JP4791098B2 - Integrated thin film solar cell module - Google Patents

Integrated thin film solar cell module Download PDF

Info

Publication number
JP4791098B2
JP4791098B2 JP2005212652A JP2005212652A JP4791098B2 JP 4791098 B2 JP4791098 B2 JP 4791098B2 JP 2005212652 A JP2005212652 A JP 2005212652A JP 2005212652 A JP2005212652 A JP 2005212652A JP 4791098 B2 JP4791098 B2 JP 4791098B2
Authority
JP
Japan
Prior art keywords
solar cell
thin film
film solar
cell module
integrated thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005212652A
Other languages
Japanese (ja)
Other versions
JP2007035695A (en
Inventor
淳 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005212652A priority Critical patent/JP4791098B2/en
Publication of JP2007035695A publication Critical patent/JP2007035695A/en
Application granted granted Critical
Publication of JP4791098B2 publication Critical patent/JP4791098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、集積型薄膜太陽電池モジュールに関し、詳しくは絶縁性能を向上した集積型薄膜太陽電池モジュールの構造に関する。   The present invention relates to an integrated thin film solar cell module, and more particularly to a structure of an integrated thin film solar cell module with improved insulation performance.

近年、太陽電池の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜太陽電池が注目され、開発が精力的に行われている。特に、ガラス等の安価な透光性絶縁基体上に低温プロセスを用いて良質の半導体層を形成する方法は低コスト化が実現可能な方法として期待されている。   In recent years, thin-film solar cells that require less raw materials in order to achieve both low cost and high efficiency of solar cells have attracted attention and have been vigorously developed. In particular, a method for forming a high-quality semiconductor layer on an inexpensive translucent insulating substrate such as glass using a low-temperature process is expected as a method capable of realizing cost reduction.

通常このような薄膜太陽電池を含む薄膜太陽電池モジュールは、概ね方形の透光性絶縁基体の一方の主面上に電気的に直列に接続された複数の薄膜太陽電池セルからなる概ね方形の集積型薄膜太陽電池を形成したもの、及び電極部分に対応する領域全体を、その透明電極層や複数の半導体層からなる薄膜光電変換ユニットや金属電極層を保護することや外部と電気的に絶縁することなどを目的として、エチレン−酢酸ビニル共重合体(以下、EVAと称す)などを主成分とする充填材料である封止樹脂と裏面保護シートにより封止した構造になっている。   In general, a thin film solar cell module including such a thin film solar cell has a substantially rectangular integration composed of a plurality of thin film solar cells electrically connected in series on one main surface of a substantially rectangular translucent insulating base. Type thin film solar cell and the entire region corresponding to the electrode part are protected from the transparent electrode layer and the thin film photoelectric conversion unit composed of a plurality of semiconductor layers and the metal electrode layer, and are electrically insulated from the outside. For this purpose, the structure is sealed with a sealing resin that is a filling material mainly composed of an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) and a back surface protective sheet.

ところで、このような集積型薄膜太陽電池モジュールでは、太陽光が透光性絶縁基板の他方の主面から入射し、太陽光発電がなされる時に直列接続された薄膜太陽電池セルの数に比例した高電圧が発生するので、絶縁耐圧性能が重要となる。そして、このような集積型薄膜太陽電池モジュールの絶縁耐圧性能は、一般的には発電時に最も電位差が大きくなる正負の電極部分に対応する領域、具体的にはこの電極部分に対応する領域に設けられた取り出し電極と、例えば、封止後の集積型薄膜太陽電池が形成された透光性絶縁基板の4辺に嵌合されたアルミフレーム等の接地電圧となることが予定される部分との間の耐電圧特性を測定することにより把握することができる。   By the way, in such an integrated thin film solar cell module, sunlight is incident from the other main surface of the translucent insulating substrate and is proportional to the number of thin film solar cells connected in series when solar power generation is performed. Since a high voltage is generated, the dielectric strength performance is important. And, the withstand voltage performance of such an integrated thin film solar cell module is generally provided in a region corresponding to the positive and negative electrode portions where the potential difference is greatest during power generation, specifically in a region corresponding to this electrode portion. For example, an aluminum frame fitted to four sides of a translucent insulating substrate on which an integrated thin film solar cell after sealing is formed, and a portion that is expected to become a ground voltage It can be grasped by measuring the withstand voltage characteristics.

そして、このような集積型薄膜太陽電池は、透明電極膜、複数の半導体層からなる光電変換層を含む薄膜光電変換ユニット、及び、金属電極膜などの薄膜の製膜と、製膜の度に行われるレーザー光等を用いたパターニングと、を順に繰り返すことにより形成されるが、これらの膜は一般に気相反応によって形成され、その場合、集積型薄膜太陽電池となる活性領域とそれ以外の部分とを分離することは困難である。場合によっては、これらの膜が基板の裏側まで回りこんでいることがある。こうしたことに起因して、最悪の場合には、例えばフレームを取り付けたときに、活性部分とフレームとが同電位になってしまう。従って、薄膜太陽電池において絶縁耐圧特性を確保するために、集積化の際にパターニングに用いるレーザー光や機械的な方法を用いて、太陽電池の活性領域とフレームに電気的に接触する可能性のある周辺部とを電気的に分離するために透光性絶縁基板の一方の主面上において集積型薄膜太陽電池の周囲全周にわたって、透明電極層、薄膜光電変換ユニット、及び金属電極層が存在しない絶縁領域を形成する手法が、例えば、特許文献1、2に開示されている。
特開2000−150944号公報 特開2004−140046号公報
Such an integrated thin film solar cell has a transparent electrode film, a thin film photoelectric conversion unit including a photoelectric conversion layer composed of a plurality of semiconductor layers, and a thin film such as a metal electrode film. These films are generally formed by a gas phase reaction, and in this case, the active region and other parts that become an integrated thin-film solar cell are formed by sequentially repeating patterning using laser light or the like. Is difficult to separate. In some cases, these films may wrap around to the back side of the substrate. Due to these reasons, in the worst case, for example, when the frame is attached, the active portion and the frame are at the same potential. Therefore, in order to ensure withstand voltage characteristics in the thin film solar cell, there is a possibility that the active region of the solar cell and the frame may be electrically contacted by using a laser beam or a mechanical method used for patterning at the time of integration. A transparent electrode layer, a thin film photoelectric conversion unit, and a metal electrode layer are present on one main surface of the translucent insulating substrate over the entire circumference of the integrated thin film solar cell to electrically isolate a peripheral portion For example, Patent Documents 1 and 2 disclose a method of forming an insulating region that is not used.
JP 2000-150944 A Japanese Patent Laid-Open No. 2004-140046

しかしながら、これらの手法を用いて作製した太陽電池モジュールであっても、実際に屋外に設置した後には絶縁耐圧性能の低下を生じるものがあった。すなわち、屋外に設置した後の太陽電池モジュールの中には、空気中に含まれる水分が太陽電池モジュールの端部より太陽電池モジュール内に浸入し、その水分を介して太陽電池の活性領域とフレームとの間が電気的に接触するものが観察された。   However, even solar cell modules fabricated using these methods have been found to have reduced dielectric strength performance after actually being installed outdoors. That is, in the solar cell module after being installed outdoors, moisture contained in the air enters the solar cell module from the end of the solar cell module, and the solar cell active region and the frame are inserted through the moisture. An electrical contact between the two was observed.

本発明はこのような課題に鑑みなわれたものであり、発電活性領域と周辺部、ひいてはフレームとの絶縁が、長期にわたり低下することのない集積型薄膜太陽電池モジュールを提供することを目的としている。   The present invention has been made in view of such problems, and an object of the present invention is to provide an integrated thin film solar cell module in which insulation between the power generation active region and the peripheral portion, and thus the frame, does not deteriorate over a long period of time. Yes.

かかる状況を鑑み、本発明者はこれらの課題を解決するために鋭意研究開発を重ねた結果、次のような発明が極めて効果的であることを見いだした。   In view of this situation, as a result of intensive research and development to solve these problems, the present inventors have found that the following invention is extremely effective.

すなわち、請求項1に記載の発明は、方形の透光性絶縁基板の一方の主面上に直接形成された概ね方形の集積型薄膜太陽電池を含む集積型薄膜太陽電池モジュールであって、該集積型薄膜太陽電池は、該透光性絶縁基板上に順に積層された、透明電極層、薄膜光電変換ユニット、及び金属電極層が複数の薄膜太陽電池セルを形成するように実質的に直線状で互いに平行な複数の分割線によって分割されており、かつ、該複数の薄膜太陽電池セルが電気的に直列接続されてなり、該一方の主面上に該集積型薄膜太陽電池の周囲全周にわたって該透明電極層、該薄膜光電変換ユニット、及び該金属電極層が存在しない絶縁領域が存在し、かつ、該概ね方形の集積型薄膜太陽電池の角部に角部分離絶縁線があり、当該角部分離絶縁線は、該透明電極層、該薄膜光電変換ユニット、及び該金属電極層が存在しないことを特徴とする集積型薄膜太陽電池モジュールである。このような本発明の集積型薄膜太陽電池モジュールでは、方形の太陽電池モジュールの角部において、集積型薄膜太陽電池の電位差が大きくなる正負の電極部分に対応する領域の端部でも、単位面積あたりの端部の割合が大きくならないので、太陽電池モジュールの角部からの水分の浸入が効果的に防止でき、また、この電極部分に対応する領域が直角のような鋭利な形状をしていないので、電界の集中がなく、絶縁耐圧性能低下を効果的に防止できる。 That is, the invention described in claim 1 is an integrated thin film solar cell module including a substantially rectangular integrated thin film solar cell directly formed on one main surface of a rectangular translucent insulating substrate, The integrated thin-film solar cell is substantially linear so that the transparent electrode layer, the thin-film photoelectric conversion unit, and the metal electrode layer, which are sequentially stacked on the translucent insulating substrate, form a plurality of thin-film solar cells. Are divided by a plurality of dividing lines parallel to each other, and the plurality of thin film solar cells are electrically connected in series, and the entire circumference of the integrated thin film solar cell is formed on the one main surface. The transparent electrode layer, the thin-film photoelectric conversion unit, and the insulating region where the metal electrode layer does not exist, and there are corner-isolated insulating wires at the corners of the generally rectangular integrated thin-film solar cell, The corner separation insulated wire is the transparent electrode. , An integrated-type thin film solar cell module, wherein the thin film photoelectric conversion unit, and that the metal electrode layer is not present. In such an integrated thin film solar cell module of the present invention, at the corners of the rectangular solar cell module, even at the end of the region corresponding to the positive and negative electrode portions where the potential difference of the integrated thin film solar cell is large, per unit area Since the ratio of the end portion of the solar cell module does not increase, it is possible to effectively prevent moisture from entering from the corner of the solar cell module, and the region corresponding to this electrode portion is not a sharp shape like a right angle. In addition, there is no concentration of electric field, and it is possible to effectively prevent a decrease in dielectric strength performance.

また、請求項1に記載の発明において、前記電気的に直列接続された複数の薄膜太陽電池セルの端部の電極部分に対応する領域は、前記分割線を一辺とする平行な対向する2辺の内の一辺が長く、当該長い方の一辺が複数の薄膜太陽電池セル側であっても良い(請求項2)Further, in the invention according to claim 1, the region corresponding to the electrode part at the end of the plurality of electrically connected thin film solar cells has two parallel opposing sides with the dividing line as one side. one side longer among, the longer side of which may me multiple thin-film solar cell side der (claim 2).

また、請求項1又は2に記載の発明において、該概ね方形の集積型薄膜太陽電池の集積した個別セルの両端部たる最も電位差が大きくなる正負の電極部分に対応する領域は、前記分割線を一辺とする平行な対向する2辺の内の一辺が長く平行な対向する2辺が基板の辺に対して45度の直線又は円形の線で結ばれていて、概ね台形形状であり、該台形形状の底辺が該複数の薄膜太陽電池セル側であっても良い(請求項3)Further, in the invention according to claim 1 or 2, a region corresponding to the positive and negative electrode portions having the largest potential difference at both ends of the individual cells integrated in the substantially square integrated thin film solar cell is defined by the dividing line. One of the two parallel opposing sides that are parallel to each other is long, and the two parallel opposing sides are connected by a 45-degree straight line or a circular line with respect to the side of the substrate, and is generally trapezoidal. bottom shape may me thin film solar cell side der the plurality of (claim 3).

これらのような本発明の集積型薄膜太陽電池モジュールは、さらに、前記概ね方形の集積型薄膜太陽電池の4隅の部分に前記集積型薄膜太陽電池から電気的に絶縁された、概ね三角形状の少なくとも前記透明電極層が存在する絶縁緩衝領域が存在することを特徴とする集積型薄膜太陽電池モジュールとなるので、より効果的に電極部分での電界集中が緩和されるのでモジュールの絶縁性の長期信頼性が向上する。   The integrated thin film solar cell module of the present invention as described above is further generally triangular in shape, which is electrically insulated from the integrated thin film solar cell at the four corners of the generally square integrated thin film solar cell. Since the integrated thin film solar cell module is characterized in that there is an insulating buffer region in which at least the transparent electrode layer exists, the electric field concentration at the electrode portion is more effectively mitigated, so that the long-term insulation of the module Reliability is improved.

以上のような構成により、本発明の集積型薄膜太陽電池モジュールでは、方形の太陽電池モジュールの角部において、集積型薄膜太陽電池の電位差が大きくなる正負の電極部分に対応する領域の端部でも、単位面積あたりの端部の割合が大きくならないので、太陽電池モジュールの角部からの水分の浸入が効果的に防止でき、また、この電極部分に対応する領域が直角のような鋭利な形状をしていないので、電界の集中がなく、絶縁耐圧性能低下を効果的に防止できる。   With the configuration as described above, in the integrated thin film solar cell module of the present invention, at the corners of the rectangular solar cell module, even at the end of the region corresponding to the positive and negative electrode portions where the potential difference of the integrated thin film solar cell increases. Since the ratio of the edge per unit area does not increase, it is possible to effectively prevent moisture from entering from the corners of the solar cell module, and the area corresponding to this electrode part has a sharp shape such as a right angle. As a result, there is no concentration of electric field, and it is possible to effectively prevent a decrease in dielectric strength performance.

本発明者らは、透光性絶縁基板の一方の主面上において集積型薄膜太陽電池の周囲全周にわたって、透明電極層、薄膜光電変換ユニット、及び金属電極層が存在しない絶縁領域を形成した太陽電池モジュールであっても、屋外に設置した後には、空気中に含まれる水分が太陽電池モジュールの端部より太陽電池モジュール内に浸入し、その水分を介して太陽電池の活性領域とフレームとの間が電気的に接触するものがある理由につき考察し以下の結論を得た。   The inventors of the present invention formed an insulating region where the transparent electrode layer, the thin film photoelectric conversion unit, and the metal electrode layer do not exist on the entire circumference of the integrated thin film solar cell on one main surface of the translucent insulating substrate. Even if it is a solar cell module, after being installed outdoors, moisture contained in the air penetrates into the solar cell module from the end of the solar cell module, and through the moisture, the active area of the solar cell and the frame The reason why there is an electrical contact between the two was considered and the following conclusions were obtained.

まず、太陽電池モジュールは多くの場合、方形つまり矩形の角部を有する形状であり、この場合の水分は単位面積あたりの端部の割合が大きくなっている太陽電池モジュールの角部から多く浸入してくることが見出された。   First, solar cell modules are often square or rectangular in shape, and in this case, moisture penetrates a lot from the corners of the solar cell module where the ratio of the edges per unit area is large. It was found to come.

またレーザー光や機械的な方法を用いて太陽電池周辺の一部を取り除くことで前記絶縁領域を形成する場合に、その除去は太陽電池モジュールの辺部にほぼ平行になされており、太陽電池の角部においてその除去部分はほぼ直交していることが問題であることを発見した。つまり、このように太陽電池の一部を除去した部分が直角のような鋭利な形状をしている箇所では電界が集中し大きくなり、絶縁耐圧性能低下の危険性が増すのである。   In addition, when the insulating region is formed by removing a part of the periphery of the solar cell using a laser beam or a mechanical method, the removal is almost parallel to the side of the solar cell module. It has been found that the problem is that the removed parts are almost orthogonal at the corners. In other words, the electric field concentrates and increases in a portion where the portion from which the solar cell is partially removed has a sharp shape such as a right angle, and the risk of deterioration of the withstand voltage performance increases.

このように、先の水分の浸入が角部から浸入しやすいこと、また電界は角部において大きくなることとが相俟って、設置した太陽電池モジュールの絶縁耐圧性能の低下は太陽電池の角部において顕著であった。   As described above, in combination with the fact that the previous moisture penetration easily enters from the corners and the electric field increases at the corners, the deterioration of the dielectric strength performance of the installed solar cell module is caused by the corners of the solar cells. It was remarkable in the part.

このように基板角部から水が浸入しやすいことに対し、周囲の透明電極層、光半導体層および金属層の除去部分を基板端部から十分に距離をおいて形成することも、水分浸入による絶縁耐圧性能低下を回避する、あるいは低下するまでの時間を長くする方法の一つであるが、基板端と除去部分の距離を離した場合には、太陽電池の活性領域、すなわち発電部面積が小さくなり、基板1枚当たりの出力を減少することになり、好ましくない。   In this way, water can easily enter from the corners of the substrate, whereas the peripheral transparent electrode layer, the optical semiconductor layer, and the metal layer can be removed at a sufficient distance from the edge of the substrate. This is one of the methods for avoiding the breakdown voltage performance degradation or extending the time until the degradation, but when the distance between the substrate edge and the removed portion is increased, the active area of the solar cell, that is, the power generation area is increased. It becomes smaller and the output per substrate is decreased, which is not preferable.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の1つの実施形態を示す集積型薄膜太陽電池モジュールの角部近傍の平面図である。図2は、従来の集積型薄膜太陽電池モジュールの角部近傍の平面図である。また、図3は、太陽電池モジュールの断面を示している。   FIG. 1 is a plan view of the vicinity of a corner portion of an integrated thin film solar cell module showing one embodiment of the present invention. FIG. 2 is a plan view of the vicinity of a corner of a conventional integrated thin film solar cell module. Moreover, FIG. 3 has shown the cross section of the solar cell module.

まず、図3について説明する。図3に示す構成、断面構造は、本発明による太陽電池モジュールも比較例である従来のものも同等である。図3において3は透光性絶縁基板、4は透明電極層、6は薄膜光電変換ユニット、8は金属電極層であり、10は透光性絶縁基板3周辺においてこれら透明電極層4、薄膜光電変換ユニット6および金属電極層8を光ビームにより除去した部分、11は更にその外側を機械的エッチングにより透明電極層4、薄膜光電変換ユニット6および金属電極層8を除去した絶縁領域を示している。13は封止樹脂、14は裏面保護シートである。   First, FIG. 3 will be described. The configuration and cross-sectional structure shown in FIG. 3 are the same for the solar cell module according to the present invention and the conventional one as a comparative example. In FIG. 3, 3 is a translucent insulating substrate, 4 is a transparent electrode layer, 6 is a thin film photoelectric conversion unit, 8 is a metal electrode layer, and 10 is the transparent electrode layer 4 and the thin film photoelectric layer around the translucent insulating substrate 3. A portion where the conversion unit 6 and the metal electrode layer 8 are removed by a light beam, and 11 an insulating region where the transparent electrode layer 4, the thin film photoelectric conversion unit 6 and the metal electrode layer 8 are further removed by mechanical etching. . 13 is a sealing resin, and 14 is a back surface protection sheet.

通常薄膜光電変換ユニット6はp型層とn型層でサンドイッチされたi型層からなる。本発明は、薄膜光電変換ユニット6は複数の薄膜光電変換ユニットを積層したものにも適用可能である。例えば、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットからなるハイブリッド型としても良い。   Usually, the thin film photoelectric conversion unit 6 comprises an i-type layer sandwiched between a p-type layer and an n-type layer. The present invention can also be applied to the thin film photoelectric conversion unit 6 in which a plurality of thin film photoelectric conversion units are stacked. For example, a hybrid type composed of an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit may be used.

図1は本発明の集積型薄膜太陽電池モジュールの1つの実施形態を示す角部近傍の平面図である。   FIG. 1 is a plan view in the vicinity of a corner portion showing one embodiment of an integrated thin film solar cell module of the present invention.

図1に示す1は本発明の基板角部における角部分離絶縁線であり、この角部分離絶縁線1、及び分離絶縁線10では透明電極層4、薄膜光電変換ユニット6および金属電極層8が除去されている。分離絶縁線10は、角部において概ね直交しており、角部分離絶縁線1は、辺Aと辺Bと約45度の角度で形成されている。   Reference numeral 1 in FIG. 1 denotes a corner separation insulating wire at the corner of the substrate of the present invention. In the corner separation insulating wire 1 and the separation insulating wire 10, the transparent electrode layer 4, the thin film photoelectric conversion unit 6, and the metal electrode layer 8 are used. Has been removed. The separation insulating wires 10 are substantially orthogonal at the corners, and the corner separation insulating wires 1 are formed at an angle of about 45 degrees with the sides A and B.

この角部分離絶縁線1を追加して形成することにより、本発明の図1の集積型薄膜太陽電池モジュールにおいて、電力取り出し電極が取り付けられる正負の集積型薄膜太陽電池両端に位置する電極部分に対応する領域17は、複数の薄膜太陽電池セル側を底辺とする概ね台形形状となっており、これにより集積型薄膜太陽電池モジュール2の最も電位差が大きくなる電極部分に対応する領域17において、直角のような鋭利な形状をしている箇所がなくなるので、電界が分散し、絶縁耐圧性能低下の危険性が減るのである。ここで台形形状の底辺とは、台形の平行な対向する2辺において、長い方の1辺である。   In the integrated thin film solar cell module of FIG. 1 of the present invention, by forming the corner isolation insulating wire 1 in addition, the electrode portions located at both ends of the positive and negative integrated thin film solar cells to which the power extraction electrodes are attached are formed. The corresponding region 17 has a substantially trapezoidal shape with the plurality of thin film solar cell sides as the base, and thereby, in the region 17 corresponding to the electrode portion where the potential difference of the integrated thin film solar cell module 2 becomes the largest, Since there is no portion having such a sharp shape as described above, the electric field is dispersed, and the risk of lowering the withstand voltage performance is reduced. Here, the bottom of the trapezoidal shape is one of the longer sides of two opposite sides of the trapezoid that are parallel to each other.

また、この角部分離絶縁線1を追加して形成することにより、集積型薄膜太陽電池の4隅の部分において、絶縁領域11と前記台形形状の電極部分に対応する領域17との間に、集積型薄膜太陽電池から電気的に絶縁された、概ね三角形状の少なくとも前記透明電極層が存在する絶縁緩衝領域16が形成されている。   In addition, by additionally forming the corner separation insulating wire 1, at the four corner portions of the integrated thin film solar cell, between the insulating region 11 and the region 17 corresponding to the trapezoidal electrode portion, An insulating buffer region 16 that is electrically insulated from the integrated thin-film solar cell and has at least the transparent electrode layer having a generally triangular shape is formed.

本発明の角部分離絶縁線1は、図1のように辺Aと辺Bとに対して45度の角度で形成される場合に限らず、また他の例として図4に示すような4分の1円形状でも何ら問題ない。また、図6に示すように角部分離絶縁線1とほぼ同じ形状で、その外側を機械的にエッチングして集積型薄膜太陽電池の周囲全周にわたって透明電極層4、薄膜光電変換ユニット6、及び金属電極層8が存在しない絶縁領域11を形成してもよい。   The corner portion isolation insulated wire 1 of the present invention is not limited to the case where it is formed at an angle of 45 degrees with respect to the side A and the side B as shown in FIG. There is no problem with a 1-minute circle. Further, as shown in FIG. 6, the transparent electrode layer 4, the thin film photoelectric conversion unit 6, which has almost the same shape as the corner separation insulating wire 1, and is mechanically etched on the outer periphery around the entire periphery of the integrated thin film solar cell, Further, the insulating region 11 where the metal electrode layer 8 does not exist may be formed.

このような絶縁領域11は、好ましくは100μm以下の微粒子の吹きつけによる機械的なエッチング法により形成され、その幅は絶縁性の確保と加工の容易さ、及び活性領域の透光性絶縁基板3上での面積確保の関係から、0.5mm〜10mm、好ましくは2mm〜6mmで形成される。   Such an insulating region 11 is preferably formed by a mechanical etching method by spraying fine particles of 100 μm or less, and its width is sufficient to ensure insulation and easy processing, and the translucent insulating substrate 3 in the active region. From the relation of securing the area above, it is formed with a thickness of 0.5 mm to 10 mm, preferably 2 mm to 6 mm.

図2は、従来の集積型薄膜太陽電池モジュールの角部近傍の平面図である。この従来の集積型薄膜太陽電池モジュールの角部では、基板周囲の透明電極層4、薄膜光電変換ユニット6、および金属層8の除去部分である分離絶縁線10は辺に沿って平行に形成され、基板角部において直交しているため、電極部分に対応する領域17の角部が直角のような鋭利な形状をしており電界が集中し大きくなり易く、絶縁耐圧性能低下の危険性が大きい。   FIG. 2 is a plan view of the vicinity of a corner of a conventional integrated thin film solar cell module. At the corners of this conventional integrated thin film solar cell module, the transparent electrode layer 4 around the substrate, the thin film photoelectric conversion unit 6, and the separation insulating wire 10 that is the removed portion of the metal layer 8 are formed in parallel along the sides. Since the corners of the substrate are orthogonal to each other, the corners of the region 17 corresponding to the electrode portions have a sharp shape such as a right angle, the electric field tends to concentrate and become large, and there is a great risk of deterioration of the withstand voltage performance. .

このような角部分離絶縁線1、及び分離絶縁線10は、光ビームにより行うことが、集積化のためのパターニングと同様の工程で実施できることから好ましく、また、絶縁性の確保と加工の容易さの関係から、これらの分離絶縁線の線幅は0.05mm〜0.5mm、好ましくは0.1mm〜0.2mmで形成される。   It is preferable to perform the corner isolation insulating wire 1 and the isolation insulating wire 10 with a light beam because it can be performed in the same process as the patterning for integration, and ensuring insulation and easy processing. In view of the relationship, the widths of these separated insulated wires are 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.2 mm.

以下、実施例を用いて本発明を具体的に説明する。本発明は以下に示す実施例に限定されない。   Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to the following examples.

(実施例1)
図5は、本発明の一実施例に係る集積型薄膜太陽電池モジュールを太陽光の入射側である他方の主面から見た全体図である。図5に示す集積型薄膜太陽電池モジュールの製造方法を図3を用いて説明する。
Example 1
FIG. 5 is an overall view of an integrated thin film solar cell module according to one embodiment of the present invention as viewed from the other main surface on the sunlight incident side. A method of manufacturing the integrated thin film solar cell module shown in FIG. 5 will be described with reference to FIG.

まず、透光性絶縁基板3として面積91cm×91cm、厚さ5mmのソーダライムガラスからなる方形のガラス基板3を用い、この基板3の一方の主面全面上に、熱CVD法により酸化錫膜(厚さ8000オングストローム)を形成し、複数の薄膜太陽電池セルを集積化つまり電気的に直列接続するため、この酸化錫膜4をレーザースクライバーでパターニングし、ガラス側の透明電極層4とした。なお、参照符号5は、透明電極スクライブ線を示す。   First, a rectangular glass substrate 3 made of soda lime glass having an area of 91 cm × 91 cm and a thickness of 5 mm is used as the translucent insulating substrate 3, and a tin oxide film is formed on the entire main surface of one of the substrates 3 by thermal CVD. In order to form (thickness 8000 angstroms) and to integrate a plurality of thin film solar cells, that is, to electrically connect them in series, this tin oxide film 4 was patterned with a laser scriber to obtain a transparent electrode layer 4 on the glass side. Reference numeral 5 indicates a transparent electrode scribe line.

パターニングは、ガラス基板3をX−Yテーブル上にセットし、QスイッチYAGレーザーを用いて行った。レーザーの運転条件は、第2高調波532nmを用い、パルス幅3kHz、平均出力500nw、パルス幅10nsecであった。分離幅は50μm、ストリング(個別太陽電池)の幅は約10mmである。   Patterning was performed using a Q-switched YAG laser with the glass substrate 3 set on an XY table. The operating conditions of the laser were a second harmonic of 532 nm, a pulse width of 3 kHz, an average output of 500 nw, and a pulse width of 10 nsec. The separation width is 50 μm, and the width of the string (individual solar cell) is about 10 mm.

このようにしてパターニングされた酸化錫膜4の上に、分離形成型装置のプラズマCVD室内において、薄膜光電変換ユニット6をプラズマCVD法により形成した。即ち、200℃(摂氏200度)で、p型a−SiC:H半導体層、i型a−Si:H半導体層、およびn型微結晶Si:H半導体層を順次堆積して、pin接合を構成する薄膜光電変換ユニット6として積層a―Si層6を形成した。各層を形成するためには、流量がそれぞれ100sccm、500sccm、100sccmのSiH4(SiH4)を用い、p型半導体層とn型半導体層を形成する場合にはそれぞれ1000ppmの水素希釈のB2H6(B26)とPH3(PH3)を2000sccm混入させた。 On the tin oxide film 4 thus patterned, the thin film photoelectric conversion unit 6 was formed by the plasma CVD method in the plasma CVD chamber of the separation forming apparatus. That is, a p-type a-SiC: H semiconductor layer, an i-type a-Si: H semiconductor layer, and an n-type microcrystalline Si: H semiconductor layer are sequentially deposited at 200 ° C. (200 degrees Celsius) to form a pin junction. A laminated a-Si layer 6 was formed as the thin film photoelectric conversion unit 6 to be configured. In order to form each layer, SiH 4 (SiH 4 ) having flow rates of 100 sccm, 500 sccm, and 100 sccm, respectively, is used. When forming a p-type semiconductor layer and an n-type semiconductor layer, B2H6 (B 2 H 6 ) and PH 3 (PH 3 ) were mixed at 2000 sccm.

また、p型半導体層の形成には、30sccmのCH4(CH4)も混入させることにより、炭素合金化を行った。各層を形成するための投入パワーは、それぞれ200W、500W、3kWであり、反応圧力はそれぞれ1torr、0.5torr、1torrであった。形成した層の膜厚は、製膜時間からそれぞれ150オングストローム、3200オングストローム、300オングストロームと推定される。 Further, the formation of p-type semiconductor layer, 30 sccm of CH4 (CH 4) by also be mixed and subjected to carbon alloying. The input power for forming each layer was 200 W, 500 W, and 3 kW, respectively, and the reaction pressure was 1 torr, 0.5 torr, and 1 torr, respectively. The film thicknesses of the formed layers are estimated to be 150 angstroms, 3200 angstroms, and 300 angstroms, respectively, from the film forming time.

このようにして各層の製膜を行った後、ガラス基板3をX−Yテーブル上にセットして、QスイッチYAGレーザーを用い、a―Si層6を、酸化錫層4のパターニング位置から図3における右側に100μmづつずらしてパターニングを行った。レーザーの運転条件は、第2高調波532nmを用い、パルス幅3kHz、平均出力500mw、パルス幅10nsecであった。なお、焦点位置をずらすこととで、分離幅を100μmにした。参照符号7は、薄膜光電変換ユニットスクライブ線を示す。   After forming each layer in this way, the glass substrate 3 is set on an XY table, and the a-Si layer 6 is viewed from the patterning position of the tin oxide layer 4 using a Q-switched YAG laser. The patterning was performed while shifting by 100 μm to the right side in FIG. The operating conditions of the laser were a second harmonic of 532 nm, a pulse width of 3 kHz, an average output of 500 mw, and a pulse width of 10 nsec. The separation width was set to 100 μm by shifting the focal position. Reference numeral 7 denotes a thin film photoelectric conversion unit scribe line.

その後、マグネトロンスパッタ法により、RF放電で酸化亜鉛ターゲットを用いて、パターニングされたa―Si層6上に、1000オングストロームの膜厚の酸化亜鉛層(図示せず)を形成した。スパッタ条件は、アルゴンガス圧力2mtorr、放電パワー200W、製膜温度200℃(摂氏200度)であった。   Thereafter, a zinc oxide layer (not shown) having a thickness of 1000 angstroms was formed on the patterned a-Si layer 6 by a magnetron sputtering method using a zinc oxide target by RF discharge. The sputtering conditions were an argon gas pressure of 2 mtorr, a discharge power of 200 W, and a film forming temperature of 200 ° C. (200 degrees Celsius).

次に、酸化亜鉛層上に、同じマグネトロンスパッタ装置の銀ターゲットを用いることにより、直流放電および室温で、2000オングストロームの膜厚の金属電極層8を形成した。スパッタ条件は、アルゴンガス圧力2mtorr、放電パワー200Wであった。   Next, a metal electrode layer 8 having a thickness of 2000 angstroms was formed on the zinc oxide layer by direct current discharge and room temperature by using a silver target of the same magnetron sputtering apparatus. The sputtering conditions were an argon gas pressure of 2 mtorr and a discharge power of 200 W.

最後に、マグネトロンスパッタ装置からガラス基板3を取り出して、X−Yテーブル上にセットして、QスイッチYAGレーザーを用いて銀層8およびa―Si層6をパターニングして、半導体スクライブ線7から100μm離れた位置に金属電極層スクライブ線9を形成した。レーザーの運転条件は、a―Si層6の加工条件と全く同じであった。分離幅は70μm、ストリング幅は約10mmである。   Finally, the glass substrate 3 is taken out from the magnetron sputtering apparatus, set on an XY table, the silver layer 8 and the a-Si layer 6 are patterned using a Q-switched YAG laser, and the semiconductor scribe line 7 is used. Metal electrode layer scribe lines 9 were formed at positions 100 μm apart. The operating conditions of the laser were exactly the same as the processing conditions for the a-Si layer 6. The separation width is 70 μm and the string width is about 10 mm.

これらのレーザー光照射によるパターニングと薄膜の堆積により、実質的に直線状で互いに平行な分割線である透明電極スクライブ線5、及び金属電極層スクライブ線9と、これらの分割線に平行でその中間に位置する接続溝である薄膜光電変換ユニットスクライブ線7に埋め込まれた金属電極層8とにより、電気的に直列接続された複数の薄膜太陽電池セルからなる方形の集積型薄膜太陽電池が形成された。   By patterning by laser beam irradiation and deposition of a thin film, the transparent electrode scribe line 5 and the metal electrode layer scribe line 9 which are substantially straight and parallel to each other, and the intermediate and parallel to these dividing lines. A rectangular integrated thin-film solar cell comprising a plurality of thin-film solar cells electrically connected in series is formed by the metal electrode layer 8 embedded in the thin-film photoelectric conversion unit scribe line 7 which is a connection groove located at It was.

次に、周辺部と太陽電池活性部を電気的に分離、絶縁するために、基板の周囲端部から5mmの位置に全周にわたり、レーザーによるパターニングを施し、分離絶縁線10を形成した。分離絶縁線の幅は150μmで酸化錫膜4の分離部5を包括するように加工した。   Next, in order to electrically isolate and insulate the peripheral portion and the solar cell active portion, patterning with a laser was performed over the entire circumference at a position 5 mm from the peripheral edge of the substrate to form an isolation insulating wire 10. The isolation insulating line had a width of 150 μm and was processed so as to include the isolation part 5 of the tin oxide film 4.

さらに、その後際、レーザー装置動作制御プラグラムにより、前記分離絶縁線10と同じ線幅で、図1に示すように基板の4隅の各角部において基板の辺に対して45度の角度で角部分離絶縁線1を形成した。   Further, thereafter, according to a laser device operation control program, each of the four corners of the substrate has an angle of 45 degrees with respect to the side of the substrate as shown in FIG. A partial isolation insulated wire 1 was formed.

これにより、集積型薄膜太陽電池の4隅の部分において、絶縁領域11と電極部分に対応する領域17との間に集積型薄膜太陽電池から電気的に絶縁された三角形状の少なくとも透明電極層4が存在する絶縁緩衝領域16が形成された。   Accordingly, at least four transparent electrode layers 4 in a triangular shape electrically insulated from the integrated thin film solar cell between the insulating region 11 and the region 17 corresponding to the electrode portion at the four corner portions of the integrated thin film solar cell. An insulating buffer region 16 in which there is present was formed.

次に、この分離絶縁線の外側0.5mmから外側の部分を全周にわたって、100μm以下の微粒子の吹きつけによる機械的なエッチング法を用いて、金属電極層8、酸化亜鉛層、a−Si層6および酸化錫膜4の膜厚全体を除去するとともに、ガラス基板3の表面部分を除去し、機械エッチングによる絶縁領域11を形成した。   Next, the metal electrode layer 8, the zinc oxide layer, the a-Si are formed by using a mechanical etching method by spraying fine particles of 100 μm or less over the entire circumference from the outer 0.5 mm to the outer part of the isolation insulated wire. The entire film thickness of the layer 6 and the tin oxide film 4 was removed, and the surface portion of the glass substrate 3 was removed to form an insulating region 11 by mechanical etching.

その後、集積した個別セルの両端部の電極部分に対応する領域17に取り出し電極12としてはんだメッキ銅箔からなるバスバー電極12を形成して、さらに出力電極取り出しのための配線を行った。このバスバー電極12はストリングに平行となっている。   Thereafter, bus bar electrodes 12 made of solder-plated copper foil were formed as the extraction electrodes 12 in the regions 17 corresponding to the electrode portions at both ends of the integrated individual cells, and wiring for extracting the output electrodes was further performed. The bus bar electrode 12 is parallel to the string.

以上のように構成された、透光性絶縁基板3、及びその上の集積型薄膜太陽電池をモジュール化して、集積型薄膜太陽電池モジュール2とするために、封止樹脂13であるEVAシート13とフッ素系フィルムからなる裏面保護シート14を、真空ラミネーターを用いて被覆して封止し、裏面保護シート14側に外部への出力取出用端子が付いた端子箱と、基板周囲部にアルミ製のフレーム15を取り付けた。   In order to modularize the translucent insulating substrate 3 and the integrated thin film solar cell formed thereon as described above into an integrated thin film solar cell module 2, the EVA sheet 13 which is the sealing resin 13 is used. And a back surface protection sheet 14 made of a fluorine-based film are covered and sealed using a vacuum laminator, and a terminal box having an output output terminal on the back surface protection sheet 14 side and an aluminum substrate around the substrate The frame 15 was attached.

このようにして得た本発明による集積型薄膜太陽電池モジュール2について、100mW/cm2(mW/cm2)のAM1.5ソーラーシミュレーターを用いて、室温で電流電圧特性を測定した。最大出力で74.2Wであった。 The integrated thin film solar cell module 2 according to the present invention thus obtained was measured for current-voltage characteristics at room temperature using an AM1.5 solar simulator of 100 mW / cm 2 (mW / cm 2 ). The maximum output was 74.2W.

次に、本発明による集積型薄膜太陽電池モジュール2の下端側一辺全部を水深約20mmの水槽に入れ、取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に、1000Vの電圧を印加して抵抗値を測定した。その結果、絶縁抵抗は2000MΩ以上であった。   Next, the entire bottom side of the integrated thin film solar cell module 2 according to the present invention is placed in a water tank having a water depth of about 20 mm, and the terminal between the positive and negative electrodes of the output electrode taken out and the aluminum frame 15 is electrically short-circuited. The resistance value was measured by applying a voltage of 1000V. As a result, the insulation resistance was 2000 MΩ or more.

また、本発明による集積型薄膜太陽電池モジュール2を発電状態にて屋外に90日間曝露させた後、先と同様に下端側一辺全部を水深約20mmの水槽に入れ、取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に1000Vの電圧を印加して抵抗値を測定した結果、曝露前と変わらず2000MΩ以上の抵抗値を示した。   Further, after the integrated thin film solar cell module 2 according to the present invention was exposed outdoors for 90 days in a power generation state, the entire bottom side was placed in a water tank having a water depth of about 20 mm as before, and the positive and negative electrodes of the output electrode taken out were taken out. As a result of measuring the resistance value by applying a voltage of 1000 V between the terminal and the aluminum frame 15 that were electrically short-circuited, the resistance value was 2000 MΩ or more as before the exposure.

更に、促進試験として別に作製した本発明による集積型薄膜太陽電池モジュール2のほぼ下側半分の面積を水槽に入れ、50℃(摂氏50度)の水中に30日間浸した後、上述したように抵抗値を測定したが、本発明による集積型薄膜太陽電池モジュール2では1900MΩを示し、十分な絶縁耐圧性能であることを確認した。   Further, the area of the substantially lower half of the integrated thin film solar cell module 2 according to the present invention separately prepared as an accelerated test is put in a water tank and immersed in water at 50 ° C. (50 degrees Celsius) for 30 days, as described above. Although the resistance value was measured, the integrated thin film solar cell module 2 according to the present invention showed 1900 MΩ, and it was confirmed that the dielectric strength performance was sufficient.

(比較例1)
比較のため、角部分離絶縁線1を形成しなかったこと以外は実施例1と同様にして、比較例1として図2に示すような従来の集積型薄膜太陽電池モジュール2を作製し、同様の試験を実施した。つまり、この比較例1の太陽電池モジュール2においては、基板角部において直交する分離絶縁線10により、電極部分に対応する領域17が規定されているようにした。
(Comparative Example 1)
For comparison, a conventional integrated thin film solar cell module 2 as shown in FIG. 2 was produced as Comparative Example 1 in the same manner as in Example 1 except that the corner portion isolation insulated wire 1 was not formed. The test was conducted. That is, in the solar cell module 2 of Comparative Example 1, the region 17 corresponding to the electrode portion is defined by the separation insulating wire 10 orthogonal to the corner portion of the substrate.

比較例1の太陽電池モジュール2の出力は74.4Wであり、つまり、実施例1と比較例1との太陽電池モジュール2では発電電力に差は見られなかった。また、この比較例1の太陽電池モジュール2の下端側一辺全部を水深約20mmの水槽に入れ、取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に、1000Vの電圧を印加して抵抗値を測定した結果は、2000MΩ以上であり実施例1の太陽電池モジュール2と同等であった。   The output of the solar cell module 2 of Comparative Example 1 was 74.4 W, that is, no difference was found in the generated power in the solar cell module 2 of Example 1 and Comparative Example 1. Further, the entire one side of the lower end side of the solar cell module 2 of Comparative Example 1 is put in a water tank having a water depth of about 20 mm, and between the terminal and the aluminum frame 15 which are electrically short-circuited between the positive and negative electrodes of the output electrode taken out, The result of measuring the resistance value by applying a voltage of 1000 V was 2000 MΩ or more, which was equivalent to the solar cell module 2 of Example 1.

しかしながら、比較例1の太陽電池モジュール2を発電状態にて屋外に90日間曝露した後、同様に絶縁抵抗を測定したところ、その値は830MΩであり、曝露前から大きく低下していた。また、実施例1と同様に比較例1の太陽電池モジュール2につき促進試験を実施し抵抗値を測定した結果、JISの規格は満足していたものの、320MΩと本発明の太陽電池モジュールの約6分の1まで抵抗値が低下し、実施例1と比べてかなり低い値であった。   However, after the solar cell module 2 of Comparative Example 1 was exposed outdoors for 90 days in a power generation state, the insulation resistance was measured in the same manner. As a result, the value was 830 MΩ, which was greatly reduced before the exposure. Further, as in Example 1, an accelerated test was performed on the solar cell module 2 of Comparative Example 1 and the resistance value was measured. As a result, although JIS standards were satisfied, 320 MΩ, which is about 6 of the solar cell module of the present invention. The resistance value decreased to a factor of 1 and was considerably lower than that of Example 1.

(実施例2)
実施例1における角部分離絶縁線1の形状を、図4に示すように基板角部において4分の1円を形成させるようにしたこと以外は実施例1と全く同様にして、太陽電池モジュール2を作製し、同様の試験を行った。
(Example 2)
The solar cell module is exactly the same as in Example 1 except that the shape of the corner portion isolation insulated wire 1 in Example 1 is such that a quarter circle is formed at the corners of the substrate as shown in FIG. 2 was produced and the same test was conducted.

実施例2の太陽電池モジュール出力は73.6Wであり、実施例1の太陽電池モジュール出力とほとんど同じであった。次に、この実施例2の太陽電池モジュール2の下端側一辺全部を水深約20mmの水槽に入れ、取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に1000の電圧Vを印加して抵抗値を測定した結果、2000MΩ以上であった。   The solar cell module output of Example 2 was 73.6 W, which was almost the same as the solar cell module output of Example 1. Next, the entire one side of the lower end side of the solar cell module 2 of Example 2 is put in a water tank having a water depth of about 20 mm, and the terminal between the positive and negative electrodes of the taken out output electrode and the aluminum frame 15 is electrically short-circuited. As a result of applying a voltage V of 1000 and measuring the resistance value, it was 2000 MΩ or more.

また、この実施例2の太陽電池モジュール2を発電状態にて屋外に90日間曝露させた後、先と同様に下端側一辺全部を水深約20mmの水槽に入れ取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に1000Vの電圧を印加して抵抗値を測定した結果、曝露前と変わらず2000MΩ以上の抵抗値を示した。   In addition, after the solar cell module 2 of Example 2 was exposed outdoors for 90 days in a power generation state, the positive and negative electrodes of the output electrode taken out by putting all the sides on the lower end side into a water tank with a water depth of about 20 mm as before were electrically connected. As a result of measuring the resistance value by applying a voltage of 1000 V between the short-circuited terminal and the aluminum frame 15, the resistance value was 2000 MΩ or more as before the exposure.

更に、実施例1と同様に実施例2の太陽電池モジュール2につき促進試験を実施し抵抗値を測定したが、抵抗値は約1800MΩを示し、十分な絶縁耐圧性能であることを確認した。   Further, the solar cell module 2 of Example 2 was subjected to an acceleration test and the resistance value was measured in the same manner as in Example 1. The resistance value was about 1800 MΩ, and it was confirmed that the dielectric strength performance was sufficient.

(実施例3)
実施例1におけるレーザーによる分離絶縁線10を形成した後、この分離絶縁線の外側0.5mmから外側の部分を全周にわたって、100μm以下の微粒子の吹きつけによる機械的なエッチング法を用いて、金属電極層8、酸化亜鉛層、a−Si層6および酸化錫膜4の膜厚全体を除去するとともに、ガラス基板3の表面部分を除去し、絶縁領域11を形成した。実施例1と異なるのは基板角部における形状が図6に示すように、角部分離絶縁線1を電極部分に対応する領域17の外周部分にのみ設け、また、この角部分離絶縁線1、及び分離絶縁線10で形成される領域とほぼ同形でその外側に絶縁領域11を設け、つまり、基板4隅の角部において絶縁領域11を角部分離絶縁線1と同じく基板の辺に対してほぼ45度にしたところである。その後、実施例1と全く同様にして、太陽電池ジュール2を作製し、同様の試験を行った。
(Example 3)
After forming the separation insulating wire 10 by the laser in Example 1, using a mechanical etching method by spraying fine particles of 100 μm or less over the entire circumference from the outside 0.5 mm of this separation insulating wire, The entire thickness of the metal electrode layer 8, the zinc oxide layer, the a-Si layer 6 and the tin oxide film 4 was removed, and the surface portion of the glass substrate 3 was removed to form an insulating region 11. The difference from the first embodiment is that the corner separation insulating wire 1 is provided only at the outer peripheral portion of the region 17 corresponding to the electrode portion as shown in FIG. In addition, the insulating region 11 is provided on the outer side of the same shape as the region formed by the isolation insulating wire 10, that is, the insulating region 11 is formed at the corner of the corner of the substrate 4 with respect to the side of the substrate in the same manner as the corner isolation insulating wire 1 Is almost 45 degrees. Thereafter, a solar cell module 2 was prepared in the same manner as in Example 1, and the same test was performed.

実施例3の太陽電池モジュール出力は74.4Wであり、実施例1の太陽電池モジュール出力とほとんど同じであった。次に、この実施例3の太陽電池モジュール2の下端側一辺全部を水深約20mmの水槽に入れ、取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に1000の電圧Vを印加して抵抗値を測定した結果、2000MΩ以上であった。   The solar cell module output of Example 3 was 74.4 W, which was almost the same as the solar cell module output of Example 1. Next, the entire one side of the lower end side of the solar cell module 2 of Example 3 is put in a water tank having a water depth of about 20 mm, and the terminal between the positive and negative electrodes of the taken out output electrode and the aluminum frame 15 is electrically short-circuited. As a result of applying a voltage V of 1000 and measuring the resistance value, it was 2000 MΩ or more.

また、この実施例3の太陽電池モジュール2を発電状態にて屋外に90日間曝露させた後、先と同様に下端側一辺全部を水深約20mmの水槽に入れ取り出した出力電極の正負両極を電気的に短絡させた端子とアルミ製フレーム15との間に1000Vの電圧を印加して抵抗値を測定した結果、曝露前と変わらず2000MΩ以上の抵抗値を示した。   In addition, after the solar cell module 2 of Example 3 was exposed outdoors for 90 days in a power generation state, the positive and negative electrodes of the output electrode taken out from the entire bottom side were placed in a water tank with a water depth of about 20 mm as before. As a result of measuring the resistance value by applying a voltage of 1000 V between the short-circuited terminal and the aluminum frame 15, the resistance value was 2000 MΩ or more as before the exposure.

更に、実施例1と同様に実施例3の太陽電池モジュール2につき促進試験を実施し抵抗値を測定したが、抵抗値は2000MΩ以上を示し、実施例1あるいは2より大きな絶縁抵抗を示した。   Further, the solar cell module 2 of Example 3 was subjected to an acceleration test and the resistance value was measured in the same manner as in Example 1. The resistance value was 2000 MΩ or more, and the insulation resistance was larger than that of Example 1 or 2.

以上の結果から判るように、本発明における実施例1〜3の結果では、発電状態での90日間屋外曝露での絶縁抵抗の低下が見られず、また、促進試験である50℃(摂氏50度)の温水に太陽電池モジュールの下側ほぼ半分の面積を30日浸漬した後においてもほとんど低下は見られないのに対し、比較例ではJISの規格である100MΩ以上はクリアするものの、絶縁抵抗という意味においては各実施例に大きく見劣りする結果となった。   As can be seen from the above results, in the results of Examples 1 to 3 in the present invention, no decrease in insulation resistance was observed after 90 days of outdoor exposure in a power generation state, and the accelerated test was 50 ° C. (50 degrees Celsius). In contrast, the comparative example clears the JIS standard of 100 MΩ or more, but the insulation resistance is almost zero. In this sense, the results were greatly inferior to the respective examples.

本発明の1つの実施形態を示す集積型薄膜太陽電池モジュールの角部近傍の平面図。The top view of the corner | angular part vicinity of the integrated thin film solar cell module which shows one Embodiment of this invention. 従来の集積型薄膜太陽電池モジュールの角部近傍の平面図。The top view of the corner | angular part vicinity of the conventional integrated type thin film solar cell module. 実施例1、2および比較例1に係る集積型薄膜太陽電池モジュールの断面図。Sectional drawing of the integrated thin film solar cell module which concerns on Example 1, 2 and the comparative example 1. FIG. 本発明の集積型薄膜太陽電池モジュールの別の実施形態を示す角部近傍の平面図。The top view of the corner | angular vicinity which shows another embodiment of the integrated thin film solar cell module of this invention. 本発明のもう1つ別の実施形態を示す集積型薄膜太陽電池モジュールの全体平面図。The whole top view of the integrated type thin film solar cell module which shows another embodiment of this invention. 実本発明の太陽電池モジュールもう1つ別の実施形態を示す角部近傍の平面図。The top view near the corner | angular part which shows another embodiment of the solar cell module of this invention.

1 角部分離絶縁線
2 集積型薄膜太陽電池モジュール
3 透光性絶縁基板
4 透明電極層
5 透明電極スクライブ線
6 薄膜光電変換ユニット
7 薄膜光電変換ユニットスクライブ線
8 金属電極層
9 金属電極層スクライブ線
10 分離絶縁線
11 絶縁領域
12 取り出し電極
13 封止樹脂
14 裏面保護シート
15 フレーム
16 絶縁緩衝領域
17 電極部分に対応する領域
DESCRIPTION OF SYMBOLS 1 Corner | angular part isolation | separation insulated wire 2 Integrated type thin film solar cell module 3 Translucent insulated substrate 4 Transparent electrode layer 5 Transparent electrode scribe line 6 Thin film photoelectric conversion unit 7 Thin film photoelectric conversion unit scribe line 8 Metal electrode layer 9 Metal electrode layer scribe line DESCRIPTION OF SYMBOLS 10 Separation insulated wire 11 Insulation area | region 12 Extraction electrode 13 Sealing resin 14 Back surface protection sheet 15 Frame 16 Insulation buffer area | region 17 Area | region corresponding to an electrode part

Claims (4)

方形の透光性絶縁基板の一方の主面上に直接形成された概ね方形の集積型薄膜太陽電池を含む集積型薄膜太陽電池モジュールであって、
該集積型薄膜太陽電池は、該透光性絶縁基板上に順に積層された、透明電極層、薄膜光電変換ユニット、及び金属電極層が複数の薄膜太陽電池セルを形成するように実質的に直線状で互いに平行な複数の分割線によって分割されており、かつ、該複数の薄膜太陽電池セルが電気的に直列接続されてなり、
該一方の主面上に該集積型薄膜太陽電池の周囲全周にわたって該透明電極層、該薄膜光電変換ユニット、及び該金属電極層が存在しない絶縁領域が存在し、
かつ、該概ね方形の集積型薄膜太陽電池の角部に角部分離絶縁線があり、当該角部分離絶縁線は、該透明電極層、該薄膜光電変換ユニット、及び該金属電極層が存在しないことを特徴とする集積型薄膜太陽電池モジュール。
An integrated thin film solar cell module including a substantially rectangular integrated thin film solar cell formed directly on one main surface of a rectangular translucent insulating substrate,
The integrated thin-film solar cell is substantially linear so that the transparent electrode layer, the thin-film photoelectric conversion unit, and the metal electrode layer, which are sequentially stacked on the translucent insulating substrate, form a plurality of thin-film solar cells. Are divided by a plurality of dividing lines parallel to each other, and the plurality of thin film solar cells are electrically connected in series,
On the one main surface, there is an insulating region where the transparent electrode layer, the thin film photoelectric conversion unit, and the metal electrode layer are not present over the entire circumference of the integrated thin film solar cell,
In addition, there is a corner separation insulating wire at the corner of the substantially square integrated thin film solar cell, and the corner separation insulating wire does not have the transparent electrode layer, the thin film photoelectric conversion unit, and the metal electrode layer. An integrated thin film solar cell module.
前記電気的に直列接続された複数の薄膜太陽電池セルの端部の電極部分に対応する領域は、前記分割線を一辺とする平行な対向する2辺の内の一辺が長く、当該長い方の一辺が複数の薄膜太陽電池セル側であることを特徴とする請求項1に記載の集積型薄膜太陽電池モジュール。 The region corresponding to the electrode portion at the end of the plurality of thin-film solar cells electrically connected in series has a long one side of two parallel opposing sides with the dividing line as one side, and the longer one 2. The integrated thin film solar cell module according to claim 1, wherein one side is a plurality of thin film solar cell sides. 該概ね方形の集積型薄膜太陽電池の集積した個別セルの両端部たる最も電位差が大きくなる正負の電極部分に対応する領域は、前記分割線を一辺とする平行な対向する2辺の内の一辺が長く平行な対向する2辺が基板の辺に対して45度の直線又は円形の線で結ばれていて、概ね台形形状であり、該台形形状の底辺が該複数の薄膜太陽電池セル側であることを特徴とする請求項1又は2に記載の集積型薄膜太陽電池モジュール。 The region corresponding to the positive and negative electrode portions having the largest potential difference at both ends of the integrated individual cells of the substantially square integrated thin film solar cell is one side of two parallel opposing sides with the dividing line as one side. Are opposed to each other by a straight or circular line of 45 degrees with respect to the side of the substrate, and are substantially trapezoidal, and the bottom of the trapezoidal shape is on the side of the plurality of thin film solar cells. The integrated thin film solar cell module according to claim 1, wherein the integrated thin film solar cell module is provided. 請求項1〜3のいずれかに記載の集積型薄膜太陽電池モジュールであって、さらに、前記概ね方形の集積型薄膜太陽電池の4隅の部分に前記集積型薄膜太陽電池から電気的に絶縁された、概ね三角形状の少なくとも前記透明電極層が存在する絶縁緩衝領域が存在することを特徴とする集積型薄膜太陽電池モジュール。   4. The integrated thin film solar cell module according to claim 1, further electrically insulated from the integrated thin film solar cell at four corners of the substantially square integrated thin film solar cell. 5. An integrated thin-film solar cell module characterized in that there is an insulating buffer region in which at least the transparent electrode layer is substantially triangular.
JP2005212652A 2005-07-22 2005-07-22 Integrated thin film solar cell module Expired - Fee Related JP4791098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212652A JP4791098B2 (en) 2005-07-22 2005-07-22 Integrated thin film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212652A JP4791098B2 (en) 2005-07-22 2005-07-22 Integrated thin film solar cell module

Publications (2)

Publication Number Publication Date
JP2007035695A JP2007035695A (en) 2007-02-08
JP4791098B2 true JP4791098B2 (en) 2011-10-12

Family

ID=37794625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212652A Expired - Fee Related JP4791098B2 (en) 2005-07-22 2005-07-22 Integrated thin film solar cell module

Country Status (1)

Country Link
JP (1) JP4791098B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205063A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar battery module
JP4489126B2 (en) 2008-02-06 2010-06-23 三洋電機株式会社 Solar cell module
JP2009206279A (en) * 2008-02-27 2009-09-10 Sharp Corp Thin film solar battery and method for manufacturing the same
WO2009139390A1 (en) * 2008-05-15 2009-11-19 株式会社アルバック Thin film solar battery module and method for manufacturing the same
JP5263772B2 (en) * 2008-11-28 2013-08-14 シャープ株式会社 Corner cut device for solar cell module and method for manufacturing solar cell module
JP5207306B2 (en) * 2009-01-26 2013-06-12 武井電機工業株式会社 Thin film removal method and apparatus for thin film laminated glass substrate
JP5140706B2 (en) * 2010-07-12 2013-02-13 シャープ株式会社 Thin film solar cell module and manufacturing method thereof
JP2012033591A (en) * 2010-07-29 2012-02-16 Sanyo Electric Co Ltd Solar cell module
DE102010039880A1 (en) * 2010-08-27 2012-03-29 Tesa Se Method for contacting solar modules
JP5209017B2 (en) * 2010-09-30 2013-06-12 シャープ株式会社 Thin film solar cell and method for manufacturing thin film solar cell
JP2012238789A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Semiconductor device, solar cell module, solar cell string and solar cell array
WO2013121839A1 (en) * 2012-02-14 2013-08-22 本田技研工業株式会社 Thin film solar cell and method for manufacturing same
JP2016033932A (en) * 2012-12-28 2016-03-10 シャープ株式会社 Solar cell module and manufacturing method of the same
ES2903153T3 (en) * 2013-07-10 2022-03-31 Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd Solar module with electrically insulated module support, method for its manufacture and use of an adhesive layer to hold the module support

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295673A (en) * 1985-06-24 1986-12-26 Mitsubishi Electric Corp Photoelectric convension device
JP3613851B2 (en) * 1995-09-14 2005-01-26 株式会社カネカ Integrated thin film solar cell
JP3243227B2 (en) * 1999-03-10 2002-01-07 鐘淵化学工業株式会社 Solar cell module
JP3243229B2 (en) * 1999-03-23 2002-01-07 鐘淵化学工業株式会社 Solar cell module
JP3146203B1 (en) * 1999-09-06 2001-03-12 鐘淵化学工業株式会社 Thin film solar cell module and method of manufacturing the same
JP3320695B2 (en) * 1999-11-22 2002-09-03 本田技研工業株式会社 Vehicle air conditioner
JP2004140046A (en) * 2002-10-16 2004-05-13 Mitsubishi Heavy Ind Ltd Thin-film solar cell
JP4351457B2 (en) * 2003-03-17 2009-10-28 京セラ株式会社 Solar cell module

Also Published As

Publication number Publication date
JP2007035695A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4791098B2 (en) Integrated thin film solar cell module
JP6980079B2 (en) Solar cell
JP6746187B2 (en) Solar cell manufacturing method
US20060266409A1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
WO2010026849A1 (en) Integrated thin film solar cell
JP2008109041A (en) Thin-film solar cell and thin-film solar-cell manufacturing method
JP7389861B1 (en) Solar cells, their manufacturing methods, and photovoltaic modules
JP5901773B2 (en) THIN FILM SOLAR MODULE INCLUDING SERIAL CONNECTION AND METHOD FOR SERIALLY CONNECTING A plurality of thin film solar cells
WO2008038553A1 (en) Solar cell module
JP5145456B2 (en) Solar cell module and manufacturing method thereof
JPWO2013061757A1 (en) Laminated glass solar cell module
JP2007165531A (en) Solar cell and manufacturing method thereof
WO2010026850A1 (en) Integrated thin film solar cell
US9040815B2 (en) Thin-film solar cell and method of fabricating thin-film solar cell
WO2013057978A1 (en) Photoelectric conversion apparatus, method for manufacturing same, and photoelectric conversion module
JP3520425B2 (en) Solar cell module and method of manufacturing the same
JP3243229B2 (en) Solar cell module
JP2016063129A (en) Heterojunction back contact cell and photoelectric conversion device
US8158454B2 (en) Method for manufacturing solar cell module
JP3243227B2 (en) Solar cell module
WO2017169441A1 (en) Back contact solar cell, solar cell module and solar photovoltaic power generation system
JP6294694B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP2013219143A (en) Thin-film solar cell module and thin-film solar cell module manufacturing method
JP2001127319A (en) Solar cell module and method of manufacturing the same
JP4681581B2 (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4791098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees