JP4796805B2 - Inertial sensor element - Google Patents

Inertial sensor element Download PDF

Info

Publication number
JP4796805B2
JP4796805B2 JP2005249574A JP2005249574A JP4796805B2 JP 4796805 B2 JP4796805 B2 JP 4796805B2 JP 2005249574 A JP2005249574 A JP 2005249574A JP 2005249574 A JP2005249574 A JP 2005249574A JP 4796805 B2 JP4796805 B2 JP 4796805B2
Authority
JP
Japan
Prior art keywords
detection
excitation
constant width
width
width portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005249574A
Other languages
Japanese (ja)
Other versions
JP2007064746A (en
Inventor
良太 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005249574A priority Critical patent/JP4796805B2/en
Publication of JP2007064746A publication Critical patent/JP2007064746A/en
Application granted granted Critical
Publication of JP4796805B2 publication Critical patent/JP4796805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、慣性センサ素子に関する。   The present invention relates to an inertial sensor element.

一般に、慣性センサ素子の形状としてH型の形状となる構造(以下、「H型構造」という。)のものが知られている。
図4に示すように、H型構造の慣性センサ素子200は、基部210と、この基部210から延出する一対の励振用腕部220と、この励振用腕部220とは反対側に当該基部210から延出する一対の検出用腕部230とから構成され、当該検出用腕部230の幅JWAが励振用腕部220の幅JWBより広く形成されている。この基部210にはパッケージに固定するための支持部240が一対の検出用腕部230の間に設けられている(例えば、特許文献1参照)。
In general, an inertia sensor element having an H-shaped structure (hereinafter referred to as “H-shaped structure”) is known.
As shown in FIG. 4, the inertial sensor element 200 having an H-shaped structure includes a base 210, a pair of excitation arms 220 extending from the base 210, and the base on the opposite side of the excitation arms 220. The detection arm portion 230 extends from the pair 210, and the width JWA of the detection arm portion 230 is wider than the width JWB of the excitation arm portion 220. The base portion 210 is provided with a support portion 240 for fixing to the package between a pair of detection arm portions 230 (see, for example, Patent Document 1).

この慣性センサ素子200の励振用腕部220をXY平面内の1次屈曲振動(励振モード)で振動させた場合、検出用腕部230が振動しないのが理想的である。これを実現するために、従来の慣性センサ素子200は、検出用腕部230の幅JWAを励振用腕部220の幅JWBより広くしている。これにより、励振振動時における、励振用腕部220のXY平面内の1次屈曲振動モード(励振モード)と検出用腕部230のXY平面内の1次屈曲振動モードとのカップリングを避けつつ振動を基部210より下の方、つまり検出用腕部230と支持部240とへ伝播しないようにしている。言い換えれば、検出用腕部230の幅JWAが励振用腕部220の幅JWBより広く形成されるのは、励振モード動作時(無回転時)に検出用腕部230への振動の伝播(以下、「振動漏れ」という場合がある。)を抑える必要があるためである。   Ideally, when the excitation arm 220 of the inertial sensor element 200 is vibrated by primary bending vibration (excitation mode) in the XY plane, the detection arm 230 does not vibrate. In order to achieve this, in the conventional inertial sensor element 200, the width JWA of the detection arm 230 is made wider than the width JWB of the excitation arm 220. This avoids coupling between the primary bending vibration mode (excitation mode) in the XY plane of the excitation arm 220 and the primary bending vibration mode in the XY plane of the detection arm 230 during excitation vibration. The vibration is prevented from propagating below the base 210, that is, to the detection arm 230 and the support 240. In other words, the width JWA of the detection arm portion 230 is formed wider than the width JWB of the excitation arm portion 220 because the vibration is propagated to the detection arm portion 230 during the excitation mode operation (no rotation) (hereinafter referred to as “resonance arm”). This may be referred to as “vibration leakage”).

また、1次屈曲振動の状態でY軸周りの回転角速度Ωが加わると、励振用腕部220はZ軸方向にコリオリの力が加わり、Z軸方向成分の振動が生じる。これによって、検出用腕部230も振動(歪み)が生じ、検出用腕部230に設けられた検出用電極(図示せず)により角速度の向きと大きさとを検出することができる。
特開2000−146594号公報
In addition, when the rotational angular velocity Ω around the Y axis is applied in the state of the primary bending vibration, the excitation arm portion 220 applies Coriolis force in the Z axis direction, and vibration in the Z axis direction component occurs. As a result, vibration (distortion) is also generated in the detection arm 230, and the direction and magnitude of the angular velocity can be detected by a detection electrode (not shown) provided on the detection arm 230.
JP 2000-146594 A

しかしながら、従来のH型の慣性センサ素子200では、等価回路における角速度検出モードの抵抗値R1が大きく、Qが小さかったために、角速度検出感度が小さかった。
また、コリオリの力が加わって、Z軸方向に歪みが生じる際に、検出用腕部230の幅JWAが励振用腕部220の幅JWBより広いために、歪みが小さくなっていた。
However, in the conventional H-type inertial sensor element 200, since the resistance value R1 in the angular velocity detection mode in the equivalent circuit is large and Q is small, the angular velocity detection sensitivity is low.
Further, when distortion occurs in the Z-axis direction due to the Coriolis force, the width JWA of the detection arm 230 is wider than the width JWB of the excitation arm 220, and thus the distortion is small.

そこで、本発明では、前記した問題を解決し、精度良く角速度を検出する慣性センサ素子を提供することを課題とする。   Therefore, an object of the present invention is to provide an inertial sensor element that solves the above-described problems and accurately detects an angular velocity.

前記課題を解決するため、本発明は、圧電素子からなり、基部と、当該基部から延出する一対の励振用腕部と、当該励振用腕部と反対側に当該基部から延出する一対の検出用腕部とを備え、前記各励振用腕部が、前記基部側から離れる方向に幅が狭くなるように形成される励振テーパ部と、当該励振テーパ部側から所定の幅で形成される励振定幅部とを備え、前記各検出用腕部が、前記基部側から離れる方向に幅が狭くなるように形成される第一検出テーパ部と、当該第一検出テーパ部側から所定の幅で形成される第一検出定幅部と、当該第一検出定幅部側から離れる方向に幅が狭くなるように形成される第二検出テーパ部と、当該第二検出テーパ部側から所定の幅で形成される第二検出定幅部とを備え、前記第二検出定幅部の幅が、前記第一検出定幅部の幅より狭く、かつ、前記励振定幅部の幅より狭く形成され、前記第一検出定幅部の幅が、前記励振定幅部の幅の2倍以上広く形成されて構成されることを特徴とする。
In order to solve the above problems, the present invention comprises a piezoelectric element, a base, a pair of excitation arms extending from the base, and a pair of extensions extending from the base opposite to the excitation arms. Each of the excitation arm portions is formed with a predetermined width from the excitation taper portion side, and an excitation taper portion formed to have a width narrowing in a direction away from the base side. And a predetermined width from the first detection taper portion side. The first detection taper portion is formed so that the width of each detection arm portion becomes narrower in a direction away from the base side. A first detection constant width portion formed by the first detection constant width portion, a second detection taper portion formed so as to narrow in a direction away from the first detection constant width portion side, and a predetermined value from the second detection taper portion side. and a second detector constant width portion formed in a width, the width of the second detector constant width portion, the first Narrower than the width of the detector constant width portion, and the formed narrower than the width of the excitation constant width portion, constituting the width of the first detector constant width portion, is more than twice wider the width of the excitation of constant width portion It is characterized by being.

また、本発明は、前記第二検出定幅部の長さと前記励振定幅部の長さとの比が−1%〜+1%となるように形成されても良い。   Further, the present invention may be formed such that a ratio between the length of the second detection constant width portion and the length of the excitation constant width portion is −1% to + 1%.

このような慣性センサ素子によれば、精度よく角速度を検出することができる。   According to such an inertial sensor element, the angular velocity can be detected with high accuracy.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。図1は、本発明に係る慣性センサ素子の一例を示す図である。図2(a)は図1のA−A部端面図であり、図2(b)は図1のB−B端面図である。
なお、本実施形態において、圧電素子を水晶として説明する。また、厚みは、素子全体で所定の厚さで一定となっている場合について説明する。
Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. FIG. 1 is a diagram showing an example of an inertial sensor element according to the present invention. 2A is an end view taken along the line AA in FIG. 1, and FIG. 2B is an end view taken along the line BB in FIG.
In the present embodiment, the piezoelectric element is described as a crystal. The case where the thickness is constant at a predetermined thickness throughout the element will be described.

図1に示すように、本発明に係る慣性センサ素子100は、X´軸に沿って長辺を有する矩形形状の基部10と、この基部10から延出し、Y´軸に沿って形成される一対の励振用腕部20と、この励振用腕部20とは反対側に基部10から延出する検出用腕部30とから主に構成されている。   As shown in FIG. 1, an inertial sensor element 100 according to the present invention is formed along a Y ′ axis and a rectangular base 10 having a long side along the X ′ axis, and extending from the base 10. It is mainly comprised from a pair of excitation arm part 20 and the detection arm part 30 extended from the base 10 on the opposite side to this excitation arm part 20. FIG.

なお、励振用腕部20には励振用電極(図示せず)が形成され、図2に示すように、検出用腕部30には検出用電極Kが形成されている。これにより、X´Y´平面内の1次屈曲振動の状態(以下、「励振時」という。)でY´軸周りの回転角速度Ωが加わると、励振用腕部20にコリオリの力がZ´軸方向に加わってZ´軸方向成分の振動が生じる。すると、検出用腕部30も振動(歪み)が生じ、検出用腕部30に設けられた検出用電極により角速度の向きと大きさとを検出することができる。   An excitation electrode (not shown) is formed on the excitation arm 20, and a detection electrode K is formed on the detection arm 30 as shown in FIG. As a result, when a rotational angular velocity Ω around the Y ′ axis is applied in a state of primary bending vibration in the X′Y ′ plane (hereinafter referred to as “excitation”), Coriolis force is applied to the excitation arm 20. In addition to the 'axis direction, vibration of the Z' axis direction component occurs. Then, vibration (distortion) is also generated in the detection arm 30, and the direction and magnitude of the angular velocity can be detected by the detection electrode provided on the detection arm 30.

基部10は、矩形形状となっており、X´軸に沿う長辺側に励振用腕部20及び検出用腕部30が延出するようになっている。また、一対の検出用腕部の間に支持部40を設けられており、パッケージ(図示せず)に固定できるようになっている。   The base portion 10 has a rectangular shape, and the excitation arm portion 20 and the detection arm portion 30 extend to the long side along the X ′ axis. In addition, a support portion 40 is provided between the pair of detection arm portions so that it can be fixed to a package (not shown).

一対の励振用腕部20,20は、それぞれ励振テーパ部21と励振定幅部22とから構成され、それぞれが所定の間隔をあけて、前記支持部40とは反対側となる基部10の長辺側から互いに平行となるようにY´軸に沿って延出している。   The pair of excitation arms 20, 20 are each composed of an excitation taper portion 21 and an excitation constant width portion 22, each of which is a length of the base portion 10 opposite to the support portion 40 with a predetermined interval therebetween. It extends along the Y ′ axis so as to be parallel to each other from the side.

励振テーパ部21は、基部10から延出しており、当該基部10から離れる方向に幅が狭くなるように形成されている。
なお、本実施形態では、この励振テーパ部21は、幅が狭くなる変化率を2段階に分けて形成されている。つまり、励振テーパ部21のテーパとなる辺が、基部10の長辺に対して緩やかな傾斜となる部分と、急な傾斜となる部分とからなり、基部10の長辺に対して緩やかな傾斜となる部分が基部10側に位置するようになっている。
The excitation taper portion 21 extends from the base portion 10 and is formed to have a narrow width in a direction away from the base portion 10.
In the present embodiment, the excitation taper portion 21 is formed by dividing the change rate at which the width becomes narrow into two stages. In other words, the taper side of the excitation taper portion 21 is composed of a portion having a gentle slope with respect to the long side of the base portion 10 and a portion having a steep slope, and a gentle slope with respect to the long side of the base portion 10. The part which becomes is located on the base 10 side.

励振定幅部22は、励振テーパ部21の幅が狭くなっている側の端部から所定の幅W3でかつ所定の長さL3で形成されている。   The excitation constant width portion 22 is formed with a predetermined width W3 and a predetermined length L3 from an end portion on the side where the width of the excitation taper portion 21 is narrowed.

一対の検出用腕部30,30は、それぞれ第一検出テーパ部31,第一検出定幅部32,第二検出テーパ部33,第二検出定幅部34から構成され、所定の間隔をあけて、前記支持部40を間に挟んで、前記励振用腕部20とは反対側となる基部10の長辺側から互いに平行となるようにY´軸に沿って延出している。   The pair of detection arm portions 30 and 30 includes a first detection taper portion 31, a first detection constant width portion 32, a second detection taper portion 33, and a second detection constant width portion 34, respectively, with a predetermined interval. Then, with the support portion 40 in between, the Y portion extends from the long side of the base portion 10 opposite to the excitation arm portion 20 so as to be parallel to each other.

第一検出テーパ部31は、基部10から延出しており、当該基部10から離れる方向に幅が狭くなるように形成されている。
なお、前記励振テーパ部21と同様に、この第一検出テーパ部31は、幅が狭くなる変化率を2段階に分けて形成されている。また、第二検出テーパ部33も前記励振テーパ部21と同様に幅が狭くなる変化率を2段階に分けて形成されている。
The first detection taper portion 31 extends from the base portion 10 and is formed to have a narrow width in a direction away from the base portion 10.
Similar to the excitation taper portion 21, the first detection taper portion 31 is formed by dividing the rate of change in width into two stages. Similarly to the excitation taper portion 21, the second detection taper portion 33 is also formed by dividing the change rate of the width into two stages.

第一検出定幅部32は、第一検出テーパ部31の幅が狭くなっている側の端部から所定の幅W1でかつ所定の長さL1で形成され、励振用腕部20からの振動の伝播を防ぐ役割を果たす。   The first detection constant width portion 32 is formed with a predetermined width W1 and a predetermined length L1 from an end portion on the side where the width of the first detection taper portion 31 is narrow, and vibration from the excitation arm portion 20 Plays a role in preventing the propagation of

ここで、第一検出定幅部32の幅W1は、励振用腕部20の励振定幅部22の幅W3の2倍以上となっている。
また、第一検出定幅部32の長さL1は、励振用腕部20の励振定幅部22の長さL3の3分の1となっている。
Here, the width W1 of the first detection constant width portion 32 is at least twice the width W3 of the excitation constant width portion 22 of the excitation arm portion 20.
Further, the length L1 of the first detection constant width portion 32 is one third of the length L3 of the excitation constant width portion 22 of the excitation arm portion 20.

つまり、第一検出定幅部32の長さL1が励振定幅部22の長さL3の3分の1とならない場合、第一検出定幅部32の幅W1が励振定幅部22の幅W3の2倍より小さいと、励振時の振動を検出用腕部30への伝播が大きく(十分に抑えきれず)、振動漏れが増大してしまう。したがって、第一検出定幅部32を前記のごとく形成することにより、励振時における振動漏れを抑制できるため、精度良く角速度を検出することができる。   That is, when the length L1 of the first detection constant width portion 32 is not one third of the length L3 of the excitation constant width portion 22, the width W1 of the first detection constant width portion 32 is the width of the excitation constant width portion 22. If it is smaller than twice W3, the vibration during excitation is greatly propagated to the detection arm 30 (it cannot be sufficiently suppressed), and vibration leakage increases. Therefore, by forming the first detection constant width portion 32 as described above, vibration leakage at the time of excitation can be suppressed, so that the angular velocity can be detected with high accuracy.

第二検出テーパ部33は、第一検出定幅部32の端部に、基部10から離れる方向に幅が狭くなるように形成されている。   The second detection taper portion 33 is formed at the end of the first detection constant width portion 32 so that the width is narrowed in the direction away from the base portion 10.

第二検出定幅部34は、第二検出テーパ部33の幅が狭くなっている側の端部から所定の幅W2でかつ所定の長さL2で形成され、角速度検出感度を向上させる役割を果たす。   The second detection constant width portion 34 is formed with a predetermined width W2 and a predetermined length L2 from the end on the side where the width of the second detection taper portion 33 is narrow, and plays a role of improving the angular velocity detection sensitivity. Fulfill.

ここで、第二検出定幅部34の幅W2は、第一検出定幅部32の幅W1より狭く、かつ、励振用腕部20の励振定幅部22の幅W3より狭く形成される。
また、第二検出定幅部34の長さL2は、当該第二検出定幅部34の長さL2と励振用腕部20の励振定幅部22の長さL3との比が+1%となるように形成されている。
Here, the width W2 of the second detection constant width portion 34 is formed to be narrower than the width W1 of the first detection constant width portion 32 and narrower than the width W3 of the excitation constant width portion 22 of the excitation arm portion 20.
The length L2 of the second detection constant width portion 34 is such that the ratio of the length L2 of the second detection constant width portion 34 and the length L3 of the excitation constant width portion 22 of the excitation arm portion 20 is + 1%. It is formed to become.

このように、第二検出定幅部34が当該第二検出定幅部34の長さL2と励振用腕部20の励振定幅部22の長さL3との比が±1%となるように形成されることで、検出振動時において、振動の節が基部10中央部に位置するので、角速度の誤検出がなくなり、また、検出誤差を小さくすることができる。また、第二検出定幅部34が当該第二検出定幅部34の長さL2と励振用腕部20の励振定幅部22の長さL3との比が±1%を超えて形成されると、振動の節が基部10中央部に位置しなくなり、振動バランスが悪くなる。
なお、このように、振動の節が基部10にある場合を振動バランスが良いという。
Thus, the second detection constant width portion 34 has a ratio of ± 1% between the length L2 of the second detection constant width portion 34 and the length L3 of the excitation constant width portion 22 of the excitation arm portion 20. As a result, the vibration node is located at the center of the base 10 during detection vibration, so that erroneous detection of angular velocity is eliminated and detection error can be reduced. The second detection constant width portion 34 is formed so that the ratio of the length L2 of the second detection constant width portion 34 and the length L3 of the excitation constant width portion 22 of the excitation arm portion 20 exceeds ± 1%. Then, the vibration node is not positioned at the center of the base 10 and the vibration balance is deteriorated.
It should be noted that the vibration balance is good when the node of vibration is in the base 10 as described above.

このような慣性センサ素子100において、第二検出定幅部34の幅W2が励振定幅部22の幅W3より狭いために、第二検出定幅部34の歪みが大きくなり、また、この歪みが第一検出定幅部32に応力を加えるため、第一検出定幅部32に歪が生じる。   In such an inertial sensor element 100, since the width W2 of the second detection constant width portion 34 is narrower than the width W3 of the excitation constant width portion 22, the distortion of the second detection constant width portion 34 is increased. However, since stress is applied to the first detection constant width portion 32, the first detection constant width portion 32 is distorted.

したがって、第一検出テーパ部31側の第一検出定幅部32の端部部分と、第二検出テーパ部33側の第二検出定幅部34の端部部分とに電荷が集中しやすくなるので、図2(a)及び図2(b)に示すように、検出電極Kを第一検出定幅部32と第二検出定幅部34とに設ければ、検出電極の有効電極面積が大きくなり、角速度検出感度を向上させることができる。
なお、検出電極Kは、厚さ方向に異なる極性を並べつつ、幅方向に異なる極性を対向させて設けられている。
Accordingly, electric charges are likely to concentrate on the end portion of the first detection constant width portion 32 on the first detection taper portion 31 side and the end portion of the second detection constant width portion 34 on the second detection taper portion 33 side. Therefore, as shown in FIGS. 2A and 2B, if the detection electrode K is provided in the first detection constant width portion 32 and the second detection constant width portion 34, the effective electrode area of the detection electrode is increased. This increases the angular velocity detection sensitivity.
The detection electrode K is provided with different polarities facing each other in the width direction while arranging different polarities in the thickness direction.

ここで、長さL1と幅W1となる第一検出定幅部32と、長さL2と幅W2となる第二検出定幅部34と、長さL3と幅W3となる励振定幅部22の各周波数について説明する。図3は、励振用定幅部の長さと第二検出用幅部の長さとの比に対する検出振動時の基部中心部の変位の一例を示すグラフである。   Here, the first detection constant width portion 32 having the length L1 and the width W1, the second detection constant width portion 34 having the length L2 and the width W2, and the excitation constant width portion 22 having the length L3 and the width W3. Each frequency will be described. FIG. 3 is a graph showing an example of the displacement of the central portion of the base during detection vibration with respect to the ratio of the length of the excitation constant width portion and the length of the second detection width portion.

まず、励振時の励振定幅部22の周波数F3は、(1)式で現される。
F3=Kf×λ×W3/(L3) ・・・ (1)
ここで、Kfは周波数定数であり、λは、境界条件である。
また、励振時の第一検出定幅部32の周波数F1は、(2)式で現される。
F1=Kf×λ×W1/(L1) ・・・ (2)
また、励振時の第二検出定幅部34の周波数F2は、(3)式で現される。
F2=Kf×λ×W2/(L2) ・・・ (3)
First, the frequency F3 of the excitation constant width portion 22 at the time of excitation is expressed by equation (1).
F3 = Kf × λ 2 × W3 / (L3) 2 (1)
Here, Kf is a frequency constant, and λ is a boundary condition.
Further, the frequency F1 of the first detection constant width portion 32 at the time of excitation is expressed by the equation (2).
F1 = Kf × λ 2 × W1 / (L1) 2 (2)
Moreover, the frequency F2 of the second detection constant width part 34 at the time of excitation is represented by (3) Formula.
F2 = Kf × λ 2 × W2 / (L2) 2 (3)

このとき、励振時に第一検出定幅部32と第二検出定幅部34とが振動しにくくなるようにする場合は、検出振動時の第一検出定幅部32の振動F1(検出振動時の第二検出定幅部34の振動F2)と励振時の励振定幅部22の振動F3とが異なるようにする。つまり、この第一検出定幅部32の振動F1(検出振動時の第二検出定幅部34の振動F2)と励振時の励振定幅部22の振動F3との差が大きくなるにつれて励振時に第一検出定幅部32と第二検出定幅部34とが振動しにくくなる。   At this time, when making it difficult for the first detection constant width portion 32 and the second detection constant width portion 34 to vibrate during excitation, the vibration F1 of the first detection constant width portion 32 during detection vibration (when detecting vibration) The vibration F2) of the second detection constant width portion 34 is different from the vibration F3 of the excitation constant width portion 22 during excitation. That is, during the excitation as the difference between the vibration F1 of the first detection constant width portion 32 (vibration F2 of the second detection constant width portion 34 during detection vibration) and the vibration F3 of the excitation constant width portion 22 during excitation increases. The first detection constant width portion 32 and the second detection constant width portion 34 are less likely to vibrate.

したがって、第一検出定幅部32の幅W1が励振定幅部22の幅W3の2倍となっており、第一検出定幅部32の長さL1が励振定幅部22の長さL3の3分の1倍となっているので、励振時における第一検出定幅部32の周波数は励振定幅部22と異なり、振動の伝播による影響が従来に比べて小さくなる。   Therefore, the width W1 of the first detection constant width portion 32 is twice the width W3 of the excitation constant width portion 22, and the length L1 of the first detection constant width portion 32 is the length L3 of the excitation constant width portion 22. Therefore, the frequency of the first detection constant width portion 32 at the time of excitation is different from that of the excitation constant width portion 22, and the influence of vibration propagation is smaller than that of the conventional case.

また、第二検出定幅部34の幅W2が励振定幅部22の幅W3の2分の1倍となっており、第一検出定幅部34の長さL1が励振定幅部22の長さL3の+1%分長くなっているので、励振時における第一検出定幅部32の周波数は励振定幅部22と異なり、振動の伝播による影響が従来に比べて小さくなる。   Further, the width W2 of the second detection constant width portion 34 is a half of the width W3 of the excitation constant width portion 22, and the length L1 of the first detection constant width portion 34 is equal to that of the excitation constant width portion 22. Since the length is increased by + 1% of the length L3, the frequency of the first detection constant width portion 32 at the time of excitation is different from that of the excitation constant width portion 22, and the influence of vibration propagation is smaller than in the conventional case.

また、検出振動時の励振定幅部22の周波数Fs3は、(4)式で現される。
Fs3=Kf×λ×t/(L3) ・・・ (4)
ここで、tは、厚さである。
また、検出振動時の第一検出定幅部32の周波数Fs1は、(5)式で現される。
Fs1=Kf×λ×t/(L1) ・・・ (5)
また、検出振動時の第二検出定幅部34の周波数Fs2は、(6)式で現される。
Fs2=Kf×λ×t/(L2) ・・・ (6)
Further, the frequency Fs3 of the excitation constant width portion 22 at the time of detected vibration is expressed by the equation (4).
Fs3 = Kf × λ 2 × t / (L3) 2 (4)
Here, t is the thickness.
Further, the frequency Fs1 of the first detection constant width portion 32 at the time of the detection vibration is expressed by Expression (5).
Fs1 = Kf × λ 2 × t / (L1) 2 (5)
Further, the frequency Fs2 of the second detection constant width portion 34 at the time of the detection vibration is expressed by Expression (6).
Fs2 = Kf × λ 2 × t / (L2) 2 (6)

検出振動時に、励振定幅部22の周波数と第二検出定幅部34の周波数とをカップリングさせる場合は、振動の節が基部10にあるようにする。   When coupling the frequency of the excitation constant width portion 22 and the frequency of the second detection constant width portion 34 at the time of the detection vibration, the node of vibration is set to be in the base portion 10.

一例として、図3に示すように、第二検出定幅部34の長さL2と励振定幅部22の長さL3との比が±0.5%で形成される場合、検出振動時の基部10中央部の変位がほぼ0となり、振動バランスが良い状態となっている。
したがって、第二検出定幅部34の長さL2と励振定幅部22の長さL3との比が±1%で形成されることで検出振動時の振動バランスが良くなり、精度良く角速度を検出することができる。
As an example, as shown in FIG. 3, when the ratio between the length L2 of the second detection constant width portion 34 and the length L3 of the excitation constant width portion 22 is formed at ± 0.5%, The displacement at the center of the base 10 is almost zero, and the vibration balance is good.
Therefore, since the ratio of the length L2 of the second detection constant width portion 34 and the length L3 of the excitation constant width portion 22 is formed at ± 1%, the vibration balance at the time of detection vibration is improved, and the angular velocity is accurately determined. Can be detected.

また、第一検出定幅部32の長さL1は、励振定幅部22の長さL3の3分の1倍となっているので、検出振動時の第二検出定幅部34の周波数Fs2と励振定幅部22の周波数Fs3とのカップリングに影響することがない。   In addition, since the length L1 of the first detection constant width portion 32 is one third of the length L3 of the excitation constant width portion 22, the frequency Fs2 of the second detection constant width portion 34 during detection vibration. And the frequency Fs3 of the excitation constant width portion 22 are not affected.

このように慣性センサ素子100を構成したことにより、励振時に検出用腕部30が振動しにくくなるので、誤検出等をなくすことができる。
また、検出振動時に検出用腕部30が励振用腕部20の振動とカップリングすることができるので、振動漏れが増大し、精度良く角速度を検出することができる。
By configuring the inertial sensor element 100 in this manner, the detection arm 30 is less likely to vibrate during excitation, so that erroneous detection and the like can be eliminated.
Further, since the detection arm 30 can be coupled with the vibration of the excitation arm 20 during the detection vibration, vibration leakage increases, and the angular velocity can be detected with high accuracy.

なお、本発明に係る慣性センサ素子100の支持部40も含めた最大の長さLの一例としては、例えば、3.5mmであり、また、本発明に係る慣性センサ素子100の支持部40も含めた最大の幅Wの一例としては、例えば、1mmとなっている。したがって、このような慣性センサ素子100を収納可能な、例えば、50mm×32mmサイズ以下のパッケージが適用可能となる。   An example of the maximum length L including the support portion 40 of the inertial sensor element 100 according to the present invention is, for example, 3.5 mm, and the support portion 40 of the inertial sensor element 100 according to the present invention is also included. An example of the included maximum width W is, for example, 1 mm. Therefore, for example, a package having a size of 50 mm × 32 mm or less that can accommodate such inertial sensor element 100 can be applied.

以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、本実施形態では、圧電素子を水晶として説明したがこれに限定されるものではなく、ニオブ酸リチウム、タンタル酸リチウム等の圧電効果のある材質を適宜用いることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, in the present embodiment, the piezoelectric element is described as a quartz crystal, but the present invention is not limited to this, and a material having a piezoelectric effect such as lithium niobate or lithium tantalate can be used as appropriate.

本発明に係る慣性センサ素子の一例を示す図である。It is a figure which shows an example of the inertial sensor element which concerns on this invention. (a)は図1のA−A部端面図であり、(b)は図1のB−B端面図である。(A) is the AA section end elevation of Drawing 1, (b) is the BB end elevation of Drawing 1. 励振用定幅部の長さと第二検出用幅部の長さとの比に対する検出振動時の基部中心部の変位の一例を示すグラフである。It is a graph which shows an example of the displacement of the base center part at the time of a detection vibration with respect to the ratio of the length of the constant width part for excitation, and the length of the width part for 2nd detection. 従来の慣性センサ素子を示す図である。It is a figure which shows the conventional inertial sensor element.

符号の説明Explanation of symbols

100 慣性センサ素子
10 基部
20 励振用腕部
21 励振テーパ部
22 励振定幅部
30 検出用腕部
31 第一検出テーパ部
32 第一検出定幅部
33 第二検出テーパ部
34 第二検出定幅部
K 検出電極
W1,W2,W3 幅
L1,L2,L3 長さ
DESCRIPTION OF SYMBOLS 100 Inertial sensor element 10 Base 20 Excitation arm part 21 Excitation taper part 22 Excitation taper part 30 Detection arm part 31 1st detection taper part 32 1st detection constant width part 33 2nd detection taper part 34 2nd detection constant width Part K Detection electrode W1, W2, W3 Width L1, L2, L3 Length

Claims (2)

圧電素子からなり、基部と、当該基部から延出する一対の励振用腕部と、当該励振用腕部と反対側に当該基部から延出する一対の検出用腕部とを備え、
前記各励振用腕部が、前記基部側から離れる方向に幅が狭くなるように形成される励振テーパ部と、
当該励振テーパ部側から所定の幅で形成される励振定幅部とを備え、
前記各検出用腕部が、
前記基部側から離れる方向に幅が狭くなるように形成される第一検出テーパ部と、
当該第一検出テーパ部側から所定の幅で形成される第一検出定幅部と、
当該第一検出定幅部側から離れる方向に幅が狭くなるように形成される第二検出テーパ部と、
当該第二検出テーパ部側から所定の幅で形成される第二検出定幅部とを備え、
前記第二検出定幅部の幅が、前記第一検出定幅部の幅より狭く、かつ、前記励振定幅部の幅より狭く形成され、
前記第一検出定幅部の幅が、前記励振定幅部の幅の2倍以上広く形成されて構成されることを特徴とする慣性センサ素子。
A piezoelectric element, comprising a base, a pair of excitation arms extending from the base, and a pair of detection arms extending from the base on the opposite side of the excitation arm,
The excitation taper portion formed so that the width of each of the excitation arm portions becomes narrower in a direction away from the base side,
An excitation constant width portion formed with a predetermined width from the excitation taper portion side,
Each of the detection arms is
A first detection taper portion formed so as to be narrow in a direction away from the base side;
A first detection constant width portion formed with a predetermined width from the first detection taper portion side;
A second detection taper portion formed so that the width becomes narrower in a direction away from the first detection constant width portion side;
A second detection constant width portion formed with a predetermined width from the second detection taper portion side,
The width of the second detection constant width portion is narrower than the width of the first detection constant width portion, and narrower than the width of the excitation constant width portion,
The inertial sensor element, wherein the first detection constant width portion is formed to have a width that is at least twice as wide as the excitation constant width portion .
前記第二検出定幅部の長さと前記励振定幅部の長さとの比が−1%〜+1%となるように形成されることを特徴とする請求項1に記載の慣性センサ素子。 2. The inertial sensor element according to claim 1, wherein a ratio of a length of the second detection constant width portion and a length of the excitation constant width portion is −1% to + 1%.
JP2005249574A 2005-08-30 2005-08-30 Inertial sensor element Expired - Fee Related JP4796805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249574A JP4796805B2 (en) 2005-08-30 2005-08-30 Inertial sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249574A JP4796805B2 (en) 2005-08-30 2005-08-30 Inertial sensor element

Publications (2)

Publication Number Publication Date
JP2007064746A JP2007064746A (en) 2007-03-15
JP4796805B2 true JP4796805B2 (en) 2011-10-19

Family

ID=37927124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249574A Expired - Fee Related JP4796805B2 (en) 2005-08-30 2005-08-30 Inertial sensor element

Country Status (1)

Country Link
JP (1) JP4796805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204057A1 (en) * 2016-05-26 2017-11-30 ソニー株式会社 Gyro sensor and electronic device
CN111707250B (en) * 2020-06-03 2022-09-09 北京自动化控制设备研究所 Quartz tuning fork gyroscope vibration damper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159463A (en) * 1995-12-12 1997-06-20 Toyota Motor Corp Angular velocity sensor
JP3805837B2 (en) * 1996-08-12 2006-08-09 トヨタ自動車株式会社 Angular velocity detector
JP3636412B2 (en) * 1997-06-19 2005-04-06 日本碍子株式会社 Vibrating gyroscope
JP3458732B2 (en) * 1998-11-17 2003-10-20 トヨタ自動車株式会社 Vibration sensor disconnection detection device
JP2001194149A (en) * 2000-01-07 2001-07-19 Kinseki Ltd Angular velocity sensor
JP4668441B2 (en) * 2001-03-22 2011-04-13 シチズンホールディングス株式会社 Vibrating gyro
CN100480630C (en) * 2003-03-06 2009-04-22 日本电气株式会社 Six-legged type piezoelectric vibration gyroscope
JP4667858B2 (en) * 2004-12-28 2011-04-13 京セラキンセキ株式会社 Inertial sensor element
JP2006208261A (en) * 2005-01-31 2006-08-10 Kyocera Kinseki Corp Inertia sensor element

Also Published As

Publication number Publication date
JP2007064746A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US8225662B2 (en) Acceleration sensing device
JPH0640008B2 (en) Gyroscope
WO2005078389A1 (en) Angular velocity sensor
JP2000199714A (en) Angular velocity sensor
US7673511B2 (en) Vibration gyro
JP4631329B2 (en) Angular velocity sensor and manufacturing method thereof
JPH07306048A (en) Piezoelectric vibrator
JP4796805B2 (en) Inertial sensor element
US9217642B2 (en) Vibrating gyroscope that prevents changes in sensitivity
JP4848873B2 (en) Gyro vibrating piece
JP3674013B2 (en) Angular velocity detector
JP5486757B2 (en) Inertial sensor element
JPH08278141A (en) Ceramic piezoelectric complex type angular velocity sensor
JP2004301510A (en) Tuning fork type angular velocity sensor
JP2011059097A (en) Tuning fork vibrating reed, vibration sensor element, and vibration sensor
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
US7571648B2 (en) Piezoelectric vibration angular velocity sensor
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JP4309814B2 (en) Method for adjusting vibrator for piezoelectric vibration gyro
JP3356012B2 (en) Vibrating gyro
JP3356013B2 (en) Vibrating gyro
JP2000065580A (en) Vibrator for gyro sensor
JPH1062179A (en) Vibration gyro
JP3690449B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JPH06308149A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees