JP4784324B2 - Lightning damage protection equipment for overhead power lines and its construction method - Google Patents

Lightning damage protection equipment for overhead power lines and its construction method Download PDF

Info

Publication number
JP4784324B2
JP4784324B2 JP2006028409A JP2006028409A JP4784324B2 JP 4784324 B2 JP4784324 B2 JP 4784324B2 JP 2006028409 A JP2006028409 A JP 2006028409A JP 2006028409 A JP2006028409 A JP 2006028409A JP 4784324 B2 JP4784324 B2 JP 4784324B2
Authority
JP
Japan
Prior art keywords
lightning
wire
ground wire
overhead
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006028409A
Other languages
Japanese (ja)
Other versions
JP2007209173A (en
Inventor
仁志 杉本
由伸 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2006028409A priority Critical patent/JP4784324B2/en
Publication of JP2007209173A publication Critical patent/JP2007209173A/en
Application granted granted Critical
Publication of JP4784324B2 publication Critical patent/JP4784324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Description

本発明は、主に3.3〜33kVの架空電線路の雷被害防護設備、及びその施工方法に関する。   The present invention mainly relates to lightning damage protection equipment for overhead electric lines of 3.3 to 33 kV, and a construction method thereof.

3.3〜33kVの架空電線路は、電線、がいし、支持物(電柱、腕木等)で構成されている。そして、直撃雷や誘導雷により発生する雷過電圧が架空電線路にかかることにより、がいし等の絶縁が破壊されるという、雷被害が起きている。   The overhead electric line of 3.3 to 33 kV is composed of electric wires, insulators, and supports (electric poles, arms, etc.). In addition, lightning overvoltage generated by direct lightning strike or induced lightning is applied to the overhead electric line, and thus lightning damage such as insulation of insulators is broken.

雷被害の対策として、避雷装置を支持物に取り付けたり、架空地線(接地された線)を支持物の頂部に取り付ける方法が、単独又は組み合わせて用いられている(特許文献1)。避雷装置とは、雷過電圧の抑制を目的としたもの全般を意味し、JEC−203−1978「避雷器」やJEC−217−1984「酸化亜鉛形避雷器」に準拠した架空電線路全体の保護を目的とした避雷器だけでなく、電線の断線や変圧器等の個別設置機器の保護を目的とした耐雷機材(上記規格に準拠し、酸化亜鉛素子に代表される避雷素子を用いたもの(以後、耐雷機材と称する))も含まれる。
特開2004−266900号公報(従来の技術)
As a countermeasure against lightning damage, methods of attaching a lightning arrester to a support or attaching an overhead ground wire (grounded wire) to the top of the support are used alone or in combination (Patent Document 1). A lightning arrester means the whole thing aiming at the suppression of lightning overvoltage, and it aims at protection of the whole overhead electric wire line based on JEC-203-1978 "lightning arrester" and JEC-217-1984 "zinc oxide type lightning arrester". Lightning protection equipment for the purpose of protecting not only lightning arresters but also individual installation equipment such as wire breaks and transformers (those that use lightning protection elements compliant with the above standards and represented by zinc oxide elements (hereinafter referred to as lightning protection) Also referred to as equipment)).
JP-A-2004-266900 (conventional technology)

避雷装置を単独で用いた場合、避雷装置に流れる雷電流が多くなり避雷装置が焼損することがある。従って、避雷装置と架空地線を併用する手法によって、雷電流を避雷装置と架空地線に分散させて避雷装置に流れる電流を少なくすることが効果的であると考えられる。   When the lightning arrester is used alone, the lightning current flowing through the lightning arrester increases and the lightning arrester may burn out. Therefore, it is considered effective to reduce the current flowing through the lightning arrester by distributing the lightning current to the lightning arrester and the overhead ground wire by using the lightning arrester and the overhead ground wire in combination.

架空地線は雷電流を分散させたり、雷通過電圧を抑制する以外に、直撃雷を受け止めることから、電線よりも上方に配置することが技術常識となっており、通常、支持物の頂部に取り付けられている。ところが、既存の支持物の頂部に架空地線を取り付けるとなると、安全面を考慮して周囲を停電しなければならず、需要家との交渉を要したり、停電できない需要家には非常用電源の準備が必要であったりするので、その実現は困難である。なお、支持物の頂部につける場合には専用の留め具を用いるため、留め具のコストも高くなった。   Since overhead ground wires receive direct strikes in addition to dispersing lightning current and suppressing lightning passing voltage, it is common technical knowledge to place them above the wires, and usually on top of the support. It is attached. However, when an overhead ground wire is attached to the top of an existing support, the surroundings must be blacked out in consideration of safety, and it is necessary to negotiate with customers or for those who cannot Since it is necessary to prepare a power source, it is difficult to realize it. In addition, since the exclusive fastener was used when attaching to the top part of a support body, the cost of the fastener also became high.

本発明は上記実情を考慮して創作されたもので、その目的とするところは、避雷装置の焼損を防止しつつ、停電しなくとも架空地線を取り付けられる雷被害防護設備、及びその施工方法を提供することである。   The present invention was created in consideration of the above circumstances, and the object of the present invention is to provide a lightning damage protection facility capable of attaching an overhead ground wire without a power failure while preventing the lightning arrester from being burnt out, and a method for constructing the same. Is to provide.

電力線に使用する絶縁電線は通常、合成樹脂で被覆され絶縁されているので、被覆されていない裸電線に比べて雷撃しにくい特徴を有することに、本発明者は着目した。それ故、架空地線を取り付けなくとも、支持物の頂部が雷遮蔽物となり、絶縁電線への落雷を防止又は軽減できると推測した。そうすると、架空地線を支持物の頂部に付ける必然性は失われることから、絶縁電線よりも下側に架設しても雷電流を分散させる効果は維持できると本発明者は考え、その効果を確認するための評価を行ったところ、良好な評価結果が得られた。   Since the insulated wire used for the power line is usually covered and insulated with a synthetic resin, the present inventor has paid attention to the feature that it is harder to strike than an uncovered bare wire. Therefore, it was speculated that even if no overhead ground wire was attached, the top of the support became a lightning shield, and lightning strikes on the insulated wires could be prevented or reduced. Then, since the necessity of attaching the overhead ground wire to the top of the support is lost, the inventor thinks that the effect of dispersing the lightning current can be maintained even if it is installed below the insulated wire, and the effect is confirmed. As a result, evaluation results were good.

即ち、本発明のうち請求項1の発明は支持物の上部間に電力線である絶縁電線を架設すると共に、絶縁電線に沿って間隔をあけて架空地線を架設し、少なくとも複数本の支持物おきに避雷装置を備える3.3〜33kVの架空電線路の雷被害防護設備において、架空地線を絶縁電線の下方にのみ配置すると共に、絶縁電線と架空地線との上下間隔を0.8〜5mの範囲に設定し、架空地線を単独の接地線で接地、又は直に接地された避雷装置用アース線を介して接地することを特徴とする。
That is, according to the first aspect of the present invention, an insulated wire as a power line is installed between the upper parts of the support, and an aerial ground wire is installed at intervals along the insulated wire, and at least a plurality of supports are provided. In lightning damage protection equipment for overhead power lines of 3.3 to 33 kV equipped with lightning arresters every other time, the overhead ground wire is placed only below the insulated wire, and the vertical distance between the insulated wire and the overhead ground wire is 0.8. It is set to a range of ˜5 m, and the aerial ground wire is grounded by a single ground wire or grounded via a lightning arrester ground wire that is directly grounded.

「少なくとも複数本の支持物おきに避雷装置を備え」としたのは、雷被害の多い箇所では支持物ごとに避雷装置を備えているからである。また、「架空地線を単独の接地線で接地、又は直に接地された避雷装置用アース線を介して接地する」こととしたのは、制約条件(電気設備の技術基準の解釈第42条)があるが、低圧の接地相の線に対して、避雷装置のアース線を複数箇所接続するものを除くためである。低圧の接地相の線に対して、避雷装置のアース線を複数箇所接続するものの場合、対象とする直撃雷保護においては直撃雷の電流の一部が低圧の接地相の線に流れ、低圧線に大きな雷過電圧を発生させる恐れがあるため、適切な方法では無い。なお、「架空地線」には、当然のことながら、通信線等を施設するために架設されたメッセンジャーワイヤー(金属製の吊線)は含まれない。というのは、メッセンジャーワイヤーを「架空地線」として直撃雷の電流を流すと,吊られている通信線等にも大きな雷過電圧を発生させる恐れがあるため、適切な方法では無い。   The reason that “at least a plurality of supports are provided with lightning protection devices” is because lightning damage devices are provided for each support in a place where lightning damage is high. In addition, “the ground wire is grounded with a single ground wire or grounded via a lightning arrester ground wire that is directly grounded” is a restriction condition (interpretation of technical standards for electrical equipment Article 42 However, this is for the purpose of excluding one that connects a plurality of lightning arrester ground wires to a low-voltage ground phase wire. In the case of connecting lightning arrester ground wires at multiple locations to the low-voltage grounding phase wire, in the targeted direct lightning protection, part of the direct lightning current flows to the low-voltage grounding phase wire. This is not an appropriate method because it may cause a large lightning overvoltage. It should be noted that the “aerial ground wire” does not include a messenger wire (a metal suspension wire) installed to install a communication line or the like. This is not an appropriate method because if a messenger wire is used as an “aerial ground wire” and a current of direct lightning strikes, a large lightning overvoltage may be generated in a suspended communication line.

また、請求項2の発明は、支持物の上部間に電力線である絶縁電線を架設すると共に、少なくとも複数本の支持物おきに避雷装置を備える3.3〜33kVの架空電線路に対して、絶縁電線に電力を供給しながら、架空地線を絶縁電線の下方のみに沿って0.8〜5mの上下間隔をあけて架設すると共に、架空地線を単独の接地線で接地、又は直に接地された避雷装置用アース線を介して接地することを特徴とする架空電線路の雷被害防護設備の施工方法である。
Further, the invention of claim 2 is for a 3.3 to 33 kV aerial electric wire path in which an insulated electric wire as a power line is installed between the upper parts of the support, and at least a plurality of support is provided with a lightning arrester. While supplying power to the insulated wire, install the overhead ground wire with a vertical space of 0.8 to 5m only along the bottom of the insulated wire, and ground the overhead ground wire with a single ground wire, or directly A method for constructing a lightning damage protection facility for an overhead electric line characterized by grounding via a grounding wire for a lightning arrester.

架空地線の支持物に対する架設時期と、架空地線の接地時期は、順番を問わない。   The installation time for the support of the overhead ground wire and the ground contact time of the overhead ground wire are not limited.

本発明の架空電線路の雷被害防護設備は、架空地線の箇所が絶縁電線の下方であるにも関わらず、電力線である絶縁電線の上方に配置した場合と遜色のない程度に、避雷装置の焼損防止効果が得られた。そして、絶縁電線の下方にのみ架空地線を架設するので、停電しなくとも架空地線の取り付けが可能となる。また、架空地線の留め具も、従来のように支持物の頂部につける専用の留め具でなくともよく、コストの低下が期待できる。架空地線を直に接地された避雷装置用アース線を介して接地する場合は、単独の接地線で接地した場合に比べて、設備投資費が軽減できる。 The lightning damage protection equipment of the overhead wireway of the present invention has a lightning arrester to the extent that it is not inferior to the case where it is placed above the insulated wire that is a power line, even though the location of the overhead ground wire is below the insulated wire. The anti-burning effect was obtained. And since an aerial ground wire is erected only below the insulated wire, the aerial ground wire can be attached without a power failure. Further, the overhead ground wire fastener does not have to be a dedicated fastener attached to the top of the support as in the prior art, and cost reduction can be expected. When the overhead ground wire is grounded via a grounding wire for a lightning arrester that is directly grounded, the capital investment cost can be reduced as compared with the case where the ground wire is grounded by a single ground wire.

本発明の施工方法は、電力を供給しながら架空地線の施工ができるので、停電の際の需要家との交渉等が不要となり、実用価値の高いものである。   Since the construction method of the present invention can construct an overhead ground wire while supplying electric power, negotiation with a customer in the event of a power failure is unnecessary, and has high practical value.

架空電線路の雷被害防護設備は、図1に示すように間隔をあけて起立する支持物1の上部間に絶縁電線(電力線)2を架設し、支持物1間であって三相の絶縁電線2の下方に沿って一本の架空地線3を架設するものである。絶縁電線2と架空地線3の上下間隔は、通常の送電時に絶縁を保てる距離、一応の目安としては80cm以上とする。図1(イ)に示すように線路の中間箇所においては、支持物1の四、五本おきに避雷装置4としての避雷器を、支持物1に対して固定すると共に絶縁電線2に接続し、避雷器4から引き出したアース線5を架空地線3への接続を経て地中の接地極に接続してある。線路の末端においては、図1(ロ)に示すように末端の支持物1に対して同様に避雷器4を留めてある。そして、避雷器4は、通常時には絶縁電線2と架空地線3との絶縁を図りながらも、雷過電圧発生時には絶縁電線2と架空地線3を導通して、雷電流を大地に流して架空電線路を保護する。図示しないが、雷被害の多い箇所では、避雷器の付いていない支持物に対して、避雷装置としての耐雷機材を支持物の絶縁電線(電力線)用がいしの近傍に間隔をあけて留め、耐雷機材の耐雷性能を利用して電力線の断線およびがいしの破損を防止する。なお、支持物1は、主に電柱6、腕木7、がいし8、各種留め具(避雷装置用や架空地線用等))によって構成される。架空地線3を架設するに際しては電柱に直接留め具で取り付ける。この留め具は、汎用的なもの、例えば図8に示すように、バンド9と吊架金物10を用いる構造が挙げられる。バンド9はC字状の帯板の両端に止め片を外側に突出したもので、バンド9を電柱6に巻き、重ね合わせた両止め片をネジ止めして電柱6にバンド9を締結し、J字状の吊架金物10の上片をバンド9の一部に重ね合わせてネジ止めし、吊架金物10の下側のU字部分に架空地線3を通し、ネジの先部で架空地線3をU字部分の内面に押し付けて固定するものである。従って、電柱の頂部に取り付ける従来の留め具(図9参照、三角形状のようなもの)に比べて構造が単純である。   As shown in FIG. 1, the lightning damage protection equipment for the overhead power line has an insulated wire (power line) 2 installed between the upper parts of the support 1 that stands up at intervals, and is insulated between the support 1 and three-phase. One overhead ground wire 3 is installed along the lower side of the electric wire 2. The vertical distance between the insulated wire 2 and the overhead ground wire 3 is a distance at which insulation can be maintained during normal power transmission. As shown in FIG. 1 (a), in the middle of the track, lightning arresters as lightning arresters 4 are fixed to the support 1 every four or five of the support 1, and connected to the insulated wire 2, The ground wire 5 drawn out from the lightning arrester 4 is connected to the underground ground electrode via the connection to the overhead ground wire 3. At the end of the line, as shown in FIG. 1 (b), the lightning arrester 4 is similarly secured to the support 1 at the end. The lightning arrester 4 normally insulates the insulated wire 2 and the overhead ground wire 3 from each other, but when a lightning overvoltage occurs, the insulated wire 2 and the overhead ground wire 3 are conducted to flow the lightning current to the ground. Protect the road. Although not shown, in places where lightning damage is high, lightning protection equipment as a lightning arrester is secured to the support that does not have a lightning arrester in the vicinity of the support insulation wire (power line) insulator. Uses the lightning resistance of the power line to prevent power line breakage and insulator damage. In addition, the support 1 is mainly comprised by the utility pole 6, the arm 7, the insulator 8, and various fasteners (for lightning arresters, overhead ground wires, etc.). When installing the overhead ground wire 3, attach it directly to the utility pole with a fastener. The fastener may be a general-purpose one, for example, a structure using a band 9 and a suspended bracket 10 as shown in FIG. The band 9 is a C-shaped band plate with protruding stoppers on both ends. The band 9 is wound around the utility pole 6 and the overlapped stopper pieces are screwed together to fasten the band 9 to the utility pole 6. The upper piece of the J-shaped suspended bracket 10 is overlapped with a part of the band 9 and screwed, the overhead ground wire 3 is passed through the U-shaped portion on the lower side of the suspended bracket 10, and the overhead of the screw is suspended. The ground wire 3 is pressed against the inner surface of the U-shaped portion and fixed. Therefore, the structure is simple compared to a conventional fastener (see FIG. 9, like a triangle) attached to the top of the utility pole.

上述した架空電線路の雷被害防護設備の施工方法としては、既存の支持物1(絶縁電線2及びアース線5で接地された避雷器4を取り付け、架空地線がないもの)に対して、電力を供給した状態のまま、架空地線3を留め具で留めていき、架空地線3を避雷器4のアース線5に接続する方法が例示できる。   The construction method of the above-mentioned lightning damage protection equipment for the overhead wireway is to use power for the existing support 1 (with the insulated wire 2 and the lightning arrester 4 grounded by the ground wire 5 and no overhead wire). The method of connecting the aerial ground wire 3 to the ground wire 5 of the lightning arrester 4 by fastening the aerial ground wire 3 with a fastener while the state is supplied can be exemplified.

上述した架空電線路の雷被害防護設備について耐雷効果を評価する。架空電線路(以下、線路)の電力線に使用されている絶縁電線は裸電線よりも雷撃しにくい特徴があり、架空地線を電力線の上方に施設しなくても線路の支持物頂部が雷遮へい物となり、絶縁電線への落雷を防止もしくは軽減することが期待できる。そこで、まず、架空地線が無い場合の線路(支持物頂部および絶縁電線)への雷撃確率を推定する。架空地線がある場合の線路の架空地線への雷撃確率も、以下の方法で同様に推定できる。   Evaluate lightning protection effects for the above-mentioned lightning damage protection equipment for overhead power lines. Insulated wires used for power lines in overhead power lines (hereinafter referred to as tracks) have the feature of being harder to strike than bare wires, and the top of the track support is lightning shielded without having to install overhead ground wires above the power lines. It can be expected to prevent or reduce lightning strikes on insulated wires. Therefore, first, the probability of lightning strike to the track (the top of the support and the insulated wire) when there is no overhead ground wire is estimated. The probability of a lightning strike to an imaginary ground line when there is an imaginary ground line can be similarly estimated by the following method.

雷撃距離の算出については様々な予測式が提案されているが、汎用性の高いIEEE Std
1410-1997 “IEEE Guide for Improving the Lightning Performance of Electric Power
Overhead Distribution Lines” に示されている下記(1)式を用いた。絶縁電線の雷撃しにくさは大地と同等とした。

Figure 0004784324
Various prediction formulas have been proposed for calculating the lightning strike distance, but the IEEE Std is highly versatile.
1410-1997 “IEEE Guide for Improving the Lightning Performance of Electric Power
The following formula (1) shown in “Overhead Distribution Lines” was used.
Figure 0004784324

図2のように、平坦地1km2内に線路が1線路あると仮定して支持物頂部や絶縁電線(以下、電線)への雷撃確率を求める。その計算方法は以下のとおりである。雷撃電流の各波高値Ipに対して、図2のように支持物頂部や電線などの各場所の雷撃範囲を上記(1)式から求める。その雷撃範囲を1km2の単位面積あたりの確率s(Ip)とし、雷撃電流波高値Ipの発生確率と乗ずる。雷撃範囲の確率と雷撃電流波高値Ipの発生確率を乗じた値を、雷撃電流波高値の分布にわたって積分することで、その場所の雷撃確率を求めることができる。以下に雷撃確率Prを求める(2)式を示す。計算に用いた雷撃電流波高値の累積頻度分布定数を以下の表1に示す。

Figure 0004784324
Figure 0004784324
As shown in FIG. 2, it is assumed that there is one track within 1 km 2 of flat ground, and the probability of lightning strike to the top of the support or an insulated wire (hereinafter, wire) is obtained. The calculation method is as follows. For each peak value Ip of the lightning strike current, the lightning strike range of each place such as the top of the support or the electric wire is obtained from the above equation (1) as shown in FIG. The lightning strike range is set to a probability s (Ip) per unit area of 1 km 2 and is multiplied by the occurrence probability of the lightning strike current peak value Ip. By integrating the probability of the lightning strike range and the probability of occurrence of the lightning strike current peak value Ip over the distribution of lightning strike current peak values, the lightning strike probability at that location can be obtained. Equation (2) for obtaining the lightning strike probability Pr is shown below. Table 1 below shows the cumulative frequency distribution constant of the lightning current peak value used in the calculation.
Figure 0004784324
Figure 0004784324

雷被害防護の効果を定量的に確認するために、EMTP解析を用いて避雷装置雷焼損率を求めた。避雷装置雷焼損率は、「1回の線路雷撃により避雷装置が焼損する確率」である。   In order to quantitatively confirm the effects of lightning damage protection, the lightning arrester lightning burnout rate was obtained using EMTP analysis. The lightning arrester lightning burnout rate is the “probability that a lightning arrester burns out by a single line lightning strike”.

避雷装置雷焼損率を算出するための解析条件は表2に示すように、以下のとおりである。解析線路は、支持物、水平配列の電線3相を基本構成とし、架空地線の有無および架空地線の施設位置に応じて架空地線を付加した。支持物および電力線の地上高は11.6m、径間長は40mとした。線路の抵抗やインダクタンスの定数は、EMTPのJMARTIセットアッププログラムを用いて算出した。線路の両端は、多導体系線路のサージインピーダンスに相当する整合抵抗で終端した。
現在の日本の電力会社では約4径間置き(支持物5本のうち1本)に3相1組の避雷器が取り付けられている実績があることから、4径間置きに3相1組の避雷器を取り付け、接地(30Ωの接地抵抗Ra)する回路を設定した(図3参照)。その他の支持物には耐雷機材を中相を省いて両外2相に取り付けた。耐雷機材を3相取り付ける方法もあるが、この検討におけるこの差は大きな影響はないと想定する。耐雷機材の接地としては、雷に対して支持物の埋設部分が接地極となることを考慮し、支持物の接地抵抗Rb(150Ω)に接続した。避雷器および耐雷機材が雷により焼損に至る処理エネルギー耐量は15kJとした。架空地線の施設位置は、従来方法では線路の上方0.8m、本発明では線路の下方1〜5mに変化させた。架空地線の接地は、避雷器がある支持物では避雷器の接地抵抗Raに、耐雷機材のある支持物では、支持物の埋設部分の接地抵抗Rbに、それぞれ接続した。

Figure 0004784324
As shown in Table 2, the analysis conditions for calculating the lightning arrester lightning burnout rate are as follows. The analysis track is basically composed of three phases of support and horizontally arranged wires, and an overhead ground wire is added according to the presence of the overhead ground wire and the location of the overhead ground wire. The ground height of the support and power line was 11.6 m, and the span length was 40 m. Line resistance and inductance constants were calculated using the EMTP JMARI setup program. Both ends of the line were terminated with matching resistors corresponding to the surge impedance of the multiconductor line.
At present Japanese electric power companies, there is a track record of installing a set of three-phase lightning arresters every four spans (one out of five supports). A lightning arrester was attached, and a circuit for grounding (30Ω grounding resistance Ra) was set (see FIG. 3). For other supports, lightning-proof equipment was attached to the two outer phases with the middle phase omitted. There is also a method of attaching lightning-proof equipment in three phases, but this difference in this study is assumed to have no significant effect. The grounding of the lightning-resistant equipment was connected to the grounding resistance Rb (150Ω) of the support in consideration of the fact that the buried part of the support becomes a grounding electrode against lightning. The processing energy resistance that causes lightning arresters and lightning protection equipment to burn out by lightning was set to 15 kJ. The facility position of the overhead ground wire was changed to 0.8 m above the track in the conventional method and 1 to 5 m below the track in the present invention. Grounding of the overhead ground wire was connected to the grounding resistance Ra of the lightning arrester for the support with the lightning arrester, and to the grounding resistance Rb of the buried part of the support for the support with the lightning protection device.

Figure 0004784324

雷撃箇所については、回路条件に合わせ、以下のとおりとした。架空地線が線路下方にある場合では、雷撃箇所は支持物頂部もしくは電線の径間中央になると考えられる。そして、検討線路の各避雷装置(避雷器、耐雷機材)の配置から大きく分けて図4に示す8通りの雷撃箇所が考えられる。線路条件からは図4の(a)〜(e)の5種類となり、(a)、(c)、(e)の支持物頂部雷撃および(b)、(d)の電線外相雷撃について解析を行った。一方、架空地線が線路上方にある場合の雷撃箇所は、(a)、(b)、(c)、(d)、(e)の5箇所の架空地線とし、解析を行った。   Lightning strike locations were as follows according to circuit conditions. When the overhead ground wire is below the track, the lightning strike is considered to be the top of the support or the center of the span of the wire. The eight lightning strike points shown in FIG. 4 can be roughly divided from the arrangement of each lightning arrester (lightning arrester, lightning protection equipment) on the examination line. From the track conditions, there are five types (a) to (e) in Fig. 4. Analyzes are made on the top lightning strikes of the support (a), (c), and (e) and the external phase lightning strikes of (b) and (d). went. On the other hand, the lightning strike location when the overhead ground wire was above the track was analyzed as five overhead ground wires (a), (b), (c), (d), and (e).

避雷装置の雷焼損の検討のため、雷撃電流は大きなエネルギーを持つ冬季雷を想定した。電流波形は図5に示す波頭長1μ秒の三角波とし、波尾長および波高値をパラメータとして変化させた。解析に用いた雷撃電流の波形パラメータを前述した表1に示す。   In order to investigate the lightning burnout of the lightning arrester, the lightning current was assumed to be a winter lightning with large energy. The current waveform was a triangular wave having a wavefront length of 1 μsec shown in FIG. 5, and the wave tail length and the peak value were changed as parameters. Table 1 shows the waveform parameters of the lightning strike current used for the analysis.

避雷装置雷焼損率の計算方法は以下のとおりである。まず、解析条件ごとに雷撃電流の各波尾長に対して避雷装置が焼損に至る最小の雷撃電流波高値をEMTP解析により求め、避雷装置が焼損に至る雷撃電流波尾長と雷撃電流波高値の関係を求める(図6参照)。そして、図6の関係曲線において、避雷装置が焼損するしきい値を超える側の範囲(図6の斜線部)について、雷撃電流の波尾長Ttおよび波高値Ipのそれぞれの確率を表1に基づいて求め、積分すれば、避雷装置雷焼損率Pfを求めることができる。以下に避雷装置雷焼損率Pfを求める(3)式を示す。

Figure 0004784324
The calculation method of the lightning arrester lightning burnout rate is as follows. First, for each analysis condition, the minimum lightning current peak value that causes the lightning arrester to burn out for each wave tail length of the lightning strike current is obtained by EMTP analysis, and the relationship between the lightning current wave tail length that causes the lightning arrester to burn out and the lightning current peak value. Is obtained (see FIG. 6). Then, in the relational curve of FIG. 6, the probabilities of the wave tail length Tt and the peak value Ip of the lightning strike current are shown in Table 1 for the range (shaded area in FIG. 6) that exceeds the threshold at which the lightning arrester burns out. Then, the lightning arrester lightning burnout rate Pf can be obtained. Equation (3) for obtaining the lightning arrester lightning burnout rate Pf is shown below.
Figure 0004784324

ここでは、雷撃電流波尾長の対数値の確率密度関数および雷撃電流波高値の対数値の確率密度関数が正規分布に従い、それぞれ独立であるとして算出した。   Here, the probability density function of the logarithmic value of the lightning current wave tail length and the probability density function of the logarithmic value of the lightning current wave peak value are calculated according to a normal distribution and are independent.

架空地線が線路下方にある場合の支持物頂部雷撃による避雷装置雷焼損率の平均値は、図4の雷撃(a)、(c)、(e)の発生確率25%、50%、25%から、電線雷撃による避雷装置雷焼損率の平均値は、図4の雷撃(b)、(d)の発生確率50%、50%から、それぞれ平均して求める。   The average value of the lightning arrester lightning burnout rate due to the top lightning strike of the support when the overhead ground wire is below the track is the occurrence probability of lightning strikes (a), (c) and (e) in FIG. %, The average value of the lightning arrester lightning burnout rate due to the lightning strike is obtained by averaging the occurrence probability of lightning strikes (b) and (d) in FIG. 4 from 50% and 50%, respectively.

また、架空地線が線路上方にある場合の架空地線への雷撃による避雷装置雷焼損率については、架空地線の支持物箇所雷撃と、図4の雷撃(b)、(d)の架空地線の径間中央箇所雷撃の2つに分けて求める。架空地線の支持物箇所雷撃の避雷装置雷焼損率の平均値は、図4の雷撃(a)、(c)、(e)の発生確率25%、50%、25%から平均して求める。架空地線の径間中央箇所雷撃の避雷装置雷焼損率の平均値は、図4の雷撃(b)、(d)の発生確率50%、50%から平均して求める。   Regarding the lightning arrester lightning damage rate due to lightning strikes to the overhead ground wire when the overhead ground wire is above the track, the lightning damage of the support part of the overhead ground wire and the overhead lightning of the lightning strikes (b) and (d) in FIG. It is determined by dividing it into two types of lightning strikes at the center of the span of the ground wire. The average value of the lightning arrester of the lightning arrester at the support spot of the overhead ground wire is obtained by averaging the occurrence probability of lightning strikes (a), (c), and (e) in FIG. 4 from 25%, 50%, and 25%. . The average value of the lightning arrester lightning burnout rate of the lightning strike device at the center of the span of the overhead ground wire is obtained by averaging the occurrence probability of lightning strikes (b) and (d) in FIG. 4 from 50% and 50%.

最終的に避雷装置雷焼損率は、各条件の雷撃確率と避雷装置雷焼損率を乗じて求まる。架空地線が線路下方にある場合の避雷装置雷焼損率Fを例に、算出式を(4)式に示す。

Figure 0004784324
The lightning arrester lightning burnout rate is finally obtained by multiplying the lightning strike probability of each condition and the lightning arrester lightning burnout rate. An example of the lightning arrester lightning burnout rate F when the overhead ground wire is below the track is shown in equation (4).
Figure 0004784324

上記の条件に基づき解析検討した結果を図7に示す。架空地線を線路下方に取り付けると架空地線が無い時の避雷装置雷焼損率を約63%に低減できることが分かる。そして、従来の架空地線を線路上方に取り付ける場合とは約5%の違いで同様の効果が期待できることが分かる。
なお、上述した耐雷評価に用いた雷被害防護設備は、架空地線の接地に避雷装置のアース線を利用したものであるが、架空地線を単独の接地線で接地しても、同等の効果が期待できる。
FIG. 7 shows the results of analysis and examination based on the above conditions. It can be seen that if the overhead ground wire is attached below the track, the lightning arrester lightning burnout rate when there is no overhead ground wire can be reduced to about 63%. And it turns out that the same effect can be expected with a difference of about 5% from the case where the conventional overhead ground wire is attached above the track.
In addition, although the lightning damage protection equipment used for the above-mentioned lightning protection evaluation uses the ground wire of the lightning arrester for grounding the overhead ground wire, even if grounding the overhead ground wire with a single ground wire, the equivalent The effect can be expected.

(イ)(ロ)図は雷被害防護設備を示す説明図である。(A) and (b) are explanatory diagrams showing the lightning damage protection equipment. 架空地線が架空電線路の上方に無い場合の架空電線路への雷撃範囲を示す説明図である。It is explanatory drawing which shows the lightning strike range to an overhead electric wire path when an overhead ground wire does not exist above an overhead electric wire path. 架空地線が架空電線路の下方に架設された場合の解析回路である。This is an analysis circuit when an overhead ground wire is installed below the overhead electric wire path. 架空地線が架空電線路の下方に架設された場合の雷撃箇所の想定図である。It is an assumption figure of the lightning strike location when an overhead ground wire is constructed under the overhead electric wire way. 解析に用いた雷撃電流波形を示すグラフである。It is a graph which shows the lightning strike current waveform used for analysis. 架空地線無し、支持物頂部雷撃の場合の、避雷装置が焼損に至る雷撃電流波尾長と電流波高値の関係を示すグラフである。It is a graph which shows the relationship between the lightning current wave tail length and current peak value which a lightning arrester leads to burning in the case of no overhead ground wire and the top lightning of a support. 避雷装置雷焼損率と架空地線設置高さとの関係を示すグラフである。It is a graph which shows the relationship between a lightning arrester lightning burnout rate and an overhead ground wire installation height. 支持物に対する架空地線の止め方を示す説明図である。It is explanatory drawing which shows how to stop an aerial ground wire with respect to a support. (イ)、(ロ)図は従来の留め具を示す正面図、側面図である。(A) and (B) are a front view and a side view showing a conventional fastener.

符号の説明Explanation of symbols

1 支持物、2 絶縁電線(電力線)、3 架空地線、4 避雷装置(避雷器)、5 アース線、6 電柱、7 腕木、8 がいし、9 バンド、10 吊架金物 1 Support, 2 Insulated wire (Power line), 3 Overhead ground wire, 4 Lightning arrester (Lightning arrester), 5 Ground wire, 6 Telephone pole, 7 Arm, 8 Insulator, 9 band, 10 Suspended bracket

Claims (2)

支持物(1)の上部間に電力線である絶縁電線(2)を架設すると共に、絶縁電線(2)に沿って間隔をあけて架空地線(3)を架設し、少なくとも複数本の支持物おきに避雷装置(4)を備える3.3〜33kVの架空電線路の雷被害防護設備において、
架空地線(3)を絶縁電線(2)の下方にのみ配置すると共に、絶縁電線(2)と架空地線(3)との上下間隔を0.8〜5mの範囲に設定し、架空地線(3)を単独の接地線で接地、又は直に接地された避雷装置(4)用アース線(5)を介して接地することを特徴とする架空電線路の雷被害防護設備。
An insulated wire (2), which is a power line, is installed between the upper parts of the support (1), and an aerial ground wire (3) is installed at intervals along the insulated wire (2). At least a plurality of supports In a lightning damage protection facility for 3.3 to 33 kV overhead power lines with a lightning arrester (4) everywhere ,
The overhead ground wire (3) is arranged only below the insulated wire (2), and the vertical distance between the insulated wire (2) and the overhead ground wire (3) is set in the range of 0.8 to 5 m, A lightning damage protection system for an overhead power line, characterized in that the wire (3) is grounded by a single grounding wire or via a grounding wire (5) for a lightning arrester (4) that is directly grounded.
支持物(1)の上部間に電力線である絶縁電線(2)を架設すると共に、少なくとも複数本の支持物おきに避雷装置(4)を備える3.3〜33kVの架空電線路に対して、
絶縁電線に電力を供給しながら、架空地線(3)を絶縁電線(2)の下方のみに沿って0.8〜5mの上下間隔をあけて架設すると共に、架空地線(3)を単独の接地線で接地、又は直に接地された避雷装置(4)用アース線(5)を介して接地することを特徴とする架空電線路の雷被害防護設備の施工方法。
An insulated wire (2), which is a power line, is installed between the upper parts of the support (1), and at least for a 3.3 to 33 kV overhead power line provided with a lightning arrester (4) every other plurality of supports.
While supplying power to the insulated wire, the overhead ground wire (3) is installed with a vertical interval of 0.8 to 5 m along only the lower part of the insulated wire (2), and the overhead ground wire (3) alone A grounding method using a grounding wire or an earthing wire (5) for a lightning arrester (4) grounded directly.
JP2006028409A 2006-02-06 2006-02-06 Lightning damage protection equipment for overhead power lines and its construction method Active JP4784324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028409A JP4784324B2 (en) 2006-02-06 2006-02-06 Lightning damage protection equipment for overhead power lines and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028409A JP4784324B2 (en) 2006-02-06 2006-02-06 Lightning damage protection equipment for overhead power lines and its construction method

Publications (2)

Publication Number Publication Date
JP2007209173A JP2007209173A (en) 2007-08-16
JP4784324B2 true JP4784324B2 (en) 2011-10-05

Family

ID=38488123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028409A Active JP4784324B2 (en) 2006-02-06 2006-02-06 Lightning damage protection equipment for overhead power lines and its construction method

Country Status (1)

Country Link
JP (1) JP4784324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078282A (en) * 2013-01-16 2013-05-01 辽宁省电力有限公司鞍山供电公司 Quick support composite insulator hardware for insulated overhead line and operation method of quick support composite insulator hardware

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775399B2 (en) * 2011-09-02 2015-09-09 中部電力株式会社 Damage evaluation method for lightning protection equipment, damage evaluation equipment for lightning protection equipment, damage evaluation method for transformers, damage evaluation equipment for transformers
CN102969685A (en) * 2012-12-12 2013-03-13 上海市电力公司 Method for improving lightning prevention and resisting level of overhead power distribution line
CN108321720A (en) * 2018-01-30 2018-07-24 中国电力科学研究院有限公司 A kind of device and method for preventing earth lead from burning
CN109586226A (en) * 2018-12-04 2019-04-05 金华八达集团有限公司科技信息分公司 The method and device of steel tower tower head overvoltage when a kind of inhibition transmission line lightning stroke
CN112653063B (en) * 2020-12-17 2022-07-29 长沙理工大学 Lightning protection method for 10kV overhead line used by matching coupling ground wire and lightning arrester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024654B2 (en) * 1979-05-26 1985-06-14 古河電気工業株式会社 overhead power transmission line
JPS62185517A (en) * 1986-02-10 1987-08-13 住友電気工業株式会社 Lightning protection of overhead distribution line
JPS63167623A (en) * 1986-08-27 1988-07-11 大阪ヒューズ株式会社 Lightening hazard proof system of transmission and distribution lines
JP2000348540A (en) * 1999-06-08 2000-12-15 Yazaki Corp Overhead high-tension distribution line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078282A (en) * 2013-01-16 2013-05-01 辽宁省电力有限公司鞍山供电公司 Quick support composite insulator hardware for insulated overhead line and operation method of quick support composite insulator hardware

Also Published As

Publication number Publication date
JP2007209173A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4784324B2 (en) Lightning damage protection equipment for overhead power lines and its construction method
RU2400895C1 (en) Lightning guard device for overhead power transmission line (versions)
KR100815166B1 (en) Ground plate for electric pole
CN102290775B (en) Lightning-caused breaking prevention method for 10kV overhead insulating line
Borecki et al. The comparative analysis of selected overvoltage protection measures for medium voltage overhead lines with covered conductors
RU2400894C1 (en) Lightning guard device for overhead power transmission line (versions)
CN201181637Y (en) Lightning protection distribution transformer
Hendratama et al. Lightning protection system standardization on indonesian railway operation facilities
Schoene Direct and nearby lightning strike interaction with test power distribution lines
RU2400896C1 (en) Lightning guard device for overhead power transmission line (versions)
JP4425171B2 (en) Grounding suspension lines for optical communication cables
Sabiha et al. Performance evaluation of distribution and low-voltage networks under direct lightning flashes with paralleled triac-surge arrester
JP2002320319A (en) Protection method against thunder damage
JP4748673B2 (en) Grounding system
JPH0515130B2 (en)
Yokoyama et al. Practical lightning protection design for overhead power distribution lines
RU2414031C1 (en) Lightning protection device for overhead transmission line (versions)
Han et al. Analysis of lightning overvoltage according to the location of overhead ground wire in Korea distribution system
CN103871694B (en) Anti-thunder insulator with transparent insulation safety guard and Integral grounding ring
CN215868826U (en) Insulator lightning protection structure
CN203352118U (en) Lightning protection device of overhead transmission line
Piparo et al. Protection of apparatus against lightning surge in an extended earthing arrangement
JPH10285794A (en) Distribution line thunderproof system
Amata et al. Study of Power Equipment Trouble Caused by Lightning in Traction Substation
Ariffin Use of combined approaches towards mitigating faults caused by lightning on TNB distribution overhead lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250