噴出した溶液に再生空気を接触させて再生空気に水分を与えることにより除湿能力を再生し、除湿器に戻すようにしている(例えば、特許文献1参照)。
この種のデシカント除湿空調装置では、全体システムのエネルギー効率の向上が望まれており、その課題として、デシカント水溶液の除湿能力の再生に必要なエネルギーを低減可能な再生装置が望まれている。そこで、近年ではエネルギー消費の低減を可能とした2段再生方式が提案されている。
2段再生方式は、第1再生器における1次加熱により発生した蒸気を第2再生器における2次加熱のための熱源として利用することで、再生装置全体としてのエネルギー効率を向上させるものである。2段再生方式の再生装置では、第1再生器において液体デシカント溶液を加熱してデシカント溶液内の水分を蒸発させ、その蒸気を、熱交換器を備えた第2再生器に送る。第2再生器では、第1再生器からの蒸気を第2再生器内部の熱交換器の伝熱管内に送り、この熱交換器上に第1再生器からのデシカント溶液を散布すると同時に、そのデシカント溶液に再生空気を接触させる。これにより、デシカント溶液が熱交換器内の蒸気と熱交換して加熱されると同時に、再生空気にデシカント溶液内の水分が与えられ、デシカント溶液の除湿能力を再生している。このように、第1再生器で加熱濃縮されたデシカント溶液を第1再生器の蒸気を利用して第2再生器で更に濃縮することで、熱効率を向上している。
特開2008−111644号公報(第4頁、第5頁、図1) 特開昭60−241901号公報(第2頁、図1) 特開昭61−149229号公報(第2頁、第3頁、図1)
従来の除湿器及び再生器では、デシカント溶液をノズルから噴霧し、その噴霧した溶液に処理空気又は再生空気を接触させている。このため、この空気流によりデシカント溶液が外部へと飛散することがある。そこで、特許文献1ではフィルターやデミスター(フィルターの一種)を設け、空気流をフィルターを通過させることで空気流内から液滴を除去し、外部に飛散するのを防止している。しかしながら、フィルターやデミスターを設置すると、圧力損失が増大し、その結果ファン入力が増加する。また、フィルターやデミスターが目詰まりするのを防止するためのメンテナンスが必要となるなど、種々の問題があった。
また、特許文献2及び特許文献3では2段再生方式を採用することで熱効率の向上を可能としている。しかしながら、第2再生器においてデシカント溶液を再生空気に接触させるに際し、デシカント溶液をノズルから散布している。このため、デシカント溶液の外部への飛散の問題が依然として残されており、改善が要望されていた。
本発明はこのような点に鑑みなされたもので、再生効率の向上が可能で、引いてはシステム全体の効率を向上することが可能な液体デシカント再生装置及びこの再生装置を備えたデシカント除湿空調装置を提供することを目的とする。
本発明に係る液体デシカント再生装置は、高段再生器と低段再生器と凝縮器とを有し、外部から供給されるデシカント溶液が高段再生器と低段再生器とに分けて供給されるとともに、低段再生器と凝縮器との間を伝熱流体が循環するように構成され、高段再生器は、外部から供給されたデシカント溶液を加熱源により加熱して蒸気を発生させて再生すると共に、デシカント溶液を加熱することにより発生した蒸気を、凝縮器と低段再生器との間で循環する伝熱流体の加熱源として凝縮器に供給し、凝縮器は、高段再生器からの蒸気を低段再生器からの伝熱流体に直接接触させ、高段再生器からの蒸気を凝縮液化して伝熱流体の一部とする一方、低段再生器からの伝熱流体を高段再生器からの蒸気により加熱して低段再生器に戻し、低段再生器は、伝熱流体が通過する通路を内部に有するプレートが間隔を空けて複数並設され、且つ外部から供給されたデシカント溶液が各プレートそれぞれの外表面に沿って流下して液膜を形成する構成を有し、外部から供給されたデシカント溶液と凝縮器で加熱された伝熱流体とをプレートの内外で熱交換させてデシカント溶液を加熱し、加熱されたデシカント溶液に、各プレート間の隙間を通過する再生空気を接触させ、デシカント溶液中の水分を再生空気に放出させてデシカント溶液を再生するものである。
本発明によれば、再生部を、高段再生器と低段再生器とを備えた二段再生器とし、外部投入された熱エネルギーを二重効用化するようにしたので、熱利用効率を向上させることができ、システムのCOP を大幅に改善することができる。また、低段再生器としてプレート型熱交換器を用いるようにしたので、デシカント溶液を再生するに際し、デシカント溶液の液滴が発生することはほとんどない。よって、フィルターやデミスターを用いることなく、デシカント溶液の液滴が処理空気や再生空気によって外部に飛散するのを防止することができる。
本発明の一実施の形態の液体デシカント再生装置を備えた液体デシカント除湿空調装置の構成を示す概略模式図である。 図1の再生部の構成を示す概略模式図である。 図1の高段再生器の構成を示す概略模式図である。
以下、本発明の一実施の形態の液体デシカント除湿空調装置について説明する。図1は、液体デシカント除湿空調装置の構成を示す概略模式図である。図2は、図1の再生部20の構成を示す概略模式図である。
液体デシカント除湿空調装置1は、処理空気中の水分をデシカント溶液で吸着して除湿を行う除湿部10と、除湿を行ったことにより除湿能力が低下したデシカント溶液を再生する再生部20と、溶液熱交換器33とを備えている。除湿部10と再生部20は、濃溶液管31及び希溶液管32で互いに接続されており、デシカント溶液(例えば、塩化リチウム水溶液や臭気リチウム水溶液)が濃溶液又は希溶液に状態を変えながら濃溶液ポンプ34及び希溶液ポンプ35により循環する。溶液熱交換器33は、除湿部10と再生部20との循環経路途中(濃溶液管31及び希溶液管32の途中)に設けられ、除湿部10から再生部20へと向かう希溶液と、再生部20から除湿部10へと戻る濃溶液との熱交換を行う。以下、デシカント溶液をその状態に合わせて濃溶液又は希溶液という場合がある。
以下、除湿部10、溶液熱交換器33及び再生部20のそれぞれについて詳細に説明する。
除湿部10は、処理空気中の水分をデシカント溶液で吸着して除湿を行う除湿器11と、室内の空気(処理空気)を除湿部10内に取り入れ、除湿器11に送風する送風機12とを備えている。
除湿器11は、プレート11aを所定間隔をおいて複数枚並設した構成のプレート型熱交換器で構成されている。除湿器11は、濃溶液を各プレート11aに分配するための分配器13を有し、分配器13で分配された濃溶液は、各プレート11aの上部側から、それぞれのプレート11aの表面に液膜を形成しながら流下する。各プレート11a間の隙間には、送風機12によって取り入れられた室内空気(処理空気)が通過しており、プレート11aの表面の液膜は処理空気と接触して処理空気中の水分を吸着し、除湿を行う。このようにプレート11aの表面を流下する過程で処理空気中の水分を吸着して薄くなったデシカント溶液(希溶液)は、除湿器11の下部から除湿器11外へと排出され、溶液熱交換器33に供給される。
また、各プレート11aの内部には、冷水供給口11bを介して外部から供給された冷却流体としての冷水が通過する冷水通路が形成されており、冷水通路を通過する冷水とプレート11a表面の液膜とがプレート11aの内外で熱交換する構成となっている。これにより、デシカント溶液は常に冷水によって冷却され、処理空気から水分を吸着しやすい状態となっている。各プレート11a内部の冷水通路を通過後の冷水は、冷水排水口11cから外部へと排出される。なお、各プレート11a内は複数の小径の内部チャンネル(冷水通路)を有する構造とされ、熱交換性能の向上が図られている。なお、冷水は、井戸水、冷水製造装置などから供給される。
溶液熱交換器33は、除湿部10からの低温の希溶液と、再生部20からの高温の濃溶液とを熱交換する。すなわち、除湿部10からの低温の希溶液は、再生部20からの高温の濃溶液と熱交換して温度上昇した後、再生部20へと供給される。一方、再生部20からの高温の濃溶液は、除湿部10からの低温の希溶液と熱交換することにより温度低下した後、除湿部10へと供給される。このように、除湿部10から再生部20へと向かう希溶液と、再生部20から除湿部10へと戻る濃溶液との熱交換を行うことにより、再生部20におけるデシカント溶液の加熱と、除湿部10におけるデシカント溶液の冷却とに必要なエネルギーを低減する効果がある。
再生部20は、処理空気中の水分を吸着したことによって除湿能力が低下したデシカント溶液の除湿能力を再生する部分である。本例の再生部20は2段再生方式を採用しており、高段再生器21と、低段再生器22と、凝縮器23と、低段再生器22に再生空気を送る送風機24とを有している。
溶液熱交換器33から再生部20へと供給されてくる希溶液は、高段側バルブ25と低段側バルブ26とにより2つに分けられ、高段再生器21と低段再生器22とにそれぞれ供給される。このように高段再生器21と低段再生器22とに分けて流入させることにより、全体システムのCOP (Coefficient Of Performance:成績係数)の向上が可能となっている。この点については以下に詳述する。また、低段再生器22と凝縮器23との間は熱水管27で接続されており、デシカント液とは別の伝熱流体(例えば、水)が低段再生器22と凝縮器23の間を循環する構成となっている。
高段再生器21は、高段側バルブ25を介して送られてくる希溶液を加熱源21aにより加熱して蒸気を発生させて再生する。また、デシカント溶液を加熱することにより発生した蒸気を、凝縮器23と低段再生器22との間で循環する伝熱流体の加熱源として、図2に示すように蒸気流出管21bを介して凝縮器23に供給する。加熱源21aとしては外部装置の排熱を利用している。具体的には、ガス、太陽集熱器による熱水、エンジンや燃料電池の排熱などの低級のエネルギーを用いている。図2には高段再生器21の加熱源21aとして熱水を用いる場合の例を示しており、高段再生器21は、ここでは大気圧ボイラーで構成されている。
図3は、高段再生器21の構成を示す概略模式図で、図3(a)は平面模式図、図3(b)は断面模式図である。
高段再生器21は、サイクロン式気液分離器の原理を用いた円筒容器21Aで構成されている。円筒容器21Aの側面に希溶液が流入する液流入管21cが設けられ、円筒容器21Aの底面に濃溶液を流出する液流出管21dが設けられ、円筒容器21Aの上面に蒸気が流出する蒸気流出管21bが設けられている。高段再生器21に供給された希溶液は加熱され、円筒容器21A内の矢印に示すように円周方向に回転することにより蒸気と濃溶液とに分離される。分離された蒸気は蒸気流出管21bから凝縮器23へ供給される。一方、蒸気が分離された濃溶液は液流出管21dから排出される。ここで、高段再生器21をサイクロン式気液分離器の原理を用いた円筒容器21Aとすることによって、蒸気と共にデシカント溶液が凝縮器23へと供給されることが防止される。
低段再生器22は、除湿部10の除湿器11と同様の構成を有し、プレート22aを所定間隔をおいて複数枚並設した構成のプレート型熱交換器で構成されている。低段再生器22は、希溶液を各プレート22aに分配するための分配器28を有し、分配器28で分配された希溶液は、各プレート22aの上部側から、それぞれのプレート22aの表面に液膜を形成しながら流下する。各プレート22a間の隙間には、送風機24によって取り入れられた再生空気が通過しており、プレート22aの表面の液膜は再生空気と接触して液膜中の水分を再生空気に放出し、濃溶液となり除湿能力を再生する。このようにプレート22aの表面を流下する過程で再生空気に水分を放出して濃くなったデシカント溶液(濃溶液)は、低段再生器22の下部から低段再生器22外へと排出され、溶液熱交換器33に戻される。
また、各プレート22aの内部には、凝縮器23から熱水管27及び伝熱流体供給口22bを介して流入した伝熱流体としての熱水が通過する熱水通路が形成されており、熱水通路を通過する熱水とプレート22a表面の液膜とがプレート22aの内外で熱交換する構成となっている。これにより、デシカント溶液は常に熱水によって加熱され、再生空気に水分を放出しやすい状態となっている。
また、伝熱流体供給口22bを介して凝縮器23から流入した高温の伝熱流体は、各プレート22a内部の熱水通路を通過後、伝熱流体排水口22cから熱水管27を通って再度凝縮器23に戻るように構成されている。すなわち、低段再生器22と凝縮器23との間で伝熱流体が高温熱水又は低温熱水に状態を変えながらポンプ27aにより循環する構成となっている。なお、低段再生器22のプレート型熱交換器も除湿器11と同様、伝熱流体通路として複数の小径の内部チャンネルを有する構造とされ、熱交換性能の向上が図られている。
凝縮器23は直接接触式凝縮器で構成され、高段再生器21からの蒸気を低段再生器22からの伝熱流体(熱水)と直接接触させて熱交換するものである。この熱交換により、高段再生器からの蒸気を凝縮液化して伝熱流体の一部とする一方、低段再生器22からの伝熱流体を高段再生器21からの蒸気により加熱する。具体的には、低段再生器22からの低温熱水をノズル23aから散布し、高段再生器21からの高温蒸気と直接接触させて加熱し、高温の熱水として低段再生器22に戻す。ここで、凝縮器23ではノズル23aから伝熱流体を散布するようにしているが、これは、低温熱水を微粒子化し、加熱源である蒸気との接触面積を増やすことにより熱交換量を増加させるためである。
このように、高温再生器の蒸気を低段再生器22の熱源として利用するに際し、蒸気のままではなく凝縮器23で液体にしてから低段再生器22内の伝熱管に供給するようにしているので、伝熱管における圧力損失を少なく循環させることが可能となっている。
また、高段再生器21から凝縮器23に供給された蒸気は、上述したように低段再生器22からの低温熱水と熱交換する過程で凝縮液化する。このため、デシカント溶液の再生を継続して行う過程で伝熱流体の量が徐々に増加する。したがって、適宜ドレーン排水するようにしている。
以下、デシカント除湿空調装置の動作について図1及び図2を参照して説明する。
除湿部10では、デシカント溶液がプレート11aの上部から下方に流下して液膜を形成しており、送風機12によって除湿部10内部に取り入れられた処理空気と接触し、処理空気中の水分を吸着し、除湿する。除湿された処理空気は、室内へと放出される。
プレート11aの上部から下方に流下する過程で水分を吸着したことによって濃度が薄くなり除湿能力が低下した希溶液は、プレート11aの下方から希溶液ポンプ35により溶液熱交換器33に送られる。そして、溶液熱交換器33で加熱されて再生部20へと送られる。
再生部20へと送られた希溶液は、高段側バルブ25と低段側バルブ26とにより希溶液Aと希溶液Bとに分配され、希溶液Aは高段再生器21に流入し、希溶液Bは低段再生器22に流入する。高段再生器21に流入された希溶液Aは、加熱源21aにより加熱され、希溶液A中の水分が蒸発し濃縮液Aとなって吸湿能力を回復し、溶液熱交換器33へと戻される。
一方、低段再生器22に供給された希溶液Bは、分配器28で分配されて各プレート22aの表面に液膜を形成する。この液膜は、プレート22a内部を通過する高温熱水と熱交換して加熱され、再生空気に水分を放出しやすい状態となっている。そして、液膜状の希溶液Bに含まれる水分を送風機24からの再生空気に放出し、濃溶液Bとなって吸湿能力を回復し、溶液熱交換器33へと戻される。
ここで、低段再生器22において希溶液Bを加熱する高温熱水は凝縮器23から供給されたものであり、その加熱源は高段再生器21において希溶液Aを加熱することにより発生した蒸気である。このように高段再生器21において発生した蒸気を、低段再生器22の加熱源とすることにより、デシカント水溶液の除湿能力の再生に必要なエネルギーの低減が可能となっている。
以上のようにして高段再生器21及び低段再生器22のそれぞれで再生された濃溶液A及び濃溶液Bは、合流して溶液熱交換器33へと送られ、除湿部10からの希溶液と熱交換して冷却された後、濃溶液ポンプ36によって除湿部10へと戻される。溶液熱交換器33では、このように再生部20からの濃溶液と除湿部10からの希溶液とを熱交換させることにより、再生部20におけるデシカント溶液の加熱と、除湿部10におけるデシカント溶液の冷却に必要なエネルギーを低減する。
除湿部10に戻された濃溶液は、分配器13により分配されて各プレートの表面に液膜を形成し、再び処理空気の除湿に供される。
このように本実施の形態では、再生部20を、高段再生器21と低段再生器22とを備えた二段再生器とし、外部投入された熱エネルギーを二重効用化するようにしたので、熱利用効率を向上させることができ、システムのCOP を大幅に改善することができる。
また、高段再生器21における再生過程で発生する蒸気を低段再生器22の熱源として利用するに際し、凝縮器23を用いて蒸気を凝縮液化した上で低段再生器22に供給するようにしている。すなわち、低段再生器22において希溶液を加熱する際に、高段再生器21で発生した蒸気をそのまま低段再生器22内の熱水通路に流入させるのではなく、蒸気を凝縮液化した上で流入させるようにしている。このため、低段再生器22と凝縮器23との間で伝熱流体(熱水)をポンプ27aにより循環させることが可能となる。また、液体を低段再生器22内の伝熱管27に供給するため、蒸気を伝熱管27に供給する場合に比べて圧力損失を少なく循環させることが可能となる。その結果、再生部20におけるエネルギー効率を向上でき、システム全体のエネルギー効率を大幅に改善することが可能となる。
また、除湿器11及び低段再生器22としてプレート型熱交換器を用いるようにしたので、ノズルからデシカント溶液を噴霧して処理空気の除湿及びデシカント溶液の再生を行う従来構成のようにデシカント溶液の液滴が発生することはほとんどない。よって、フィルターやデミスターを用いることなく、デシカント溶液の液滴が処理空気や再生空気によって外部に飛散することを防止することができる。
また、デシカント再生過程で必要とされる熱量はシステム全体のCOP に大きく影響する。そのため、加熱源21aとして、太陽集熱器による温水、エンジンや燃料電池などの排熱、凝縮熱など、外部装置の排熱を利用するようにしているため、システム全体のCOP を向上することが可能となる。
1 液体デシカント除湿空調装置、10 除湿部、11 除湿器、11a プレート、11b 冷水供給口、11c 冷水排水口、12 送風機、13 分配器、20 再生部、21 高段再生器、21A 円筒容器、21a 加熱源、21b 蒸気流出管、21c 液流入管、21d 液流出管、22 低段再生器、22a プレート、22b 伝熱流体供給口、22c 伝熱流体排水口、23 凝縮器、23a ノズル、24 送風機、25 高段側バルブ、26 低段側バルブ、27 熱水管、27a ポンプ、28 分配器、31 濃溶液管、32 希溶液管、33 溶液熱交換器、34 濃溶液ポンプ、35 希溶液ポンプ。

Claims (6)

  1. 高段再生器と低段再生器と凝縮器とを有し、外部から供給されるデシカント溶液が前記高段再生器と前記低段再生器とに分けて供給されるとともに、前記低段再生器と前記凝縮器との間を伝熱流体が循環するように構成され、
    前記高段再生器は、外部から供給されたデシカント溶液を加熱源により加熱して蒸気を発生させて再生すると共に、デシカント溶液を加熱することにより発生した蒸気を、前記凝縮器と前記低段再生器との間で循環する伝熱流体の加熱源として前記凝縮器に供給し、
    前記凝縮器は、前記高段再生器からの蒸気を前記低段再生器からの伝熱流体に直接接触させ、前記高段再生器からの蒸気を凝縮液化して伝熱流体の一部とする一方、前記低段再生器からの伝熱流体を前記高段再生器からの蒸気により加熱して前記低段再生器に戻し、
    前記低段再生器は、伝熱流体が通過する通路を内部に有するプレートが間隔を空けて複数並設され、且つ外部から供給されたデシカント溶液が前記各プレートそれぞれの外表面に沿って流下して液膜を形成する構成を有し、外部から供給されたデシカント溶液と前記凝縮器で加熱された伝熱流体とを前記プレートの内外で熱交換させてデシカント溶液を加熱し、加熱されたデシカント溶液に、前記各プレート間の隙間を通過する再生空気を接触させ、デシカント溶液中の水分を再生空気に放出させてデシカント溶液を再生することを特徴とする液体デシカント再生装置。
  2. 前記高段再生器は、円筒容器の側面と底面に液体デシカントの入口と出口を有するサイクロン気液分離式再生器であることを特徴とする請求項1記載の液体デシカント再生装置。
  3. 前記高段再生器は、外部装置の排熱を前記加熱源として利用することを特徴とする請求項1又は請求項2記載の液体デシカント再生装置。
  4. 除湿部と、請求項1乃至請求項3の何れかに記載の液体デシカント再生装置で構成された再生部とを有し、前記除湿部と前記再生部とにデシカント溶液が循環するように構成され、
    前記除湿部と前記再生部との間の循環経路途中に溶液熱交換器を備え、前記除湿部から前記再生部に向かうデシカント溶液と前記再生部から前記除湿部に戻るデシカント溶液とが前記溶液熱交換器で熱交換するように構成され、
    前記除湿部は、外部装置との間で循環する冷却流体とデシカント溶液とを熱交換し、前記デシカント溶液を冷却しながら処理空気と接触させ、処理空気内の水分を吸着して除湿し、
    前記溶液熱交換器は、前記除湿部において水分を吸着することにより除湿能力が低下したデシカント溶液を、前記再生部からのデシカント溶液との熱交換により加熱してから前記再生部に送り、
    前記再生部は、前記溶液熱交換器で加熱されたデシカント溶液を再生して前記溶液熱交換器に戻し、
    前記溶液熱交換器は、前記再生部からのデシカント溶液を前記除湿部からのデシカント溶液とを熱交換し、前記除湿部に戻す前に冷却してから前記除湿部に戻すことを特徴とするデシカント除湿空調装置。
  5. 前記除湿部は、前記冷却流体が通過する通路を内部に有するプレートを間隔を空けて複数並設するとともに、前記各プレートそれぞれの外表面に沿ってデシカント溶液を流下させて液膜を形成し、前記プレートの内外で前記冷却流体と前記液膜とを熱交換させるプレート型熱交換器で構成されることを特徴とする請求項4記載のデシカント除湿空調装置。
  6. 前記除湿部は、井戸水や、冷水製造装置で製造された冷水を前記冷却流体として利用することを特徴とする請求項5記載のデシカント除湿空調装置。
JP2009096916A 2009-04-13 2009-04-13 液体デシカント再生装置及びデシカント除湿空調装置 Active JP4799635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096916A JP4799635B2 (ja) 2009-04-13 2009-04-13 液体デシカント再生装置及びデシカント除湿空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096916A JP4799635B2 (ja) 2009-04-13 2009-04-13 液体デシカント再生装置及びデシカント除湿空調装置

Publications (2)

Publication Number Publication Date
JP2010247022A JP2010247022A (ja) 2010-11-04
JP4799635B2 true JP4799635B2 (ja) 2011-10-26

Family

ID=43309992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096916A Active JP4799635B2 (ja) 2009-04-13 2009-04-13 液体デシカント再生装置及びデシカント除湿空調装置

Country Status (1)

Country Link
JP (1) JP4799635B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152746A (zh) * 2016-03-03 2017-09-12 武汉海尔电器股份有限公司 一种控制室内湿度的方法和装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
EP2652410A1 (en) 2010-12-13 2013-10-23 Ducool, Ltd. Method and apparatus for conditioning air
KR101258455B1 (ko) 2011-04-06 2013-04-26 한국생산기술연구원 다열 튜브형 열교환패널을 구비한 열교환기 및 이를 이용한 공기조화 시스템
CN102353103A (zh) * 2011-09-17 2012-02-15 林勇 一种溶液除湿空调器
CN102353110A (zh) * 2011-09-17 2012-02-15 林勇 一种自喷淋除湿空调器
US9101874B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
WO2014089164A1 (en) 2012-12-04 2014-06-12 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
CN108443996B (zh) * 2013-03-01 2021-04-20 7Ac技术公司 干燥剂空气调节方法和***
ES2761585T3 (es) * 2013-03-14 2020-05-20 7Ac Tech Inc Sistema de aire acondicionado con desecante líquido dividido
WO2014152888A1 (en) 2013-03-14 2014-09-25 7 Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
EP3008396B1 (en) 2013-06-12 2019-10-23 7AC Technologies, Inc. Liquid desiccant air conditioning system
CN114935180B (zh) * 2014-03-20 2023-08-15 艾默生环境优化技术有限公司 空气调节***、冷却和除湿的方法和加热和加湿的方法
KR20170086496A (ko) 2014-11-21 2017-07-26 7에이씨 테크놀로지스, 아이엔씨. 미니-스플릿 액체 데시컨트 공기 조화를 위한 방법 및 시스템
CN107270443A (zh) * 2017-06-06 2017-10-20 江苏格瑞力德空调制冷设备有限公司 一种热泵驱动的双冷凝器多溶液循环空调机组
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
JP7321157B2 (ja) 2017-11-01 2023-08-04 エマーソン クライメイト テクノロジーズ,インコーポレイテッド 液体乾燥剤空調システムにおける膜モジュール内での液体乾燥剤の均一分散のための方法及び装置
CN108488955B (zh) * 2018-04-18 2024-04-26 东莞理工学院 一种除湿溶液再生装置及一种空气除湿***
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
CN109618688B (zh) * 2019-01-31 2023-08-25 中原工学院 低温干燥调湿多功能生态储粮***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237901A (ja) * 1986-04-07 1987-10-17 Matsushita Electric Ind Co Ltd 再生装置
JP2006255267A (ja) * 2005-03-18 2006-09-28 Masahiko Furuta 保持具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152746A (zh) * 2016-03-03 2017-09-12 武汉海尔电器股份有限公司 一种控制室内湿度的方法和装置

Also Published As

Publication number Publication date
JP2010247022A (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4799635B2 (ja) 液体デシカント再生装置及びデシカント除湿空調装置
KR101250769B1 (ko) 하이브리드 공기조화 시스템
KR102396679B1 (ko) 액체 제습제를 이용하는 스테이지식 프로세스를 이용한 공기조화 방법
JP5248629B2 (ja) 除湿のために、膜に含有された液体乾燥剤を用いる間接蒸発冷却器
CN100476308C (zh) 调湿装置
KR100510774B1 (ko) 복합식 제습냉방시스템
AU2006253864B2 (en) System and method for managing water content in a fluid
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
JP2010131583A (ja) 低消費電力の除湿装置
JP4986152B2 (ja) 吸着式冷凍機結合デシカント空調方法及び装置
JP2010078193A (ja) デシカント空調装置
CN103502760B (zh) 冷却流体的蒸发冷却装置及方法
EP3060856B1 (en) Methods for enhancing the dehumidification of heat pumps
JP4423499B2 (ja) 吸収式除湿空調システム
CN103906978A (zh) 调湿装置
JP2005233435A5 (ja)
JP2011125768A (ja) 溶剤回収方法、及び、溶剤回収装置
KR101933555B1 (ko) 흡착식 하이브리드 제습냉방 시스템
KR101993825B1 (ko) 제습 냉방 시스템
KR101250765B1 (ko) 유체 분배기를 구비한 열교환기 및 이를 이용한 공기조화 시스템
CN109812913B (zh) 间接蒸发内冷型溶液新风除湿装置
JP4426263B2 (ja) 空気調和機
CN109579199A (zh) 一种热泵驱动的半渗透膜除湿超声雾化再生溶液空调***
CN105571020B (zh) 一种适用湿热地区的多级中空纤维膜液体除湿装置
KR101705993B1 (ko) 흡수액 다단 유동층 열교환기를 이용한 최적화 응축열 회수시스템 및 응축열 회수방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250