JP4788521B2 - Anisotropic conductive film and manufacturing method thereof - Google Patents

Anisotropic conductive film and manufacturing method thereof Download PDF

Info

Publication number
JP4788521B2
JP4788521B2 JP2006217918A JP2006217918A JP4788521B2 JP 4788521 B2 JP4788521 B2 JP 4788521B2 JP 2006217918 A JP2006217918 A JP 2006217918A JP 2006217918 A JP2006217918 A JP 2006217918A JP 4788521 B2 JP4788521 B2 JP 4788521B2
Authority
JP
Japan
Prior art keywords
film
conductive
anisotropic conductive
porous
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006217918A
Other languages
Japanese (ja)
Other versions
JP2008041592A (en
Inventor
太郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006217918A priority Critical patent/JP4788521B2/en
Publication of JP2008041592A publication Critical patent/JP2008041592A/en
Application granted granted Critical
Publication of JP4788521B2 publication Critical patent/JP4788521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は電子部品の電気的検査や、電子部品と配線基板との接続等に用いることができる異方性導電膜及びその製造方法に関するものである。   The present invention relates to an anisotropic conductive film that can be used for electrical inspection of electronic components, connection between electronic components and a wiring board, and the like, and a method for manufacturing the same.

ICチップ、LSIチップなどの電子部品の不良品を取り除くスクリーニング手法の一つとしてバーンイン試験が行われている。バーンイン試験は電子部品の通常の動作条件よりも高温条件で加速ストレスを印加し、故障発生を加速して短時間で不良品を取り除く試験である。試験対象である電子部品をバーンインボードに配置し、高温漕中で外部から加速ストレスとなる電源電圧及び入力信号を一定時間印加した後、電子部品を外部に取り出して良品と不良品との判定試験を行う。   A burn-in test is performed as one of screening methods for removing defective electronic components such as IC chips and LSI chips. The burn-in test is a test in which accelerated stress is applied under conditions higher than the normal operating conditions of electronic components to accelerate failure occurrence and remove defective products in a short time. After placing the electronic parts to be tested on the burn-in board, applying the power supply voltage and input signal that cause acceleration stress from the outside in a high temperature environment for a certain period of time, taking out the electronic parts to the outside and judging the good and defective products I do.

例えば半導体ウェハのバーンイン試験を行う場合、半導体ウェハの表面の電極パッドと検査装置(バーンインボード)のヘッド電極との間に異方性導電膜を挟んで試験を行う。この異方性導電膜は半導体ウェハ電極の高さばらつきや検査装置のヘッド電極の高さばらつきによる接触不良を解消するために用いられるものである。   For example, when performing a burn-in test on a semiconductor wafer, the test is performed with an anisotropic conductive film sandwiched between an electrode pad on the surface of the semiconductor wafer and a head electrode of an inspection apparatus (burn-in board). This anisotropic conductive film is used to eliminate contact failure due to variations in the height of the semiconductor wafer electrode and variations in the height of the head electrode of the inspection apparatus.

特許文献1には、電気絶縁性の多孔質樹脂膜を基膜とし、該基膜の複数箇所に、第一表面から第二表面にかけて厚み方向に貫通する複数の貫通孔を設け、次いで、各貫通孔内壁面の樹脂部に導電性金属を付着させて導通部を形成した異方性導電膜が開示されている。   In Patent Document 1, an electrically insulating porous resin film is used as a base film, and a plurality of through holes penetrating in a thickness direction from the first surface to the second surface are provided at a plurality of locations on the base film, An anisotropic conductive film is disclosed in which a conductive portion is formed by attaching a conductive metal to a resin portion on the inner wall surface of a through hole.

特許文献1に記載の異方性導電膜は、電気絶縁性の多孔質樹脂膜の厚み方向に複数の導通部がそれぞれ独立して形成されており、膜厚方向に導通可能であるが各導通部間は導通することがない。また該導通部は、貫通孔内壁面の多孔質構造を構成する樹脂部に、無電解めっきなどにより導電性金属を付着させたものである。   In the anisotropic conductive film described in Patent Document 1, a plurality of conductive portions are formed independently in the thickness direction of the electrically insulating porous resin film, and can be conducted in the film thickness direction. There is no conduction between the parts. In addition, the conductive part is obtained by attaching a conductive metal to the resin part constituting the porous structure of the inner wall surface of the through hole by electroless plating or the like.

この異方性導電膜は膜厚方向に弾力性があり、低圧縮加重で膜厚方向の導通が可能である。また繰り返し荷重負荷を加えても、弾性により膜厚が復帰し、検査に繰り返し使用することが可能である。また微細な貫通孔を開けることで導通部を微細化し、ファインピッチの電子部品検査に対応可能である。   This anisotropic conductive film is elastic in the film thickness direction and can conduct in the film thickness direction with a low compression load. Even when a repeated load is applied, the film thickness is restored by elasticity and can be used repeatedly for inspection. In addition, the conductive part can be made fine by opening a fine through-hole, and it can be used for fine-pitch electronic component inspection.

異方性導電膜の基膜としては、多孔質ポリテトラフルオロエチレン膜が多く使用されている。多孔質ポリテトラフルオロエチレン膜はフィブリルと該フィブリルによって互いに連結されたノードとからなる微細繊維状組織による多孔質構造により優れた弾力性を示し、また耐熱性にも優れるからである。このような多孔質構造の樹脂部に導電性金属を付着させているため、導通部の弾力性が優れている。   As the base film of the anisotropic conductive film, a porous polytetrafluoroethylene film is often used. This is because the porous polytetrafluoroethylene film exhibits excellent elasticity due to a porous structure of a fine fibrous structure composed of fibrils and nodes connected to each other by the fibrils, and also has excellent heat resistance. Since the conductive metal is attached to the resin portion having such a porous structure, the elasticity of the conductive portion is excellent.

特開2004−265844号公報JP 2004-265844 A

半導体ウェハのバーンイン試験においては、検査対象である半導体ウェハの表面の電極パッドと異方性導電膜の導通部とを確実に接続して導通を得る必要がある。そのため異方性導電膜と被検査体を接触させた後、圧縮荷重を加えて異方性導電膜の導通部と被検査体の電極とを密着させている。   In a burn-in test of a semiconductor wafer, it is necessary to reliably connect the electrode pads on the surface of the semiconductor wafer to be inspected and the conductive portion of the anisotropic conductive film. Therefore, after bringing the anisotropic conductive film into contact with the object to be inspected, a compressive load is applied to bring the conductive portion of the anisotropic conductive film into close contact with the electrode of the object to be inspected.

図1は異方性導電膜5と被検査体6とを接続する前の状態を示す断面の模式図である。異方性導電膜5を被検査体6と検査装置(図示しない)との間に挟み、圧縮荷重を図の矢印の方向に加えて異方性導電膜と被検査体を密着させることで異方性導電膜の導通部1と被検査体の電極3を接触させる。従来の異方性導電膜では、導通部1と非導通部(基膜)2はほぼ同じ高さとなっている。   FIG. 1 is a schematic cross-sectional view showing a state before the anisotropic conductive film 5 and the inspection object 6 are connected. The anisotropic conductive film 5 is sandwiched between the inspection object 6 and an inspection apparatus (not shown), and a compressive load is applied in the direction of the arrow in the figure to bring the anisotropic conductive film and the inspection object into close contact with each other. The conducting portion 1 of the isotropic conductive film is brought into contact with the electrode 3 of the object to be inspected. In the conventional anisotropic conductive film, the conducting part 1 and the non-conducting part (base film) 2 have substantially the same height.

接続後の状態を図2に示す。被検査体の電極3が基板4の表面より飛び出している凸形状であれば、圧縮荷重を加えた際に電極上の導通部は電極の無い部分(非導通部)に比べて大きく圧縮され、低圧縮荷重でも被検査体と導通部は良好に導通する。   The state after connection is shown in FIG. If the electrode 3 of the object to be inspected is a convex shape protruding from the surface of the substrate 4, the conductive part on the electrode is compressed more than the part without the electrode (non-conductive part) when a compression load is applied, Even under a low compressive load, the device under test and the conducting part are conducted well.

しかし被検査体形状は様々であり、電極高さが基板表面と同じ高さのものや、図3に示すように、電極3が基板4の内部に埋まり、さらに基板4の表面にレジスト層7があり電極が被検査体表面よりもへこんだ凹形状のものがある。このような被検査体と異方性導電膜とは良好な導通をとりにくい。図3に示すように、電極3と導通部1とを導通させるために電極の無い部分の異方性導電膜全体を大きく圧縮させなければならないからである。   However, the shape of the object to be inspected varies, and the electrode height is the same as the surface of the substrate, or the electrode 3 is embedded in the substrate 4 as shown in FIG. There is a concave shape in which the electrode is recessed from the surface of the object to be inspected. Such an object to be inspected and the anisotropic conductive film are difficult to take good conduction. This is because, as shown in FIG. 3, in order to make the electrode 3 and the conducting portion 1 conductive, the entire anisotropic conductive film in the portion without the electrode must be greatly compressed.

本発明は上記の問題に鑑み、膜厚方向の弾力性によって繰り返し検査が可能であると共に、耐熱性に優れ、さらに種々の電極形状を持つ被検査体においても低圧縮荷重で優れた接続信頼性を有する異方性導電膜、およびその製造方法を提供することを目的とする。   In view of the above problems, the present invention can repeatedly inspect by the elasticity in the film thickness direction, has excellent heat resistance, and has excellent connection reliability even with a low compression load even in test objects having various electrode shapes. It aims at providing the anisotropic electrically conductive film which has this, and its manufacturing method.

本発明は電気絶縁性の基膜と、前記基膜の第一表面から第二表面に貫通する状態で設けられた導通部を有する異方性導電膜であって、前記導通部は多孔質構造の樹脂表面に導電性金属が付着した構造であり、膜厚方向に弾力性を有し、前記基膜の第一表面及び第二表面の少なくとも一方から突出していることを特徴とする異方性導電膜である(請求項1)。導通部が多孔質構造であるため、膜の厚み方向の導電性が向上する。 The present invention is an anisotropic conductive film having an electrically insulating base film and a conductive portion provided so as to penetrate from the first surface to the second surface of the base film, the conductive portion having a porous structure An anisotropy characterized in that a conductive metal adheres to the surface of the resin , has elasticity in the film thickness direction, and protrudes from at least one of the first surface and the second surface of the base film A conductive film (Claim 1). Since the conducting portion has a porous structure, conductivity in the thickness direction of the film is improved.

図4に本発明の異方性導電膜の斜視模式図を、また図4のA−A’断面として図5に本発明の異方性導電膜の断面形状を模式的に示す。導通部9は基膜10の第一表面及び第二表面の少なくとも一方から突出するように設けられている。図6に本発明の異方性導電膜と凹形状の電極を持つ被検査体8との接続状態を示す。導通部9が基膜10の表面から突出しているため、基膜を大きく圧縮させなくても被検査体の電極と導通部とを接続することができ、低圧縮荷重で被検査体と異方性導電膜が良好に導通する。   FIG. 4 is a schematic perspective view of the anisotropic conductive film of the present invention, and FIG. 5 schematically shows a cross-sectional shape of the anisotropic conductive film of the present invention as an A-A ′ section of FIG. 4. The conducting portion 9 is provided so as to protrude from at least one of the first surface and the second surface of the base film 10. FIG. 6 shows a connection state between the anisotropic conductive film of the present invention and a test object 8 having a concave electrode. Since the conductive portion 9 protrudes from the surface of the base film 10, the electrode of the device to be inspected and the conductive portion can be connected without greatly compressing the base film. Conductive film conducts well.

請求項に記載の発明は、前記導通部の気孔率が20%〜80%であり、前記基膜の気孔率が10%以下であることを特徴とする、請求項1に記載の異方性導電膜である。導通部と基膜の気孔率にこのような差をつけることで、導通部を効率よく形成することができる。なお気孔率とは多孔質体の総体積に対する全ての気孔の体積の割合をいい、ASTM D−792に従って基膜の密度を測定することで求めることができる。 The invention according to claim 2 is characterized in that the porosity of the conducting part is 20% to 80%, and the porosity of the base film is 10% or less. Conductive film. By making such a difference between the porosity of the conductive portion and the base film, the conductive portion can be efficiently formed. The porosity means the ratio of the volume of all the pores to the total volume of the porous body, and can be determined by measuring the density of the base film according to ASTM D-792.

請求項に記載の発明は、前記基膜がポリテトラフルオロエチレン樹脂、アラミド樹脂又はポリイミド樹脂であることを特徴とする請求項1又は2に記載の異方性導電膜である。これらの樹脂は耐熱性が高く、また電気絶縁性、耐薬品性にも優れるためである。 The invention according to claim 3 is the anisotropic conductive film according to claim 1 or 2 , wherein the base film is a polytetrafluoroethylene resin, an aramid resin or a polyimide resin. This is because these resins have high heat resistance and are excellent in electrical insulation and chemical resistance.

本発明の異方性導電膜は、多孔質構造の樹脂表面に導電性金属が付着しているため、導電性金属の表面積が大きくなり、異方性導電膜の導電性が向上する。また異方性導電膜を電子部品の電気的検査に用いる場合、導電部全体が大きく変形しても局所的には導電性金属の変形量は小さくて済み、繰り返し使用しても導電性金属が脱落しにくい導通部を形成することができる。図7に多孔質樹脂11の表面に導電性金属12が付着した状態の断面模式図を示す。 In the anisotropic conductive film of the present invention, since the conductive metal adheres to the porous resin surface, the surface area of the conductive metal is increased and the conductivity of the anisotropic conductive film is improved. Also, when an anisotropic conductive film is used for electrical inspection of electronic components, even if the entire conductive part is greatly deformed, the amount of deformation of the conductive metal is small locally, and the conductive metal is not affected by repeated use. It is possible to form a conductive portion that is difficult to drop off. FIG. 7 shows a schematic cross-sectional view of the state in which the conductive metal 12 is attached to the surface of the porous resin 11.

請求項に記載の発明は、気孔率が20%〜80%である電気絶縁性の多孔質膜を厚み方向に部分的に圧縮し、前記多孔質膜の圧縮部の気孔率を10%以下とする工程、及び前記多孔質膜の非圧縮部に導電性金属を付着させて導通部を形成する工程、を有することを特徴とする異方性導電膜の製造方法である。請求項に記載の方法では、電気絶縁性の多孔質膜を部分的に圧縮して気孔率の高い部分と低い部分を形成する。金属は気孔率の高い部分にのみ選択的に付与するため、気孔率の高い非圧縮部のみに導電性金属を付着させやすくなる。その結果、気孔率が低く金属の付着していない非導通部と気孔率が高く金属が付着した導通部とを有する異方性導電膜を効率よく形成することができる。
The invention according to claim 4 partially compresses the electrically insulating porous film having a porosity of 20% to 80% in the thickness direction, and the porosity of the compressed portion of the porous film is 10% or less. And a step of forming a conducting portion by attaching a conductive metal to the non-compressed portion of the porous film. In the method according to claim 4 , the electrically insulating porous film is partially compressed to form a high porosity portion and a low porosity portion. Since the metal is selectively applied only to the portion having a high porosity, the conductive metal is easily attached only to the non-compressed portion having a high porosity. As a result, it is possible to efficiently form an anisotropic conductive film having a non-conductive portion with a low porosity and no metal attached and a conductive portion with a high porosity and a metal attached.

本発明は、膜厚方向の弾力性によって繰り返し検査が可能であると共に、耐熱性に優れ、さらに非検査体の電極形状が凹形状であっても優れた接続信頼性を有する異方性導電膜及びその製造方法を提供する。   The present invention is an anisotropic conductive film that can be repeatedly inspected by the elasticity in the film thickness direction, has excellent heat resistance, and has excellent connection reliability even when the electrode shape of the non-inspector is concave. And a method for manufacturing the same.

本発明の基膜を構成する材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン共重合体、エチレン/テトラフルオロエチレン共重合体(EFTE)などのフッ素樹脂、及びポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、変性ポリフェニレンエーテル(mPPE)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、アラミド樹脂、などを使用することができる。これらの中でも弾力性が高く、耐熱性に優れるポリテトラエチレン樹脂、アラミド樹脂又はポリイミド樹脂が好ましい。これらの樹脂は一種で使用しても良いし、複数の樹脂を組み合わせても良い。   Examples of the material constituting the base film of the present invention include polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyfluoride. Fluorine resins such as vinylidene fluoride (PVDF), polyvinylidene fluoride copolymer, ethylene / tetrafluoroethylene copolymer (EFTE), and polyimide (PI), polyamideimide (PAI), polyamide (PA), modified polyphenylene ether ( mPPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polysulfone (PSU), polyether sulfone (PES), aramid resin, and the like can be used. Among these, polytetraethylene resin, aramid resin, or polyimide resin, which has high elasticity and excellent heat resistance, is preferable. These resins may be used alone or in combination with a plurality of resins.

本発明の基膜は、上記の樹脂を構成材料とする多孔質膜又は無孔質膜を使用することができる。後述するように、多孔質膜の一部を膜の厚み方向に圧縮して元の多孔質膜よりも気孔率を下げたものを基膜とすることが好ましい。更に、導通部の気孔率を20〜80%として、基膜の気孔率を10%以下とすると導通部を効率よく形成することができ更に好ましい。   As the base film of the present invention, a porous film or a non-porous film containing the above resin as a constituent material can be used. As will be described later, it is preferable that a part of the porous membrane is compressed in the thickness direction of the membrane so that the porosity is lower than that of the original porous membrane. Furthermore, when the porosity of the conducting part is 20 to 80% and the porosity of the base film is 10% or less, the conducting part can be formed efficiently, which is more preferable.

多孔質膜の気孔率は20〜80%であることが好ましい。また平均孔径は10μm以下であることが好ましく、導通部のファインピッチ化の観点からは、平均孔径が1μm以下であることがより好ましい。   The porosity of the porous membrane is preferably 20 to 80%. The average pore diameter is preferably 10 μm or less, and more preferably 1 μm or less from the viewpoint of fine pitching of the conducting portion.

多孔質膜の中でも、特に延伸法により得られた延伸多孔質PTFE膜は、弾性、耐熱性、加工性、機械的特性、誘電特性、低アウトガス特性などに優れ、しかも均一な孔径分布を持つため好ましい。図8は延伸多孔質PTFE膜の内部構造を示す断面写真の一例である。図8に示すように、延伸多孔質PTFE膜は、非常に細かいフィブリル13と、該フィブリルによって互いに連結されたノード14からなる微細組織を有しており、この微細網目状構造が多孔質構造を形成している。   Among the porous membranes, the expanded porous PTFE membrane obtained by the stretching method is particularly excellent in elasticity, heat resistance, processability, mechanical properties, dielectric properties, low outgas properties, etc., and has a uniform pore size distribution. preferable. FIG. 8 is an example of a cross-sectional photograph showing the internal structure of the stretched porous PTFE membrane. As shown in FIG. 8, the expanded porous PTFE membrane has a fine structure composed of very fine fibrils 13 and nodes 14 connected to each other by the fibrils, and this fine network structure has a porous structure. Forming.

延伸多孔質PTFE膜は例えば特公昭42−13560号公報に記載の方法により製造することができる。まずPTFEの未焼結粉末に液体潤滑剤を混合し、ラム押し出しによってチューブ状または板状に押し出す。厚みの薄いフィルムまたはシートが所望の場合は圧延ロールによって板状体の圧延を行う。押出圧延工程の後、必要に応じて押出品または圧延品から液体潤滑剤を除去する。こうして得られた押出品または圧延品を一軸方向に延伸すると、未焼結の延伸多孔質PTFE膜が膜状で得られる。未焼結の延伸多孔質PTFE膜を、収縮が起こらないように固定しながらPTFEの融点である327℃以上の温度に加熱して、延伸した構造を焼結・固定すると、強度の高い延伸多孔質PTFE膜が得られる。延伸多孔質PTFE膜がチューブ状である場合には、チューブを切り開くことにより平らな膜にすることができる。得られた延伸多孔質PTFE膜をそのまま、又は一部を膜の厚み方向に圧縮して基膜とする。   The stretched porous PTFE membrane can be produced, for example, by the method described in Japanese Patent Publication No. 42-13560. First, a liquid lubricant is mixed with the unsintered powder of PTFE, and extruded into a tube shape or a plate shape by ram extrusion. When a thin film or sheet is desired, the plate-like body is rolled by a rolling roll. After the extrusion rolling process, the liquid lubricant is removed from the extruded product or the rolled product as necessary. When the extruded or rolled product thus obtained is stretched in the uniaxial direction, an unsintered stretched porous PTFE membrane is obtained in the form of a film. When an unsintered stretched porous PTFE membrane is fixed to prevent shrinkage and heated to a temperature of 327 ° C. or higher, which is the melting point of PTFE, and the stretched structure is sintered and fixed, a highly stretched porous A quality PTFE membrane is obtained. When the expanded porous PTFE membrane is in a tube shape, it can be made into a flat membrane by opening the tube. The obtained stretched porous PTFE membrane is used as it is or a part thereof is compressed in the thickness direction of the membrane to form a base membrane.

また本発明の基膜として、上記のPTFE樹脂膜と、別の樹脂膜とを組み合わせたものも使用できる。アラミド樹脂のようにPTFE樹脂よりも熱膨張係数の低い樹脂を第二の樹脂層としてPTFE樹脂と組み合わせると、異方性導電膜全体の熱膨張係数を低くすることができ、高温雰囲気下での試験に置いても優れた接続信頼性が得られる。PTFE樹脂層と第二の樹脂層との接着方法は特に限定されないが、第一の樹脂層と第二の樹脂層を積層し、樹脂の融点以上の温度で加熱、圧着して熱融着することが好ましい。   Moreover, what combined said PTFE resin film and another resin film can also be used as a base film of this invention. When a resin having a lower thermal expansion coefficient than that of PTFE resin, such as aramid resin, is combined with PTFE resin as the second resin layer, the thermal expansion coefficient of the entire anisotropic conductive film can be lowered. Excellent connection reliability can be obtained even in testing. The method for adhering the PTFE resin layer and the second resin layer is not particularly limited, but the first resin layer and the second resin layer are laminated, heated and pressed at a temperature equal to or higher than the melting point of the resin, and heat-sealed. It is preferable.

基膜の厚みは使用目的や使用箇所等に応じて適宜選択することができるが、好ましくは5〜2000μm、より好ましくは10〜1500μm、特に好ましくは20〜1000μmである。   Although the thickness of a base film can be suitably selected according to a use purpose, a use location, etc., Preferably it is 5-2000 micrometers, More preferably, it is 10-1500 micrometers, Most preferably, it is 20-1000 micrometers.

次に導通部について説明する。本発明の導通部は、前記基膜の第一表面から第二表面に貫通する状態で設けられている。また前記導通部は膜厚方向に弾力性を有し、前記基膜の第一表面及び第二表面の少なくとも一方から突出している。導通部をこのような形状とすることで、被検査体の電極が被検査体の表面と同じ高さであったり、被検査体表面よりもへこんだ凹形状の電極であっても低圧縮荷重で被検査体と導通部が良好に導通する異方性導電膜が得られる。   Next, the conduction part will be described. The conduction | electrical_connection part of this invention is provided in the state penetrated from the 1st surface of the said base film to the 2nd surface. The conducting portion has elasticity in the film thickness direction, and protrudes from at least one of the first surface and the second surface of the base film. By forming the conductive part in such a shape, even if the electrode of the object to be inspected is the same height as the surface of the object to be inspected, or a concave electrode that is recessed from the surface of the object to be inspected, a low compression load Thus, an anisotropic conductive film is obtained in which the object to be inspected and the conductive part are electrically connected.

導通部は膜厚方向に弾力性を有するものであればその構造は限定されないが、多孔質構造の樹脂表面に導電性金属が付着した構造とすると、導通部の弾力性が高くなり、また導電性金属の付着量が多くなることで異方性導電膜の導電性が向上し、好ましい。多孔質構造の樹脂表面に導電性金属を付着させる方法としては、スパッタ法、イオンプレーティング法、無電解めっき法などが挙げられるが、効率良く導電性金属を析出させて付着させるには無電解めっき法が好ましい。   The structure of the conductive part is not limited as long as it has elasticity in the film thickness direction. However, if the conductive metal adheres to the porous resin surface, the conductive part has high elasticity and is conductive. The adhesion amount of the conductive metal increases, which is preferable because the conductivity of the anisotropic conductive film is improved. Examples of methods for attaching conductive metals to porous resin surfaces include sputtering, ion plating, and electroless plating methods, but electroless deposition is effective for depositing conductive metals. Plating is preferred.

導電性金属の付着量を適度に制御することによって、導通部での多孔質構造を保持することができる。本発明の異方性導電膜では、導電性金属が多孔質構造の樹脂部の表面に沿って付着しているため、導電性金属層が多孔質構造と一体となって多孔質構造となっており、その結果導通部は多孔質構造となる。そのため、例えば基膜中に導電性金属の塊を埋め込んだ導通部に比べて弾力性が高く、電極検査において圧縮荷重を繰り返し加えても弾性回復し、繰り返し使用可能となる。導通部は基膜の任意の位置に設けることができ、規則的な配列で設けても良いし、検査対象となる電気部品の電極位置と対応させた部分に設けることもできる。   By appropriately controlling the amount of conductive metal deposited, the porous structure at the conducting portion can be maintained. In the anisotropic conductive film of the present invention, since the conductive metal adheres along the surface of the porous resin part, the conductive metal layer is integrated with the porous structure to form a porous structure. As a result, the conducting portion has a porous structure. Therefore, for example, the elasticity is higher than that of a conducting portion in which a conductive metal lump is embedded in the base film, and even if a compressive load is repeatedly applied in the electrode inspection, the elastic recovery is achieved and the repeated use becomes possible. The conducting portion can be provided at any position on the base film, and may be provided in a regular arrangement, or at a portion corresponding to the electrode position of the electrical component to be inspected.

導通部を形成するには、まず導電性金属を付着する位置を特定する必要がある。導電性金属を付着させる位置を特定する方法としては、たとえば多孔質の基膜に液体レジストを含浸させてパターン状に露光し、現像してレジスト除去部を導電性金属の付着位置とする方法がある。また多孔質の基膜の特定位置の膜厚方向に貫通孔を形成して、該貫通孔の壁面を導電性金属の付着位置とすることもできる。前者の方法では基膜の表面のみから導通部を形成するため、導通部の径が小さいと、例えば無電解めっきのように液相処理を行う場合には、処理液が膜の内部まで浸漬し難い。これに対し後者の方法では貫通孔の壁面から処理液を浸漬させることができるため、導通部の径が小さくなっても効率よく導通部を形成でき、ファインピッチ対応可能な異方性導電膜の作成に適している。   In order to form the conductive portion, it is first necessary to specify the position where the conductive metal is attached. As a method for specifying the position where the conductive metal is attached, for example, a method in which a porous base film is impregnated with a liquid resist, exposed in a pattern, and developed to set the resist removal portion as the conductive metal attachment position. is there. Moreover, a through-hole can be formed in the film thickness direction of the specific position of a porous base film, and the wall surface of this through-hole can be made into the attachment position of an electroconductive metal. In the former method, since the conductive portion is formed only from the surface of the base film, if the diameter of the conductive portion is small, for example, when performing liquid phase treatment like electroless plating, the treatment solution is immersed into the inside of the membrane. hard. On the other hand, in the latter method, since the treatment liquid can be immersed from the wall surface of the through-hole, the conductive portion can be efficiently formed even if the diameter of the conductive portion is reduced, and an anisotropic conductive film that can handle fine pitches. Suitable for creation.

また導通部を形成する方法として、電気絶縁性の多孔質膜を厚み方向に部分的に圧縮し、前記多孔質膜の圧縮部の気孔率を10%以下とした後に、多孔質膜の非圧縮部に導電性金属を付着させる方法が挙げられる。   In addition, as a method of forming the conductive portion, the electrically insulating porous film is partially compressed in the thickness direction so that the porosity of the compressed portion of the porous film is 10% or less, and then the porous film is not compressed. And a method of attaching a conductive metal to the part.

無電解めっきのように液相処理によって導電性金属を付着させる場合、処理液は気孔率の高い部分には早く浸透するが、気孔率の低い部分には浸透し難い。多孔質膜を部分的に圧縮すると、気孔率の低い圧縮部には導電性金属が付着せず、気孔率の高い非圧縮部のみに導電性金属を付着させることができる。圧縮部への導電性金属の付着を防止するには、圧縮部の気孔率を10%以下とすることが必要である。この製造方法では、液体レジストの塗布や、貫通孔の形成等の工程が不必要であり、より簡単な工程で導通部を形成できる。   When a conductive metal is deposited by liquid phase treatment as in electroless plating, the treatment liquid penetrates quickly into a portion with a high porosity, but hardly penetrates into a portion with a low porosity. When the porous membrane is partially compressed, the conductive metal does not adhere to the compressed portion having a low porosity, and the conductive metal can be attached only to the non-compressed portion having a high porosity. In order to prevent the conductive metal from adhering to the compressed part, the porosity of the compressed part needs to be 10% or less. In this manufacturing method, steps such as application of a liquid resist and formation of a through hole are unnecessary, and the conduction portion can be formed by a simpler step.

導通部の形状は円形、星形、多角形など任意である。また導通部の大きさは検査対象となる電極の形状に合わせて任意に選択することができる。導通部の形状が円形であれば、小径の導通部の場合には通常5〜1000μm、好ましくは10〜100μmとする。また比較的大径の導通部の場合には孔径を50〜3000μm、好ましくは100〜1500μmとする。   The shape of the conducting portion is arbitrary such as a circle, a star, or a polygon. The size of the conducting portion can be arbitrarily selected according to the shape of the electrode to be inspected. If the shape of the conducting portion is circular, in the case of a small-diameter conducting portion, it is usually 5 to 1000 μm, preferably 10 to 100 μm. In the case of a relatively large diameter conducting portion, the hole diameter is 50 to 3000 μm, preferably 100 to 1500 μm.

電気絶縁性の多孔質膜の非圧縮部の樹脂表面に導電性金属を析出させて付着させるには無電解めっき法が好ましい。無電解めっき法では、通常、めっきを析出させたい箇所に化学還元反応を促進する触媒を付与する必要がある。触媒としては、塩化スズ−塩化パラジウムコロイド溶液等を用いることができる。また触媒を付与する前に、エタノールや界面活性剤等で基膜を前処理しておくことが好ましい。   An electroless plating method is preferred for depositing and attaching a conductive metal to the resin surface of the non-compressed portion of the electrically insulating porous film. In the electroless plating method, it is usually necessary to apply a catalyst for promoting a chemical reduction reaction to a portion where plating is desired to be deposited. As the catalyst, a tin chloride-palladium chloride colloidal solution or the like can be used. Moreover, it is preferable to pre-treat the base membrane with ethanol or a surfactant before applying the catalyst.

触媒を付与した後、無電解めっき法により樹脂表面に導電性金属を析出させ、導通部を形成する。無電解めっき時間を制御することにより適度なめっき量とし、多孔質膜の弾力性を保持したまま導電性を与えることが可能となる。導電性金属としては銅、ニッケル、ニッケル合金、金などが挙げられる。特に高導電性が必要な場合は金又は銅を使用することが好ましい。   After providing the catalyst, a conductive metal is deposited on the surface of the resin by an electroless plating method to form a conductive portion. By controlling the electroless plating time, an appropriate amount of plating can be obtained, and conductivity can be imparted while maintaining the elasticity of the porous film. Examples of the conductive metal include copper, nickel, nickel alloy, and gold. In particular, when high conductivity is required, it is preferable to use gold or copper.

また導通部は、酸化防止及び電気的接触性を高めるため、酸化防止剤を使用するか、貴金属または貴金属の合金で被覆しておくことが好ましい。貴金属としては、電気抵抗の小さい点でパラジウム、ロジウム、金が好ましい。貴金属等の被覆層の厚さは0.005〜0.5μmが好ましく、さらに好ましい範囲は0.01〜0.1μmである。   Moreover, in order to improve oxidation prevention and electrical contact property, it is preferable to use an antioxidant or to coat the conduction portion with a noble metal or a noble metal alloy. As the noble metal, palladium, rhodium, and gold are preferable from the viewpoint of low electric resistance. The thickness of the coating layer of noble metal or the like is preferably 0.005 to 0.5 μm, and more preferably 0.01 to 0.1 μm.

多孔質の基膜の特定位置の膜厚方向に貫通孔を形成して、該貫通孔の壁面を導電性金属の付着位置とする方法においては、上記の触媒液や無電解めっき液は基膜表面からも浸透するため、あらかじめ基膜の両面又は片面にマスク層を融着させた後に触媒を付与し、その後マスク層を剥離して無電解めっき処理を行う。また貫通孔の径が小さくファインピッチ対応可能な異方性導電膜とするためには、貫通孔の壁面のみに導電性金属を付着させるために触媒液の処理時間や前処理液の処理時間を厳密にコントロールする必要がある。   In the method of forming a through-hole in a film thickness direction at a specific position of a porous base film and setting the wall surface of the through-hole to a conductive metal deposition position, the above catalyst solution and electroless plating solution are used as the base film. In order to penetrate from the surface, a mask layer is previously fused on both sides or one side of the base film, and then a catalyst is applied. Thereafter, the mask layer is peeled off and electroless plating is performed. In addition, in order to obtain an anisotropic conductive film with a small through-hole diameter and capable of handling fine pitches, the treatment time of the catalyst solution and the treatment time of the pretreatment liquid are reduced in order to adhere the conductive metal only to the wall surface of the through-hole. Need to be strictly controlled.

これに対し、電気絶縁性の多孔質膜を厚み方向に部分的に圧縮し、前記多孔質膜の圧縮部の気孔率10%以下とした後に多孔質膜の非圧縮部に導電性金属を付着させる方法では、非圧縮部と圧縮部の気孔率の違いによって導電性金属が非圧縮部に選択的に付着するためマスク層は不要であり、また前処理液や触媒液の処理時間もそれほど厳密にコントロールする必要がない。マスク層やレジストを併用して導電性金属を付着させても良く、この場合は圧縮部の気孔率が比較的高くても導通部のみに選択的に導電性金属を付着させることができ、異方性導電膜全体の弾力性を向上できる。   In contrast, the electrically insulating porous film is partially compressed in the thickness direction so that the porosity of the compressed part of the porous film is 10% or less, and then a conductive metal is attached to the non-compressed part of the porous film. This method eliminates the need for a mask layer because the conductive metal selectively adheres to the non-compressed part due to the difference in porosity between the non-compressed part and the compressed part, and the processing time of the pretreatment liquid and the catalyst liquid is also strict. There is no need to control. The conductive metal may be attached by using a mask layer or a resist together. In this case, the conductive metal can be selectively attached only to the conductive portion even if the porosity of the compressed portion is relatively high. The elasticity of the entire anisotropic conductive film can be improved.

次に図面を参照しながら本発明の異方性導電膜の製造例を具体的に説明する。   Next, a production example of the anisotropic conductive film of the present invention will be specifically described with reference to the drawings.

図9は本発明の異方性導電膜の製造工程を示すものであり、延伸多孔質PTFE膜をプレス加工する前の状態の断面模式図である。延伸多孔質PTFE膜15(孔径0.1μm、気孔率(ASTM D−792)50%、膜厚120μm、10cm×10cm)を2枚の金型16の間に挟んでプレスする。図10はプレス加工後の延伸多孔質PTFE膜の断面の模式図である。プレス加工することで、延伸多孔質PTFE膜に圧縮部17と非圧縮部18が設けられる。圧縮部の気孔率は7.7%(ASTM D−792)、膜厚は65μmとする。圧縮部は異方性導電膜の基膜となる。   FIG. 9 shows the manufacturing process of the anisotropic conductive film of the present invention, and is a schematic cross-sectional view showing a state before the stretched porous PTFE film is pressed. An expanded porous PTFE membrane 15 (pore size 0.1 μm, porosity (ASTM D-792) 50%, film thickness 120 μm, 10 cm × 10 cm) is sandwiched between two molds 16 and pressed. FIG. 10 is a schematic view of a cross section of an expanded porous PTFE membrane after press working. By pressing, the stretched porous PTFE membrane is provided with the compression portion 17 and the non-compression portion 18. The compressed portion has a porosity of 7.7% (ASTM D-792) and a film thickness of 65 μm. The compression part becomes a base film of the anisotropic conductive film.

プレス加工した延伸多孔質PTFE膜をエタノールに1分間浸漬して親水化した後、100ml/Lに希釈したメルテックス(株)製メルプレートPC−321に60℃で4分間浸漬し脱脂処理を行う。さらに積層体を10%硫酸に1分間浸漬した後、プレディップとして0.8%塩酸にメルテックス(株)製エンプレートPC−236を180g/Lの割合で溶解した液に2分間浸漬する。   The press-processed expanded porous PTFE membrane is hydrophilized by immersing in ethanol for 1 minute, and then degreased by immersing in Melplate Co., Ltd. Melplate PC-321 diluted to 100 ml / L for 4 minutes at 60 ° C. . Further, after immersing the laminate in 10% sulfuric acid for 1 minute, it is immersed in a solution obtained by dissolving Meltex Co., Ltd. Enplate PC-236 at a rate of 180 g / L in 0.8% hydrochloric acid as a pre-dip for 2 minutes.

さらに触媒付与液(メルテックス(株)製エンプレートアクチベータ444を3%、エンプレートアクチベータアディティブを1%、塩酸を3%溶解した水溶液にメルテックス(株)製エンプレートPC−236を150g/Lの割合で溶解した液)に5分間浸漬する。次にメルテックス(株)製エンプレートPA−360の5%溶液に5分間浸漬し、パラジウム触媒核の活性化を行い、非圧縮部全体に触媒パラジウム粒子を付着させる。   Further, a catalyst-providing solution (Meltex Co., Ltd. Enplate Activator 444 3%, Enplate Activator Additive 1%, hydrochloric acid 3% dissolved in an aqueous solution of Meltex Co., Ltd. Enplate PC-236 150g / L 5 minutes). Next, it is immersed for 5 minutes in a 5% solution of Enplate PA-360 manufactured by Meltex Co., Ltd. to activate the palladium catalyst nucleus, and the catalyst palladium particles are adhered to the entire uncompressed portion.

メルテックス(株)製メルプレートCu−3000A、メルプレートCu−3000B、メルプレートCu−3000C、メルプレートCu−3000Dをそれぞれ5%、メルプレート3000−スタビライザーを0.1%で建浴した無電解銅めっき液に、エアー攪拌を行いながら上記処理を施した延伸多孔質PTFE膜膜を20分間浸漬して、非圧縮部のみに銅粒子を析出させる。さらに、5ml/Lで建浴したメルテックス(株)製エンテックCu−56に30秒間浸漬して防錆処理することで異方性導電膜が得られる。   Melting Co., Ltd. Melplate Cu-3000A, Melplate Cu-3000B, Melplate Cu-3000C, Melplate Cu-3000D 5% each, Melplate 3000-Stabilizer 0.1% The expanded porous PTFE membrane that has been subjected to the above treatment while being stirred with air is immersed in a copper plating solution for 20 minutes to precipitate copper particles only in the uncompressed portion. Furthermore, an anisotropic conductive film can be obtained by immersing in Entex Cu-56 manufactured by Meltex Co., Ltd., which was built at 5 ml / L, for 30 seconds to prevent rust.

凸形状の電極を持つ非検査体と、従来の異方性導電膜とを接続する前の状態を示す断面の模式図である。It is a schematic diagram of the cross section which shows the state before connecting the non-inspection body which has a convex-shaped electrode, and the conventional anisotropic conductive film. 凸形状の電極を持つ非検査体と、従来の異方性導電膜との接続状態を示す断面の模式図である。It is a schematic diagram of the cross section which shows the connection state of the non-inspection object which has a convex-shaped electrode, and the conventional anisotropic conductive film. 凹形状の電極を持つ非検査体と、従来の異方性導電膜との接続状態を示す断面の模式図である。It is a schematic diagram of the cross section which shows the connection state of the non-inspection body which has a concave-shaped electrode, and the conventional anisotropic conductive film. 本発明の異方性導電膜の斜視図である。It is a perspective view of the anisotropic electrically conductive film of this invention. 本発明の異方性導電膜のAA’断面の模式図である。It is a schematic diagram of the AA 'cross section of the anisotropic conductive film of the present invention. 凹形状の電極を持つ非検査体と、本発明の異方性導電膜との接続状態を示す断面の模式図である。It is a schematic diagram of the cross section which shows the connection state of the non-inspection object which has a concave-shaped electrode, and the anisotropic conductive film of this invention. 多孔質樹脂表面に導電性金属が付着した状態の断面模式図である。It is a cross-sectional schematic diagram of the state in which the conductive metal adhered to the porous resin surface. 延伸多孔質PTFE膜の内部構造を示す断面写真である。It is a cross-sectional photograph which shows the internal structure of an extending | stretching porous PTFE film | membrane. 本発明の異方性導電膜の製造工程を示すものであり、延伸多孔質PTFE膜を金型でプレス加工する前の状態の断面模式図である。The manufacturing process of the anisotropic electrically conductive film of this invention is shown, and it is a cross-sectional schematic diagram of the state before pressing an expanded porous PTFE film | membrane with a metal mold | die. 本発明の異方性導電膜の製造工程を示すものであり、プレス加工した延伸多孔質PTFE膜の断面模式図である。The manufacturing process of the anisotropic electrically conductive film of this invention is shown, and it is a cross-sectional schematic diagram of the expanded porous PTFE film | membrane which was press-processed.

符号の説明Explanation of symbols

1 導通部
2 非導通部
3 被検査体の電極
4 被検査体の基板
5 異方性導電膜
6 被検査体
7 レジスト
8 被検査体
9 導通部
10 基膜
11 多孔質樹脂
12 導電性金属
13 フィブリル
14 ノード
15 延伸多孔質PTFE膜
16 金型
17 圧縮部
18 非圧縮部
DESCRIPTION OF SYMBOLS 1 Conductive part 2 Non-conductive part 3 Electrode of to-be-inspected object 4 Substrate of to-be-inspected object 5 Anisotropic conductive film 6 Inspected object 7 Resist 8 Inspected object 9 Conducting part 10 Base film 11 Porous resin 12 Conductive metal 13 Fibril 14 Node 15 Expanded porous PTFE membrane 16 Mold 17 Compressed part 18 Non-compressed part

Claims (4)

電気絶縁性の基膜と、前記基膜の第一表面から第二表面に貫通する状態で設けられた導通部を有する異方性導電膜であって、
前記導通部は多孔質構造の樹脂表面に導電性金属が付着した構造であり、膜厚方向に弾力性を有し、前記基膜の第一表面及び第二表面の少なくとも一方から突出していることを特徴とする異方性導電膜。
An anisotropic conductive film having an electrically insulating base film and a conductive portion provided in a state penetrating from the first surface to the second surface of the base film,
The conducting portion has a structure in which a conductive metal adheres to a porous resin surface, has elasticity in the film thickness direction, and protrudes from at least one of the first surface and the second surface of the base film. An anisotropic conductive film characterized by the above.
前記導通部の気孔率が20%〜80%であり、前記基膜の気孔率が10%以下であることを特徴とする、請求項1に記載の異方性導電膜。   2. The anisotropic conductive film according to claim 1, wherein the porosity of the conductive portion is 20% to 80%, and the porosity of the base film is 10% or less. 前記基膜がポリテトラフルオロエチレン樹脂、アラミド樹脂又はポリイミド樹脂である、請求項1又は2に記載の異方性導電膜。   The anisotropic conductive film according to claim 1 or 2, wherein the base film is a polytetrafluoroethylene resin, an aramid resin, or a polyimide resin. 気孔率が20%〜80%である電気絶縁性の多孔質膜を厚み方向に部分的に圧縮し、前記多孔質膜の圧縮部の気孔率を10%以下とする工程、及び前記多孔質膜の非圧縮部に導電性金属を付着させて導通部を形成する工程、を有することを特徴とする異方性導電膜の製造方法。   A step of partially compressing an electrically insulating porous membrane having a porosity of 20% to 80% in the thickness direction so that the porosity of the compressed portion of the porous membrane is 10% or less; and the porous membrane A method for producing an anisotropic conductive film, comprising: forming a conductive portion by attaching a conductive metal to the non-compressed portion.
JP2006217918A 2006-08-10 2006-08-10 Anisotropic conductive film and manufacturing method thereof Expired - Fee Related JP4788521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217918A JP4788521B2 (en) 2006-08-10 2006-08-10 Anisotropic conductive film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217918A JP4788521B2 (en) 2006-08-10 2006-08-10 Anisotropic conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008041592A JP2008041592A (en) 2008-02-21
JP4788521B2 true JP4788521B2 (en) 2011-10-05

Family

ID=39176357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217918A Expired - Fee Related JP4788521B2 (en) 2006-08-10 2006-08-10 Anisotropic conductive film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4788521B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228936A (en) * 1997-02-14 1998-08-25 Niles Parts Co Ltd Connector using conductive fiber and manufacture thereof
US6799977B2 (en) * 2002-07-11 2004-10-05 Hewlett-Packard Development Company, L.P. Socket having foam metal contacts
JP4075637B2 (en) * 2003-02-14 2008-04-16 住友電気工業株式会社 Method for producing anisotropic conductive sheet
JP2005056791A (en) * 2003-08-07 2005-03-03 Shin Etsu Polymer Co Ltd Electric connector

Also Published As

Publication number Publication date
JP2008041592A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4604893B2 (en) Composite porous resin substrate and method for producing the same
JP4039293B2 (en) Method for manufacturing anisotropic conductive film
TWI342054B (en) Anisotropic conductive film and manufacturing method thereof
CN1910013B (en) Production method for pattern-worked porous molding fluororesin or nonwoven fabric
JP5579928B2 (en) Semiconductor device and manufacturing method thereof
US20090223701A1 (en) Porous resin base, method for manufacturing same, and multilayer substrate
JP2005294131A (en) Anisotropic conductive sheet
JP2008218285A (en) Forming method for anisotropic conductive sheet
JP4788521B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4715601B2 (en) Electrical connection parts
JP4075637B2 (en) Method for producing anisotropic conductive sheet
JP5895573B2 (en) Printed wiring board substrate and method for producing printed wiring board substrate
JP2008098257A (en) Connection structure
JP2008066076A (en) Anisotropic conductive sheet and forming method therefor, laminated sheet object, and inspection unit
JP2008075103A (en) Method for forming porous resin material
JP2008077873A (en) Porous resin material, its forming method, laminated sheet object, and inspection unit
JP2005142111A (en) Anisotropic conduction sheet
JP4428431B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4715600B2 (en) Sheet connector and manufacturing method thereof
JP4826905B2 (en) Anisotropic conductive film and manufacturing method thereof
WO2006132063A1 (en) Multilayer substrate and semiconductor package
JP2008063415A (en) Porous resin material, method for producing the same, laminate sheet material and inspection unit
JP2008241641A (en) Interposer and manufacturing method therefor
Nguyen et al. Au-Sn Solid-Liquid Interdiffusion (SLID) bonding for mating surfaces with high roughness
JP2008098258A (en) Connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees