JP4798491B2 - 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法 - Google Patents

遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法 Download PDF

Info

Publication number
JP4798491B2
JP4798491B2 JP2006083778A JP2006083778A JP4798491B2 JP 4798491 B2 JP4798491 B2 JP 4798491B2 JP 2006083778 A JP2006083778 A JP 2006083778A JP 2006083778 A JP2006083778 A JP 2006083778A JP 4798491 B2 JP4798491 B2 JP 4798491B2
Authority
JP
Japan
Prior art keywords
flow path
opening
compression
compressor
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006083778A
Other languages
English (en)
Other versions
JP2007255381A (ja
Inventor
祥二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006083778A priority Critical patent/JP4798491B2/ja
Publication of JP2007255381A publication Critical patent/JP2007255381A/ja
Application granted granted Critical
Publication of JP4798491B2 publication Critical patent/JP4798491B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法に関する。
排気ターボ過給機は、エンジンから排出される排気ガスの運動エネルギーをエンジンに供給される吸入空気量の質量増大という形で回収することにより、エンジンの特性を向上させることが可能である。しかしながら、このような排気ターボ過給機においては、排気ターボ過給機の一方を構成する圧縮機から送り出される空気流量が少なくなると、サージングが発生して排気ターボ過給機が回復できない損傷を受けてしまう可能性がある。このため、排気ターボ過給機がサージングの発生領域にあると判断した場合、エンジンから排出される排気ガスを排気ターボ過給機の一方を構成するタービンに供給せず、その下流側の排気通路にバイパスさせることが一般的に行われている。なお、サージングの発生領域は、寸法形状などが異なる排気ターボ過給機毎に相違する。
近年、上述したサージング領域を狭めて排気ターボ過給機の運転可能領域を拡げる目的で、ケーシングトリートメントなどと称される技術が例えば特許文献1にて提案されている。これは、圧縮機ハウジングとこの圧縮機ハウジング内に収容されたインペラとの間に形成される圧縮流路内を流れる空気の一部を圧縮流路の上流側に戻すための戻し流路を圧縮機ハウジングに形成したものである。これによると、圧縮流路内を流れる空気の一部が戻し流路から再び圧縮流路内に戻されることとなり、サージングが発生する空気流量をより低流量側にシフトさせることが可能となる。
また、上述した戻し流路を開閉し得る技術が特許文献2にて提案されている。これは、遠心圧縮機に形成された圧縮流路と戻し流路とを連通する孔を放射状に形成し、戻し流路内に配された回動可能なリング状の部材にてこれらの連通孔を開閉し得るようにしたものである。
特開2003−74360号公報 特開平9−133098号公報
特許文献1に開示された従来の排気ターボ過給機の場合、ケーシングトリートメントによる戻し流路の存在によって、圧縮流路内を流れる空気の一部が常に戻し流路から圧縮流路内に戻されるため、すべての運転領域において圧縮機の効率が必然的に低下してしまうという問題がある。
この点に関し、特許文献2に開示された遠心圧縮機は、リング状の部材を用いて連通孔を開閉する構造を採用しているため、サージングが発生しない領域で連通孔を閉じておくことにより、圧縮機の効率低下を防ぐことが可能である。しかしながら、この特許文献2では連通孔の通路断面積がそれほど大きくなく、しかも戻し流路内に占めるリング状の部材の容積が戻し流路の通路断面積を著しく狭める状態となっているため、戻し流路から圧縮流路に戻すことができる空気量に制約がある。このため、連通孔を開いた状態にしても、スワールを形成した状態で空気を戻し流路内で円滑に流動させることが困難であり、サージングの発生領域を圧縮機の低空気流量側にそれほどシフトさせることができなかった。
本発明の第1の目的は、圧縮効率の低下を回避しつつ、より広い運転領域にてサージングを発生することなく使用可能な遠心圧縮機を提供することにある。
本発明の第2の目的は、このような遠心圧縮機を有する排気ターボ過給機を用いたエンジンの吸気制御システムおよびその制御方法を提供することにある。
本発明の第3の目的は、このようなエンジンの吸気制御システムに関する制御方法を提供することにある。
本発明の第1の目的を達成し得る本発明の第1の形態は、圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成される流体の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる流体の一部を該圧縮流路の上流側に戻すための戻し流路と、この戻し流路を開閉するための開閉機構とを具えた遠心圧縮機において、前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンは、前記開口部を開く開位置と、相互に重なり合って前記開口部を閉じる閉位置との間で変位し得ることを特徴とするものである。
本発明においては、インペラの回転によって圧縮機ハウジングの流体導入口から導入される流体が圧縮流路内を通過する間に圧縮された状態となって圧縮機ハウジングの流体送出口から送出される。ここで、開閉機構の可動ベーンが開位置にあって戻し流路の開口部を開いた状態においては、圧縮流路内を流れる流体の一部が戻し流路から圧縮流路の上流側に還流される結果、流体送出口から送出される流体の送出量および圧力が共に低下して遠心圧縮機のサージング特性が改善される。これに対し、開閉機構の可動ベーンが閉位置に変位して戻し流路の開口部を閉じた状態においては、圧縮流路内を流れる流体は戻し流路には流入せず、流体送出口からそのまま送出されることとなる。
本発明の第1の形態による遠心圧縮機において、開閉機構が圧縮流路の上流側に連通する戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンは、開口部を開く開位置と、相互に重なり合って開口部を閉じる閉位置との間で変位し得るものであってよい。この場合、圧縮流路の上流側にて圧縮機ハウジングに連結される環状のハウジングカバーをさらに具え、圧縮流路の上流側に連通する戻し流路の開口部がこのハウジングカバーと仕切り壁部との間に画成され、可動ベーンはこのハウジングカバーに支持されるものであってよい。
圧縮機ハウジングは、仕切り壁部から戻し流路内に放射状をなして等間隔に突出する複数の固定ベーンをさらに有することができる。この場合、複数の固定ベーンは、開位置にある可動ベーンに対して整列状態となることが好ましい。
インペラの回転中心から開位置にある可動ベーンの内周端までの距離を、インペラの回転中心から仕切り壁部の内周面までの距離と等しく設定することも有効である。
可動ベーンを固定ベーンの整数倍配することも可能である。これは、固定ベーンの数が少なく、同じ数の可動ベーンを閉位置に移動した場合に戻し流路の開口部を塞ぐことができない場合に有効である。
開閉機構は、可動ベーンの開度を制御することにより、戻し流路から圧縮流路に戻る流体の流量を変更可能であってよい。
本発明の第2の目的を達成し得る本発明の第2の形態は、排気ターボ過給機を用いたエンジンの吸気制御システムであって、前記排気ターボ過給機の圧縮機は、圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成された吸気の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる吸気の一部を該圧縮流路の上流側に戻すための戻し流路と、この戻し流路を開閉するための開閉手段とを具え、前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンは、前記開口部を開く開位置と、相互に重なり合って前記開口部を閉じる閉位置との間で変位可能であり、前記圧縮流路から圧縮された空気が供給される前記エンジンの作動状態を検出する作動状態検出手段と、この作動状態検出手段により検出された前記エンジンの作動状態に基づいて前記開閉手段の作動を制御する制御手段とを具えたことを特徴とするものである。
本発明においては、エンジンからの排気によって排気ターボ過給機の圧縮機が作動し、圧縮された吸気がエンジンに供給される。エンジンの作動状態が排気ターボ過給機のサージング発生領域に近づいたことを作動状態検出手段が検出した場合、制御手段は戻し流路が開かれるように開閉手段の可動ベーンを開位置に制御する。これにより、圧縮流路内を流れる流体の一部が戻し流路から圧縮流路の上流側に還流され、流体送出口から送出される流体の送出量および圧力が共に低下し、遠心圧縮機のサージングが抑制される。これに対し、エンジンの作動状態が排気ターボ過給機のサージング発生領域から離れている場合、制御手段は戻し流路が閉じられるように開閉手段の開閉ベーンを閉位置へと制御する。これにより、圧縮流路内を流れる流体は戻し流路には流入せず、流体送出口からそのまま送出され、圧縮機の効率が最大限に高められることとなる。
本発明の第2の形態による吸気制御システムにおいて、作動状態検出手段は、エンジンの回転速度を検出するエンジン回転数センサを有することができる。この場合、作動状態検出手段は、スロットル弁の開度を検出するスロットル開度センサか、またはスロットル弁よりも下流側の吸気通路内の圧力を検出する吸気圧センサをさらに有することができる。
本発明の第3の目的を達成し得る本発明の第3の形態は、圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成された吸気の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる吸気の一部を該圧縮流路の上流側に戻すための戻し流路とを圧縮機が具え、前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンは、前記開口部を開く開位置と、相互に重なり合って前記開口部を閉じる閉位置との間で変位し得る排気ターボ過給機を用い、エンジンの運転状態に応じて前記圧縮機の前記戻し流路を開いた開運転領域および前記戻し流路を閉じた閉運転領域の何れかの運転領域を選択するようにしたエンジンの吸気制御方法であって、前記エンジンの回転加速度を算出するステップと、算出された前記エンジンの回転加速度に応じて前記開運転領域と前記閉運転領域との境界をシフトするステップとを具えたことを特徴とするものである。
本発明の第3の形態による吸気制御方法において、開運転領域と閉運転領域との境界をシフトするステップは、エンジンの回転加速度が予め設定された基準値以上の場合、開運転領域が狭くなるように境界を開運転領域側にシフトすることが好ましい。
本発明の遠心圧縮機によると、圧縮機ハウジングが圧縮流路と戻し流路とを仕切る筒状の仕切り壁部を有し、戻し流路が仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、開閉機構が圧縮流路の上流側に連通する戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンが開口部を開く開位置と相互に重なり合って開口部を閉じる閉位置との間で変位し得るようにしたので、圧縮効率の低下を回避しつつ、より広い運転領域にてサージングを発生することなく遠心圧縮機を使用することが可能となった。また、開位置にある可動ベーンを通過する流体に旋回流を形成させることができ、これによって流体を戻し流路から圧縮流路内へ円滑に流入させることができる。
圧縮流路の上流側にて圧縮機ハウジングに連結される環状のハウジングカバーをさらに具え、圧縮流路の上流側に連通する戻し流路の開口部がハウジングカバーと仕切り壁部との間に画成され、可動ベーンがハウジングカバーに支持されている場合、開閉機構をハウジングカバー側に組み込むことが可能となり、圧縮機ハウジングの構造を簡略化させることができる。
仕切り壁部から戻し流路内に放射状をなして等間隔に突出する複数の固定ベーンを圧縮機ハウジングが有する場合、戻し流路内を通る流体に旋回流を形成させることができ、これによって流体を戻し流路から圧縮流路内へ円滑に流入させることが可能となる。
複数の固定ベーンが開位置にある可動ベーンに対して整列状態となる場合、戻し流路内にて流体を固定ベーンから可動ベーン側へと円滑に流動させることができる。
インペラの回転中心から開位置にある可動ベーンの内周端までの距離をインペラの回転中心から仕切り壁部の内周面までの距離と等しく設定した場合、圧縮流路内にて流体を円滑に流動させることができる。
開閉機構の可動ベーンの開度を制御することによって、戻し流路から圧縮流路に戻る流体の流量を調整できるようにした場合、遠心圧縮機の効率とサージング特性とのバランスを微妙に変更することができる。
本発明の第2の形態の吸気制御システムによると、排気ターボ過給機の圧縮機の圧縮流路から圧縮された空気が供給されるエンジンの作動状態を検出する作動状態検出手段と、この作動状態検出手段により検出されたエンジンの作動状態に基づいて圧縮機の開閉手段の作動を制御する制御手段とを具えているので、エンジンの特定の作動領域における排気ターボ過給機のサージング特性を改善しつつ、これ以外のエンジンの作動領域における排気ターボ過給機の圧縮機の効率の低下を未然に防ぐことができる。
本発明の第3の形態の吸気制御方法によると、エンジンの運転状態に応じて排気ターボ過給機の圧縮機の戻し流路を開いた開運転領域および戻し流路を閉じた閉運転領域の何れかの運転領域を選択する際、エンジンの回転加速度を算出し、この算出されたエンジンの回転加速度に応じて開運転領域と閉運転領域との境界をシフトするようにしたので、エンジンの回転加速度に応じて圧縮機のサージング特性を変更することができる。
エンジンの回転加速度が予め設定された基準値以上の場合、開運転領域が狭くなるように開運転領域と閉運転領域との境界を開運転領域側にシフトすることにより、サージングを発生させず、しかも圧縮機の効率の低下をもたらすことなく排気ターボ過給機の作動領域を広げることができる。
本発明による吸気制御システムを排気ターボ過給機が組み込まれた車両用エンジンに応用した実施形態について、図1〜図8を参照しながら詳細に説明するが、本発明はこれらの実施形態のみに限らず、これらをさらに組み合わせたり、特許請求の範囲に記載された本発明の概念に包含されるあらゆる変更や修正が可能であり、従って本発明の精神に帰属する他の任意の技術にも当然応用することができる。
本実施形態のシステムの概念を図1に示す。本実施形態におけるエンジン10は、図示しない燃焼室内に空気と共に供給される燃料を図示しない点火プラグにて着火する、いわゆる火花点火式内燃機関であるが、ディーゼルエンジンなどの圧縮点火式内燃機関であっても同様に適用できることは言うまでもない。このエンジン10の燃焼室には、吸気マニホルド11を介して吸気管12が接続し、同様に排気マニホルド13を介して排気管14が接続している。吸気管12の上流端側には、吸気管12内に流入する外気中の塵埃を捕捉するための図示しないエアフィルタが設けられ、排気管14の下流端側には排気ガス中の有害成分を無害化するための図示しない触媒装置が組み込まれている。
前記吸気管12と排気管14とに跨がって配される排気ターボ過給機15は、吸気管12側に位置する遠心式の圧縮機16と、排気管14側に位置するタービン17とを具えている。これら圧縮機16のインペラ18とタービン17とは共通の回転軸19を介して一体的に連結されている。
排気ターボ過給機15よりも下流側の吸気管12内には、エンジン10の燃焼室に供給される吸気量を調整するためのスロットル弁20が組み込まれており、このスロットル弁20の開度は図示しないアクセルペダルの踏み込み量などに基づいて調整されるようになっている。
本実施形態における圧縮機16の部分を抽出拡大して図2に示し、そのIII−III矢視断面構造を図3に示す。すなわち、本実施形態における圧縮機16は、タービン17と一体の回転軸19が形成されたインペラ18と、このインペラ18を図示しない軸受を介して回転自在に収容する圧縮機ハウジング21と、一端が吸気管12に対して同軸状に連結されると共に他端がインペラ18と同軸状をなすように圧縮機ハウジング21に対して一体的に嵌着される環状のハウジングカバー22とを具えている。
インペラ18には、ここを通過する吸気に旋回流を形成するための複数枚のブレード23が放射状に形成されており、これら隣接するブレード23と圧縮機ハウジング21との間に吸気の圧縮流路24が形成される。この圧縮流路24は、上流側、つまりハウジングカバー22側ほど通路断面積が広くなるように設定され、ここで吸気の圧縮が行われるようになっている。
圧縮機ハウジング21は、吸気管12が接線方向に連通する環状のスクロール室25を外周部に画成したハウジング本体26と、本発明における仕切り壁部としての円筒状をなす仕切り筒27と、この仕切り筒27の外周面に放射状に形成された複数枚の固定ベーン28とを有する。なお、ハウジング本体26には、スクロール室25と先の圧縮流路24の下流端、つまりインペラ18におけるブレード23の最大外周端部とを連通する偏平な環状のディフューザ29も画成され、ここで遠心力を利用して吸気の圧縮を促進させることができるようになっている。周方向に沿って等間隔に配された各固定ベーン28の内周端は、仕切り筒27の外周面に対して一体的に接合され、固定ベーン28の外周端は、ハウジング本体26に形成されたカバー取り付け部30の内周面に対して一体的に嵌着された状態となっている。これにより、内部に固定ベーン28が配された環状の戻し流路31が仕切り筒27の外周面とハウジング本体26のカバー取り付け部30の内周面との間に画成される。圧縮流路24の上流側に位置する仕切り筒27の端部とハウジングカバー22との間には、圧縮流路24と戻し流路31とを連通する環状の隙間(以下、これを出口と呼称する)32が本発明の開口部として形成され、ここに後述する複数枚の可動ベーン33が収容されるようになっている。同様に、圧縮流路24の下流側に位置する仕切り筒27の端部とハウジング本体26との間にも、圧縮流路24と戻し流路31とを連通する本発明の開口部としての環状をなす隙間(以下、これを入口と呼称する)34が形成されている。
固定ベーン28と同じ数だけ配される本実施形態における可動ベーン33は、インペラ18の回転軸線に沿ってこれを見た場合、固定ベーン28に対して同じ位相状態で整列する図3中、二点鎖線で示す開位置と、隣接する可動ベーン33が相互に重なり合う図3中、実線で示す閉位置との間を揺動可能となっている。周方向に沿って等間隔で配列する各可動ベーン33には、ハウジングカバー22に旋回可能に保持された環状に配列するリンクレバー35がそれぞれ連結され、このリンクレバー35を操作するアクチュエータ36がハウジングカバー22に取り付けられている。つまり、アクチュエータ36を作動させることにより、リンクレバー35を介して各可動ベーン33を同時に同じ方向に同じ回動量だけ起倒させることができるようになっている。アクチュエータ36を介した可動ベーン33の回動量は、エンジン10の作動状態に応じて開位置と閉位置の間の任意の位置に保持することが可能であり、アクチュエータ36は後述するECU(Electronic Control Unit:電子制御ユニット)37からの指令に基づいて作動が制御される。本実施形態では、上述した可動ベーン33,リンクレバー35,アクチュエータ36などが本発明における開閉機構を構成している。
従って、排気ガスが排気ターボ過給機15のタービン17を通過する際にタービン17が駆動され、これと一体のインペラ18も同時に駆動される。これにより、吸気が図2中、左側に位置するハウジングカバー22から回転軸線と平行な方向(図中、左右方向)に沿って圧縮機ハウジング21内に導かれ、圧縮流路24を通過する間に次第に圧縮される。さらに、ディフューザ29を通過してスクロール室25に導かれる間に遠心力によって圧縮され、スクロール室25の内周面に沿って螺旋状に旋回しながら吸気マニホルド11側に向けて吸気管12内に送り出される。
ここで可動ベーン33が開位置にある場合、圧縮流路24を流れる吸気の一部が出口32よりも高圧の入口34から戻し流路31内に流入し、固定ベーン28が組み込まれた戻し流路31を通って可動ベーン33が配された出口32側から再び圧縮流路24に戻される。これにより、エンジン10側に供給される吸気量が少なくなり、サージングの発生限界をより低吸気量側にずらすことが可能となり、サージングの発生を抑制することができる。吸気の一部が入口34から戻し流路31を通って出口32から再び圧縮流路24に戻る場合、固定ベーン28および可動ベーン33に案内されて旋回流が形成された状態となる。この旋回流は、圧縮流路24に形成される旋回流と逆方向に旋回するように設定すべきであり、これによってサージ改善効果を向上させることができる。同様な観点から、インペラ18の回転中心から開状態における可動ベーン33の内周端まで距離は、インペラ18の回転中心から仕切り筒27の内周面までの距離と同じか、あるいはそれ以上に設定することが好ましい。これによって、可動ベーン33の内周端が圧縮流路24内に突出し、ここを通過する吸気に乱流を発生させるような不具合を未然に防止することができる。
一方、可動ベーン33が閉位置にある場合、出口32が可動ベーン33によって塞がれた状態となるため、戻し流路31には吸気が流れず、圧縮流路24を通る吸気はそのままディフューザ29からスクロール室25を通って吸気管12の下流側へ圧送されることとなる。これにより、圧縮機16の効率の低下を未然に防止することができる。
なお、戻し流路31の高さに対して固定ベーン28の配列間隔が広く設定されている(固定ベーン28の数が少ない)場合、可動ベーン33を固定ベーン28と同じ数だけ配置しても隣接する可動ベーン33を相互に重ね合わせることができなくなることが予想される。この場合、例えば図4に示すように戻し流路31の高さと固定ベーン28の配列間隔とに応じて可動ベーン33を固定ベーン28の整数倍(図示例では2倍)だけ多く配置することにより、このような不具合を回避することができる。
本実施形態における可動ベーン33の開閉動作および開度は、エンジン回転数と吸気マニホルド11内の吸気圧とに基づき、ECU37内に予め設定された図5に示す如きマップから読み出されるようになっている。つまり、エンジン回転数の変化率が所定の割合を越えた場合、加速状態にあると見なし、実線で示すそれ以外の非加速状態における可動ベーン33の開閉境界線を破線で示す加速時の開閉境界線にシフトする。このシフト量は、加速の大きさに応じて連続的に変化させることも可能であり、開閉境界線はサージングの発生領域の目安となるものである。
このような制御を実行するため、本実施形態においてはエンジン10の作動状態に基づいてアクチュエータ36の作動を制御するECU37が搭載されている。また、吸気管12には、スロットル弁20の開度を検出するスロットル開度センサ38が組み付けられ、吸気マニホルド11には吸気マニホルド11内の圧力を検出する吸気圧センサ39が組み付けられている。また、エンジン10には図示しないクランク軸の回転速度を検出するエンジン回転数センサ40が組み付けられ、この他、図示しない各種検出手段も組み込まれている。
本実施形態におけるECU37は、図示しないCPU,ROM,RAM,バックアップRAM,カウンタ・タイマ群およびI/Oインタフェースなどがバスラインを介して接続するマイクロコンピュータを中心として構成され、各部に安定化電源を供給する定電圧回路,I/Oインタフェースに接続される駆動回路,A/D変換器などの周辺回路を内蔵している。そして、上述したセンサ38〜40や他の図示しないセンサなどからの検出情報に基づき、エンジン10の作動状態を把握して燃料噴射制御,点火時期制御,アイドル回転数制御,過給圧制御などを行うように設定されている。このECU37のI/Oインタフェースの入力ポートには、上述のセンサ38〜40が接続し、出力ポートには上述のアクチュエータ36が接続している。
本実施形態における吸気制御方法を図6に示したフローチャートを用いて説明すると、まずS1のステップにてエンジン回転数センサ40からの情報に基づき、エンジン10の回転加速度αnを算出し、これが予め設定された基準値αR以上であるか否かを判定する。
S2のステップにて現在のエンジン10の回転加速度αnが基準値αR以上である、つまり加速中であると判断した場合には、S3のステップに移行してエンジン回転数と吸気圧との情報に基づき、現在のエンジン10の作動状況が図5中、破線で示す開閉境界線に関して閉領域にあるか否かを判定する。
S3のステップにて現在のエンジン10の作動状況が図5中、破線で示す開閉境界線に関して閉領域にあると判断した場合、S4のステップに移行して可動ベーン33が閉位置となるようにアクチュエータ36の作動を制御し、圧縮機16の効率の低下を防ぐ。これに対し、現在のエンジン10の作動状況が図5中、破線で示す開閉境界線に関して開領域にあると判断した場合、S5のステップに移行して可動ベーン33が開位置となるようにアクチュエータ36の作動を制御し、サージングの発生を抑制する。
一方、上述したS2のステップにて現在のエンジン10の回転加速度αnが基準値αR未満である、つまり加速中ではないと判断した場合には、S6のステップに移行してエンジン回転数と吸気圧との情報に基づき、現在のエンジン10の作動状況が図5中、実線で示す開閉境界線に関して閉領域にあるか否かを判定する。
S6のステップにて現在のエンジン10の作動状況が図5中、実線で示す開閉境界線に関して閉領域にあると判断した場合、S7のステップに移行して可動ベーン33が閉位置となるようにアクチュエータ36の作動を制御し、圧縮機16の効率の低下を防ぐ。これに対し、現在のエンジン10の作動状況が図5中、実線で示す開閉境界線に関して開領域にあると判断した場合、S8のステップに移行して可動ベーン33が開位置となるようにアクチュエータ36の作動を制御し、サージングの発生を抑制する。
上述した実施形態では、エンジン回転数センサ40および吸気圧センサ39の情報に基づいてエンジン10の作動状況を判定したが、吸気圧センサ39に代えてスロットル開度センサ38からの情報を利用することも可能である。この場合における可動ベーン33の開閉動作および開度のマップの一例を図7に示す。この場合においても、エンジン10の回転加速度が基準値以上となる加速中においては、サージングが発生しにくくなるため、破線で囲まれた加速中における可動ベーン33の開位置の領域は、実線で囲まれた非加速中における可動ベーン33の開位置の領域よりも狭くなる。つまり、加速中においては、これらの差の部分の領域において排気ターボ過給機15を有効に作動させることが可能となる。
この圧縮機16における空気流量と圧力比との関係を図8に示す。図中、二点鎖線はスロットル弁20を全開状態に保持した場合であり、破線は可動ベーン33を全閉状態に保持した場合のサージングの発生境界を示し、この破線よりも左側の領域がサージング発生領域である。一方、太い破線は可動ベーン33を全開状態に保持した場合のサージングの発生境界を示し、この太い実線よりも左側の領域がサージング発生領域となる。従って、エンジン10の作動状態が二点鎖線と破線とで囲まれた斜線の領域にある場合、可動ベーン33を開いてエネルギーを積極的に有効利用するというのが本発明の基本となる発想である。つまり、空気流量,圧力比,エンジン回転数が斜線領域にある場合、可動ベーン33を開位置に保持することが有効となる。この場合、空気流量は吸気管12内にエアフローセンサを設けることで検出可能であり、圧力比は吸気圧センサ39を利用して検出することができる。エンジン回転数N1〜N3(N1<N2<N3)は、図中、細い実線で模式的に表され、エンジン回転数センサ40によって検出することが可能である。このような方法でも本発明による吸気制御方法を実施することができる。
本発明による吸気制御システムを排気ターボ過給機が組み込まれた車両用エンジンに応用した一実施形態の概念図である。 図1に示した排気ターボ過給機の圧縮機の内部構造を表す断面図である。 図2中のIII−III矢視断面図である。 本発明の他の実施形態における可動ベーンと固定ベーンとの位置関係を模式的に表す正面図である。 エンジン回転速度と吸気圧と可動ベーンの開運転領域および閉運転領域との関係を模式的に表すマップである。 図1に示した実施形態における可動ベーンの動作制御に関するフローチャートである。 エンジン回転速度とスロットル開度と可動ベーンの開運転領域および閉運転領域との関係を模式的に表すマップである。 図2に示した遠心圧縮機の特性とエンジン回転速度との関係を模式的に表すマップである。
符号の説明
10 エンジン
11 吸気マニホルド
12 吸気管
13 排気マニホルド
14 排気管
15 排気ターボ過給機
16 圧縮機
17 タービン
18 インペラ
19 回転軸
20 スロットル弁
21 圧縮機ハウジング
22 ハウジングカバー
23 ブレード
24 圧縮流路
25 スクロール室
26 ハウジング本体
27 仕切り筒
28 固定ベーン
29 ディフューザ
30 カバー取り付け部
31 戻し流路
32 隙間(出口)
33 可動ベーン
34 隙間(入口)
35 リンクレバー
36 アクチュエータ
37 ECU
38 スロットル開度センサ
39 吸気圧センサ
40 エンジン回転数センサ
αn 回転加速度
αR 基準値
αn エンジンの回転加速度
1〜N3 エンジン回転数

Claims (9)

  1. 圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成される流体の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる流体の一部を該圧縮流路の上流側に戻すための戻し流路と、この戻し流路を開閉するための開閉機構とを具えた遠心圧縮機において、
    前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、
    前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、
    前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、
    これら可動ベーンは、前記開口部を開く開位置と、相互に重なり合って前記開口部を閉じる閉位置との間で変位し得ることを特徴とする遠心圧縮機。
  2. 前記圧縮流路の上流側にて前記圧縮機ハウジングに連結される環状のハウジングカバーをさらに具え、前記圧縮流路の上流側に連通する前記戻し流路の開口部は、このハウジングカバーと前記仕切り壁部との間に画成され、前記可動ベーンはこのハウジングカバーに支持されていることを特徴とする請求項1に記載の遠心圧縮機。
  3. 前記圧縮機ハウジングは、前記仕切り壁部から前記戻し流路内に放射状をなして等間隔に突出する複数の固定ベーンをさらに有することを特徴とする請求項1または請求項2に記載の遠心圧縮機。
  4. 前記複数の固定ベーンは、前記開位置にある可動ベーンに対して整列状態となることを特徴とする請求項3に記載の遠心圧縮機。
  5. 前記インペラの回転中心から前記開位置にある前記可動ベーンの内周端までの距離は、前記インペラの回転中心から前記仕切り壁部の内周面までの距離と等しく設定されていることを特徴とする請求項1から請求項4の何れかに記載の遠心圧縮機。
  6. 前記開閉機構は、前記可動ベーンの開度を制御することにより、前記戻し流路から前記圧縮流路に戻る流体の流量を変更可能であることを特徴とする請求項1から請求項5の何れかに記載の遠心圧縮機。
  7. 排気ターボ過給機を用いたエンジンの吸気制御システムであって、
    前記排気ターボ過給機の圧縮機は、圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成された吸気の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる吸気の一部を該圧縮流路の上流側に戻すための戻し流路と、この戻し流路を開閉するための開閉手段とを具え、前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンは、前記開口部を開く開位置と、相互に重なり合って前記開口部を閉じる閉位置との間で変位可能であり、
    前記圧縮流路から圧縮された空気が供給される前記エンジンの作動状態を検出する作動状態検出手段と、
    この作動状態検出手段により検出された前記エンジンの作動状態に基づいて前記開閉手段の作動を制御する制御手段と
    を具えたことを特徴とする吸気制御システム。
  8. 圧縮機ハウジングとこの圧縮機ハウジング内に回転自在に収容されたインペラとの間に形成された吸気の圧縮流路と、この圧縮流路の上流側と下流側とに連通するように前記圧縮機ハウジングに形成されて当該圧縮流路を流れる吸気の一部を該圧縮流路の上流側に戻すための戻し流路とを圧縮機が具え、前記圧縮機ハウジングは、前記圧縮流路と前記戻し流路とを仕切る筒状の仕切り壁部を有し、前記戻し流路は、前記仕切り壁部の両端にて前記圧縮流路にそれぞれ連通する環状の開口部を有し、前記開閉機構は、前記圧縮流路の上流側に連通する前記戻し流路の開口部に等間隔に配された複数の可動ベーンを有し、これら可動ベーンが前記開口部を開く開位置と相互に重なり合って前記開口部を閉じる閉位置との間で変位し得る排気ターボ過給機を用い、エンジンの運転状態に応じて前記圧縮機の前記戻し流路を開いた開運転領域および前記戻し流路を閉じた閉運転領域の何れかの運転領域を選択するようにしたエンジンの吸気制御方法であって、
    前記エンジンの回転加速度を算出するステップと、
    算出された前記エンジンの回転加速度に応じて前記開運転領域と前記閉運転領域との境界をシフトするステップと
    を具えたことを特徴とする吸気制御方法。
  9. 前記開運転領域と前記閉運転領域との境界をシフトするステップは、前記エンジンの回転加速度が予め設定された基準値以上の場合、前記開運転領域が狭くなるように前記境界を前記開運転領域側にシフトすることを特徴とする請求項8に記載の吸気制御方法。
JP2006083778A 2006-03-24 2006-03-24 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法 Expired - Fee Related JP4798491B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083778A JP4798491B2 (ja) 2006-03-24 2006-03-24 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083778A JP4798491B2 (ja) 2006-03-24 2006-03-24 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法

Publications (2)

Publication Number Publication Date
JP2007255381A JP2007255381A (ja) 2007-10-04
JP4798491B2 true JP4798491B2 (ja) 2011-10-19

Family

ID=38629858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083778A Expired - Fee Related JP4798491B2 (ja) 2006-03-24 2006-03-24 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法

Country Status (1)

Country Link
JP (1) JP4798491B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021114485A1 (zh) * 2019-12-13 2021-06-17 南京磁谷科技股份有限公司 一种磁悬浮空气压缩机防止喘振的结构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080401A (ja) * 2009-10-06 2011-04-21 Ihi Corp 遠心圧縮機のスワール生成装置
JP5479021B2 (ja) * 2009-10-16 2014-04-23 三菱重工業株式会社 排気ターボ過給機のコンプレッサ
JP6213373B2 (ja) * 2014-05-20 2017-10-18 トヨタ自動車株式会社 過給器の給気装置
WO2019004228A1 (ja) 2017-06-28 2019-01-03 株式会社Ihi 遠心圧縮機
CN114222866A (zh) 2019-10-09 2022-03-22 株式会社Ihi 排水构造及增压器
WO2021235027A1 (ja) 2020-05-19 2021-11-25 株式会社Ihi 遠心圧縮機
CN113217464B (zh) * 2021-03-31 2022-08-19 江苏科技大学 一种组合式压气机机匣结构
CN116658396B (zh) * 2023-07-28 2023-10-03 河南省天宇净化技术有限公司 一种低压气源压缩机总成

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752621A (en) * 1980-09-17 1982-03-29 Honda Motor Co Ltd Control apparatus of engine with turbo-supercharger
JP2510350Y2 (ja) * 1989-11-07 1996-09-11 三菱重工業株式会社 遠心形流体機械
JPH0861073A (ja) * 1994-08-25 1996-03-05 Mazda Motor Corp エンジンの過給装置
JPH09133098A (ja) * 1995-11-09 1997-05-20 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP3719337B2 (ja) * 1998-09-11 2005-11-24 日産自動車株式会社 遠心式圧縮機
JP4632076B2 (ja) * 2001-09-05 2011-02-16 株式会社Ihi 排気タービン過給機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021114485A1 (zh) * 2019-12-13 2021-06-17 南京磁谷科技股份有限公司 一种磁悬浮空气压缩机防止喘振的结构

Also Published As

Publication number Publication date
JP2007255381A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4798491B2 (ja) 遠心圧縮機およびこれを用いたエンジンの吸気制御システムならびに吸気制御方法
US8522547B2 (en) Exhaust gas turbocharger for an internal combustion engine of a motor vehicle
JP5446016B2 (ja) 自動車の内燃機関のためのターボチャージャ及び内燃機関
EP2080876B1 (en) A turbomachine system
CN1330864C (zh) 用于电力辅助的涡轮增压器的空气冷却***
EP1219799A2 (en) Exhaust gas turbine for internal combustion engine and exhaust turbo-supercharger
EP1464808B1 (en) Control apparatus and control method for internal combustion engine
US20110131976A1 (en) Exhaust gas turbocharger for an internal combustion engine
JP2011518978A5 (ja)
JP2011506817A (ja) 車両用内燃機関及びその制御方法
CN111148903A (zh) 用于内燃发动机的增压装置的具有虹膜式隔板机构的径流式压缩机、增压装置和虹膜式隔板机构的叶片
JP3719337B2 (ja) 遠心式圧縮機
JP2009167938A (ja) 内燃機関用ターボ過給機
JP2012052508A (ja) 可変過給機及び可変過給機の制御方法
EP3438429A1 (en) Engine with turbo supercharger
WO2011108093A1 (ja) 過給機を有する内燃機関の制御装置
JP2007192130A (ja) ターボチャージャ
JP5494982B2 (ja) 内燃機関の制御装置
US6834500B2 (en) Turbine for an exhaust gas turbocharger
JP3956884B2 (ja) 可変容量ターボチャージャ
JPS6296734A (ja) タ−ボ過給機
JP6772901B2 (ja) 内燃機関の排気システム
CN111350555A (zh) 带流量控制阀的双涡卷涡轮
JP2009228537A (ja) 過給機付きエンジンの排気装置
JP2008169767A (ja) 可変容量型過給機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees