JP4795579B2 - Method for producing high-density fiber structure - Google Patents

Method for producing high-density fiber structure Download PDF

Info

Publication number
JP4795579B2
JP4795579B2 JP2001259745A JP2001259745A JP4795579B2 JP 4795579 B2 JP4795579 B2 JP 4795579B2 JP 2001259745 A JP2001259745 A JP 2001259745A JP 2001259745 A JP2001259745 A JP 2001259745A JP 4795579 B2 JP4795579 B2 JP 4795579B2
Authority
JP
Japan
Prior art keywords
fiber structure
fiber
composite material
resin
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259745A
Other languages
Japanese (ja)
Other versions
JP2003073968A (en
Inventor
俊宣 村木
西山  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001259745A priority Critical patent/JP4795579B2/en
Publication of JP2003073968A publication Critical patent/JP2003073968A/en
Application granted granted Critical
Publication of JP4795579B2 publication Critical patent/JP4795579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高密度繊維構造体の製造方法及びその方法で製造された繊維構造体に関し、繊維構造体に樹脂を含浸させて成形した複合材(以下、複合材と呼ぶ)の繊維含有率を高め、強度を向上するようにしたものである。
【0002】
【従来の技術】
ガラス繊維や炭素繊維製の構造体に樹脂を含浸させて製造する複合材においては繊維の含有率が強度を発揮する上で重要である。繊維を立体的に交差させて織り上げられた三次元織物や二次元織物を積層して構成した繊維構造体を適用した複合材は、繊維体積割合が概ね50%前後となっている。
【0003】
図5は従来の複合材の代表的な例を示す断面図である。図において、31は複合材であり、図示の例では、繊維32と繊維32と異なる方向の繊維33とが交差し、交差したものが複数層となって樹脂で固められている。繊維32と33の材料としては、ガラス繊維、炭素繊維の細いフィラメントからなり、7〜8μのフィラメントを1,000〜12,000本程度をたばねて1本の繊維32,33を構成している。34は樹脂だまりであり、この樹脂だまりは繊維体積割合が低いと多くなってしまう。従来の複合材では、この樹脂だまり34が多いために破壊の基点になり易く、又、繊維も蛇行が大きく強度を向上するには限界があった。 図6は従来の繊維構造体を製造する場合の装置の概要を示す断面図であり、各種製品の形状に合った型40内に予め製織した繊維構造体41を入れ、上から押板42を覆せ、押板42と型40の周囲との間に複数本のボルト43を結合し、このボルト43を締めることにより、繊維構造体41を押圧し、繊維体積割合を高くするように成形していた。このような方法により、積層厚さ1〜80mm程度の繊維構造体に樹脂を含浸させて複合材を製造していた。
【0004】
【発明が解決しようとする課題】
前述の繊維構造体を適用した複合材は、航空機等の軽量化が必要な部材に適用し、機体を軽量化することが計画されており、この場合には複合材の繊維体積割合を高めて材料強度を向上させることにより材料を薄肉化することができ、軽量化が達成できる。このため、現状では、図6で示したように、予め製織した繊維構造体を型内に入れて無理に押し込んで成形し複合材の繊維体積割合を向上させていたが、繊維が蛇行して樹脂だまりが多くなり、強度や信頼性の面で欠点となり、別の手段で繊維体積割合を向上することが望まれていた。
【0005】
そこで本発明は、繊維構造体を所定の条件で加圧することにより、複合材内部の繊維の蛇行を少くして樹脂だまりも少くし、繊維体積割合を高め、複合材の層間剪断強度、疲労強度などの材料強度を高めることができる高密度繊維構造体の製造方法及び製造された繊維構造体を提供することを課題としてなされたものである。
【0006】
【課題を解決するための手段】
本発明は前述の課題を解決するために、次の手段を提供する。
【0007】
(1)繊維を交差させ織り上げた織物を所定の圧力で加圧した二次元又は三次元織物からなる繊維構造体の製造方法において、前記加圧は樹脂の含浸前に所定の周期で複数回繰り返して行い、前記加圧の繰り返し回数は100〜400の範囲であることを特徴とする高密度繊維構造体の製造方法。
【0008】
(2)前記所定圧力は0.5〜1.0MPaの範囲であることを特徴とする(1)記載の高密度繊維構造体の製造方法。
【0011】
本発明の(1)の製造方法では、予め製織された繊維構造体を加圧治具等を用いて所定の圧力と周期で繰り返し複数回加圧する。この加圧の繰り返しにより、加圧後に圧縮された構造体が復元しようとする力が抑えられ繊維構造体を高密度化することができる。このような方法により高密度化した繊維構造体を適用した複合材の内部で繊維の蛇行が小さくなり、繊維体積割合が高くなり樹脂だまりが少くなって、複合材の層間剪断強度及び疲労強度などの材料強度が高まるものである。
【0012】
本発明の(2)では、圧力の最大値を0.5〜1.0MPaに保って繰り返し加圧を行ので、上記(1)の発明を試験データに基づいて行うことにより上記(1)の発明の効果を確実に得ることができるものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の一形態に係る高密度繊維構造体を製造する装置を示し、(a)は断面図、(b)は(a)におけるX−X矢視図である。図において、10は製品の型であり、略成形後の製品の形状をしており、内部には予め製織した繊維構造体が入っている。11は押板であり、繊維構造体41の上面を覆って設置されている。14は支柱であり、天井支持材15を四隅で支持している。天井支持材15には加圧シリンダ12が懸吊して取付けられており、そのロッド13が押板11に連結されている。
【0015】
上記構成の装置において、加圧シリンダ12を作動させ、圧力0.5〜1.0MPa(メガパスカル)の平均加圧力を押板11に加え、かつ、所定の時間間隔、例えば2・3秒ごとに100〜400回の範囲で繰り返し加圧を行う。繰り返しの回数、加圧時間は、製品となる繊維構造体41の厚さ、繊維の織物の形式、等により適宜設定すれば良いが、最大400回程度まで繰り返し加圧を加えると、加圧後の積層間を広げようとする復元力が小さくなってほぼ飽和点に達するので、それ以上の繰り返し加圧はほとんど必要がない。
【0016】
図2は加圧した後の複合材1の断面図であり、繊維2と、これに交差する繊維3とは繰り返しの加圧により繊維の束が開繊して密な状態となり、複合材の内部において蛇行が少くなり、繊維体積割合が高くなるので樹脂だまり4も小さくなる。従って、複合材の強度が向上する。
【0017】
図3は本実施の形態における高密度繊維構造体の樹脂を含浸させる前の加圧繰り返しの回数と板厚、織密度との関係の例を示す実験データであり、(a)はそのグラフを、(b)はそのデータを、それぞれ示す図である。
【0018】
図3に示すように、加圧回数を100,200,300と増加するに従って板厚は試験前の5.17mmから4.79,4.70,4.62mm、と減少して圧縮されており、300回以降は72時間放置した後においても4.64mmと、ほとんど変化しないので、300回の後は、多くても400回まで加圧をすれば充分であることがわかる。
【0019】
又、織密度は加圧繰り返し回数の増加に従って、増加し、試験前の55.9%から300回の加圧回数の後には62.6%へ増加し、その後は72時間放置後においても62.3%と、ほとんど変化しないことから、300回の後は、多くても400回程度の繰り返し加圧すればほとんど上限に達することがわかる。
【0020】
次に、表1は、平板状三次元織物に、平均圧力0.6MPaの荷重を繰り返し300回までかけた時の板厚と織密度を測定した例を示したものである。
【0021】
【表1】

Figure 0004795579
【0022】
上記の結果からも、板厚は平均値で説明すれば、試験前の5.17mmから繰り返し加圧が300回では4.60と小さくなって圧縮され、その後の17時間放置においても4.64mmとほとんど変化がみられず、又、織密度についても、試験前の55.88%から300回の加圧では62.83%と増加を示し、17時間放置後においても62.30%とあまり変化を示していない。従って、繰り返し加圧の回数は300回程度の後は、多くても400回程度まで行えば充分であることがわかる。
【0023】
図4は繊維構造体の概念図を示し、本発明が適用されて効果を有する構造体を示すものである。(a)は,平面上での繊維20,21に対して更に、Z軸方向の繊維22を交差させたものであり、繊維20、21を合計で3層積層した三次元織物からなる繊維構造体を示している。
【0024】
又、(b)の例では二次元織物の(A),(B)を二層積層した例であり、繊維20と、これに交差する繊維21とが二次元の平面上で織り上げられた二次元織物(A)と(B)とが積層された繊維構造体を示している。
【0025】
本発明の高密度繊維構造体は、これら(a)図に示す三次元織物からなる繊維構造体、(b)図に示す二次元織物からなる繊維構造体のいずれも含むものである。
【0026】
本発明の高密度繊維構造体の製造方法は、(1)繊維を交差させ織り上げた織物を所定の圧力で加圧して成形した二次元又は三次元織物からなる繊維構造体の製造方法において、前記加圧は樹脂の含浸前に所定の周期で複数回繰り返して行い、前記加圧の繰り返し回数は100〜400の範囲であることを特徴としている。
【0027】
上記の製造方法により、この加圧の繰り返しにより、加圧後に圧縮された構造体が復元しようとする力が抑えられ繊維構造体を高密度化することができる。このような方法により複合材の内部で繊維の蛇行が小さくなり、繊維体積割合が高くなって樹脂だまりが少くなり、複合材の層間剪断強度及び疲労強度などの材料強度が高まるものである。
【0028】
本発明の(2)では、圧力の最大値を0.5〜1.0MPaに保って繰り返し加圧を行うので、上記(1)の発明を試験データに基づいて行うことにより上記(1)の発明の効果を確実に得ることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係る高密度繊維構造体を製造する装置を示し、(a)は断面図、(b)は(a)におけるX−X矢視図である。
【図2】本発明の実施の一形態に係る高密度繊維構造体を適用した複合材の断面図である。
【図3】本発明の実施の一形態に係る高密度繊維構造体の樹脂を含浸させる前の繰り返し加圧回数と板厚、織密度との関係を示し、(a)はそのグラフ、(b)は実験データを示す。
【図4】本発明の実施の一形態に係る高密度繊維構造体の概念図を示し、(a)は三次元織物からなる繊維構造体、(b)は二次元織物からなる繊維構造体の例を、それぞれ示す。
【図5】従来の繊維構造体を適用した複合材の断面図である。
【図6】従来の繊維構造体の加圧装置の概要を示す断面図である。
【符号の説明】
1,31 繊維構造体に樹脂を含浸させ成形した複合材
2,3,20,21,22,32,33 繊維
4,34 樹脂だまり
10,40 型
11 押板
12 加圧シリンダ
13 ロッド
14 支柱
15 天井支持材
41 繊維構造体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-density fiber structure and a fiber structure produced by the method, and increases the fiber content of a composite material (hereinafter referred to as composite material) formed by impregnating a fiber structure with a resin. The strength is improved.
[0002]
[Prior art]
In a composite material produced by impregnating a glass fiber or carbon fiber structure with a resin, the fiber content is important for exerting strength. A composite material using a fiber structure formed by laminating three-dimensional fabrics or two-dimensional fabrics woven by three-dimensionally intersecting fibers has a fiber volume ratio of approximately 50%.
[0003]
FIG. 5 is a sectional view showing a typical example of a conventional composite material. In the figure, 31 is a composite material. In the example shown in the figure, the fibers 32 and the fibers 33 in different directions intersect with each other, and the intersected ones form a plurality of layers and are hardened with a resin. The fibers 32 and 33 are made of thin filaments of glass fiber and carbon fiber, and about 1 to 12,000 filaments of 7 to 8 μ are used to form one fiber 32 and 33. . 34 is a resin pool, and this resin pool increases when the fiber volume ratio is low. In the conventional composite material, since there are many resin reservoirs 34, it tends to be a starting point of breakage, and the fibers are also meandering and there is a limit to improving the strength. FIG. 6 is a cross-sectional view showing an outline of an apparatus for producing a conventional fiber structure, in which a fiber structure 41 woven in advance is placed in a mold 40 that matches the shape of various products, and a pressing plate 42 is inserted from above. A plurality of bolts 43 are coupled between the pressing plate 42 and the periphery of the mold 40, and the bolts 43 are tightened to press the fiber structure 41 so as to increase the fiber volume ratio. It was. By such a method, a composite material was manufactured by impregnating a resin into a fiber structure having a laminated thickness of about 1 to 80 mm.
[0004]
[Problems to be solved by the invention]
The composite material to which the above-mentioned fiber structure is applied is applied to a member that needs to be reduced in weight, such as an aircraft, and it is planned to reduce the weight of the fuselage. In this case, increase the fiber volume ratio of the composite material. By improving the material strength, the material can be thinned and light weight can be achieved. Therefore, at present, as shown in FIG. 6, a fiber structure that has been woven in advance is placed in a mold and forcibly pressed to improve the fiber volume ratio of the composite material. Resin accumulation increases, which is a disadvantage in terms of strength and reliability, and it has been desired to improve the fiber volume ratio by other means.
[0005]
Therefore, the present invention is to pressurize the fiber structure under predetermined conditions to reduce the meandering of the fibers inside the composite material, to reduce the resin pool, to increase the fiber volume ratio, and to increase the interlaminar shear strength and fatigue strength of the composite material. It is an object of the present invention to provide a method for producing a high-density fiber structure capable of increasing the material strength and the like, and a produced fiber structure.
[0006]
[Means for Solving the Problems]
The present invention provides the following means in order to solve the aforementioned problems.
[0007]
(1) In a method of manufacturing a fiber structure composed of a two-dimensional or three-dimensional fabric obtained by pressing a woven fabric in which fibers are crossed and woven at a predetermined pressure, the pressurization is repeated a plurality of times at a predetermined cycle before impregnation with resin. There line Te, manufacturing method of high-density fiber structure, wherein the number of repetitions of the pressure is in the range of 100 to 400.
[0008]
(2) The method for producing a high-density fiber structure according to (1), wherein the predetermined pressure is in a range of 0.5 to 1.0 MPa.
[0011]
In the manufacturing method of (1) of the present invention, a fiber structure woven in advance is repeatedly pressed a plurality of times at a predetermined pressure and cycle using a pressing jig or the like. By repeating this pressurization, the force to restore the structure compressed after pressurization is suppressed, and the fiber structure can be densified. The meandering of the fiber is reduced inside the composite material to which the fiber structure densified by such a method is applied, the fiber volume ratio is increased, the resin pool is reduced, the interlayer shear strength and fatigue strength of the composite material, etc. This increases the material strength.
[0012]
In (2) of the present invention, since intends to iterate pressurization maintains a maximum value of the pressure in 0.5~1.0MPa, the by performing on the basis of the invention of the above (1) to the test data (1) The effect of the invention can be obtained with certainty.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an apparatus for producing a high-density fiber structure according to an embodiment of the present invention, in which (a) is a cross-sectional view and (b) is a view taken along line XX in (a). In the figure, reference numeral 10 denotes a product mold, which is substantially in the shape of a product after molding, and contains a fiber structure woven in advance. Reference numeral 11 denotes a pressing plate that is installed so as to cover the upper surface of the fiber structure 41. Reference numeral 14 denotes a support, which supports the ceiling support material 15 at four corners. A pressure cylinder 12 is suspended and attached to the ceiling support member 15, and its rod 13 is connected to the push plate 11.
[0015]
In the apparatus having the above-described configuration, the pressurizing cylinder 12 is operated, an average pressure of 0.5 to 1.0 MPa (megapascal) is applied to the pressing plate 11, and a predetermined time interval, for example, every 2 to 3 seconds. The pressure is repeatedly applied in the range of 100 to 400 times. The number of repetitions and the pressurization time may be appropriately set depending on the thickness of the fiber structure 41 as a product, the type of fiber woven fabric, and the like. Since the restoring force that attempts to widen the layers of the layers becomes small and almost reaches the saturation point, further repeated pressurization is hardly necessary.
[0016]
FIG. 2 is a cross-sectional view of the composite material 1 after being pressed. The fiber 2 and the fiber 3 intersecting with the fiber 2 are repeatedly pressed to open a fiber bundle into a dense state. Since the meandering is reduced and the fiber volume ratio is increased, the resin pool 4 is reduced. Accordingly, the strength of the composite material is improved.
[0017]
FIG. 3 is experimental data showing an example of the relationship between the number of pressure repetitions before impregnating the resin of the high-density fiber structure in the present embodiment, the plate thickness, and the weave density, and (a) shows the graph. , (B) are diagrams showing the data, respectively.
[0018]
As shown in FIG. 3, as the number of pressurizations is increased to 100, 200, 300, the plate thickness is reduced from 5.17 mm before the test to 4.79, 4.70, 4.62 mm and compressed. After 300 times, even after being left for 72 hours, 4.64 mm is hardly changed, and it can be seen that after 300 times, it is sufficient to pressurize up to 400 times.
[0019]
In addition, the weave density increases with the increase in the number of pressurization cycles, increases from 55.9% before the test to 62.6% after 300 pressurization cycles, and then 62 after standing for 72 hours. Since it is almost unchanged at 3%, it can be seen that after 300 times, if the pressure is repeatedly applied at most about 400 times, the upper limit is almost reached.
[0020]
Next, Table 1 shows an example in which a plate thickness and a weave density were measured when a load having an average pressure of 0.6 MPa was repeatedly applied to a flat three-dimensional fabric up to 300 times.
[0021]
[Table 1]
Figure 0004795579
[0022]
From the above results, if the plate thickness is described as an average value, it is compressed from 5.17 mm before the test to 4.60 when the repeated pressure is 300 times, and is compressed to 4.64 mm even after being left for 17 hours thereafter. The weave density also increased from 55.88% before the test to 62.83% after 300 pressurizations, and 62.30% after standing for 17 hours. It shows no change. Therefore, it can be seen that it is sufficient to perform the repeated pressurization up to about 400 times after about 300 times.
[0023]
FIG. 4 is a conceptual diagram of a fiber structure, and shows a structure having an effect when the present invention is applied. (A) is a structure in which the fibers 20 and 21 on the plane are further crossed with the fibers 22 in the Z-axis direction, and the fiber structure is composed of a three-dimensional fabric in which three layers of the fibers 20 and 21 are laminated in total. Showing the body.
[0024]
The example (b) is an example in which two layers of (A) and (B) of a two-dimensional fabric are laminated, and a fiber 20 and a fiber 21 intersecting this are woven on a two-dimensional plane. The fiber structure by which the dimension fabric (A) and (B) was laminated | stacked is shown.
[0025]
The high-density fiber structure of the present invention includes both a fiber structure composed of a three-dimensional fabric shown in FIG. (A) and a fiber structure composed of a two-dimensional fabric shown in FIG.
[0026]
The method for producing a high-density fiber structure according to the present invention includes (1) a method for producing a fiber structure comprising a two-dimensional or three-dimensional fabric formed by pressurizing a woven fabric in which fibers are crossed and pressed at a predetermined pressure. pressurization have rows repeated several times at a predetermined period prior to impregnation of the resin, the number of repetitions of the pressure is characterized by a range of 100 to 400.
[0027]
According to the manufacturing method described above, by repeating this pressurization, the force to restore the structure compressed after pressurization is suppressed, and the fiber structure can be densified. By such a method, the meandering of the fiber is reduced inside the composite material, the fiber volume ratio is increased, the resin pool is reduced, and the material strength such as interlayer shear strength and fatigue strength of the composite material is increased.
[0028]
In (2) of the present invention, the maximum value of pressure is kept at 0.5 to 1.0 MPa, and pressure is repeatedly applied. Therefore, by performing the invention of (1) based on test data, The effect of the invention can be obtained with certainty.
[Brief description of the drawings]
FIG. 1 shows an apparatus for producing a high-density fiber structure according to an embodiment of the present invention, in which (a) is a cross-sectional view and (b) is a view taken along line XX in (a).
FIG. 2 is a cross-sectional view of a composite material to which a high-density fiber structure according to an embodiment of the present invention is applied.
FIG. 3 shows the relationship between the number of repeated pressurizations before impregnating the resin of the high-density fiber structure according to one embodiment of the present invention, the plate thickness, and the weave density, (a) is its graph, (b) ) Indicates experimental data.
4A and 4B are conceptual diagrams of a high-density fiber structure according to an embodiment of the present invention, where FIG. 4A is a fiber structure made of a three-dimensional fabric, and FIG. 4B is a fiber structure made of a two-dimensional fabric. Examples are given respectively.
FIG. 5 is a cross-sectional view of a composite material to which a conventional fiber structure is applied.
FIG. 6 is a cross-sectional view showing an outline of a conventional pressurizing device for a fiber structure.
[Explanation of symbols]
1,31 Composite material formed by impregnating resin into fiber structure 2,3,20,21,22,32,33 Fiber 4,34 Resin pool 10,40 Mold 11 Press plate 12 Pressure cylinder 13 Rod 14 Strut 15 Ceiling support 41 Fiber structure

Claims (2)

繊維を交差させ織り上げた織物を所定の圧力で加圧した二次元又は三次元織物からなる繊維構造体の製造方法において、前記加圧は樹脂の含浸前に所定の周期で複数回繰り返して行い、
前記加圧の繰り返し回数は100〜400の範囲であることを特徴とする高密度繊維構造体の製造方法。
The method of manufacturing a fibrous structure comprising a woven fabric crossed fibers from pressurized two-dimensional or three-dimensional textile with a predetermined pressure, the pressurization line physician repeated several times at a predetermined period prior to impregnation of resin ,
The method for producing a high-density fiber structure, wherein the number of pressurizations is in the range of 100 to 400 .
前記所定圧力は0.5〜1.0MPaの範囲であることを特徴とする請求項1記載の高密度繊維構造体の製造方法。 The method for producing a high-density fiber structure according to claim 1, wherein the predetermined pressure is in a range of 0.5 to 1.0 MPa.
JP2001259745A 2001-08-29 2001-08-29 Method for producing high-density fiber structure Expired - Fee Related JP4795579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259745A JP4795579B2 (en) 2001-08-29 2001-08-29 Method for producing high-density fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259745A JP4795579B2 (en) 2001-08-29 2001-08-29 Method for producing high-density fiber structure

Publications (2)

Publication Number Publication Date
JP2003073968A JP2003073968A (en) 2003-03-12
JP4795579B2 true JP4795579B2 (en) 2011-10-19

Family

ID=19087068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259745A Expired - Fee Related JP4795579B2 (en) 2001-08-29 2001-08-29 Method for producing high-density fiber structure

Country Status (1)

Country Link
JP (1) JP4795579B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818561B1 (en) * 2004-08-03 2012-07-11 Mitsubishi Heavy Industries, Ltd. Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure
JP5453746B2 (en) * 2008-07-30 2014-03-26 日東紡績株式会社 Glass cloth manufacturing method and glass cloth
JP5962724B2 (en) * 2014-09-04 2016-08-03 株式会社豊田自動織機 Energy absorbing member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025657A (en) * 1996-07-11 1998-01-27 Asahi Shiyueebell Kk Flatting of glass woven cloth
JP2001207375A (en) * 1999-11-19 2001-08-03 Arisawa Mfg Co Ltd Method for producing textile fabric for printed wiring board, the resultant textile fabric for printed wiring board and prepreg for printed wiring board
JP2002144337A (en) * 2000-11-17 2002-05-21 Unitika Glass Fiber Co Ltd Method and apparatus for treatment of glass cloth for impregnating with resin
JP2002192523A (en) * 2000-12-26 2002-07-10 Unitika Glass Fiber Co Ltd Method and apparatus for treating glass cloth for resin impregnation
JP2002249984A (en) * 2001-02-23 2002-09-06 Mitsubishi Rayon Co Ltd Rolled material of reinforcing fiber cloth, method and apparatus for producing the same

Also Published As

Publication number Publication date
JP2003073968A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US5514445A (en) Honeycomb structure of thermostructural composite material
CN101310053B (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
Cox et al. Mechanisms of compressive failure in 3D composites
US4218276A (en) Method for making 3-D structures
US7503149B2 (en) Method for making a double-walled thermostructural composite monolithic component and resulting component
US3769142A (en) Non-woven locked ply composite structure
US5470649A (en) Composite with through the thickness reinforcement
TW201607745A (en) Cushion material for hot-press and method for producing the same
GB2177345A (en) Process for manufacturing three-dimensional structures of fibrous material, and fibrous material for use therein
JP2019019008A5 (en)
KR101931030B1 (en) Through-the-thickness carbon fiber composites and method of preparing the same
JP4795579B2 (en) Method for producing high-density fiber structure
JPH0351353A (en) Preparation of three dimensional structure consisting of uniformly- needled fibrous material
WO2015064733A1 (en) Coil spring
US6830718B2 (en) Method of manufacturing honeycomb structures
CN107042661A (en) A kind of high temperature heat-resistant protective materials and preparation method thereof
Kuo et al. Processing and characterization of 3D woven and braided thermoplastic composites
Koysin et al. Fibre distribution inside yarns of textile composite: gemetrical and FE modelling
KR101281185B1 (en) A method for manufacturing preform for composites having discontinuous reinforcements
US20200130292A1 (en) Composite material comprising pre-impregnated woven fibers
JPS63111038A (en) Three-dimensional reinforced laminate and its manufacture
KR101848348B1 (en) Carbon-carbon fiber composite body and method for manufacturing the same and robot end effector using the same
JP2011202303A (en) Fiber structure and method for producing the same, and preform
JP2003071942A (en) Method for manufacturing composite material structure having high strength periphery, and composite material structure
AU686122B2 (en) Translaminar reinforcement system for Z-direction reinforcement of a fiber matrix structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees