JP4799392B2 - Manufacturing method of steel wire with excellent fatigue characteristics - Google Patents

Manufacturing method of steel wire with excellent fatigue characteristics Download PDF

Info

Publication number
JP4799392B2
JP4799392B2 JP2006341347A JP2006341347A JP4799392B2 JP 4799392 B2 JP4799392 B2 JP 4799392B2 JP 2006341347 A JP2006341347 A JP 2006341347A JP 2006341347 A JP2006341347 A JP 2006341347A JP 4799392 B2 JP4799392 B2 JP 4799392B2
Authority
JP
Japan
Prior art keywords
refining
mass
stirring
ladle
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006341347A
Other languages
Japanese (ja)
Other versions
JP2008150683A (en
Inventor
世意 木村
裕己 太田
毅 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006341347A priority Critical patent/JP4799392B2/en
Publication of JP2008150683A publication Critical patent/JP2008150683A/en
Application granted granted Critical
Publication of JP4799392B2 publication Critical patent/JP4799392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、バネ用鋼材、ワイヤロープ用鋼材、PC(プレストレストコンクリート)用鋼材などに用いることが好適な疲労特性に優れた鋼線材の製造方法に関する。   The present invention relates to a method for producing a steel wire material having excellent fatigue characteristics suitable for use in spring steel materials, wire rope steel materials, PC (prestressed concrete) steel materials, and the like.

鋼中に存在するSiO2(シリカ)やAl2O3(アルミナ)などの非金属介在物は、硬質で延性が小さく、それらを多く含む鋼線材に繰返し応力が付与された場合、かかる非金属介在物が疲労破壊の起点となり、当該鋼線材が金属疲労による破壊へ至るということは、従来より周知の通りである。
そこで、疲労特性に優れたすなわち長い疲労寿命を有する鋼線材は、Al2O3に代表されるような非金属介在物の低減を可能な限り行うと共に、残存する非金属介在物を可及的に軟質化するような処理が施された溶鋼から製造される。かかる溶鋼は、転炉出鋼後の2次精錬処理における化学成分の微調整や溶鋼に含まれる非金属介在物の低減・軟質化を経て製造される。
Non-metallic inclusions such as SiO 2 (silica) and Al 2 O 3 (alumina) present in steel are hard and have low ductility. When non-metallic inclusions are repeatedly applied to steel wires containing a large amount of such non-metallic inclusions. It is well known from the past that inclusions become the starting point of fatigue failure, and the steel wire leads to failure due to metal fatigue.
Therefore, steel wires with excellent fatigue characteristics, that is, a long fatigue life, reduce non-metallic inclusions as typified by Al 2 O 3 as much as possible, while remaining non-metallic inclusions as much as possible. It is manufactured from molten steel that has been treated to soften. Such molten steel is manufactured through fine adjustment of chemical components and reduction / softening of non-metallic inclusions contained in the molten steel in the secondary refining treatment after the converter steel.

疲労特性に優れた鋼線材を製造するための技術としては、特許文献1や特許文献2に記載されたものがある。
例えば、特許文献1には、C=1.2質量%以下、Mn=0.2〜1.5質量%、Al=0.001質量%以下、Si=0.05〜4.0質量%の疲労特性に優れ線材等に好適とされるSi脱酸鋼の製造方法が開示されている。具体的には、精錬炉から取鍋に出鋼するときにSi脱酸を行い、その後の取鍋スラグ精錬時のスラグ組成を質量%でCaO=20〜40質量%、SiO2=25〜60質量%、MgO=5〜18質量%、Al2O3=1〜12質量%、MnO=0.2〜8質量%としている。
As a technique for manufacturing a steel wire excellent in fatigue characteristics, there are those described in Patent Document 1 and Patent Document 2.
For example, Patent Document 1 describes Si having excellent fatigue characteristics such as C = 1.2 mass% or less, Mn = 0.2 to 1.5 mass%, Al = 0.001 mass% or less, and Si = 0.05 to 4.0 mass%, which is suitable for a wire or the like. A method for producing deoxidized steel is disclosed. Specifically, Si deoxidation is performed when steel is extracted from the smelting furnace to the ladle, and the slag composition at the time of subsequent ladle slag refining is CaO = 20-40 mass%, SiO 2 = 25-60, % By mass, MgO = 5 to 18% by mass, Al 2 O 3 = 1 to 12% by mass, and MnO = 0.2 to 8% by mass.

特許文献2には、2次精錬において、CaO-SiO2系の合成スラグを溶鋼に添加して、Arガスで溶鋼を攪拌する方法が示されている。
特許文献3には、ガス攪拌によるスラグ巻き込みに起因する介在物を極力低減し、高い清浄度を達成した高清浄度鋼を製造するため、転炉または電気炉にて脱炭された後の二次精錬処理において、電磁攪拌のみで溶鋼の攪拌を実施した後に、還流式真空脱ガスを行うものであり、必要によって二次精錬工程における電磁攪拌において、150W/ton以下の攪拌動力密度の攪拌を実施するといった技術が開示されている。
特許第3719131号公報 特公平2−25966号公報 特開2006−233254号公報
Patent Document 2 shows a method of adding CaO—SiO 2 -based synthetic slag to molten steel and stirring the molten steel with Ar gas in secondary refining.
In Patent Document 3, in order to reduce the inclusions caused by slag entrainment by gas stirring as much as possible and to produce a high cleanliness steel that achieves a high cleanliness, two after being decarburized in a converter or electric furnace. In the next refining treatment, the molten steel is stirred only by electromagnetic stirring, and then vacuum vacuum degassing is performed.If necessary, stirring at a stirring power density of 150 W / ton or less is performed in the electromagnetic stirring in the secondary refining process. Techniques such as implementation are disclosed.
Japanese Patent No. 3719131 Japanese Patent Publication No. 2-25966 JP 2006-233254 A

前述したバネ用鋼材、ワイヤロープ用鋼材、PC用鋼材等は、繰り返し応力が負荷された状態で使用されるため、鋼材中に残存する非金属介在物の個数を減少させることはもとより、硬質な非金属介在物、すなわち硬質介在物が残存していると疲労破壊の起点となりうるため、硬質介在物を確実に軟質化させる必要がある。硬質介在物を軟質化させるために重要な処理操作としては、2次精錬における溶鋼攪拌があげられるが、特許文献1や特許文献2には、本願発明の課題解決に必要とされる攪拌の強弱については言及されていない。特許文献3は、ベアリング鋼等の高清浄度鋼を製造するための技術であって、ベアリング鋼と鋼線材とでは求められる疲労特性が異なるため、疲労特性に優れた鋼線材を製造しようとする技術には適用外である。   The aforementioned steel materials for springs, steel materials for wire ropes, steel materials for PCs, etc. are used in a state where repeated stress is applied. If non-metallic inclusions, that is, hard inclusions remain, they can be the starting point of fatigue failure, so it is necessary to surely soften the hard inclusions. As an important processing operation for softening hard inclusions, molten steel agitation in secondary refining can be mentioned. In Patent Document 1 and Patent Document 2, the intensity of agitation required for solving the problems of the present invention is described. Is not mentioned. Patent Document 3 is a technique for producing high cleanliness steel such as bearing steel, and since the required fatigue characteristics are different between bearing steel and steel wire, an attempt is made to produce a steel wire excellent in fatigue characteristics. Not applicable to technology.

そこで、本発明は、上記問題に鑑み、疲労特性に優れた鋼線材を製造する製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method which manufactures the steel wire excellent in the fatigue characteristic in view of the said problem.

前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本発明にかかる鋼線材の製造方法は、C=0.4〜1.3質量%,Si=0.1〜2.5質量%,Mn=0.2〜1.0質量%,Al=0.003質量%以下,残部がFeと不可避的不純物である組成を備える疲労特性に優れた鋼線材を製造する製造方法において、
前記鋼線材の元となる溶鋼の精錬処理を行うにあたり、該精錬処理は取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のいずれか1つ又は2つ以上を組み合わせたものとし、
該精錬処理で使用するスラグの組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%とし、
さらに、前記取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のそれぞれの攪拌動力密度をε1,ε1',ε2,ε3、精錬時間をt1,t1’,t2,t3とした際に、式(1)で算出される指標Eが800〜1500の範囲内になるように、前記溶鋼の精錬処理を行うことを特徴とする。
In order to achieve the above object, the present invention takes the following technical means.
That is, the manufacturing method of the steel wire according to the present invention is inevitably C = 0.4 to 1.3% by mass, Si = 0.1 to 2.5% by mass, Mn = 0.2 to 1.0% by mass, Al = 0.003% by mass or less , and the balance is Fe. In the manufacturing method of manufacturing a steel wire rod having excellent fatigue characteristics with a composition that is an impurity ,
In refining the molten steel that is the base of the steel wire rod, the refining process is any of ladle gas stirring refining, ladle gas stirring refining in a decompression tank, electromagnetic induction stirring refining in a ladle, or reflux degassing refining One or a combination of two or more,
The composition of the slag used in the refining treatment is CaO / SiO 2 = 0.5 to 1.5, Al 2 O 3 = 3 to 25% by mass, MgO = 3 to 25% by mass,
Further, the stirring power densities of the ladle gas stirring and refining, ladle gas stirring and refining in the decompression tank, electromagnetic induction stirring and refining in the ladle, and reflux type degassing refining are set to ε 1 , ε 1 ′, ε 2 , ε 3, respectively. When the refining time is t 1 , t 1 ′, t 2 , t 3 , the molten steel is refined so that the index E calculated by Equation (1) is in the range of 800-1500. It is characterized by that.

Figure 0004799392
Figure 0004799392

なお、本明細書において特に断りのない限り、以降、各変数は[数2]に表記したとおりとする。
本願発明者らは、溶鋼中の非金属介在物の個数を減らすことはもとより、硬質な非金属介在物(硬質介在物)を減少させるために、当該溶鋼の2次精錬における効果的なファクタを検証した。すなわち、様々な精錬設備を用いて溶鋼のスラグ精錬を行い、鋳造、鍛造、圧延を実施した鋼線材中の非金属介在物を観察した。
その結果、非金属介在物が軟質化、延性化された度合いは、2次精錬処理(取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬)における溶鋼の攪拌強度、すなわち攪拌動力密度が重要であることはもとより、攪拌をしている時間も大きく関係していることを知見するに至った。そこで、攪拌動力密度に攪拌時間を掛けた、言うならば攪拌仕事量に相当する指標Eを考え、かかる指標Eが800〜1500の範囲内になるように2次精錬を行えば、2次精錬後の溶鋼中に存在する非金属介在物の個数や量が非常に少なく、残存した非金属介在物は軟質化が進み延性を有するものとなっていることを知見した。
Unless otherwise specified in this specification, hereinafter, each variable is assumed to be expressed in [Equation 2].
In order to reduce hard nonmetallic inclusions (hard inclusions) as well as reducing the number of nonmetallic inclusions in the molten steel, the inventors of the present application provide an effective factor in secondary refining of the molten steel. Verified. That is, slag refining of molten steel was performed using various refining equipment, and non-metallic inclusions were observed in steel wires that were cast, forged, and rolled.
As a result, the degree of softening and ductility of non-metallic inclusions is determined by the secondary refining treatment (ladder gas stirring refining, ladle gas stirring refining in the decompression tank, electromagnetic induction stirring refining in the ladle, reflux degassing In addition to the importance of the stirring strength of the molten steel in refining), that is, the stirring power density, it has been found that the stirring time is also greatly related. Therefore, if the refining is performed so that the stirring power density is multiplied by the stirring time, that is, the index E corresponding to the stirring work amount, and the index E is in the range of 800 to 1500, the secondary refining is performed. It was found that the number and amount of non-metallic inclusions present in the later molten steel are very small, and the remaining non-metallic inclusions are softened and have ductility.

さらに、2次精錬処理でのスラグ組成を適切にすることも、疲労特性に優れた鋼線材を製造するために必要な条件であることを知見するに至り、2次精錬処理で使用するスラグの組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%とし、その結果、疲労特性に優れた鋼線材を製造することを可能とした。
なお、好ましくは、前記鋼線材が、Ni=0.05〜1質量%、Cu=0.05〜1質量%、Cr=0.05〜1.5質量%の1種または2種以上の成分を含有するように、前記溶鋼の精錬処理を行うとよい。
Furthermore, it has been found that making the slag composition suitable for the secondary refining process is also a necessary condition for producing a steel wire having excellent fatigue properties, and the slag used in the secondary refining process The composition was CaO / SiO 2 = 0.5 to 1.5, Al 2 O 3 = 3 to 25% by mass, MgO = 3 to 25% by mass, and as a result, it was possible to produce steel wires with excellent fatigue properties .
In addition, Preferably, the said molten steel is contained so that the said steel wire may contain the 1 type (s) or 2 or more types of component of Ni = 0.05-1 mass%, Cu = 0.05-1 mass%, Cr = 0.05-1.5 mass%. It is recommended to perform the refining process.

さらに好ましくは、前記鋼線材が、Li=0.02〜20 質量ppm、Na=0.02〜20 質量ppm、Ce=3〜100質量ppm、La=3〜100質量ppmの1種または2種以上の成分を含有するように、前記溶鋼の精錬処理を行うとよい。
このように、鋼線材中の選択元素を所定の範囲とすることで、鋼線材の伸線性や強度を一段と高めることができ、好ましい結果をもたらすようになる。
More preferably, the steel wire contains one or more components of Li = 0.02 to 20 mass ppm, Na = 0.02 to 20 mass ppm, Ce = 3 to 100 mass ppm, and La = 3 to 100 mass ppm. It is good to perform the refining process of the molten steel so that it may contain.
Thus, by making the selection element in a steel wire into a predetermined range, the drawability and strength of the steel wire can be further increased, and a favorable result is brought about.

本発明に係る鋼線材の製造方法を用いることで、非金属介在物の量が少なく且つ残存する非金属介在物が軟質化されている溶鋼を得ることができ、この溶鋼を元に疲労特性に優れた鋼線材を製造することが可能となる。   By using the method for producing a steel wire according to the present invention, a molten steel in which the amount of nonmetallic inclusions is small and the remaining nonmetallic inclusions are softened can be obtained. An excellent steel wire can be manufactured.

以下、本発明を実施するための最良の形態を、図を基に説明する。
[2次精錬装置]
図1は、本発明にかかる鋼線材の製造方法を実施可能な2次精錬装置1の一例である。
この2次精錬装置1には、取鍋ガス攪拌精錬装置2や還流式脱ガス精錬装置3などがあり、具体的には、取鍋ガス攪拌精錬装置2はLF装置であり、還流式脱ガス精錬装置3はRH装置である。鋼線材向けの溶鋼4はLF装置2又はRH装置3で精錬されるか、或いは、LF装置2で精錬処理された後にRH装置3で精錬されるといったように組み合わせて処理がなされる。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
[Secondary refining equipment]
FIG. 1 is an example of a secondary refining apparatus 1 that can implement the method for producing a steel wire according to the present invention.
The secondary refining apparatus 1 includes a ladle gas stirring and refining apparatus 2 and a reflux degassing refining apparatus 3. Specifically, the ladle gas stirring and refining apparatus 2 is an LF apparatus, and a reflux degassing apparatus. The refining device 3 is an RH device. The molten steel 4 for the steel wire is refined by the LF apparatus 2 or the RH apparatus 3 or processed by combining the refined process by the RH apparatus 3 after the refinement process by the LF apparatus 2.

LF装置2は、溶鋼4が装入された取鍋5と、取鍋5の溶鋼4内にガスを吹き込む吹き込み装置6と、溶鋼4を加熱する電極式加熱装置7と、フラックス等を投入するための供給装置8とを有している。
吹き込み装置6は、取鍋5の底部にポーラス吹込口9を有しており、このポーラス吹込口9から溶鋼4をバブリングするArガスなどが吹き込まれる。
LF装置2では、電極式加熱装置7で溶鋼4を所定温度まで上げて、吹き込み装置6からガスを吹き込んで溶鋼4を攪拌することによって、化学成分の微調整を行うと共に、溶鋼4とスラグ13とを反応させることで溶鋼4内に含まれる非金属介在物の低減・軟質化を行うことができる。
The LF device 2 is charged with a ladle 5 in which the molten steel 4 is charged, a blowing device 6 that blows gas into the molten steel 4 of the ladle 5, an electrode-type heating device 7 that heats the molten steel 4, and flux. Supply device 8.
The blowing device 6 has a porous blowing port 9 at the bottom of the ladle 5, and Ar gas or the like for bubbling the molten steel 4 is blown from the porous blowing port 9.
In the LF device 2, the molten steel 4 is raised to a predetermined temperature by the electrode type heating device 7, and the chemical component is finely adjusted by blowing the gas from the blowing device 6 and stirring the molten steel 4, and the molten steel 4 and the slag 13. , The nonmetallic inclusions contained in the molten steel 4 can be reduced and softened.

RH装置3は、溶鋼4の脱ガスを行うものであって、溶鋼4が装入された取鍋5と、略真空状態となって溶鋼4内の脱ガスを行う脱ガス槽10とを有している。取鍋5は、LF装置2で用いられた取鍋5と同一のものであって、脱ガス槽10の直下に配置されるようになっている。
脱ガス槽10の下部には取鍋5内の溶鋼4に浸漬させる2本の浸漬管(上昇管11、下降管12)が設けられており、この浸漬管の一方(上昇管11)にはArガス等の不活性ガスを吹き込む吹き込み口(図示省略)が設けられている。脱ガス槽10の上部には、脱ガス槽10のガスを排気する排気口(図示省略)が設けられている。
The RH device 3 is for degassing the molten steel 4 and has a ladle 5 in which the molten steel 4 is charged and a degassing tank 10 for degassing the molten steel 4 in a substantially vacuum state. is doing. The ladle 5 is the same as the ladle 5 used in the LF device 2, and is arranged immediately below the degassing tank 10.
Two dip pipes (rising pipe 11 and descending pipe 12) to be immersed in the molten steel 4 in the ladle 5 are provided at the lower part of the degassing tank 10, and one of the dip pipes (rising pipe 11) is provided. A blowing port (not shown) for blowing an inert gas such as Ar gas is provided. In the upper part of the degassing tank 10, an exhaust port (not shown) for exhausting the gas in the degassing tank 10 is provided.

RH装置3では、浸漬管を取鍋5内の溶鋼4に浸漬し、吹き込み口から不活性ガスを吹き込むと共に、排気口から脱ガス槽10のガスを排気して脱ガス槽10内を略真空状態して溶鋼4を脱ガス槽10と取鍋5との間で循環させることで、溶鋼4内に存在する水素等のガス成分を除去したり、溶鋼4内に含まれる非金属介在物の低減を行う。
[精錬方法]
以下、本発明の鋼線材の製造方法について詳しく説明する。
本発明に係る鋼線材を製造するに際しては、まず、転炉14から出鋼された溶鋼4を取鍋5に装入し、この取鍋5を2次精錬装置1に搬送し精錬する。2次精錬装置1では、取鍋ガス攪拌精錬や還流式脱ガス精錬、両者を組み合わせた精錬を実施する。精錬が終わった溶鋼4は連続鋳造機でブールムやビレットなどの鋳片とされ、この鋳片を伸長圧延することで鋼線材を製造する。なお、溶鋼4は電気炉から出鋼したものであってもよい。
In the RH device 3, the dip tube is immersed in the molten steel 4 in the ladle 5, and an inert gas is blown from the blowing port, and the gas in the degassing tank 10 is exhausted from the exhaust port to substantially vacuum the inside of the degassing tank 10. In this state, the molten steel 4 is circulated between the degassing tank 10 and the ladle 5 to remove gas components such as hydrogen existing in the molten steel 4 or non-metallic inclusions contained in the molten steel 4. Reduce.
[Refining method]
Hereafter, the manufacturing method of the steel wire rod of this invention is demonstrated in detail.
When manufacturing the steel wire according to the present invention, first, the molten steel 4 discharged from the converter 14 is charged into the ladle 5, and the ladle 5 is conveyed to the secondary refining apparatus 1 and refined. In the secondary refining apparatus 1, ladle gas stirring refining, reflux degassing refining, and refining combining both are performed. After the refining, the molten steel 4 is made into a slab such as boulem or billet by a continuous casting machine, and a steel wire is produced by stretching and rolling the slab. In addition, the molten steel 4 may be obtained from an electric furnace.

本発明の鋼線材は高い耐疲労性を有するものであって、C=0.4〜1.3質量%,Si=0.1〜2.5質量%,Mn=0.2〜1.0質量%,Al=0.003質量%以下の組成を有している。また、硬質な非金属介在物(硬質介在物)の軟質化を図るため、LF装置2で行う精錬処理(取鍋ガス攪拌精錬)に用いるスラグ13の組成を、塩基度CaO/SiO2=0.5〜1.5とすると共に、スラグ13中の(Al2O3)を3〜25質量%、(MgO)=3〜25質量%としている。
取鍋ガス攪拌精錬では、電極式加熱装置7で溶鋼4を所定温度まで上げると共に、吹き込み装置6からガスを吹き込んで溶鋼4を攪拌する。その際の攪拌動力密度は、式(2')で与えられることが「森、佐野:鉄と鋼,第67巻,1981年,672頁」に開示されている。
The steel wire rod of the present invention has high fatigue resistance, and has a composition of C = 0.4 to 1.3% by mass, Si = 0.1 to 2.5% by mass, Mn = 0.2 to 1.0% by mass, Al = 0.003% by mass or less. Have. Further, in order to soften hard non-metallic inclusions (hard inclusions), the composition of the slag 13 used in the refining treatment (ladder gas stirring refining) performed in the LF apparatus 2 is set to a basicity CaO / SiO 2 = 0.5. And (Al 2 O 3 ) in the slag 13 is 3 to 25% by mass and (MgO) = 3 to 25% by mass.
In ladle gas stirring and refining, the molten steel 4 is raised to a predetermined temperature by the electrode-type heating device 7, and the molten steel 4 is stirred by blowing gas from the blowing device 6. It is disclosed in “Mori, Sano: Iron and Steel, Vol. 67, 1981, p. 672” that the stirring power density at that time is given by equation (2 ′).

Figure 0004799392
Figure 0004799392

大気圧下でのガス攪拌時のε1は、式(2')においてPV=101300とした式(2)により算出できる。 Ε 1 at the time of gas stirring under atmospheric pressure can be calculated by the equation (2) where P V = 101300 in the equation (2 ′).

Figure 0004799392
Figure 0004799392

式(2)で算出されたε1の攪拌動力密度で、取鍋ガス攪拌精錬中に時間t1だけ、溶鋼4を攪拌し、溶鋼4の上面に浮かんでいるスラグ13と溶鋼4とを反応させ、硬質介在物の軟質化を図るようにする。
RH装置3で行う精錬処理(還流式脱ガス精錬)においても、スラグ組成を塩基度CaO/SiO2=0.5〜1.5とすると共に、スラグ13中の(Al2O3)を3〜25質量%、(MgO)=3〜25質量%としている。これにより、さらなる硬質介在物の軟質化を図ることが可能となる。
還流式脱ガス精錬では、上昇管11及び下降管12を取鍋5内の溶鋼4に浸漬し、上昇管11に設けられた吹き込み口からArガスなどの不活性ガスを吹き込むと共に、排気口から脱ガス槽10のガスを排気して脱ガス槽10内を略真空状態して溶鋼4を脱ガス槽10と取鍋5との間で循環させることで、溶鋼4内に存在する水素等のガス成分を除去すると共に、溶鋼4中の非金属介在物の除去を行う。
With the stirring power density of ε 1 calculated by the equation (2), the molten steel 4 is stirred for the time t 1 during the ladle gas stirring and refining, and the slag 13 floating on the upper surface of the molten steel 4 reacts with the molten steel 4 To soften the hard inclusions.
Also in the refining process (reflux degassing refining) performed in the RH apparatus 3, the slag composition has a basicity CaO / SiO 2 = 0.5 to 1.5, and (Al 2 O 3 ) in the slag 13 is 3 to 25% by mass. , (MgO) = 3-25% by mass. This makes it possible to further soften the hard inclusions.
In the reflux degassing refining, the riser pipe 11 and the downfall pipe 12 are immersed in the molten steel 4 in the pan 5, and an inert gas such as Ar gas is blown from the blow port provided in the rise pipe 11, and from the exhaust port. The gas in the degassing tank 10 is evacuated, the inside of the degassing tank 10 is in a substantially vacuum state, and the molten steel 4 is circulated between the degassing tank 10 and the ladle 5, so While removing a gas component, the nonmetallic inclusion in the molten steel 4 is removed.

還流式脱ガス精錬のように真空中ガスリフトポンプによる攪拌を行った場合の攪拌動力密度ε3は式(5)で与えられることが「日本鉄鋼協会編:第3版鉄鋼便覧,第2巻,製銑・製鋼,1981年,673頁」に開示されている。 The stirring power density ε 3 when stirring with a vacuum gas lift pump as in the reflux degassing refining is given by equation (5), “The Iron and Steel Institute of Japan: 3rd edition Steel Handbook, Volume 2, Steelmaking and steelmaking, 1981, p. 673 ”.

Figure 0004799392
Figure 0004799392

ここで、Qは溶鋼は循環量(ton/min)、Uは下降管12内の溶鋼線速度(m/sec)である。
式(5)における循環量Q(ton/min)は、「桑原ら:鉄と鋼,第73巻,1987年,S176頁」に開示されているように、式(6)で求められる。この式におけるDは下降管12の内径(m)である。
Here, Q is the circulation rate (ton / min) of molten steel, and U is the molten steel wire velocity (m / sec) in the downcomer 12.
The circulation amount Q (ton / min) in the equation (5) is obtained by the equation (6) as disclosed in “Kuwahara et al .: Iron and Steel, Vol. 73, 1987, S176”. In this equation, D is the inner diameter (m) of the downcomer 12.

Figure 0004799392
Figure 0004799392

また、下降管12内の溶鋼4の線速度U(m/sec)は、具体的には、式(7)により算出することができる。   Further, the linear velocity U (m / sec) of the molten steel 4 in the downcomer 12 can be specifically calculated by the equation (7).

Figure 0004799392
Figure 0004799392

式(6),式(7)を式(5)に代入することで、式(4)を得ることができ、式(4)を用いることで、ε3を求めることができる。 By substituting Equations (6) and (7) into Equation (5), Equation (4) can be obtained, and by using Equation (4), ε 3 can be obtained.

Figure 0004799392
Figure 0004799392

式(4)で算出されたε3の攪拌動力密度で、還流式脱ガス精錬中に時間t3だけ、溶鋼4を攪拌し、溶鋼4の上面に浮かんでいるスラグ13と溶鋼4とを反応させ、溶鋼4中の非金属介在物を取り除くと共に、軟質化を図るようにする。
取鍋ガス攪拌精錬及び/又は還流式脱ガス精錬の場合、以上のべた攪拌動力密度ε1,ε3と攪拌時間t1,t2とを用いて、式(1)で算出される指標E(以降、攪拌仕事量Eと呼ぶ)が、800〜1500の範囲となるように精錬処理を行う。攪拌仕事量Eの上下限値が800,1500となる理由については、後述する[実施例]で述べる。
With the stirring power density of ε 3 calculated by the equation (4), the molten steel 4 is stirred for the time t 3 during the reflux degassing refining, and the slag 13 floating on the upper surface of the molten steel 4 reacts with the molten steel 4. The non-metallic inclusions in the molten steel 4 are removed and softened.
In the case of ladle gas stirring refining and / or reflux degassing refining, the index E calculated by the formula (1) using the above stirring power densities ε 1 and ε 3 and stirring times t 1 and t 2 The refining process is performed so that (hereinafter referred to as agitation work E) is in the range of 800 to 1500. The reason why the upper and lower limits of the stirring work amount E are 800,1500 will be described in [Example] described later.

Figure 0004799392
Figure 0004799392

使用しない精錬方法に関しては、精錬時間が0minとする。すなわち、VADなどの減圧槽内取鍋ガス攪拌精錬やASEA−SKFなどの取鍋内電磁誘導攪拌精錬を行わない場合は、t1'=0,t2=0とする。
もし、2次精錬装置1が減圧槽内取鍋ガス攪拌精錬装置である場合、その攪拌動力密度ε1'は、前述した式(2')を用いて計算するとよい。
For refining methods that are not used, the refining time is 0 min. In other words, t 1 ′ = 0 and t 2 = 0 when ladle gas refining in a ladle such as VAD or electromagnetic induction stirring refining in a ladle such as ASEA-SKF is not performed.
If the secondary refining device 1 is a ladle gas stirring and refining device in a decompression tank, the stirring power density ε1 ′ may be calculated using the above-described equation (2 ′).

Figure 0004799392
Figure 0004799392

また、2次精錬装置1が、取鍋内電磁誘導攪拌精錬装置である場合、その攪拌動力密度ε2は、式(3)で与えられることが「大西ら:鉄と鋼,第69巻,1983年,A53頁」に開示されているため、その式に基づいて攪拌動力密度ε2を算出するとよい。 In addition, when the secondary refining apparatus 1 is a ladle electromagnetic induction stirring refining apparatus, the stirring power density ε 2 is given by equation (3) “Onishi et al .: Iron and steel, Vol. 69, 1983, page A53 ", the stirring power density ε 2 may be calculated based on the equation.

Figure 0004799392
Figure 0004799392

[鋼線材の成分]
なお、本願発明により製造される鋼線材の成分は、先に述べた如く、C:0.4〜1.3質量%質量%,Si:0.1〜2.5質量%,Mn:0.2〜1.0質量%,Al:0.003質量%以下の組成を有するものを対象としている。かかる成分を得る目的のためにも、2次精錬中に用いるスラグ13組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%としている。
さらに、鋼線材が高い耐疲労性を備えるためには、好ましくは、精錬処理後の溶鋼4が[Ni]=0.05〜1質量%、[Cu]=0.05〜1質量%、[Cr]=0.05〜1.5質量%の1種または2種以上の成分を含有する、言い換えるならば、製品の鋼線材の組成が、Ni=0.05〜1質量%、Cu=0.05〜1質量%、Cr=0.05〜1.5質量%の1種または2種以上の成分を有するとよい。
[Components of steel wire]
In addition, as described above, the components of the steel wire manufactured according to the present invention are as follows: C: 0.4 to 1.3 mass%, Si: 0.1 to 2.5 mass%, Mn: 0.2 to 1.0 mass%, Al: 0.003 mass Intended for those having a composition of not more than%. For the purpose of obtaining such components, the composition of slag 13 used during secondary refining is set to CaO / SiO 2 = 0.5 to 1.5, Al 2 O 3 = 3 to 25% by mass, and MgO = 3 to 25% by mass. .
Further, in order for the steel wire rod to have high fatigue resistance, the molten steel 4 after the refining treatment is preferably [Ni] = 0.05 to 1 mass%, [Cu] = 0.05 to 1 mass%, [Cr] = 0.05. It contains ~ 1.5 mass% of one or more components, in other words, the composition of the steel wire rod of the product is Ni = 0.05 to 1 mass%, Cu = 0.05 to 1 mass%, Cr = 0.05 to 1.5 It is good to have 1% or 2 or more types of component of mass%.

加えて、上記成分以外に、精錬処理後の溶鋼4が、[Li]=0.02〜20 質量ppm、[Na]=0.02〜20 質量ppm、[Ce]=3〜100質量ppm、[La]=3〜100質量ppmの1種または2種以上の成分を含有する、言い換えるならば、製品の鋼線材の組成が、Li=0.02〜20 質量ppm、Na=0.02〜20 質量ppm、Ce=3〜100質量ppm、La=3〜100質量ppmの1種または2種以上の成分を有するものであるとよい。
以上述べた鋼線材の化学成分の上下限値について詳説する。
C量が0.4〜1.3質量%であることに関しては、Cは鋼材の強度向上に有用な元素であり、本鋼材は高強度が必要とされる弁バネ等の鋼線材に用いられることを鑑み、0.4質量%以上含有させることが望ましい。さらに望ましくは0.5質量%以上である。しかし、C量が多くなりすぎると鋼が脆化して伸線性が損なわれるので、1.3質量%以下に、好ましくは1.2質量%以下に抑えるのがよい。
In addition to the above components, the refined molten steel 4 has [Li] = 0.02 to 20 mass ppm, [Na] = 0.02 to 20 mass ppm, [Ce] = 3 to 100 mass ppm, [La] = Contains one or more components of 3 to 100 mass ppm, in other words, the composition of the steel wire rod of the product is Li = 0.02 to 20 mass ppm, Na = 0.02 to 20 mass ppm, Ce = 3 to It is preferable to have one or more components of 100 mass ppm and La = 3 to 100 mass ppm.
The upper and lower limits of the chemical composition of the steel wire described above will be described in detail.
Regarding the amount of C being 0.4 to 1.3% by mass, C is an element useful for improving the strength of steel, and this steel is used for steel wires such as valve springs that require high strength. It is desirable to contain 0.4% by mass or more. More desirably, it is 0.5% by mass or more. However, if the amount of C is too large, the steel becomes brittle and the drawability is impaired, so it is preferable to keep it to 1.3% by mass or less, preferably 1.2% by mass or less.

Si量が0.1〜2.5質量%であることに関しては、Siは脱酸作用を有しており、この作用を発揮させるには0.1質量%以上含有させることが好ましく、さらに好ましくは、0.2質量%以上含有させるとよい。ただし、Si量が多くなりすぎると脱酸生成物としてSiO2生成量が多くなり過ぎ、伸線性が損なわれるので、2.5質量%以下、望ましくは2.3質量%以下に抑えるのがよい。
Mn量が0.2〜1.0質量%であることに関しては、MnはSiと同様に脱酸作用を有するとともに、介在物制御作用を有しており、これらの作用を有効に発揮させるには0.2質量%以上含有させることが好ましい。さらに好ましくは、0.3質量%以上である。ただし、Mn量が多くなりすぎると鋼材が脆化して伸線性が損なわれるので1.0質量%以下に抑えることが望ましく、さらに望ましくは0.9質量%以下に抑えることである。
Regarding the amount of Si being 0.1 to 2.5% by mass, Si has a deoxidizing action, and in order to exert this action, it is preferable to contain 0.1% by mass or more, more preferably 0.2% by mass or more. It is good to contain. However, if the amount of Si is excessively large, the amount of SiO 2 generated as a deoxidation product is excessively increased and the drawability is impaired. Therefore, the content is preferably 2.5% by mass or less, and preferably 2.3% by mass or less.
As for the amount of Mn being 0.2 to 1.0% by mass, Mn has a deoxidation effect as well as Si, and has an inclusion control effect, and 0.2% by mass in order to exert these effects effectively. It is preferable to contain above. More preferably, it is 0.3 mass% or more. However, if the amount of Mn becomes too large, the steel material becomes brittle and the drawability is impaired, so it is desirable to keep it to 1.0% by mass or less, and more desirably to keep it to 0.9% by mass or less.

本発明にかかる鋼線材又は鋼線材の元となる溶鋼4の組成は上記の通りであり、残部は実質的にFeと不可避的不純物であるが、必要により次に述べる元素を選択成分として積極的に添加することによって、伸線性などを一段と高めることも有効である。
選択元素として、Ni=0.01〜1質量%,Cu=0.01〜1質量%,Cr=0.01〜1.5質量%から選ばれる少なくとも1種以上の元素を採用することは好ましい。
Niは、鋼線の強度上昇にはあまり寄与しないが、鋼線材の靭性を高める効果を発揮する。しかしながら、1質量%を超えて含有させても効果は飽和するので、下限を0.01質量%、好ましくは0.02質量%、上限を1質量%、好ましくは0.9質量%とする。
The composition of the steel wire according to the present invention or the molten steel 4 that is the basis of the steel wire is as described above, and the balance is substantially Fe and unavoidable impurities. It is also effective to further improve the drawability and the like by adding to.
As the selective element, it is preferable to employ at least one element selected from Ni = 0.01 to 1% by mass, Cu = 0.01 to 1% by mass, and Cr = 0.01 to 1.5% by mass.
Ni does not contribute much to increasing the strength of the steel wire, but exhibits the effect of increasing the toughness of the steel wire. However, even if the content exceeds 1% by mass, the effect is saturated, so the lower limit is 0.01% by mass, preferably 0.02% by mass, and the upper limit is 1% by mass, preferably 0.9% by mass.

Cuは、析出効果作用によって鋼線の高強度化に寄与する元素である。しかしながら過剰に添加すると結晶粒界に偏析し、鋼材の熱間圧延工程で割れやキズを発生させる原因になるので、下限を0.01質量%、好ましくは0.02質量%、上限を1質量%、好ましくは0.9質量%とする。
Crは、伸線加工時における加工硬化率を高める作用があり、比較的低い加工率でも高い強度が得られ易くなる。しかも、Crは鋼の耐蝕性を高める作用も有している。しかしながら、多量に含有させ過ぎると、パーライト変態に対する焼き入れ性が高くなってパテンティング処理が困難になり、さらに2次スケールが緻密になり過ぎてメカニカル・デスケーリング性および酸洗性が劣化するので下限を0.01質量%、好ましくは0.02質量%、上限を1.5質量%、好ましくは1.4質量%とする。
Cu is an element that contributes to increasing the strength of steel wires by the effect of precipitation. However, if added excessively, it segregates at the grain boundaries and causes cracks and scratches in the hot rolling process of the steel, so the lower limit is 0.01% by mass, preferably 0.02% by mass, and the upper limit is 1% by mass, preferably 0.9 mass%.
Cr has an effect of increasing the work hardening rate at the time of wire drawing, and high strength is easily obtained even at a relatively low work rate. Moreover, Cr also has the effect of increasing the corrosion resistance of steel. However, if too much is included, the hardenability to pearlite transformation becomes high and the patenting process becomes difficult, and the secondary scale becomes too dense, and mechanical descaling and pickling properties deteriorate. The lower limit is 0.01% by mass, preferably 0.02% by mass, and the upper limit is 1.5% by mass, preferably 1.4% by mass.

さらに好ましくは、選択元素として、Li=0.02〜20 質量ppm、Na=0.02〜20 質量ppm、Ce=3〜100質量ppm、La=3〜100質量ppmから選ばれる少なくとも1種以上の元素を採用するとよい。
これらの元素は、鋼中の非金属介在物をより軟質化する作用がある。しかし、過剰に入れても効果は飽和する。そのため、Liの下限は0.02質量ppm、好ましくは0.03質量ppm、上限は20質量ppm、好ましくは、10質量ppmである。Naの下限は0.02質量ppm、好ましくは0.03質量ppmであり、上限は20質量ppm、好ましくは10質量ppmである。Ceの下限は3質量ppm、好ましくは5質量ppmであり、上限は100質量ppm、好ましくは80質量ppmである。Laの下限は3質量ppm、好ましくは5質量ppmであり、上限は100質量ppm、好ましくは80質量ppmである。
More preferably, at least one element selected from Li = 0.02 to 20 mass ppm, Na = 0.02 to 20 mass ppm, Ce = 3 to 100 mass ppm, and La = 3 to 100 mass ppm is used as the selective element. Good.
These elements have the effect of softening non-metallic inclusions in the steel. However, the effect is saturated even if it is excessively added. Therefore, the lower limit of Li is 0.02 mass ppm, preferably 0.03 mass ppm, and the upper limit is 20 mass ppm, preferably 10 mass ppm. The lower limit of Na is 0.02 ppm by mass, preferably 0.03 ppm by mass, and the upper limit is 20 ppm by mass, preferably 10 ppm by mass. The lower limit of Ce is 3 mass ppm, preferably 5 mass ppm, and the upper limit is 100 mass ppm, preferably 80 mass ppm. The lower limit of La is 3 mass ppm, preferably 5 mass ppm, and the upper limit is 100 mass ppm, preferably 80 mass ppm.

以下、本発明にかかる鋼材の製造方法に基づき溶鋼4を2次精錬した場合(実施例)と、何らかの条件を満たさないで2次精錬した場合(比較例)とについて述べる。これら複数の実施例と比較例とから、攪拌仕事量Eの範囲が得られることになる。
実施例、比較例とも、溶銑予備処理工程においてPとSを所定の濃度にまで低下させた溶銑100ton又は240tonを転炉14に装入し、所定の濃度にまで脱炭吹錬した。その後、吹錬後の溶鋼4を取鍋5へ出鋼し、取鍋ガス攪拌精錬装置、減圧槽内取鍋ガス攪拌精錬装置、取鍋内電磁誘導攪拌精錬装置、還流式脱ガス精錬装置の少なくとも1つ以上でスラグ精錬を実施し、連続鋳造機にて断面430×300mm又は600×380mmの鋳片に鋳造した。この鋳片を1260℃に加熱し、155mm角までの分塊圧延し、その後、φ8mmの鋼線材へ熱間圧延した。
Hereinafter, the case where the molten steel 4 is subjected to secondary refining based on the steel material manufacturing method according to the present invention (Example) and the case where the secondary refining without satisfying any condition (Comparative Example) will be described. From these plural examples and comparative examples, the range of the work of stirring E is obtained.
In both the examples and comparative examples, 100 ton or 240 ton of hot metal in which P and S were reduced to a predetermined concentration in the hot metal pretreatment process was charged into the converter 14 and decarburized and blown to a predetermined concentration. Then, the molten steel 4 after blowing is taken out to the ladle 5 and the ladle gas stirring and refining device, the ladle gas stirring and refining device in the decompression tank, the electromagnetic induction stirring and refining device in the ladle, and the reflux-type degassing refining device. At least one slag was refined and cast into a slab having a cross section of 430 × 300 mm or 600 × 380 mm by a continuous casting machine. The slab was heated to 1260 ° C., rolled to 155 mm square, and then hot-rolled to a steel wire with a diameter of 8 mm.

表1,表2にはそれらの結果をまとめてある。
表1は、各精錬処理の条件とその際の攪拌仕事量Eが記してあり、表2には、各精錬条件における鋼種成分、スラグ組成、最終的な非延性介在物指数、折損率が記してある。表1の実施例1は表2の実施例1と対応する。
非延性介在物指数は、次のようにして算出した。
φ8.0mm線材の軸心を含む任意の断面1280mm2又は960mm2を光学顕微鏡やEPMAにて観察し、圧延方向に垂直な幅が5μm以上の介在物を選び出し、5μm以上7.5μm未満のものが存在した場合を1点、7.5μm以上10μm未満が存在した場合を2点、10μm以上20μm未満のものが存在した場合を10点、20μm以上が存在した場合を15点というように介在物の点数付けし、それらを総和したものを非延性介在物指標とした。なお、非延性介在物指標(合計点数)は、100mm2あたりに換算することとする。5μm未満の介在物は全て0点となり、点数付けの対象とはならない。
Tables 1 and 2 summarize the results.
Table 1 shows the conditions of each refining process and the amount of stirring work E at that time, and Table 2 shows the steel type composition, slag composition, final non-ductile inclusion index, and breakage rate under each refining condition. It is. Example 1 in Table 1 corresponds to Example 1 in Table 2.
The non-ductile inclusion index was calculated as follows.
Any cross-section 1280 mm 2 or 960 mm 2 passing through the axis of φ8.0mm wire was observed with an optical microscope or EPMA, width perpendicular to the rolling direction is singled out more inclusions 5 [mu] m, those of less than 5 [mu] m 7.5 [mu] m The number of inclusions is 1 point when it is present, 2 points when it is 7.5 μm or more and less than 10 μm, 10 points when it is 10 μm or more and less than 20 μm, and 15 points when it is 20 μm or more The sum of them was used as the non-ductile inclusion index. The non-ductile inclusion index (total score) shall be converted per 100 mm 2 . Inclusions less than 5 μm are all 0 points and are not subject to scoring.

この指標の値が小さいほど、スラグ精錬によって、軟質で延性に富む介在物に制御されたことを意味する。
折損率は、次のようにして算出した。
すなわち、実施例、比較例のφ8.0mmの鋼線材に対し、中村式回転曲げ疲労試験を実施した。かかる鋼線材は、オイルテンパー処理、歪取焼鈍、ショットピーニング処理、再度歪取焼鈍を施した後、中村式回転曲げ疲労試験機を用いて疲労破壊試験を行った。
試験条件としては、鋼線材の試験片長さ650mmの試験片本数を50本用意し、試験荷重=95.8kgf/mm2、回転速度=4500rpmにて、2×107回の曲げを加えた(試験中止回数)。この試験中止回数までに、破断してしまった試験片の本数を折損本数としてカウントし、折損率=折損本数/(全ての試験片本数=50本)×100(%)で折損率を算出した。
A smaller value of this index means that the inclusion has been controlled to be soft and ductile by slag refining.
The breakage rate was calculated as follows.
That is, the Nakamura rotary bending fatigue test was carried out on the steel wire rods of φ8.0 mm in Examples and Comparative Examples. The steel wire was subjected to oil temper treatment, strain relief annealing, shot peening treatment, and strain relief annealing again, and then subjected to a fatigue fracture test using a Nakamura rotary bending fatigue tester.
As test conditions, 50 test pieces of steel wire with a length of 650 mm were prepared, and bending was performed 2 × 10 7 times at a test load of 95.8 kgf / mm 2 and a rotation speed of 4500 rpm (test Stop count). The number of test pieces that broke before the number of test suspensions was counted as the number of breakage, and the breakage rate was calculated as follows: Breakage rate = number of breakage / (number of all test pieces = 50) x 100 (%) .

Figure 0004799392
Figure 0004799392

Figure 0004799392
Figure 0004799392

実施例1〜6は、Arガスを吹き込む取鍋ガス攪拌を行い溶鋼4の2次精錬を実施した場合を示している。実施例5は減圧下で2次精錬を行い、実施例6は、取鍋ガス攪拌精錬を行った後、減圧槽内取鍋ガス攪拌精錬を行っている。実施例7〜10は、取鍋内電磁誘導攪拌精錬を行った後、取鍋ガス攪拌精錬を行っている。逆に、実施例11,12は、取鍋ガス攪拌精錬→取鍋内電磁誘導攪拌精錬の処理を実施している。実施例13,14は、取鍋内電磁誘導攪拌精錬の処理のみ、実施例15,16は、取鍋ガス攪拌精錬→還流式脱ガス精錬の処理を実施している。   Examples 1-6 have shown the case where the ladle gas stirring which blows in Ar gas is performed, and the secondary refining of the molten steel 4 is implemented. In Example 5, secondary refining is performed under reduced pressure. In Example 6, ladle gas stirring and refining is performed, and then ladle gas stirring and refining is performed in a decompression tank. In Examples 7 to 10, after ladle electromagnetic induction stirring and refining, ladle gas stirring and refining is performed. Conversely, in Examples 11 and 12, ladle gas stirring and refining → ladle electromagnetic induction stirring and refining is performed. In Examples 13 and 14, only the process of electromagnetic induction stirring and refining in the ladle is performed, and in Examples 15 and 16, the process of ladle gas stirring and refining → reflux degassing refining is performed.

いずれの場合であっても、攪拌仕事量Eは800〜1500の範囲内であり、折損率は40%以下となっている。スラグ組成や鋼種成分は、実施の形態で述べた組成範囲を満たすものとなっている。
一方、比較例17〜22は、取鍋ガス攪拌のみを行っており、比較例23,24は、取鍋内電磁誘導攪拌精錬と取鍋ガス攪拌精錬とを実施している。比較例25,26は、取鍋内電磁誘導攪拌精錬の処理のみ、比較例27,28は、取鍋ガス攪拌精錬→還流式脱ガス精錬の処理を実施している。比較例29,30は、還流式脱ガス精錬のみを実施している。
In any case, the work of stirring E is in the range of 800 to 1500, and the breakage rate is 40% or less. The slag composition and steel type components satisfy the composition range described in the embodiment.
On the other hand, Comparative Examples 17-22 perform only ladle gas stirring, and Comparative Examples 23 and 24 perform ladle electromagnetic induction stirring refining and ladle gas stirring refining. In Comparative Examples 25 and 26, only ladle inductive stirring refining treatment is performed, and in Comparative Examples 27 and 28, ladle gas stirring refining → reflux degassing refining treatment is performed. In Comparative Examples 29 and 30, only reflux degassing is performed.

いずれの場合であっても、スラグ組成や鋼種成分は、実施の形態で述べた組成範囲を満たしてはいるが、攪拌仕事量Eは800〜1500の範囲を外れており、折損率は40%を越えていて、好ましくない。
図2,図3は、に示す実験結果や実操業データをグラフ化したものである。
図2に、実験結果に基づいて得られた介在物指標とばね鋼線材の中村式回転曲げ試験における折損率が示されている。
図3は、実験結果に基づいて得られた「攪拌仕事量Eと延性のない非金属介在物の存在する率(非延性介在物指標)の関係」を示すものとなっている。
In any case, the slag composition and the steel type component satisfy the composition range described in the embodiment, but the stirring work E is out of the range of 800 to 1500, and the breakage rate is 40%. This is not preferable.
2 and 3 are graphs showing the experimental results and actual operation data shown in FIG.
FIG. 2 shows the inclusion index obtained based on the experimental results and the breakage rate in the Nakamura rotary bending test of the spring steel wire rod.
FIG. 3 shows the “relationship between the stirring work amount E and the ratio of non-ductile non-metallic inclusions (non-ductile inclusion index)” obtained based on the experimental results.

中村式回転曲げ試験において、折損率が40%を超えると、製品が実使用された場合の折損率は1%を超える場合があり、非常に問題であることは当業者においてはよく知られている。ゆえに、図2から判断するに、中村式回転曲げ試験による折損率を40%を越えないためには、非延性介在物指標を2.0以下とすることが好ましい。
このことを知見した上で図3を鑑みれば、攪拌仕事量Eを800≦E≦1500にすることで、従来実現できなかった「非延性介在物指標≦2.0」を確実に満たすことができる。そこで、本願発明においては、取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬の1つ又は2つ以上組み合わせて溶鋼4の精錬処理を行う際に、取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のそれぞれの攪拌動力密度をε1,ε1',ε2,ε3、精錬時間をt1,t1',t2,t3とした際に、式(1)で算出されるEが800〜1500の範囲内になるようにしている。
It is well known to those skilled in the art that in the Nakamura rotary bending test, if the breakage rate exceeds 40%, the breakage rate when the product is actually used may exceed 1%, which is very problematic. Yes. Therefore, judging from FIG. 2, it is preferable to set the non-ductile inclusion index to 2.0 or less so that the breakage rate by the Nakamura rotary bending test does not exceed 40%.
Considering this fact and considering FIG. 3, by setting the work of stirring E to 800 ≦ E ≦ 1500, it is possible to reliably satisfy “non-ductile inclusion index ≦ 2.0” that could not be realized conventionally. Therefore, in the present invention, the refining treatment of the molten steel 4 is performed by combining one or two or more of ladle gas stirring and refining, ladle gas stirring and refining in the decompression tank, electromagnetic induction stirring and refining in the ladle, and reflux degassing refining. In performing the ladle gas stirring and refining, ladle gas stirring and refining in the decompression tank, electromagnetic induction stirring and refining in the ladle, and the reflux type degassing refining, the stirring power densities are ε 1 , ε 1 ′, ε 2 , ε 3. When the refining time is t 1 , t 1 ′, t 2 , t 3 , E calculated by the equation (1) is set in the range of 800-1500.

好ましくは、介在物指標は1.5以下、上記試験における折損率は30%以下を満たすことを目標にすれば、攪拌仕事量Eが1000〜1300の範囲となるように、2次精錬を行うとよい。なお、攪拌仕事量Eが小さすぎると溶鋼4とスラグ13の接触頻度は低く、硬質介在物を軟質に変化させる効果は小さい。逆に攪拌仕事量Eが大きければ大きいほど、溶鋼4とスラグ13の接触頻度は高くなるが、溶鋼4容器の内張耐火物の損耗が激しくなり、かえって硬質介在物を増加させてしまう結果となる。
なお、本明細書に記載した実施形態は本発明の例示であって、これに限定するものではない。
Preferably, the secondary refining is performed so that the stirring work E is in the range of 1000 to 1300 when the inclusion index is 1.5 or less and the breakage rate in the above test is 30% or less. . If the work of stirring E is too small, the contact frequency between the molten steel 4 and the slag 13 is low, and the effect of changing the hard inclusions to be soft is small. On the contrary, the larger the stirring work E, the higher the contact frequency between the molten steel 4 and the slag 13, but the wear of the lining refractory in the molten steel 4 container becomes severe, and the hard inclusions are increased. Become.
In addition, embodiment described in this specification is an illustration of this invention, Comprising: It does not limit to this.

すなわち、2次精錬装置1として、LF装置2、RH装置3が単独で使用される、又は、LF装置2とRH装置3とが組み合わせて使用されるものを例示した。しかしながら、減圧槽内取鍋ガス攪拌精錬装置や取鍋内電磁誘導攪拌精錬装置を単独で使用した2次精錬装置に対しても、本願発明の技術は適用可能である。当然ながら、取鍋ガス攪拌精錬装置(LF装置2)、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬(RH装置3)を適宜組み合わせた2次精錬装置にも適用可能である。   That is, as the secondary refining apparatus 1, the LF apparatus 2 and the RH apparatus 3 are used alone, or the LF apparatus 2 and the RH apparatus 3 are used in combination. However, the technique of the present invention can also be applied to a secondary refining device that uses the ladle gas stirring and refining device in the decompression tank or the electromagnetic induction stirring and refining device in the ladle alone. Naturally, a secondary refining device that combines ladle gas stirring and refining device (LF device 2), ladle gas stirring and refining in a decompression tank, electromagnetic induction stirring and refining in ladle, and reflux degassing refining (RH device 3) as appropriate. It is also applicable to.

溶鋼の2次精錬を例示した模式図である。It is the schematic diagram which illustrated the secondary refining of molten steel. 非延性介在物指数と折損率との関係を示した図である。It is the figure which showed the relationship between a non-ductile inclusion index and a breakage rate. 攪拌仕事量と非延性介在物指数との関係を示した図である。It is the figure which showed the relationship between stirring work amount and a non-ductile inclusion index.

符号の説明Explanation of symbols

1 2次精錬装置
2 取鍋ガス攪拌精錬装置(LF装置)
3 還流式脱ガス精錬装置(RH装置)
4 溶鋼
5 取鍋
6 吹き込み装置
7 電極式加熱装置
8 供給装置
9 ポーラス吹込口
10 脱ガス槽
11 上昇管
12 下降管
13 スラグ
14 転炉
1 Secondary refining equipment 2 Ladle gas stirring and refining equipment (LF equipment)
3 Reflux degassing refining equipment (RH equipment)
4 Molten Steel 5 Ladle 6 Blowing Device 7 Electrode Heating Device 8 Feeding Device 9 Porous Blowing Port 10 Degassing Tank 11 Rising Pipe 12 Downfalling Pipe 13 Slag 14 Converter

Claims (3)

C=0.4〜1.3質量%,Si=0.1〜2.5質量%,Mn=0.2〜1.0質量%,Al=0.003質量%以下,残部がFeと不可避的不純物である組成を備える疲労特性に優れた鋼線材を製造する製造方法において、
前記鋼線材の元となる溶鋼の精錬処理を行うにあたり、該精錬処理は取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のいずれか1つ又は2つ以上を組み合わせたものとし、
該精錬処理で使用するスラグの組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%とし、
さらに、前記取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のそれぞれの攪拌動力密度をε1,ε1',ε2,ε3、精錬時間をt1,t1’,t2,t3とした際に、式(1)で算出される指標Eが800〜1500の範囲内になるように、前記溶鋼の精錬処理を行うことを特徴とする疲労特性に優れた鋼線材の製造方法。
Figure 0004799392
Steel wire rods with excellent fatigue characteristics with a composition with C = 0.4 to 1.3 mass%, Si = 0.1 to 2.5 mass%, Mn = 0.2 to 1.0 mass%, Al = 0.003 mass% or less , the balance being Fe and inevitable impurities In the manufacturing method for manufacturing
In refining the molten steel that is the base of the steel wire rod, the refining process is any of ladle gas stirring refining, ladle gas stirring refining in a decompression tank, electromagnetic induction stirring refining in a ladle, or reflux degassing refining One or a combination of two or more,
The composition of the slag used in the refining treatment is CaO / SiO 2 = 0.5 to 1.5, Al 2 O 3 = 3 to 25% by mass, MgO = 3 to 25% by mass,
Further, the stirring power densities of the ladle gas stirring and refining, ladle gas stirring and refining in the decompression tank, electromagnetic induction stirring and refining in the ladle, and reflux type degassing refining are set to ε 1 , ε 1 ′, ε 2 , ε 3, respectively. When the refining time is t 1 , t 1 ′, t 2 , t 3 , the molten steel is refined so that the index E calculated by Equation (1) is in the range of 800-1500. A method for producing a steel wire rod having excellent fatigue characteristics.
Figure 0004799392
前記鋼線材が、Ni=0.05〜1質量%、Cu=0.05〜1質量%、Cr=0.05〜1.5質量%の1種または2種以上の成分を含有するように、前記溶鋼の精錬処理を行うことを特徴とする請求項1に記載の鋼線材の製造方法。   The molten steel is refined so that the steel wire contains one or more components of Ni = 0.05-1% by mass, Cu = 0.05-1% by mass, and Cr = 0.05-1.5% by mass. The manufacturing method of the steel wire rod of Claim 1 characterized by the above-mentioned. 前記鋼線材が、Li=0.02〜20 質量ppm、Na=0.02〜20 質量ppm、Ce=3〜100質量ppm、La=3〜100質量ppmの1種または2種以上の成分を含有するように、前記溶鋼の精錬処理を行うことを特徴とする請求項1又は2に記載の鋼線材の製造方法。   The steel wire contains one or more components of Li = 0.02-20 mass ppm, Na = 0.02-20 mass ppm, Ce = 3-100 mass ppm, La = 3-100 mass ppm. The method for producing a steel wire according to claim 1, wherein the molten steel is refined.
JP2006341347A 2006-12-19 2006-12-19 Manufacturing method of steel wire with excellent fatigue characteristics Expired - Fee Related JP4799392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341347A JP4799392B2 (en) 2006-12-19 2006-12-19 Manufacturing method of steel wire with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341347A JP4799392B2 (en) 2006-12-19 2006-12-19 Manufacturing method of steel wire with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2008150683A JP2008150683A (en) 2008-07-03
JP4799392B2 true JP4799392B2 (en) 2011-10-26

Family

ID=39653171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341347A Expired - Fee Related JP4799392B2 (en) 2006-12-19 2006-12-19 Manufacturing method of steel wire with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4799392B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325317B1 (en) * 2011-07-15 2013-11-08 주식회사 포스코 Steel wire rod having excellent resistance of hydrogen delayed fracture and method for manufacturing the same and high strength bolt using the same and method for manufacturing the bolt
JP6214493B2 (en) * 2014-08-21 2017-10-18 株式会社神戸製鋼所 Method for controlling Ti concentration in steel
JP7043915B2 (en) * 2018-03-22 2022-03-30 日本製鉄株式会社 Method of raising the temperature of molten steel
CN110592313A (en) * 2019-10-09 2019-12-20 马鞍山钢铁股份有限公司 Refining process for producing spring steel by electric furnace
JP7323803B2 (en) * 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel
CN113699309A (en) * 2021-07-28 2021-11-26 邯郸钢铁集团有限责任公司 Steelmaking method for improving fluidity of molten PC steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136612A (en) * 1984-12-04 1986-06-24 Kobe Steel Ltd Production of high-si clean steel for spring
JP3766478B2 (en) * 1996-10-01 2006-04-12 新日本製鐵株式会社 Deoxidation method for molten steel
JP3994456B2 (en) * 1996-10-31 2007-10-17 Jfeスチール株式会社 Method for producing steel for wire rods with excellent drawability and cleanliness
JP2000212636A (en) * 1999-01-18 2000-08-02 Kobe Steel Ltd Production of high carbon steel
JP3632922B2 (en) * 2002-03-08 2005-03-30 住友電気工業株式会社 Steel making and refining method for spring steel and spring steel wire obtained by using the steel making and refining method
JP4393335B2 (en) * 2004-10-01 2010-01-06 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel with excellent fatigue strength or cold workability

Also Published As

Publication number Publication date
JP2008150683A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4135691B2 (en) Nitride inclusion control steel
JP6036997B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP5803824B2 (en) Method of melting carburized bearing steel
EA011363B1 (en) Steel for oil well pipe and method for manufacturing thereof
JP4799392B2 (en) Manufacturing method of steel wire with excellent fatigue characteristics
JP2007092164A (en) Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
JP6314911B2 (en) Manufacturing method of high cleanliness steel
KR100786939B1 (en) Steel wire rod excellent in wire-drawability and fatigue property, and production method thereof
CN112853220A (en) Wire rod for 2000MPa grade spring and production method thereof
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
WO2021256158A1 (en) Method for manufacturing high-cleanliness steel
CN113502435B (en) Oil casing pipe steel for improving low-temperature impact toughness and preparation method thereof
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
CN113637895A (en) Rare earth-containing 850 MPa-grade seamless steel pipe for engineering machinery and production method thereof
JPH11269607A (en) Wire drawing type high strength steel wire rod and its production
JP4069150B2 (en) Manufacturing method of high carbon steel wire rod steel with excellent drawability and fatigue properties
CN114855084B (en) Hot-rolled round steel for 120ksi steel grade high-strength high-toughness high-grade sulfur-resistant drill rod joint and preparation method thereof
JP4225228B2 (en) Bearing material and manufacturing method thereof
JPH11199982A (en) Highly clean rolled steel
JPH06306481A (en) Method for heat-treating steel wire using fluidized bed
JP5126790B2 (en) Steel material excellent in fatigue crack growth resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4799392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees