JP4796082B2 - Optical module and optical transmission device - Google Patents

Optical module and optical transmission device Download PDF

Info

Publication number
JP4796082B2
JP4796082B2 JP2008000389A JP2008000389A JP4796082B2 JP 4796082 B2 JP4796082 B2 JP 4796082B2 JP 2008000389 A JP2008000389 A JP 2008000389A JP 2008000389 A JP2008000389 A JP 2008000389A JP 4796082 B2 JP4796082 B2 JP 4796082B2
Authority
JP
Japan
Prior art keywords
optical
mounting substrate
conductor
module
frequency connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008000389A
Other languages
Japanese (ja)
Other versions
JP2008109160A (en
Inventor
寛 山本
雅信 岡安
和民 川本
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP2008000389A priority Critical patent/JP4796082B2/en
Publication of JP2008109160A publication Critical patent/JP2008109160A/en
Application granted granted Critical
Publication of JP4796082B2 publication Critical patent/JP4796082B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Description

本発明は、光通信で用いられる光半導体素子を内部に収納する光モジュール、およびその光モジュールを用いた光伝送装置に関する。   The present invention relates to an optical module that houses therein an optical semiconductor element used in optical communication, and an optical transmission device using the optical module.

光伝送装置は半導体レーザまたは/およびフォトダイオードを利用して光を送受信する装置である。
半導体レーザ素子を内蔵したレーザモジュールについて、以下簡単に説明する。
An optical transmission device is a device that transmits and receives light using a semiconductor laser and / or a photodiode.
A laser module incorporating a semiconductor laser element will be briefly described below.

光送信装置では、半導体レーザ素子から出射される光をファイバに効率良く入射、結合させる必要がある。また半導体レーザ素子は主に金属製のパッケージ内に実装され気密封止されている。例えば、特許文献1では、金属、絶縁体、又は金属と絶縁体の複合体からなる枠体と枠体に固定された第1の底板と、第1の底板に固定された金属からなる第2の底板を備えている。   In an optical transmitter, it is necessary to efficiently enter and couple light emitted from a semiconductor laser element into a fiber. The semiconductor laser element is mainly mounted in a metal package and hermetically sealed. For example, in Patent Document 1, a frame made of metal, an insulator, or a composite of a metal and an insulator, a first bottom plate fixed to the frame, and a second made of metal fixed to the first bottom plate. With a bottom plate.

10GBit/sを超える信号伝送を実現するために、例えば特許文献2の従来例にあるように、パッケージ外部からの変調信号の入力部分に高周波コネクタを用いてパッケージ内部との信号の伝達を行い、パッケージ内部に形成された基板上の伝送線路やワイヤボンディングを経由して半導体レーザ素子まで接続する構成が知られている。   In order to realize signal transmission exceeding 10 GBit / s, for example, as in the conventional example of Patent Document 2, a signal is transmitted to the inside of the package using a high frequency connector at the input portion of the modulation signal from the outside of the package, There is known a configuration in which a semiconductor laser element is connected via a transmission line on a substrate formed in a package or wire bonding.

パッケージ内部の接続に関しては、半導体レーザ素子の特性を一定に保つために、冷却用クーラ素子(例えばペルチェ素子)を使用する。具体的には半導体レーザ素子を冷却するために、半導体レーザ素子の実装基板側を冷却面、パッケージ筐体側を放熱面とする構成が用いられる。このため、パッケージ壁面に設けられた高周波コネクタ部(放熱部)から半導体レーザ素子の実装基板(冷却部)に至る経路は熱的に分離する必要がある。例えば特許文献3や特許文献4に図示されているように、冷却用クーラ素子の実装基板とパッケージ内壁に実装されている基板同士をワイヤボンディング等で接続する構成が知られている。   As for the connection inside the package, a cooling cooler element (for example, a Peltier element) is used in order to keep the characteristics of the semiconductor laser element constant. Specifically, in order to cool the semiconductor laser element, a configuration in which the mounting substrate side of the semiconductor laser element is a cooling surface and the package housing side is a heat dissipation surface is used. For this reason, it is necessary to thermally separate the path from the high frequency connector portion (heat radiating portion) provided on the package wall surface to the mounting substrate (cooling portion) of the semiconductor laser element. For example, as shown in Patent Document 3 and Patent Document 4, a configuration is known in which a mounting substrate of a cooling cooler element and a substrate mounted on an inner wall of a package are connected by wire bonding or the like.

以上、レーザモジュールについて説明したが、フォトダイオードを内蔵するフォトダイオードモジュールでも、高周波コネクタ部と接続する実装基板と、フォトダイオード素子を搭載した実装基板との間を、ワイヤボンディング接続することが知られている。また、高周波コネクタと接続する実装基板と、フォトダイオード素子を搭載した実装基板とを、それぞれ別個の導体でパッケージ筐体に固定することが知られている。   Although the laser module has been described above, it is known that, even in a photodiode module with a built-in photodiode, a wire bonding connection is made between the mounting board connected to the high-frequency connector portion and the mounting board on which the photodiode element is mounted. ing. In addition, it is known that a mounting substrate connected to a high-frequency connector and a mounting substrate on which a photodiode element is mounted are fixed to a package housing with separate conductors.

特開平11−74395号公報JP-A-11-74395 特開2004−40257号公報JP 2004-40257 A 特開2004−79989号公報JP 2004-79989 A 特開平11−87852号公報JP-A-11-87852

近年は40GHzを超える、さらなる高周波用途の要求がますます増えている。このため、光モジュールの出入力に用いる高周波コネクタの広帯域化は、改良が進められている。一方、光モジュールのパッケージ内部の実装状態により40GBit/sの信号伝送を阻害する問題が起こっている。
半導体レーザ素子を収容する気密封止用パッケージは、放熱性や気密封止のための溶接性のよい鉄ニッケルコバルト(Fe−Ni−Co)、鉄ニッケル(Fe−Ni)、銅タングステン(CuW)等の金属導体を使用するのが一般的である。また、光伝送装置への実装のためパッケージ高さは5mm〜10mm程度のものが使用される。このサイズの筐体内で、ワイヤボンディング部等の電界閉じ込めが弱い不連続箇所で、電界により空洞内で共振を生じることが分かってきた。
In recent years, there has been an increasing demand for higher frequency applications exceeding 40 GHz. For this reason, improvement of the broadband of the high frequency connector used for the input / output of the optical module is being promoted. On the other hand, there is a problem that the signal transmission of 40 GB / s is obstructed depending on the mounting state inside the optical module package.
The hermetically sealing package that accommodates the semiconductor laser element is iron nickel cobalt (Fe—Ni—Co), iron nickel (Fe—Ni), copper tungsten (CuW) with good heat dissipation and weldability for hermetic sealing. It is common to use metal conductors such as. Also, a package height of about 5 mm to 10 mm is used for mounting on an optical transmission device. It has been found that resonance occurs in the cavity due to the electric field at a discontinuous portion where the electric field confinement is weak, such as a wire bonding portion, in a housing of this size.

本発明の目的は、上述した空洞内での共振を防止する光モジュールおよび光伝送装置を提供することにある。   The objective of this invention is providing the optical module and optical transmission apparatus which prevent the resonance in the cavity mentioned above.

上記目的を達成するため、本発明では光モジュールの第1の高周波線路基板と、第2の高周波線路基板の接続点で発生する定在波の周波数を、光モジュールの供用帯域外とする手段を設ける。   In order to achieve the above object, the present invention provides means for setting the frequency of a standing wave generated at the connection point between the first high-frequency line substrate and the second high-frequency line substrate of the optical module to be outside the service band of the optical module. Provide.

本発明によれば、ワイヤボンディング等による接続部とパッケージ筐体との間の経路で発生する共振を防止することができる。これにより、高性能の光モジュールおよび光伝送装置を提供することができる。   According to the present invention, it is possible to prevent resonance that occurs in the path between the connection portion and the package housing due to wire bonding or the like. Thereby, a high-performance optical module and an optical transmission device can be provided.

以下、本発明の実施の形態を説明する実施例を、図面を参照しながら説明する。なお、各図面では、煩雑を避けるために一部の部品や接着固定材料等の図示を適宜省略している。   Hereinafter, examples for explaining embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, in order to avoid complexity, illustration of some components, an adhesive fixing material, etc. is abbreviate | omitted suitably.

本発明の第1の実施形態であるレーザモジュールの実施例1について、図1から図5を用いて説明する。図1は本発明の実施例1のレーザモジュールを説明する側面図、図2および図3は実施例1の変形実施例を説明するレーザモジュールの側面図、図5および図6は実施例の伝送特性を説明する図である。なお、各側面図において、手前側および奥側にあるパッケージ筐体2の壁の図示を省略した。これは、他の実施例でも共通である。   Example 1 of the laser module according to the first embodiment of the present invention will be described with reference to FIGS. 1 is a side view illustrating a laser module according to a first embodiment of the present invention, FIGS. 2 and 3 are side views illustrating a modified embodiment of the first embodiment, and FIGS. 5 and 6 are transmissions of the embodiment. It is a figure explaining a characteristic. In each side view, the illustration of the wall of the package housing 2 on the near side and the far side is omitted. This is common to other embodiments.

本実施例のレーザモジュール100は、図1に示すようにパッケージ筐体2の外壁に高周波コネクタ部1を有する。パッケージ筐体2を高周波コネクタ1で通り抜けた高周波信号は、高周波コネクタ同軸ピン部3からはんだ(図示せず)にて接続された高周波コネクタ同軸ピン実装基板4上に設けられたグランディッドコプレーナ線路へ伝達される。半導体レーザ素子7は、半導体レーザ素子実装基板6、半導体レーザ素子実装基板搭載用導体8を介して冷却用クーラ素子9上に実装される。半導体レーザ素子実装基板6上にも同様にグランディッドコプレーナ線路が施され、半導体レーザ素子7の裏面と接続し、図示しないワイヤボンディングで表面へ接続されている。
本実施例のレーザモジュール100は40GBit/s用であり、40GBit/sの高周波信号(電気信号)を光信号に変換し図示しないファイバ伝送路に送出する。
As shown in FIG. 1, the laser module 100 of this embodiment has a high-frequency connector portion 1 on the outer wall of the package housing 2. The high-frequency signal that has passed through the package housing 2 with the high-frequency connector 1 is transferred from the high-frequency connector coaxial pin portion 3 to a grounded coplanar line provided on the high-frequency connector coaxial pin mounting substrate 4 connected by solder (not shown). Communicated. The semiconductor laser element 7 is mounted on the cooling cooler element 9 via the semiconductor laser element mounting substrate 6 and the semiconductor laser element mounting substrate mounting conductor 8. Similarly, a grounded coplanar line is also provided on the semiconductor laser element mounting substrate 6, connected to the back surface of the semiconductor laser element 7, and connected to the front surface by wire bonding (not shown).
The laser module 100 of this embodiment is for 40 GB / s, converts a 40 GB / s high-frequency signal (electric signal) into an optical signal, and sends it to a fiber transmission line (not shown).

高周波コネクタ同軸ピン実装基板4と半導体レーザ素子実装基板6とは熱的に分離するため所定の空隙を設けた後、リボン5にて接続されている。なお、パッケージ筐体2の内部に半導体レーザ素子7を気密封止するための金属フタ(図示せず)を用い、窒素置換等を施した後に全周溶接を行っている。なお、金属フタを含めて筐体と呼ぶ。   The high frequency connector coaxial pin mounting substrate 4 and the semiconductor laser device mounting substrate 6 are connected by a ribbon 5 after providing a predetermined gap for thermal separation. Note that a metal lid (not shown) for hermetically sealing the semiconductor laser element 7 inside the package housing 2 is used, and all-around welding is performed after nitrogen substitution or the like. In addition, the metal lid is referred to as a housing.

レーザモジュール100は、半導体レーザ素子7をAuSnはんだ(図示せず)で搭載する半導体レーザ素子実装基板6と、半導体レーザ素子実装基板搭載用導体8上にSnAgはんだ(図示せず)を用いて搭載する。同様に高周波コネクタ同軸ピン実装基板4も高周波コネクタ同軸ピン実装基板搭載用導体10にAuSnはんだ(図示せず)で搭載されている。   The laser module 100 is mounted on the semiconductor laser element mounting substrate 6 on which the semiconductor laser element 7 is mounted with AuSn solder (not shown) and the SnAg solder (not shown) on the semiconductor laser element mounting substrate mounting conductor 8. To do. Similarly, the high frequency connector coaxial pin mounting substrate 4 is also mounted on the high frequency connector coaxial pin mounting substrate mounting conductor 10 by AuSn solder (not shown).

高周波コネクタ同軸ピン実装基板搭載用導体10は、パッケージ筐体2と同電位となるように金属導体を用いる。また、高周波コネクタ同軸ピン実装基板4と、半導体レーザ素子実装基板6との間隙部(リボン5)から、パッケージ筐体2底面との間には、高周波コネクタ同軸ピン実装基板搭載用導体10の一部が、少なくとも間隙部の幅より大きいひさし状10aに形成されている。このひさし構造10aは、間隙部から図1の下方のパッケージ底面内壁にいたる経路に、線路基板を搭載する導体10で気密容器内の雰囲気に覆われた経路の一部を遮断(シールド)する構造となっている。   The high frequency connector coaxial pin mounting board mounting conductor 10 uses a metal conductor so as to have the same potential as the package housing 2. Further, between the gap (ribbon 5) between the high frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6 and the bottom surface of the package housing 2, one of the conductors 10 for mounting the high frequency connector coaxial pin mounting substrate is provided. The part is formed in an eaves-like shape 10a that is at least larger than the width of the gap. This eaves structure 10a is a structure in which a part of the path covered with the atmosphere in the hermetic container is shielded (shielded) by the conductor 10 on which the line substrate is mounted on the path from the gap to the inner bottom wall of the package in FIG. It has become.

上述した構造の効果を図4および図5を用いて説明する。ここで、図4は、S21特性の周波数依存性を示す図である。また、図5は、リボン5と導体間で発生する定在波の1/4波長を説明する図である。   The effect of the structure described above will be described with reference to FIGS. Here, FIG. 4 is a diagram illustrating the frequency dependence of the S21 characteristic. FIG. 5 is a diagram for explaining a quarter wavelength of a standing wave generated between the ribbon 5 and the conductor.

S21特性をシミュレーションしたレーザモジュールの構造について、図5を用いて説明する。図5(a)は、上述した実施例のひさし10aを有する構造であり、図5(b)は、ひさしのない構造である。図5(b)の構造では、リボン5から垂直方向のパッケージ筐体2内壁に至る距離h2が長いため、このh2の長さに応じた定在波が発生する。経路が全て不活性ガス雰囲気中でありh2=3mmの場合、λ/4波長の定在波は25GHzとなり、40GHzの伝送特性を阻害する成分になる。一方、図5(a)の構造では、高周波コネクタ同軸ピン実装基板搭載用導体10にひさし状の凸部を設け、空隙部に定在波が立つ導体(シールド部)を形成する。これによって、リボン5から鉛直方向のパッケージ筐体と同じ電位の導体(シールド部)に至る距離h1を小さくすることが出来る。h1=1.3mmの場合、λ/4波長の定在波は57.7GHzとなり、レーザモジュールの供用帯域である40GHzより高周波側に共振周波数を追い出すことができる。これによって、良好な伝送特性を得ることができる。なお、40GHzのλ/4波長は、1.88mmであるので、40GHz用のレーザモジュールのh1寸法は、少なくとも1.88mm未満とする必要がある。h1寸法が、1.33mmはさらに好ましい寸法である。   The structure of the laser module that simulates the S21 characteristic will be described with reference to FIG. FIG. 5A shows a structure having the eaves 10a of the above-described embodiment, and FIG. 5B shows a structure without eaves. In the structure of FIG. 5B, since the distance h2 from the ribbon 5 to the inner wall of the package housing 2 in the vertical direction is long, a standing wave corresponding to the length of h2 is generated. When the paths are all in an inert gas atmosphere and h2 = 3 mm, the standing wave of λ / 4 wavelength is 25 GHz, which is a component that hinders the transmission characteristics of 40 GHz. On the other hand, in the structure of FIG. 5A, an eave-like convex portion is provided on the high-frequency connector coaxial pin mounting board mounting conductor 10 to form a conductor (shield portion) in which a standing wave stands in the gap portion. Thereby, the distance h1 from the ribbon 5 to the conductor (shield part) having the same potential as that of the package housing in the vertical direction can be reduced. In the case of h1 = 1.3 mm, the standing wave of λ / 4 wavelength is 57.7 GHz, and the resonance frequency can be driven out to higher frequency than 40 GHz which is the service band of the laser module. Thereby, good transmission characteristics can be obtained. Since the λ / 4 wavelength of 40 GHz is 1.88 mm, the h1 dimension of the 40 GHz laser module needs to be at least less than 1.88 mm. An h1 dimension of 1.33 mm is a more preferable dimension.

図5に示した2種類構造の伝送特性シミュレーションの結果を図4に示す。破線で示す図5(b)の構造では、27GHz付近に共振に伴う伝送特性の大きなディップが見られる。これに対して、図5(a)の構造では、40GHzまでの広い帯域で良好な特性を得られることが判る。このシミュレーションにより、導体の位置を制御することにより、電界閉じ込め部を形成し、伝送帯域内の共振による伝送劣化を改善することがわかる。
従って、本実施例に拠れば伝送帯域内の共振による伝送劣化を改善した40Gbit/sレーザモジュールを得ることができた。
FIG. 4 shows the result of the transmission characteristic simulation of the two types of structures shown in FIG. In the structure of FIG. 5B shown by a broken line, a dip having a large transmission characteristic associated with resonance is seen near 27 GHz. On the other hand, in the structure of FIG. 5A, it can be seen that good characteristics can be obtained in a wide band up to 40 GHz. From this simulation, it can be seen that by controlling the position of the conductor, an electric field confinement portion is formed and transmission degradation due to resonance in the transmission band is improved.
Therefore, according to this example, a 40 Gbit / s laser module with improved transmission degradation due to resonance within the transmission band could be obtained.

本実施例の変形例として、図2に示すように半導体レーザ素子実装基板搭載用導体8側にひさし状の凸部8aを設け、半導体レーザ素子実装基板を搭載する導体で気密容器内の雰囲気に覆われた経路の一部を遮断(シールド)する構造としても良い。また、図3に示すように、導体壁面は伝送経路に対して平行平面である必要はなく、半導体レーザ素子実装基板搭載用導体8cに示すような断面方向で斜めの面で形成しても良い。   As a modification of the present embodiment, as shown in FIG. 2, an eave-like convex portion 8a is provided on the semiconductor laser element mounting substrate mounting conductor 8 side, and the conductor in which the semiconductor laser element mounting substrate is mounted is used to create an atmosphere in an airtight container. A structure in which a part of the covered path is blocked (shielded) may be used. Further, as shown in FIG. 3, the conductor wall surface does not need to be a parallel plane with respect to the transmission path, and may be formed as a slanted surface in the cross-sectional direction as shown in the semiconductor laser element mounting substrate mounting conductor 8c. .

また、上述した実施例では高周波線路として、グランディッドコプレーナ線路を用いたが、マイクロストリップ線路であっても、コプレーナ線路であっても良い。高周波コネクタ同軸ピン実装基板4と半導体レーザ素子実装基板6とは、ワイヤボンディング接続されてもよい。リボンボンディングのリボンと、ワイヤボンディングのワイヤとを、単に接続ワイヤと呼ぶ。はんだ付け・ロウ付け等の金属接合に用いる金属/方法は、プロセスに応じて適宜決めればよい。
さらに、上記実施例は、高周波コネクタ同軸ピン実装基板4と半導体レーザ素子実装基板6とのレーザ素子駆動用のリボン接続について記述したが、半導体レーザ素子実装基板6には、通常モニタPD(フォトダイオード)やサーミスタが実装されるので、それらについても、本発明と同様な効果が得られる。
なお、上記実施例ではリボンとパッケージ筐体との間に生じる定在波について記載したが、リボンと金属フタとの間についても同様である。上述した変形例でも、以下記載する他の実施例でも共通である。
In the above-described embodiment, a grounded coplanar line is used as the high-frequency line. However, a microstrip line or a coplanar line may be used. The high frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6 may be connected by wire bonding. A ribbon for ribbon bonding and a wire for wire bonding are simply referred to as connection wires. The metal / method used for metal bonding such as soldering and brazing may be determined appropriately according to the process.
Further, in the above embodiment, the ribbon connection for driving the laser element between the high frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6 has been described. The semiconductor laser element mounting substrate 6 includes a normal monitor PD (photodiode). ) And the thermistor are mounted, the same effects as those of the present invention can be obtained.
In the above embodiment, the standing wave generated between the ribbon and the package casing is described, but the same applies to the gap between the ribbon and the metal lid. The above-described modified example is common to the other examples described below.

本発明の第1の実施形態であるレーザモジュールの実施例2について、図6から図8を用いて説明する。図6は本発明の実施例2のレーザモジュールを説明する平面図、図7は実施例2の変形実施例を説明するレーザモジュールの側面図、図8は実施例2の変形実施例を説明するレーザモジュールの平面図である。   Example 2 of the laser module according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a plan view illustrating a laser module according to a second embodiment of the present invention, FIG. 7 is a side view of a laser module illustrating a modified embodiment of the second embodiment, and FIG. 8 illustrates a modified embodiment of the second embodiment. It is a top view of a laser module.

本実施例のレーザモジュール100を、図6に示す。図面の符号は実施例1と共通であるので、異なっている箇所のみを説明する。高周波コネクタ同軸ピン実装基板4を搭載する高周波コネクタ同軸ピン実装基板搭載用導体10は、図5(b)に記載された、ひさし状の凸部のない外形を有する。また、高周波コネクタ同軸ピン実装基板4と、半導体レーザ素子実装基板6とには、両者が対抗する辺の上面に導体13が形成され、図示しない銀ペーストにてそれぞれ、基板を搭載する導体と接続されている。このように構成すれば、電界の閉じ込めの弱いリボンボンディング5部からパッケージ筐体2内に放射される電界を、パッケージ筐体2と同電位に施された導体13を近接配置することで、抑制させる効果がある。   A laser module 100 of the present embodiment is shown in FIG. Since the reference numerals in the drawings are the same as those in the first embodiment, only different portions will be described. The high-frequency connector coaxial pin mounting substrate mounting conductor 10 on which the high-frequency connector coaxial pin mounting substrate 4 is mounted has an outer shape without an eaves-like convex portion described in FIG. The high-frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6 are each provided with a conductor 13 on the upper surface of the opposite sides, and are connected to a conductor for mounting the substrate with a silver paste (not shown). Has been. If comprised in this way, the electric field radiated | emitted in the package housing | casing 2 from the ribbon bonding 5 part with a weak electric field confinement will be suppressed by arrange | positioning the conductor 13 given to the same electric potential as the package housing | casing 2 closely. There is an effect to make.

従って、本実施例に拠れば伝送帯域内の共振による伝送劣化を改善した40Gbit/sレーザモジュールを得ることができる。
さらに、本実施例に拠れば、導体13は高周波線路の形成と同時に形成でき、搭載用導体の形状を複雑にすることなく製造できる。
Therefore, according to this embodiment, it is possible to obtain a 40 Gbit / s laser module in which transmission degradation due to resonance in the transmission band is improved.
Furthermore, according to the present embodiment, the conductor 13 can be formed simultaneously with the formation of the high-frequency line, and can be manufactured without complicating the shape of the mounting conductor.

本実施例の変形例として、図7に示すレーザモジュール100ように実施例では、高周波コネクタ同軸ピン実装基板4と、半導体レーザ素子実装基板6とには、両者が対抗する辺の側面に導体13を形成する。導体13は、たとえば銀ペーストである。導体13は、それぞれ、基板を搭載する導体と接続されている。このように構成すれば、電界の閉じ込めの弱いリボンボンディング5部からパッケージ筐体2内に放射される電界を、導体と同電位にした導体13を近接配置することで抑制できる。
従って、本実施例に拠れば伝送帯域内の共振による伝送劣化を改善した40Gbit/sレーザモジュールを得ることができる。
As a modification of the present embodiment, in the embodiment as in the laser module 100 shown in FIG. 7, the high-frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6 have conductors 13 on the side surfaces facing each other. Form. The conductor 13 is, for example, a silver paste. Each of the conductors 13 is connected to a conductor on which the substrate is mounted. If comprised in this way, the electric field radiated | emitted in the package housing | casing 2 from the ribbon bonding 5 part with weak electric field confinement can be suppressed by arrange | positioning the conductor 13 which made the electric potential the same as a conductor close.
Therefore, according to this embodiment, it is possible to obtain a 40 Gbit / s laser module in which transmission degradation due to resonance in the transmission band is improved.

本実施例の他の変形例として、図8に示すレーザモジュール100では、実施例2に加えて、2本のリボン5を用いて、導体13間を信号伝送用のリボンを挟むように、それぞれ接続する。このように構成することによって、本変形実施例に拠れば、更なる電界閉じ込め効果を得ることが可能である。   As another modification of the present embodiment, in the laser module 100 shown in FIG. 8, in addition to the second embodiment, two ribbons 5 are used so that a signal transmission ribbon is sandwiched between the conductors 13 respectively. Connecting. With this configuration, it is possible to obtain a further electric field confinement effect according to the present modification.

本発明の第1の実施形態であるレーザモジュールの実施例3について、図9を用いて説明する。図9は本発明の実施例3のレーザモジュールを説明する側面図である。   Example 3 of the laser module according to the first embodiment of the present invention will be described with reference to FIG. FIG. 9 is a side view for explaining a laser module according to Embodiment 3 of the present invention.

本実施例のレーザモジュール100を、図9に示す。図面の符号は実施例1と共通であるので、異なっている箇所のみを説明する。高周波コネクタ同軸ピン実装基板4を搭載する高周波コネクタ同軸ピン実装基板搭載用導体10は、図5(b)に記載された ひさし状の凸部のない外形を有する。また、高周波コネクタ同軸ピン実装基板4と、半導体レーザ素子実装基板6とを接続する方法として、ワイヤボンディングを用いた。さらに熱硬化性シリコーン樹脂(誘電率4〜7)で、直径25μm(マイクロメータ)のボンディングワイヤの周囲を、直径100〜300μmとなるようポッティングを実施し、熱硬化し、樹脂コートした。これによって、ワイヤボンディング部を50Ω(オーム)線路に近づけることができる。   A laser module 100 of the present embodiment is shown in FIG. Since the reference numerals in the drawings are the same as those in the first embodiment, only different portions will be described. The high-frequency connector coaxial pin mounting substrate mounting conductor 10 on which the high-frequency connector coaxial pin mounting substrate 4 is mounted has an outer shape without an eaves-like convex portion described in FIG. Further, wire bonding was used as a method for connecting the high-frequency connector coaxial pin mounting substrate 4 and the semiconductor laser element mounting substrate 6. Further, potting was performed with a thermosetting silicone resin (dielectric constant 4 to 7) around a bonding wire having a diameter of 25 μm (micrometer) so as to have a diameter of 100 to 300 μm, thermosetting, and resin coating. As a result, the wire bonding portion can be brought close to a 50Ω (ohm) line.

本実施例に拠れば、ワイヤボンディング部でも、高周波線路と同程度の電界閉じ込め効果を得ることができる。
従って、本実施例に拠れば伝送帯域内の共振による伝送劣化を改善した40Gbit/sレーザモジュールを得ることができる。
According to this embodiment, the electric field confinement effect similar to that of the high-frequency line can be obtained even in the wire bonding portion.
Therefore, according to this embodiment, it is possible to obtain a 40 Gbit / s laser module in which transmission degradation due to resonance in the transmission band is improved.

なお、本実施例では、熱硬化性樹脂を用いたが、光硬化性樹脂であっても良い。樹脂材料として、シリコーン系を用いたが、一般的なエポキシ系でも良いし、アクリレート系でも良い。
またワイヤボンディング径やポッティング径の組合せにより任意の線路インピーダンスも作成可能である。
In this embodiment, a thermosetting resin is used, but a photocurable resin may be used. As the resin material, a silicone type is used, but a general epoxy type or an acrylate type may be used.
Also, any line impedance can be created by a combination of wire bonding diameter and potting diameter.

なお、実施例1ないし3で示した電界の閉じ込め方法は、それぞれ独立であり、これらを組み合わせて実施することも可能である。   Note that the electric field confinement methods shown in the first to third embodiments are independent of each other and can be implemented in combination.

本発明の第2の実施形態であるフォトダイオードモジュールの実施例について、図10を用いて説明する。図1は本発明の実施例のフォトダイオードモジュールを説明する側面図である。   An example of the photodiode module according to the second embodiment of the present invention will be described with reference to FIG. FIG. 1 is a side view illustrating a photodiode module according to an embodiment of the present invention.

本実施例のフォトダイオードモジュール200を、図10に示す。図面から分かるように、実施例1ないし3に示したレーザモジュールの構造ときわめて類似している。図示しない光ファイバ伝送路から伝送されてきた40Gbit/sの光信号は、フォトダイオード素子16で受信され、高周波電気信号に変換される。フォトダイオード素子16は、グランディッドコプレーナ線路を形成したフォトダイオード素子実装基板17に搭載され、グランディッドコプレーナ線路とは素子裏面と図示しないワイヤボンディングで接続される。高周波電気信号は、フォトダイオード素子実装基板17のグランディッドコプレーナ線路から、高周波コネクタ同軸ピン実装基板4上に設けられたグランディッドコプレーナ線路へ伝達される。高周波コネクタ同軸ピン実装基板4上に設けられたグランディッドコプレーナ線路には、はんだ(図示しない)で高周波コネクタ同軸ピン部3と接続されている。従って、高周波電気信号は、パッケージ筐体2の外壁に取り付けられた高周波コネクタ部1から取り出すことができる。   A photodiode module 200 of this example is shown in FIG. As can be seen from the drawing, the structure of the laser module shown in the first to third embodiments is very similar. A 40 Gbit / s optical signal transmitted from an optical fiber transmission line (not shown) is received by the photodiode element 16 and converted into a high-frequency electric signal. The photodiode element 16 is mounted on a photodiode element mounting substrate 17 on which a grounded coplanar line is formed, and is connected to the backside of the element by wire bonding (not shown). The high frequency electrical signal is transmitted from the grounded coplanar line of the photodiode element mounting substrate 17 to a grounded coplanar line provided on the high frequency connector coaxial pin mounting substrate 4. A grounded coplanar line provided on the high frequency connector coaxial pin mounting substrate 4 is connected to the high frequency connector coaxial pin portion 3 by solder (not shown). Therefore, the high frequency electric signal can be taken out from the high frequency connector portion 1 attached to the outer wall of the package housing 2.

フォトダイオード素子16は、フォトダイオード素子実装基板17、フォトダイオード素子実装基板搭載用導体18を介してパッケージ筐体2に実装されている。
高周波コネクタ同軸ピン実装基板4とフォトダイオード実装基板17とは、それぞれ別個の高周波コネクタ同軸ピン実装基板搭載用導体10とフォトダイオード素子実装基板搭載用導体18に搭載されているので、リボン5にて接続されている。なお、パッケージ筐体2の内部にフォトダイオード素子16を気密封止するための金属フタ(図示せず)を用い、窒素置換等を施した後に全周溶接を行っている。
The photodiode element 16 is mounted on the package housing 2 via a photodiode element mounting substrate 17 and a photodiode element mounting substrate mounting conductor 18.
The high frequency connector coaxial pin mounting substrate 4 and the photodiode mounting substrate 17 are mounted on separate high frequency connector coaxial pin mounting substrate mounting conductor 10 and photodiode element mounting substrate mounting conductor 18, respectively. It is connected. Note that a metal lid (not shown) for hermetically sealing the photodiode element 16 inside the package housing 2 is used, and all-around welding is performed after nitrogen substitution or the like.

高周波コネクタ同軸ピン実装基板搭載用導体10はパッケージ筐体2と同電位となるように金属導体を用いる。また、高周波コネクタ同軸ピン実装基板4と、フォトダイオード実装基板との間隙部(リボン5)から、パッケージ筐体2底面との間には、高周波コネクタ同軸ピン実装基板搭載用導体10の一部が、少なくとも間隙部の幅より大きいひさし状に形成されている。このひさし構造は、間隙部から図10の下方のパッケージ底面内壁にいたる経路に、線路基板を搭載する導体10で気密容器内の雰囲気に覆われた経路の一部を遮断(シールド)する構造となっている。   The high frequency connector coaxial pin mounting board mounting conductor 10 uses a metal conductor so as to have the same potential as the package housing 2. In addition, a portion of the high-frequency connector coaxial pin mounting substrate mounting conductor 10 is between the gap (ribbon 5) between the high-frequency connector coaxial pin mounting substrate 4 and the photodiode mounting substrate and the bottom surface of the package housing 2. , It is formed in an eaves shape that is at least larger than the width of the gap. This eaves structure has a structure in which a part of the path covered with the atmosphere in the hermetic container is shielded (shielded) by the conductor 10 on which the line substrate is mounted in the path from the gap to the inner bottom wall of the package in FIG. It has become.

本実施例のフォトダイオードモジュールと、実施例1のレーザモジュールとは、光信号の受信用、送信用との違いがある。このため、本実施例では、光素子16、リボン5、高周波コネクタ部1の順に高周波電気信号が伝送されるのに対し、実施例1では、高周波コネクタ部1、リボン5、光素子7の順に伝送される違いがある。しかし、高周波線路でないリボン5の部分を40Gbit/sの電気信号が通ることは、同一であり、上記ひさし構造で共振周波数を40GHzより高周波側に追い出すことができる。従って、本実施例によって、伝送帯域内の共振による伝送劣化を改善した40Gbit/sフォトダイオードモジュールを得ることができる。   The photodiode module of the present embodiment and the laser module of Embodiment 1 are different from those for receiving and transmitting optical signals. For this reason, in the present embodiment, high-frequency electrical signals are transmitted in the order of the optical element 16, the ribbon 5, and the high-frequency connector portion 1, whereas in the first embodiment, the high-frequency connector portion 1, the ribbon 5, and the optical element 7 are sequentially disposed. There is a difference being transmitted. However, it is the same that an electric signal of 40 Gbit / s passes through the portion of the ribbon 5 that is not a high-frequency line, and the resonance frequency can be driven out to higher frequencies than 40 GHz with the eaves structure. Therefore, according to this embodiment, it is possible to obtain a 40 Gbit / s photodiode module in which transmission deterioration due to resonance in the transmission band is improved.

また、レーザモジュールの実施例1の変形例、実施例2、3およびそれらの変形例ならびに上述の実施例変形例の組合せもすべて、フォトダイオードモジュールに適用可能なことはいうまでもない。   Needless to say, all of the modifications of the laser module according to the first embodiment, the second and third embodiments, the modifications thereof, and the combinations of the above-described embodiments are also applicable to the photodiode module.

本発明の第3の実施形態である光伝送装置の実施例について、図11を用いて説明する。図11は、本発明の実施例の光伝送装置を説明するブロック図である。   An example of the optical transmission apparatus according to the third embodiment of the present invention will be described with reference to FIG. FIG. 11 is a block diagram illustrating an optical transmission apparatus according to an embodiment of the present invention.

図11に示す光伝送装置300は、2.5Gbit/s×16の信号を多重化する信号多重部102によって40Gbit/sの電気信号に変換され、駆動部101を経由して、レーザモジュール100に送信される。レーザモジュール100は、40GHzの電気信号を40Gbit/sの光信号に変換し、上り伝送路ファイバ400aに送出する。下り伝送路ファイバ400bからの40Gbit/sの光信号は、フォトダイオードモジュール200で受信され、40Gbit/s電気信号に変換される。40Gbit/sの光信号は伝送路で減衰しているので、電気信号も微弱信号である。この40Gbit/sの電気信号を増幅部201で増幅した後、信号分離部202で2.5Gbit/sの電気信号16本に分離する。   The optical transmission device 300 shown in FIG. 11 is converted into a 40 Gbit / s electrical signal by the signal multiplexing unit 102 that multiplexes 2.5 Gbit / s × 16 signals, and is transmitted to the laser module 100 via the driving unit 101. Sent. The laser module 100 converts a 40 GHz electrical signal into a 40 Gbit / s optical signal and sends it to the upstream transmission line fiber 400a. The 40 Gbit / s optical signal from the downstream transmission line fiber 400b is received by the photodiode module 200 and converted into a 40 Gbit / s electrical signal. Since the 40 Gbit / s optical signal is attenuated in the transmission line, the electrical signal is also a weak signal. The 40 Gbit / s electric signal is amplified by the amplifying unit 201 and then separated into 16 2.5 Gbit / s electric signals by the signal separating unit 202.

本実施例の光伝送装置では、実施例1ないし実施例3に記載したレーザモジュール100を用いるので、伝送特性に優れた光送信ができる。また、本実施例の光伝送装置では、実施例4に記載したフォトダイオードモジュール200を用いるので、伝送特性に優れた光受信ができる。   In the optical transmission apparatus of this embodiment, since the laser module 100 described in the first to third embodiments is used, optical transmission with excellent transmission characteristics can be performed. Further, in the optical transmission device of this embodiment, the photodiode module 200 described in the fourth embodiment is used, so that optical reception with excellent transmission characteristics can be performed.

本実施例の光伝送装置を、光送受信装置と呼ぶ場合もある。また、図11の、信号多重部102、駆動部101、レーザモジュール100を光送信装置と呼ぶ。フォトダイオードモジュール200、増幅部201、信号分離部202を光受信装置と呼ぶ。
なお、本明細書の記載において、光送信装置も光受信装置も、光伝送装置と呼ぶ。レーザモジュール100とフォトダイオードモジュールとは、光モジュールと呼ぶ。しかし、光モジュールは、これらに限られず例えば変調器モジュールを含む。また、レーザ素子7とフォトダイオード素子16とは、光素子と呼ぶ。しかし、光素子は、これらに限られず例えば変調器素子を含む。
The optical transmission apparatus of this embodiment may be referred to as an optical transmission / reception apparatus. Further, the signal multiplexing unit 102, the drive unit 101, and the laser module 100 in FIG. 11 are referred to as an optical transmission device. The photodiode module 200, the amplification unit 201, and the signal separation unit 202 are referred to as an optical receiver.
In the description of this specification, both the optical transmission device and the optical reception device are referred to as an optical transmission device. The laser module 100 and the photodiode module are called optical modules. However, the optical module is not limited to these, and includes, for example, a modulator module. The laser element 7 and the photodiode element 16 are called optical elements. However, an optical element is not restricted to these, For example, a modulator element is included.

本発明の実施例1を説明するのレーザモジュールの側面図である。It is a side view of the laser module explaining Example 1 of the present invention. 本発明の実施例1を変形した他の実施例を説明するレーザモジュールの側面図である。It is a side view of the laser module explaining the other Example which deform | transformed Example 1 of this invention. 本発明の実施例1を変形した他の実施例を説明するレーザモジュールの側面図である。It is a side view of the laser module explaining the other Example which deform | transformed Example 1 of this invention. 本発明の実施例1のシミュレーション結果を説明する伝送特性図である。It is a transmission characteristic figure explaining the simulation result of Example 1 of this invention. 本発明の実施例1のシミュレーションを説明する図である。It is a figure explaining the simulation of Example 1 of this invention. 本発明の実施例2を説明するレーザモジュールの平面図である。It is a top view of the laser module explaining Example 2 of this invention. 本発明の実施例2の変形実施例を説明するレーザモジュールの側面図である。It is a side view of the laser module explaining the modified example of Example 2 of this invention. 本発明の実施例2の他の変形実施例を説明するレーザモジュールの平面図である。It is a top view of the laser module explaining the other modification of Example 2 of this invention. 本発明の実施例3を説明するレーザモジュールの側面図である。It is a side view of the laser module explaining Example 3 of the present invention. 本発明の実施例4を説明するフォトダイオードモジュールの側面図である。It is a side view of the photodiode module explaining Example 4 of the present invention. 本発明の実施例5を説明する光伝送装置のブロック図である。It is a block diagram of the optical transmission apparatus explaining Example 5 of this invention.

符号の説明Explanation of symbols

1…高周波コネクタ部、2…パッケージ筐体、3…高周波コネクタ同軸ピン部、4…高周波コネクタ同軸ピン実装基板、5…リボン、6…半導体レーザ素子実装基板、7…半導体レーザ素子、8…半導体レーザ素子実装基板搭載用導体、9…冷却用クーラ素子、10…高周波コネクタ同軸ピン実装基板搭載用導体、11…定在波、12…定在波、13…導体、14…グランディッドコプレーナ線路、15…シリコーン樹脂、16…フォトダイオード素子、17…フォトダイオード素子実装基板、18…フォトダイオード素子実装基板搭載用導体、100…レーザモジュール、101…駆動部、102…信号多重部、200…フォトダイオードモジュール、201…増幅部、202…信号分離部、300…光伝送装置、400…光ファイバ伝送路。   DESCRIPTION OF SYMBOLS 1 ... High frequency connector part, 2 ... Package housing, 3 ... High frequency connector coaxial pin part, 4 ... High frequency connector coaxial pin mounting board, 5 ... Ribbon, 6 ... Semiconductor laser element mounting board, 7 ... Semiconductor laser element, 8 ... Semiconductor Laser element mounting board mounting conductor, 9 ... Cooling cooler element, 10 ... High frequency connector coaxial pin mounting board mounting conductor, 11 ... Standing wave, 12 ... Standing wave, 13 ... Conductor, 14 ... Grounded coplanar line, DESCRIPTION OF SYMBOLS 15 ... Silicone resin, 16 ... Photodiode element, 17 ... Photodiode element mounting board | substrate, 18 ... Photodiode element mounting board | substrate mounting conductor, 100 ... Laser module, 101 ... Drive part, 102 ... Signal multiplexing part, 200 ... Photodiode Module 201 ... amplifying unit 202 ... signal separation unit 300 ... optical transmission device 400 ... optical fiber transmission .

Claims (3)

光素子を搭載した第1の高周波線路と、前記第1の高周波線路と接続ワイヤを介して接続される第2の高周波線路と、前記第1の高周波線路と前記第2の高周波線路とを収容する筐体とからなる光モジュールであって、
前記接続ワイヤと前記筐体との間の、前記第1の高周波線路を形成した第1の基板と前記第2の高周波線路を形成した第2の基板との両基板が対向する辺の上面に、前記筐体と電気的接続をとった導体部を有することを特徴とする光モジュール。
A first high-frequency line on which an optical element is mounted, a second high-frequency line connected to the first high-frequency line via a connection wire, the first high-frequency line, and the second high-frequency line are accommodated An optical module comprising a housing
On the upper surface of the side between the connection wire and the housing, the first substrate on which the first high-frequency line is formed and the second substrate on which the second high-frequency line is formed are opposed to each other. An optical module comprising a conductor portion electrically connected to the housing.
請求項1記載の光モジュールであって、
前記導体部は、前記第1の基板と前記第2の基板との両基板が対向する辺の側面に形成されていることを特徴とする光モジュール。
The optical module according to claim 1,
The optical module, wherein the conductor portion is formed on a side surface of a side where the first substrate and the second substrate face each other.
請求項1または請求項2に記載の光モジュールであって、
前記接続ワイヤの両側に、前記第1の基板と前記第2の基板とに形成された前記2つの導体部を接続する他の2本の接続ワイヤを有することを特徴とする光モジュール。
The optical module according to claim 1 or 2, wherein
2. An optical module comprising two other connection wires for connecting the two conductor portions formed on the first substrate and the second substrate on both sides of the connection wire.
JP2008000389A 2008-01-07 2008-01-07 Optical module and optical transmission device Active JP4796082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000389A JP4796082B2 (en) 2008-01-07 2008-01-07 Optical module and optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000389A JP4796082B2 (en) 2008-01-07 2008-01-07 Optical module and optical transmission device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004148959A Division JP4599091B2 (en) 2004-05-19 2004-05-19 Optical module and optical transmission device

Publications (2)

Publication Number Publication Date
JP2008109160A JP2008109160A (en) 2008-05-08
JP4796082B2 true JP4796082B2 (en) 2011-10-19

Family

ID=39442201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000389A Active JP4796082B2 (en) 2008-01-07 2008-01-07 Optical module and optical transmission device

Country Status (1)

Country Link
JP (1) JP4796082B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817260B2 (en) * 1987-12-18 1996-02-21 株式会社日立製作所 Semiconductor laser module with built-in drive circuit
US5221860A (en) * 1991-02-19 1993-06-22 At&T Bell Laboratories High speed laser package
JP3204776B2 (en) * 1993-02-16 2001-09-04 株式会社東芝 Optical module
JPH11186668A (en) * 1997-12-19 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor module
JPH11196055A (en) * 1997-12-26 1999-07-21 Hitachi Cable Ltd Optical transmitter/receiver
JP3353718B2 (en) * 1998-09-14 2002-12-03 日本電気株式会社 Optical communication module
JP2002343982A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Optical module, optical transmitter, and optical receiver
JP2003060280A (en) * 2001-08-14 2003-02-28 Mitsubishi Electric Corp Optical module, optical transmitter, and optical receiver

Also Published As

Publication number Publication date
JP2008109160A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5180176B2 (en) TO-CAN type TOSA module
US8509575B2 (en) Semiconductor optical modulation device
KR101430634B1 (en) Optical Modules
JP5144628B2 (en) TO-CAN type TOSA module
JP2015088641A (en) Optical module
US7412120B2 (en) Optical module and optical transmission apparatus
JP7419188B2 (en) optical subassembly
US8777496B2 (en) Optical device
US9078347B2 (en) Electronic component housing unit, electronic module, and electronic device
JP2007088233A (en) Optical module
JP2008226988A (en) Photoelectric conversion module
JP2011100785A (en) To-can optical module and package for use of to-can optical module
JP5149237B2 (en) Optical transmission module
JP2011108940A (en) Mounting constitution for to-can type tosa module, and to-can type tosa module
JP4796082B2 (en) Optical module and optical transmission device
JP4454233B2 (en) Optical package and optical module using the same
JP5837389B2 (en) Optical communication device
JP4914775B2 (en) Optical module
JP2016181542A (en) High frequency transmission line and optical circuit
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP2008306033A (en) Optical module
JP7264320B1 (en) Semiconductor laser light source device
JP2012033543A (en) Package for housing element and semiconductor device equipped with the same
JP2011249447A (en) Optical module
WO2022239121A1 (en) Optical semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4796082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250