JP4794360B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP4794360B2
JP4794360B2 JP2006155105A JP2006155105A JP4794360B2 JP 4794360 B2 JP4794360 B2 JP 4794360B2 JP 2006155105 A JP2006155105 A JP 2006155105A JP 2006155105 A JP2006155105 A JP 2006155105A JP 4794360 B2 JP4794360 B2 JP 4794360B2
Authority
JP
Japan
Prior art keywords
processing
tube
side electrode
electrode
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006155105A
Other languages
Japanese (ja)
Other versions
JP2007324477A (en
Inventor
建明 侯
伸二 八島
一行 豊田
伊藤  剛
雄二 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006155105A priority Critical patent/JP4794360B2/en
Publication of JP2007324477A publication Critical patent/JP2007324477A/en
Application granted granted Critical
Publication of JP4794360B2 publication Critical patent/JP4794360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、シリコンウェーハ、ガラス基板等の基板を処理する基板処理に関するものである。   The present invention relates to substrate processing for processing a substrate such as a silicon wafer or a glass substrate.

半導体装置の製造工程の1つに基板処理工程があり、基板処理はシリコンウェーハ、ガラス基板等の基板に、薄膜の生成、酸化処理、アニール処理、エッチング等の処理を実施する。   One of the semiconductor device manufacturing processes is a substrate processing process, in which a substrate such as a silicon wafer or a glass substrate is subjected to processing such as generation of a thin film, oxidation processing, annealing processing, and etching.

基板処理装置としては、基板を1枚ずつ処理する枚葉式基板処理装置と、所要枚数の基板を一度に処理するバッチ式の基板処理装置がある。又、処理の方法の1つとしてプラズマを利用してガスをプラズマ化し、低温下でのウェーハの処理を可能にしたCVD法がある。   As the substrate processing apparatus, there are a single-wafer type substrate processing apparatus that processes substrates one by one and a batch type substrate processing apparatus that processes a required number of substrates at a time. Further, as one of the processing methods, there is a CVD method in which a gas is converted into plasma using plasma to enable processing of a wafer at a low temperature.

又、CVD法による従来の縦型バッチ式基板処理装置の一例として特許文献1に示されるものがある。   Moreover, there exists what is shown by patent document 1 as an example of the conventional vertical batch type substrate processing apparatus by CVD method.

特許文献1に示される従来の基板処理装置では、2本の細長い棒状の電極を平行に配設して、2本の電極に高周波電力を印加し、電極間を通過するガスをプラズマ化している。   In the conventional substrate processing apparatus shown in Patent Document 1, two elongated rod-like electrodes are arranged in parallel, high-frequency power is applied to the two electrodes, and the gas passing between the electrodes is turned into plasma. .

図9、図10を参照して、この従来の基板処理装置の処理炉を説明する。   A processing furnace of the conventional substrate processing apparatus will be described with reference to FIGS.

処理室1は、石英製の処理管2及びシールフランジ3で気密に構成され、前記処理管2の内壁側部には石英製のバッファ室4が設けられている。又、該バッファ室4の中には一対の電極6が設けられ、高周波電源7が供給する高周波電力を整合器8を介して前記電極6に供給し、該電極6,6間で放電され、放電によりプラズマ5が生成される様になっている。又、前記処理管2の外側にはヒータ9が設けられ、該ヒータ9は加熱制御部10によって制御され、前記処理管2内に収納されたウェーハ11、及び前記処理管2内の雰囲気を所望の温度に加熱することができる。   The processing chamber 1 is hermetically configured with a quartz processing tube 2 and a seal flange 3, and a quartz buffer chamber 4 is provided on the inner wall side of the processing tube 2. In addition, a pair of electrodes 6 are provided in the buffer chamber 4, and high-frequency power supplied from a high-frequency power source 7 is supplied to the electrode 6 through a matching unit 8, and is discharged between the electrodes 6 and 6. Plasma 5 is generated by the discharge. In addition, a heater 9 is provided outside the processing tube 2, and the heater 9 is controlled by a heating control unit 10, and the wafer 11 accommodated in the processing tube 2 and the atmosphere in the processing tube 2 are desired. Can be heated to

前記処理管2の下部には、前記バッファ室4に所望のガスを導入するガス導入口12と、前記処理室1内部を排気する為の排気口13が設けられており、前記ガス導入口12は流量制御弁14を介して処理ガス供給源15に接続されている。前記ガス導入口12から導入された処理ガスは、減圧状態の前記バッファ室4で前記電極6,6間の放電によりプラズマ化される。   A gas inlet 12 for introducing a desired gas into the buffer chamber 4 and an exhaust port 13 for exhausting the inside of the processing chamber 1 are provided at the lower part of the processing tube 2. Is connected to a processing gas supply source 15 via a flow control valve 14. The processing gas introduced from the gas inlet 12 is turned into plasma by the discharge between the electrodes 6 and 6 in the buffer chamber 4 in a reduced pressure state.

プラズマ化された処理ガスは、前記バッファ室4の小孔16より前記処理室1に供給され、該処理室1のウェーハ11に所望の処理が行われる。又、前記バッファ室4で処理ガスのプラズマを生成している間、前記電極6が発する高周波電力が基板処理装置外に漏洩するのを防止する為、前記処理管2の外側には導電性を有するカバー17が設けられ、該カバー17はアース18に接続されている。   The plasma-ized processing gas is supplied to the processing chamber 1 through the small holes 16 in the buffer chamber 4, and a desired processing is performed on the wafer 11 in the processing chamber 1. Further, in order to prevent high frequency power generated by the electrode 6 from leaking outside the substrate processing apparatus while plasma of the processing gas is generated in the buffer chamber 4, the outside of the processing tube 2 is made conductive. The cover 17 is provided, and the cover 17 is connected to the ground 18.

上記した従来の縦型バッチ式基板処理装置では、前記処理管2の内壁の一部分でプラズマを発生する構造であるので、該処理管2内部全域ではプラズマの均一性がよくない。又、プラズマ密度が小さいという問題があった。   Since the conventional vertical batch type substrate processing apparatus described above has a structure in which plasma is generated on a part of the inner wall of the processing tube 2, the uniformity of plasma is not good throughout the processing tube 2. There is also a problem that the plasma density is small.

国際公開第2004/079813号パンフレットInternational Publication No. 2004/079813 Pamphlet

本発明は斯かる実情に鑑み、処理管の内壁全面でプラズマを発生させる様にし、プラズマの均一性、プラズマ密度の向上を図ると共に、内壁全面でプラズマを発生させる様にした場合の不具合を解消するものである。   In view of such circumstances, the present invention is designed to generate plasma over the entire inner wall of the processing tube, to improve plasma uniformity and plasma density, and to solve the problem of generating plasma over the entire inner wall. To do.

本発明は、基板を収納する処理管と、該処理管を囲む様に設けられた加熱手段と、前記処理管と前記加熱手段との間に配置された電極管と、前記処理管内に所望の処理ガスを供給するガス供給手段と、前記電極管内面の所要範囲に亘って取付けられたプラズマ発生用の一対の帯状高周波電極と、該帯状高周波電極に高周波電力を印加する高周波電源と、前記電極管の前記帯状高周波電極に対向する複数箇所に形成された開口部とを具備する基板処理装置に係るものである。   The present invention includes a processing tube for storing a substrate, a heating unit provided so as to surround the processing tube, an electrode tube disposed between the processing tube and the heating unit, and a desired tube in the processing tube. Gas supply means for supplying a processing gas, a pair of strip-shaped high-frequency electrodes for generating plasma attached over a required range of the inner surface of the electrode tube, a high-frequency power source for applying high-frequency power to the strip-shaped high-frequency electrodes, and the electrodes The present invention relates to a substrate processing apparatus comprising openings formed at a plurality of locations facing the band-like high-frequency electrode of a tube.

本発明によれば、基板を収納する処理管と、該処理管を囲む様に設けられた加熱手段と、前記処理管と前記加熱手段との間に配置された電極管と、前記処理管内に所望の処理ガスを供給するガス供給手段と、前記電極管内面の所要範囲に亘って取付けられたプラズマ発生用の一対の帯状高周波電極と、該帯状高周波電極に高周波電力を印加する高周波電源と、前記電極管の前記帯状高周波電極に対向する複数箇所に形成された開口部とを具備するので、均一で高密度のプラズマの生成が可能であり、又前記開口部が前記帯状高周波電極の湾曲変位を許容するので、熱膨張による該帯状高周波電極支持部の荷重が軽減される等の優れた効果を発揮する。   According to the present invention, a processing tube for storing a substrate, a heating unit provided so as to surround the processing tube, an electrode tube disposed between the processing tube and the heating unit, and the processing tube A gas supply means for supplying a desired processing gas, a pair of band-shaped high-frequency electrodes for generating plasma attached over a required range of the inner surface of the electrode tube, a high-frequency power source for applying high-frequency power to the band-shaped high-frequency electrodes, Since the electrode tube includes openings formed at a plurality of locations facing the band-shaped high-frequency electrode, uniform and high-density plasma can be generated, and the opening is curved and displaced by the band-shaped high-frequency electrode. Therefore, excellent effects such as reduction of the load on the belt-like high-frequency electrode support portion due to thermal expansion are exhibited.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1、図2は本発明が実施される基板処理装置の概略を示している。   1 and 2 schematically show a substrate processing apparatus in which the present invention is implemented.

筐体21内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット22の授受を行う容器授受手段としてのカセットステージ23が設けられ、該カセットステージ23の後側にはカセット搬送手段としてのカセット搬送機24が昇降、横行、進退、回転可能に設けられている。   A cassette stage 23 serving as a container exchanging means for exchanging a cassette 22 serving as a substrate storage container with an external transfer device (not shown) is provided on the front side inside the housing 21. A cassette carrier 24 as a cassette carrier means is provided so as to be able to move up and down, traverse, advance and retract, and rotate.

又、該カセット搬送機24の後側には、前記カセット22の格納手段としてのカセット棚26が設けられると共に前記カセットステージ23の上方に予備カセット棚27が設けられている。該予備カセット棚27の上方にはクリーンユニット28が設けられ、該クリーンユニット28は、クリ−ンエアを前記筐体21の内部に流通させる。   Further, a cassette shelf 26 as a storing means for the cassette 22 is provided on the rear side of the cassette transporter 24, and a spare cassette shelf 27 is provided above the cassette stage 23. A clean unit 28 is provided above the spare cassette shelf 27, and the clean unit 28 circulates clean air inside the housing 21.

該筐体21の後部上方には処理炉29が設けられ、該処理炉29の下方にはボート昇降手段としてのボートエレベータ31が設けられ、該ボートエレベータ31は基板保持手段としてのボート32を昇降させ前記処理炉29内に炉口部を通して装入、引出しする。該炉口部は蓋体としてのシールキャップ33に気密に閉塞可能となっており、該シールキャップ33に前記ボート32が垂直に載置され、前記シールキャップ33は昇降部材34を介して前記ボートエレベータ31に昇降可能に支持されている。   A processing furnace 29 is provided above the rear portion of the casing 21, and a boat elevator 31 as a boat lifting / lowering means is provided below the processing furnace 29. The boat elevator 31 lifts and lowers a boat 32 as a substrate holding means. Then, the process furnace 29 is charged and withdrawn through the furnace port. The furnace port portion can be hermetically closed with a seal cap 33 as a lid, and the boat 32 is placed vertically on the seal cap 33, and the seal cap 33 is inserted into the boat via an elevating member 34. The elevator 31 is supported so that it can be raised and lowered.

前記ボート32は被処理基板としてのウェーハ35を水平姿勢で多段に保持し、該ウェーハ35は前記ボート32に保持された状態で、前記処理炉29に収納され、所要の処理がなされる様になっている。   The boat 32 holds wafers 35 as substrates to be processed in a multi-stage in a horizontal posture, and the wafers 35 are accommodated in the processing furnace 29 while being held in the boat 32 so that a required process is performed. It has become.

前記ボートエレベータ31と前記カセット棚26との間には基板移載手段としての基板移載機36が昇降、進退、回転可能に設けられている。又、前記処理炉29の炉口部側方には、開閉機構を有し、炉口部を閉塞する遮蔽部材としての炉口シャッタ37が設けられている。   Between the boat elevator 31 and the cassette shelf 26, a substrate transfer machine 36 as a substrate transfer means is provided so as to be able to move up and down, advance and retract, and rotate. In addition, a furnace port shutter 37 as a shielding member having an opening / closing mechanism and closing the furnace port portion is provided on the side of the furnace port portion of the processing furnace 29.

ウェーハ35が装填されたカセット22は、図示しない外部搬送装置から前記カセットステージ23にウェーハ35が垂直姿勢で搬入され、ウェーハ35が水平姿勢となる様前記カセットステージ23で90°回転される。更に、前記カセット22は、前記カセット搬送機24の昇降動作、横行動作、進退動作、回転動作の協働により前記カセットステージ23から前記カセット棚26又は前記予備カセット棚27に搬送される。   The cassette 22 loaded with the wafer 35 is loaded into the cassette stage 23 from an external transfer device (not shown) in a vertical posture, and is rotated 90 ° on the cassette stage 23 so that the wafer 35 is in a horizontal posture. Further, the cassette 22 is transported from the cassette stage 23 to the cassette shelf 26 or the spare cassette shelf 27 by cooperation of the raising / lowering operation, transverse operation, advance / retreat operation, and rotation operation of the cassette transporter 24.

前記カセット棚26には前記基板移載機36の搬送対象となるカセット22が収納される移載棚38があり、ウェーハ35が移載に供されるカセット22は前記カセット搬送機24により前記移載棚38に移載される。   The cassette shelf 26 has a transfer shelf 38 in which the cassette 22 to be transferred by the substrate transfer device 36 is stored. The cassette 22 to which the wafer 35 is transferred is transferred by the cassette transfer device 24. It is transferred to the mounting shelf 38.

カセット22が前記移載棚38に移載されると、前記基板移載機36の進退動作、回転動作及び昇降動作の協働により前記移載棚38から降下状態の前記ボート32にウェーハ35が移載される。   When the cassette 22 is transferred to the transfer shelf 38, the wafer 35 is transferred from the transfer shelf 38 to the boat 32 in the lowered state by the cooperation of the advance / retreat operation, the rotation operation, and the lifting operation of the substrate transfer machine 36. Reprinted.

前記ボート32に所定枚数のウェーハ35が移載されると前記ボートエレベータ31により前記ボート32が前記処理炉29に装入され、前記シールキャップ33により前記処理炉29が気密に閉塞される。気密に閉塞された該処理炉29内ではウェーハ35が加熱されると共に処理ガスが前記処理炉29内に供給され、ウェーハ35に所要の処理がなされる。   When a predetermined number of wafers 35 are transferred to the boat 32, the boat elevator 31 loads the boat 32 into the processing furnace 29, and the sealing cap 33 airtightly closes the processing furnace 29. In the processing furnace 29 that is hermetically closed, the wafer 35 is heated and a processing gas is supplied into the processing furnace 29, so that the wafer 35 is processed as required.

ウェーハ35への処理が完了すると、ウェーハ35は上記した作動の逆の手順で、前記基板移載機36により前記ボート32から前記移載棚38のカセット22に移戴され、カセット22は前記カセット搬送機24により前記移載棚38から前記カセットステージ23に移載され、図示しない外部搬送装置により前記筐体21の外部に搬出される。尚、前記炉口シャッタ37は、前記ボート32が降下状態の際に前記処理炉29の下面を塞ぎ、外気が該処理炉29内に巻込まれるのを防止している。   When the processing on the wafer 35 is completed, the wafer 35 is transferred from the boat 32 to the cassette 22 of the transfer shelf 38 by the substrate transfer device 36 in the reverse procedure of the above-described operation. It is transferred from the transfer shelf 38 to the cassette stage 23 by the transfer device 24 and is carried out of the casing 21 by an external transfer device (not shown). The furnace port shutter 37 closes the lower surface of the processing furnace 29 when the boat 32 is in the lowered state, and prevents outside air from being caught in the processing furnace 29.

前記カセット搬送機24、前記ボートエレベータ31、前記基板移載機36等の搬送動作は、搬送制御手段39により制御される。   Transport operations of the cassette transporter 24, the boat elevator 31, the substrate transfer device 36 and the like are controlled by a transport control means 39.

次に、図3、図4により前記処理炉29について説明する。   Next, the processing furnace 29 will be described with reference to FIGS.

有天筒状の処理管41の外周囲に電極管42、均熱管43、加熱装置44が同心多重に順次配設される。   An electrode tube 42, a soaking tube 43, and a heating device 44 are arranged concentrically and sequentially around the outer periphery of the tubular processing tube 41.

前記処理管41は、例えば石英製で、有天筒形状をしており、内部にウェーハ35を水平多段に保持した前記ボート32を収納する様になっている。又、前記処理管41には処理ガス導入管(図示せず)及び排気管(図示せず)が連通され、前記処理ガス導入管からは、基板処理の原料となる処理ガスが導入され、或はガスパージする為の窒素ガス等の不活性ガスが導入される様になっている。又、前記排気管は排気装置(図示せず)に連通され、前記処理管41内を所要圧力に維持する様に排気する。   The processing tube 41 is made of, for example, quartz and has a cylindrical shape, and accommodates the boat 32 in which the wafers 35 are held in multiple horizontal stages. Further, a processing gas introduction pipe (not shown) and an exhaust pipe (not shown) are communicated with the processing pipe 41, and a processing gas which is a raw material for substrate processing is introduced from the processing gas introduction pipe. An inert gas such as nitrogen gas for gas purging is introduced. The exhaust pipe communicates with an exhaust device (not shown) and exhausts the processing pipe 41 so as to maintain a required pressure.

前記加熱装置44はヒータベース45上に立設され、前記加熱制御部(図示せず)によって加熱状態が制御される。   The heating device 44 is erected on the heater base 45, and the heating state is controlled by the heating controller (not shown).

前記均熱管43は、例えばSiC製で、有天筒形状をしており、前記ヒータベース45にフランジ46を介して支持されている。前記均熱管43は前記加熱装置44からの熱を蓄熱し、更に放熱することで、均熱化して前記処理管41内部を均一に加熱する。   The heat equalizing tube 43 is made of, for example, SiC and has a cylindrical shape, and is supported by the heater base 45 via a flange 46. The heat equalizing tube 43 stores the heat from the heating device 44 and further dissipates the heat so as to equalize the temperature and heat the inside of the processing tube 41 uniformly.

前記電極管42は、フランジ47を介して前記ヒータベース45に支持されており、例えば石英製の円筒石英管48と、一対の高周波電極49,50を具備し、該高周波電極49は前記石英管48の内面全域に亘り設けられており、前記高周波電極49,50に高周波電力を印加することで、前記処理管41内部にプラズマが発生される。   The electrode tube 42 is supported by the heater base 45 through a flange 47, and includes a cylindrical quartz tube 48 made of, for example, quartz, and a pair of high-frequency electrodes 49, 50. The high-frequency electrode 49 is the quartz tube. 48 is provided over the entire inner surface of 48, and plasma is generated inside the processing tube 41 by applying high frequency power to the high frequency electrodes 49, 50.

前記高周波電極49,50の内、一方は印加側電極49であり、他方はアース側電極50となっており、前記印加側電極49には電力導入端子53が接続され、前記アース側電極50には接地端子54が接続され、前記電力導入端子53は整合器52を介して高周波電源51に接続され、前記接地端子54はアースされている。前記印加側電極49、前記アース側電極50共に導電性薄板金属によって製作され、全体としては櫛形状をしている。   One of the high-frequency electrodes 49, 50 is an application side electrode 49, and the other is a ground side electrode 50. A power introduction terminal 53 is connected to the application side electrode 49, and the ground side electrode 50 is connected to the ground side electrode 50. Is connected to a ground terminal 54, the power introduction terminal 53 is connected to a high frequency power source 51 through a matching unit 52, and the ground terminal 54 is grounded. The application-side electrode 49 and the ground-side electrode 50 are both made of a conductive thin metal plate and have a comb shape as a whole.

前記印加側電極49は、前記石英管48の母線に沿って帯状に延び所要間隔で形成された複数の印加側対向電極部55と、該印加側対向電極部55の一端部を連続し、前記処理管41の円周方向に延びる印加側電極端連続部56から構成され、1つの前記印加側対向電極部55の他端部は、前記石英管48の下端を超えて延出しており、前記他端部が前記電力導入端子53に接続されている(図5参照)。   The application side electrode 49 extends in a strip shape along the generatrix of the quartz tube 48 and is connected to a plurality of application side counter electrode portions 55 formed at a required interval, and one end portion of the application side counter electrode portion 55, The application side electrode end continuous portion 56 extending in the circumferential direction of the processing tube 41 is configured, and the other end portion of the one application side counter electrode portion 55 extends beyond the lower end of the quartz tube 48, and The other end is connected to the power introduction terminal 53 (see FIG. 5).

前記アース側電極50は、前記石英管48の母線に沿って帯状に延び所要間隔で形成された複数のアース側対向電極部57と、該アース側対向電極部57の一端部を連続し、前記処理管41の円周方向に延びるアース側電極端連続部58から構成され、1つの前記アース側対向電極部57の他端部は、前記石英管48の下端を超えて延出しており、前記他端部が前記接地端子54に接続されている。   The ground side electrode 50 extends in a strip shape along the bus bar of the quartz tube 48 and is connected to a plurality of ground side counter electrode portions 57 formed at required intervals, and one end of the ground side counter electrode portion 57. Consists of a ground side electrode end continuous portion 58 extending in the circumferential direction of the processing tube 41, and the other end of one ground side counter electrode portion 57 extends beyond the lower end of the quartz tube 48, The other end is connected to the ground terminal 54.

前記印加側電極49と前記アース側電極50とは、前記印加側対向電極部55と前記アース側対向電極部57とが交互に平行に対向する様配置される。   The application side electrode 49 and the ground side electrode 50 are arranged such that the application side counter electrode portion 55 and the ground side counter electrode portion 57 are alternately opposed in parallel.

図4、図7に示される様に、前記印加側電極49、前記アース側電極50は共に着脱可能な固定具59によって、前記石英管48の内面に取付けられる。   As shown in FIGS. 4 and 7, both the application side electrode 49 and the ground side electrode 50 are attached to the inner surface of the quartz tube 48 by a detachable fixture 59.

前記固定具59としては、例えば図8に示されるものがある。   An example of the fixture 59 is shown in FIG.

フランジ付きピン61を中心側から前記印加側電極49(前記アース側電極50)、前記石英管48に貫通し、前記ピン61の突出部にスナップピン62を挿入する。前記印加側電極49(前記アース側電極50)及び前記石英管48の貫通孔は、前記ピン61の径に対して充分大きくし、又前記スナップピン62は該スナップピン62のスプリング力で前記ピン61に保持されるので、前記スナップピン62の着脱により前記ピン61も前記印加側電極49(前記アース側電極50)、前記石英管48に対して容易に着脱が可能である。   The flanged pin 61 is penetrated from the center side to the application side electrode 49 (the earth side electrode 50) and the quartz tube 48, and a snap pin 62 is inserted into the protruding portion of the pin 61. The through hole of the application side electrode 49 (the earth side electrode 50) and the quartz tube 48 is made sufficiently large with respect to the diameter of the pin 61, and the snap pin 62 is driven by the spring force of the snap pin 62. Therefore, the pin 61 can be easily attached to and detached from the application side electrode 49 (the earth side electrode 50) and the quartz tube 48 by attaching and detaching the snap pin 62.

尚、前記ピン61に突出部に溝を刻設し、C形止輪で固定してもよい。又、前記ピン61の材質としては、耐熱、絶縁性を有するセラミック(例えばアルミナ)が使用される。   In addition, a groove may be formed in the protruding portion of the pin 61 and fixed with a C-shaped retaining ring. Further, as the material of the pin 61, a ceramic having heat resistance and insulation (for example, alumina) is used.

前記印加側電極49、前記アース側電極50は金属製の導電材料であり、前記印加側電極49、前記アース側電極50の熱膨張係数は、前記石英管48の熱膨張係数より大きい。この為、前記印加側電極49、前記アース側電極50と、前記石英管48との間で熱膨張差が発生する。   The application side electrode 49 and the ground side electrode 50 are metal conductive materials, and the thermal expansion coefficient of the application side electrode 49 and the ground side electrode 50 is larger than the thermal expansion coefficient of the quartz tube 48. Therefore, a thermal expansion difference is generated between the application side electrode 49, the ground side electrode 50, and the quartz tube 48.

以下は、前記印加側電極49、前記アース側電極50と、前記石英管48との間で発生する熱膨張差に起因する問題を回避する対策について説明する。   Hereinafter, a countermeasure for avoiding a problem caused by a difference in thermal expansion generated between the application side electrode 49, the ground side electrode 50, and the quartz tube 48 will be described.

先ず、前記印加側電極49、前記アース側電極50と、前記石英管48との間の熱膨張差が大きく現れる部分は、長さの長い前記印加側対向電極部55、前記アース側対向電極部57であり、又前記印加側対向電極部55、前記アース側対向電極部57のそれぞれ1つの下端部は前記電力導入端子53、前記接地端子54に固定されている。この為、熱膨張差による相対変位は、上方に向って現れる。   First, the portion where the thermal expansion difference between the application side electrode 49, the ground side electrode 50, and the quartz tube 48 appears greatly is the long application side counter electrode portion 55, the ground side counter electrode portion. The lower end of each of the application side counter electrode portion 55 and the ground side counter electrode portion 57 is fixed to the power introduction terminal 53 and the ground terminal 54. For this reason, the relative displacement due to the difference in thermal expansion appears upward.

従って、前記ピン61と前記印加側対向電極部55、前記アース側対向電極部57及び前記石英管48の関係は、上方に行く程自由度を大きくしてある。   Therefore, the relationship between the pin 61 and the application side counter electrode portion 55, the ground side counter electrode portion 57, and the quartz tube 48 increases the degree of freedom as it goes upward.

例えば、前記石英管48の貫通孔を円形とした場合、前記印加側電極49、前記アース側電極50の貫通孔63を上下に長い長孔とし、上方に位置する貫通孔63程長孔の長さを長くする等である。   For example, when the through-hole of the quartz tube 48 is circular, the through-hole 63 of the application side electrode 49 and the ground side electrode 50 is long and long, and the length of the long hole is as long as the through-hole 63 positioned above. Such as lengthening.

前記印加側電極端連続部56、前記アース側電極端連続部58も同様に、前記固定具59によって固定される。又、前記印加側電極端連続部56、前記アース側電極端連続部58は前記印加側電極49、前記アース側電極50の上部に位置し、最も上方への変位が現れ易い部分であり、前記貫通孔63も上下方向に長い長孔となっている。更に、前記印加側電極端連続部56、前記アース側電極端連続部58は前記石英管48の円周方向に沿って湾曲した状態で設けられているので、前記印加側電極端連続部56、前記アース側電極端連続部58自体の熱膨張は円周方向に沿った変位として現れる。   Similarly, the application side electrode end continuous portion 56 and the ground side electrode end continuous portion 58 are also fixed by the fixture 59. The application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 are located above the application-side electrode 49 and the ground-side electrode 50, and are portions where the upward displacement is most likely to appear. The through hole 63 is also a long hole that is long in the vertical direction. Further, since the application side electrode end continuous portion 56 and the ground side electrode end continuous portion 58 are provided in a curved state along the circumferential direction of the quartz tube 48, the application side electrode end continuous portion 56, The thermal expansion of the ground side electrode end continuous portion 58 itself appears as a displacement along the circumferential direction.

一方で、前記固定具59による前記印加側電極端連続部56、前記アース側電極端連続部58の固定部は、上方への自由度は設けられているが、前記貫通孔63の形状から、周方向の自由度を設けることは難しい。   On the other hand, the fixing portions of the application side electrode end continuous portion 56 and the ground side electrode end continuous portion 58 by the fixing tool 59 are provided with a degree of freedom upward, but from the shape of the through hole 63, It is difficult to provide a degree of freedom in the circumferential direction.

本実施の形態では、前記印加側電極端連続部56、前記アース側電極端連続部58の熱膨張を、前記固定具59,59との間の部位を更に湾曲させる様変位させることで吸収しようとするものである。   In the present embodiment, the thermal expansion of the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 will be absorbed by displacing the portion between the fixtures 59 and 59 so as to be further curved. It is what.

図7に示される様に、前記固定具59,59間の前記印加側電極端連続部56、前記アース側電極端連続部58に対向する前記石英管48の部位を切除して開口部64を形成する。該開口部64を形成することで、前記印加側電極端連続部56、前記アース側電極端連続部58の湾曲変位を拘束するものがなくなり、前記印加側電極端連続部56、前記アース側電極端連続部58は前記固定具59,59間の部位での熱膨張は湾曲することで吸収される。   As shown in FIG. 7, the portion of the quartz tube 48 facing the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 between the fixtures 59, 59 is excised to form an opening 64. Form. By forming the opening 64, there is no restriction on the bending displacement of the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58, and the application-side electrode end continuous portion 56, the earth-side power supply The extreme continuous portion 58 is absorbed by bending the thermal expansion at the portion between the fixtures 59 and 59.

尚、上下方向の熱膨張変位が少ない、前記石英管48の下部に位置する前記印加側電極端連続部56、前記アース側電極端連続部58に穿設する貫通孔63は水平方向に長い長孔とし、前記固定具59部分で水平方向の自由度を与えて、熱膨張変位を吸収する。   In addition, the through-hole 63 formed in the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 located in the lower part of the quartz tube 48 with a small vertical thermal expansion displacement is long in the horizontal direction. A hole is formed, and a horizontal degree of freedom is given by the fixing member 59 to absorb thermal expansion displacement.

更に、前記印加側電極端連続部56、前記アース側電極端連続部58が前記固定具59,59間で湾曲し易い様に、所要間隔で少なくとも1つの抜き孔65を穿設する。尚、好ましくは、該抜き孔65の形状を縦長長孔として複数設ける。該抜き孔65を穿設することで、前記印加側電極端連続部56、前記アース側電極端連続部58の曲げ剛性が低下し、少ない荷重で前記固定具59,59間の部位での前記印加側電極端連続部56、前記アース側電極端連続部58の変形が起り易くなり、前記石英管48の前記固定具59を支持する部分に作用する荷重が低減する。   Further, at least one punch hole 65 is formed at a required interval so that the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 are easily bent between the fixtures 59 and 59. Preferably, a plurality of the holes 65 are provided as vertically long holes. By forming the punch hole 65, the bending rigidity of the application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 is reduced, and the portion between the fixtures 59, 59 is reduced with a small load. The application-side electrode end continuous portion 56 and the ground-side electrode end continuous portion 58 are easily deformed, and the load acting on the portion of the quartz tube 48 that supports the fixture 59 is reduced.

尚、前記固定具59,59間の部位での前記印加側電極端連続部56、前記アース側電極端連続部58の湾曲変形が惹起される様に、外周側に突出する折目を形成してもよい。   In addition, a fold projecting to the outer peripheral side is formed so as to cause bending deformation of the application side electrode end continuous portion 56 and the ground side electrode end continuous portion 58 at a portion between the fixtures 59, 59. May be.

又、更に、前記固定具59,59のピッチを小さくし数多く設けることで、前記印加側電極49、前記アース側電極50の熱膨張による前記固定具59が受ける荷重を分散し、又前記固定具59,59のピッチを小さくし、該固定具59,59間の熱膨張変位を小さくしてもよい。   Further, by providing a small number of pitches of the fixtures 59, 59, the load received by the fixture 59 due to thermal expansion of the application side electrode 49 and the ground side electrode 50 is dispersed, and the fixtures are also provided. The pitch between 59 and 59 may be reduced, and the thermal expansion displacement between the fixtures 59 and 59 may be reduced.

更に、前記印加側対向電極部55、前記アース側対向電極部57部分での上方への熱膨張変位を少なくする為に、前記電力導入端子53の近傍に抜き孔66を少なくとも1つ穿設する。好ましくは、該抜き孔66の形状は前記印加側対向電極部55、前記アース側対向電極部57の幅方向に長い長孔として複数設ける。前記抜き孔66を設けることで、前記電力導入端子53近傍で変形し易く、又下方への大きな変形量が得られるので、その分前記印加側対向電極部55、前記アース側対向電極部57部分での上方への変位が少なくなり、前記固定具59部分に作用する荷重が軽減する。   Furthermore, in order to reduce the upward thermal expansion displacement at the application side counter electrode portion 55 and the ground side counter electrode portion 57, at least one punch hole 66 is formed in the vicinity of the power introduction terminal 53. . Preferably, a plurality of holes 66 are formed as long holes extending in the width direction of the application side counter electrode portion 55 and the ground side counter electrode portion 57. By providing the punch hole 66, it is easy to be deformed in the vicinity of the power introduction terminal 53, and a large amount of deformation is obtained downward, and accordingly, the application side counter electrode portion 55 and the ground side counter electrode portion 57 portions. Accordingly, the upward displacement of the fixing member 59 is reduced, and the load acting on the fixing member 59 is reduced.

上述した様に、前記石英管48の前記固定具59支持部分に作用する、前記印加側電極49、前記アース側電極50の熱膨張による荷重が減少し、割れの発生が防止できる。   As described above, the load due to thermal expansion of the application side electrode 49 and the ground side electrode 50 acting on the support portion of the fixing member 59 of the quartz tube 48 is reduced, and the occurrence of cracks can be prevented.

更に、前記印加側電極49、前記アース側電極50は、熱膨張による変形は、外周側に向って起きる様になっており、或は熱膨張による変形が少なくなる様に支持されているので、前記印加側電極49、前記アース側電極50の熱膨張による変形による、前記処理管41との接触が防止され、該処理管41の失透が防止される。   Further, the application side electrode 49 and the ground side electrode 50 are supported so that the deformation due to thermal expansion occurs toward the outer peripheral side, or the deformation due to thermal expansion is reduced. Contact with the processing tube 41 due to deformation due to thermal expansion of the application side electrode 49 and the ground side electrode 50 is prevented, and devitrification of the processing tube 41 is prevented.

尚、前記印加側対向電極部55、前記アース側対向電極部57に沿って開口67を前記石英管48に穿設し、前記固定具59の着脱作業を容易としてもよい。   It should be noted that an opening 67 may be formed in the quartz tube 48 along the application side counter electrode portion 55 and the ground side counter electrode portion 57 to facilitate the attaching / detaching operation of the fixture 59.

前記印加側電極49、前記アース側電極50は前記石英管48に組込まれ、前記電極管42として構成され、ユニット化されるので、取扱い性、組立て性が向上する。   The application-side electrode 49 and the ground-side electrode 50 are incorporated in the quartz tube 48 and are configured as the electrode tube 42 and are unitized, so that handling and assembly are improved.

上記処理炉29による基板処理の一例として、ウェーハ35表面に酸化膜を形成する場合を示す。   As an example of the substrate processing by the processing furnace 29, a case where an oxide film is formed on the surface of the wafer 35 is shown.

処理ガスを前記処理管41内に導入し、前記印加側電極49、前記アース側電極50間に高周波電力を印加する。前記印加側電極49、前記アース側電極50間で、例えば対向する前記印加側対向電極部55、前記アース側対向電極部57間でプラズマが発生される。前記印加側対向電極部55と前記アース側対向電極部57は前記処理管41の処理基板の略全長に亘って設けられ、更に、前記印加側対向電極部55と前記アース側対向電極部57とが交互に略全周に亘って設けられているので、前記処理管41内面全域でプラズマが発生され、均一性の高いプラズマ、高密度のプラズマが得られる。   A processing gas is introduced into the processing tube 41, and high frequency power is applied between the application side electrode 49 and the ground side electrode 50. Plasma is generated between the application side electrode 49 and the ground side electrode 50, for example, between the application side counter electrode portion 55 and the ground side counter electrode portion 57 facing each other. The application side counter electrode portion 55 and the ground side counter electrode portion 57 are provided over substantially the entire length of the processing substrate of the processing tube 41, and the application side counter electrode portion 55, the ground side counter electrode portion 57, and Are alternately provided over substantially the entire circumference, so that plasma is generated over the entire inner surface of the processing tube 41, and high uniformity plasma and high density plasma are obtained.

処理ガスとして、O2 、H2 、N2 を使用し、前記処理管41内を30Paとして温度900℃で処理することで、ウェーハ35表面に絶縁膜を形成することができる。   An insulating film can be formed on the surface of the wafer 35 by using O 2, H 2, and N 2 as processing gases and processing the inside of the processing tube 41 at 30 Pa at a temperature of 900 ° C.

尚、上記実施の形態では、前記印加側電極49、前記アース側電極50を、前記印加側対向電極部55、前記アース側対向電極部57が前記石英管48の母線に沿う様配設したが、前記印加側対向電極部55、前記アース側対向電極部57が前記石英管48の円周方向に沿う様に配設してもよい。   In the above embodiment, the application side electrode 49 and the ground side electrode 50 are arranged so that the application side counter electrode portion 55 and the ground side counter electrode portion 57 are along the bus line of the quartz tube 48. The application side counter electrode portion 55 and the ground side counter electrode portion 57 may be disposed along the circumferential direction of the quartz tube 48.

本発明の実施の形態に係る基板処理装置を示す概略斜視図である。1 is a schematic perspective view showing a substrate processing apparatus according to an embodiment of the present invention. 同前本発明の実施の形態に係る基板処理装置の立断面概略図である。It is a vertical sectional schematic diagram of the substrate processing apparatus according to the embodiment of the present invention. 同前本発明の実施の形態に係る基板処理装置の処理炉の立断面図である。It is a sectional elevation of the processing furnace of the substrate processing apparatus according to the embodiment of the present invention. 該処理炉の石英管、電極管、均熱管の平断面図である。It is a plane sectional view of a quartz tube, an electrode tube, and a soaking tube of the processing furnace. 前記電極管の印加側電極と電力導入端子の接続部の拡大図である。It is an enlarged view of the connection part of the application side electrode of the said electrode tube, and a power introduction terminal. 該印加側電極の印加側対向電極部下部の展開図である。It is an expanded view of the application side counter electrode part lower part of this application side electrode. 前記処理炉の石英管、電極管、均熱管の一部拡大断面図である。It is a partially expanded sectional view of the quartz tube, electrode tube, and soaking tube of the processing furnace. 電極固定部の部分説明図である。It is a partial explanatory view of an electrode fixing part. 従来の処理炉の概略立断面図である。It is a schematic sectional elevation of a conventional processing furnace. 従来の処理炉の概略平断面図である。It is a schematic plan sectional view of a conventional processing furnace.

符号の説明Explanation of symbols

21 筐体
29 処理炉
35 ウェーハ
41 処理管
42 電極管
43 均熱管
48 石英管
49 印加側電極
50 アース側電極
53 電力導入端子
54 接地端子
55 印加側対向電極部
56 印加側電極端連続部
57 アース側対向電極部
58 アース側電極端連続部
59 固定具
63 貫通孔
64 開口部
65 抜き孔
66 抜き孔
67 開口
DESCRIPTION OF SYMBOLS 21 Case 29 Processing furnace 35 Wafer 41 Processing tube 42 Electrode tube 43 Soaking tube 48 Quartz tube 49 Application side electrode 50 Ground side electrode 53 Power introduction terminal 54 Ground terminal 55 Application side counter electrode part 56 Application side electrode end continuous part 57 Earth Side counter electrode part 58 Ground side electrode end continuous part 59 Fixing tool 63 Through hole 64 Opening part 65 Outgoing hole 66 Outgoing hole 67 Opening

Claims (1)

基板を収納する処理管と、該処理管を囲む様に設けられた加熱手段と、前記処理管と前記加熱手段との間に配置された電極管と、前記処理管内に所望の処理ガスを供給するガス供給手段と、前記電極管内面の所要範囲に亘って取付けられたプラズマ発生用の一対の帯状高周波電極と、該帯状高周波電極に高周波電力を印加する高周波電源と、前記電極管の前記帯状高周波電極に対向する複数箇所に形成された開口部とを具備することを特徴とする基板処理装置。   A processing tube for storing the substrate, a heating unit provided so as to surround the processing tube, an electrode tube disposed between the processing tube and the heating unit, and supplying a desired processing gas into the processing tube Gas supply means, a pair of strip-shaped high-frequency electrodes for generating plasma attached over a required range of the inner surface of the electrode tube, a high-frequency power source for applying high-frequency power to the strip-shaped high-frequency electrode, and the strip-shaped electrode tube A substrate processing apparatus comprising: openings formed at a plurality of locations facing a high-frequency electrode.
JP2006155105A 2006-06-02 2006-06-02 Substrate processing equipment Active JP4794360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155105A JP4794360B2 (en) 2006-06-02 2006-06-02 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155105A JP4794360B2 (en) 2006-06-02 2006-06-02 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2007324477A JP2007324477A (en) 2007-12-13
JP4794360B2 true JP4794360B2 (en) 2011-10-19

Family

ID=38856983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155105A Active JP4794360B2 (en) 2006-06-02 2006-06-02 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP4794360B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144205A (en) * 2007-12-14 2009-07-02 Mitsubishi Heavy Ind Ltd Vacuum treatment system
JP6641025B2 (en) 2016-09-21 2020-02-05 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and electrode fixing unit
JP6966402B2 (en) 2018-09-11 2021-11-17 株式会社Kokusai Electric Substrate processing equipment, manufacturing method of semiconductor equipment, and electrodes of substrate processing equipment
TWI798760B (en) 2020-08-26 2023-04-11 日商國際電氣股份有限公司 Substrate processing apparatus, manufacturing method of semiconductor device, substrate holder and program
CN116982411A (en) 2021-03-22 2023-10-31 株式会社国际电气 Electrode, substrate processing apparatus, method for manufacturing semiconductor device, and program
JP7431210B2 (en) 2021-12-28 2024-02-14 株式会社Kokusai Electric Substrate processing equipment, plasma generation equipment, semiconductor device manufacturing method, plasma generation method and program
JP2023140468A (en) 2022-03-23 2023-10-05 株式会社Kokusai Electric Electrode, substrate processing device, and semiconductor device manufacturing method
US20240096604A1 (en) 2022-09-21 2024-03-21 Kokusai Electric Corporation Substrate processing apparatus, plasma generation apparatus, method of processing substrate, method of manufacturing semiconductor device, and recording medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203330A (en) * 1986-03-04 1987-09-08 Denkoo:Kk Semiconductor heat treatment apparatus with reaction tube washing means
US4786352A (en) * 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning
JPH02159027A (en) * 1988-12-13 1990-06-19 Tel Sagami Ltd Plasma treatment device
JP3346809B2 (en) * 1992-11-19 2002-11-18 東京応化工業株式会社 Plasma bake oven
JPH07147253A (en) * 1993-06-15 1995-06-06 Kokusai Electric Co Ltd Heating system
US5506389A (en) * 1993-11-10 1996-04-09 Tokyo Electron Kabushiki Kaisha Thermal processing furnace and fabrication method thereof
JPH09312284A (en) * 1996-05-23 1997-12-02 M C Electron Kk Batch ashing system
JP2007063640A (en) * 2005-09-01 2007-03-15 Hitachi Kokusai Electric Inc Substrate treatment device

Also Published As

Publication number Publication date
JP2007324477A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4794360B2 (en) Substrate processing equipment
KR100817644B1 (en) Substrate processing device
JP5188326B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US6780251B2 (en) Substrate processing apparatus and method for fabricating semiconductor device
KR101528138B1 (en) Substrate processing apparatus, substrate supporting tool and method of manufacturing semiconductor device
JP2010153467A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JPWO2007018139A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2019212923A (en) Substrate processing apparatus
KR100741859B1 (en) Wafer Manufacturing Apparatus for High-Temperatuer Process
JP2012028428A (en) Mounting table structure and processing apparatus
JP2009124105A (en) Substrate processing apparatus
JP5770042B2 (en) Heat treatment equipment
JPH10242067A (en) Substrate supporting tool for heat treatment
JP2005101228A (en) Substrate processing apparatus
JP2012039006A (en) Strand contact prevention member and maintenance method of heater device
JP2006303512A (en) Semiconductor manufacturing apparatus and method, and boat
JP2008084902A (en) Substrate processing equipment
JP4754207B2 (en) Heat treatment system
JP2011204735A (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP5059716B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2010040919A (en) Substrate processing apparatus
JP2006253448A (en) Substrate treatment apparatus
JP2006332498A (en) Substrate processing device
JP2006080256A (en) Substrate processing apparatus
JP2011199134A (en) Substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350