JP4783184B2 - Expandable resin laminated metal sheet - Google Patents

Expandable resin laminated metal sheet Download PDF

Info

Publication number
JP4783184B2
JP4783184B2 JP2006077358A JP2006077358A JP4783184B2 JP 4783184 B2 JP4783184 B2 JP 4783184B2 JP 2006077358 A JP2006077358 A JP 2006077358A JP 2006077358 A JP2006077358 A JP 2006077358A JP 4783184 B2 JP4783184 B2 JP 4783184B2
Authority
JP
Japan
Prior art keywords
metal plate
resin
laminated
resin layer
foamable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077358A
Other languages
Japanese (ja)
Other versions
JP2007253353A (en
Inventor
裕信 中西
美佳 西田
哲雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006077358A priority Critical patent/JP4783184B2/en
Publication of JP2007253353A publication Critical patent/JP2007253353A/en
Application granted granted Critical
Publication of JP4783184B2 publication Critical patent/JP4783184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、未発泡状態で優れた加工性を有すると共に、発泡処理後の状態では卓越した制振性、剛性、遮音性、断熱性など示す加熱発泡性の樹脂積層金属板に関するものである。   The present invention relates to a heat-foamable resin laminated metal plate having excellent workability in an unfoamed state and exhibiting excellent vibration damping, rigidity, sound insulation, heat insulation and the like in a state after foaming.

自動車用のフロアパネル、ダッシュパネル、ホイルハウス等をはじめ、電車や船舶などの乗物用各種パネル材、更には洗濯機や冷蔵庫などの家電製品や事務機器などの外板材などとして、制振性の複合金属材料が広く実用化されている。それらの制振性複合金属材料の中でもよく用いられているものとして、金属板の片面に粘弾性樹脂を積層接合した非拘束の複合金属板、或は2枚の金属板の間に粘弾性樹脂層をサンドイッチ状に挟み込んだ拘束型の複合金属板がある。これら拘束型もしくは非拘束型の複合金属板は、振動によって樹脂層が変形する際に振動エネルギーを吸収すると共に、該エネルギーの一部を熱エネルギーに変換することで振動を減衰する作用を有している。   In addition to automotive floor panels, dash panels, wheel houses, etc., various panel materials for vehicles such as trains and ships, as well as exterior panels for household appliances such as washing machines and refrigerators and office equipment, etc. Composite metal materials have been widely put into practical use. Among those vibration-damping composite metal materials that are often used, an unconstrained composite metal plate in which a viscoelastic resin is laminated and bonded to one side of a metal plate, or a viscoelastic resin layer between two metal plates. There is a constraining type composite metal plate sandwiched between sandwiches. These constrained or unconstrained composite metal plates absorb vibration energy when the resin layer is deformed by vibration, and have a function of damping vibration by converting a part of the energy into heat energy. ing.

また特許文献1には、軽量で難燃性に優れた熱可塑性樹脂発泡体とこれを用いた積層複合体が開示されている。この文献1には、熱可塑性樹脂と層状珪酸塩、酸変性ポリオレフィンおよび発泡剤を含む発泡性熱可塑性樹脂組成物を発泡させた発泡体シートや該発泡体層を含む断熱、遮音、制振性のシート、更には該発泡性樹脂層を他の素材と積層した複合積層体が開示されている。   Patent Document 1 discloses a lightweight thermoplastic resin foam excellent in flame retardancy and a laminated composite using the same. This document 1 includes a foam sheet obtained by foaming a foamable thermoplastic resin composition containing a thermoplastic resin and a layered silicate, an acid-modified polyolefin, and a foaming agent, and heat insulation, sound insulation, and vibration control including the foam layer. In addition, a composite laminate in which the foamable resin layer is laminated with another material is disclosed.

他方、特許文献2には、ダッシュパネルやホイルハウス等の振動基板面に融着一体化される制振構造体として、発泡性の熱硬化性樹脂シートからなるスペーサ層とその上に積層される制振材シート層、あるいは更にその上に積層される拘束材シートからなる積層構造を有し、振動基板側にホットメルト接着フィルムで接合一体化するタイプの制振材料が開示されている。また本出願人は、加熱により発泡する未発泡状態の発泡性樹脂層と金属板などの硬質板を積層することで、制振性や防音性などを高めた積層板を開発し、先に特許文献3として提案している。   On the other hand, in Patent Document 2, as a vibration damping structure that is fused and integrated to the surface of a vibration substrate such as a dash panel or a wheel house, a spacer layer made of a foamable thermosetting resin sheet is laminated thereon. There is disclosed a damping material of a type having a laminated structure composed of a damping material sheet layer or a restraining material sheet laminated thereon and bonded and integrated with a hot melt adhesive film on the vibrating substrate side. In addition, the applicant has developed a laminated board with improved vibration damping and soundproofing by laminating an unfoamed foamable resin layer that is foamed by heating and a hard board such as a metal plate. Proposed as Reference 3.

しかしこれらの技術は、それぞれ以下に示す様な観点から更なる改善が望まれる。   However, these technologies are desired to be further improved from the following viewpoints.

即ち特許文献1では、難燃性や衝撃吸収性、力学的特性などに優れた発泡樹脂成形体が得られるばかりか、該発泡樹脂成形体を軟質樹脂シートや布状物、皮革などの表皮材に接合することで、該発泡樹脂成形体の特性を複合積層シート材として活かすことができる。しかしこの複合積層シート材に用いる表皮材としては軟質のものしか使用できない。その理由は、表皮材として例えばプレス成形などで複雑な形状に加工した金属板を使用した場合、この金属プレス成形体に発泡で剛性の高まった発泡樹脂成形体を接合一体化しようとしても、発泡成形体をプレス成形体の成形面に確実に沿わせることができず、接合界面に隙間ができて一体性が損なわれるからである。従って、こうした難点を克服するには、プレス成形前の平板状の金属板に未発泡状態の発泡性樹脂を積層し、該樹脂層を金属板と一体に成形加工した後に、該樹脂層を発泡させるといった工夫が必要となるが、こうした観点からの追求は十分になされていない。   That is, in Patent Document 1, not only is a foamed resin molded product excellent in flame retardancy, shock absorption, mechanical properties, etc. obtained, but the foamed resin molded product is used as a skin material such as a soft resin sheet, a cloth-like material, and leather. By joining to, the characteristic of this foamed resin molding can be utilized as a composite laminated sheet material. However, only a soft skin material can be used for the composite laminated sheet material. The reason for this is that when a metal plate processed into a complex shape, for example, by press molding, is used as the skin material, foaming resin moldings with increased rigidity due to foaming are joined and integrated with this metal press molding. This is because the molded body cannot be surely aligned with the molding surface of the press-molded body, and a gap is formed at the joint interface and the integrity is impaired. Therefore, in order to overcome these difficulties, an unfoamed foamable resin is laminated on a flat metal plate before press molding, the resin layer is molded integrally with the metal plate, and then the resin layer is foamed. However, it has not been fully pursued from this point of view.

ちなみに特許文献2は、車両用フロアパネルの如き剛性の金属加工板に発泡樹脂シートをホットメルト接着剤で接合する方法を開示しているが、これらを強固に接合するには、接合面に生じる応力を吸収して一体性を高めるため、発泡樹脂からなるスペーサ層や制振材シート層、更には拘束材シート層を含めた複雑な積層接合構造としなければならず、生産性に問題がある。   Incidentally, Patent Document 2 discloses a method of joining a foamed resin sheet to a rigid metal processed plate such as a vehicle floor panel with a hot-melt adhesive. In order to absorb the stress and improve the integrity, it is necessary to have a complicated laminated joint structure including a spacer layer made of foamed resin, a damping material sheet layer, and further a restraint material sheet layer, and there is a problem in productivity. .

この様なことから本出願人は、前掲の特許文献3として、金属板などの平板に未発泡状態の樹脂シートを積層し、成形加工後に樹脂シートを加熱発泡させるタイプとすることで、形状や施工場所、重量などに制限を受けることなく、且つ積層板全体としては薄くてプレス加工などの加工性に優れ、更には、加熱発泡処理後は優れた制振性や遮音性、断熱性などを発揮し得るものを提供した。   From this, the present applicant, as Patent Document 3 described above, is a type in which an unfoamed resin sheet is laminated on a flat plate such as a metal plate, and the resin sheet is heated and foamed after molding, It is not limited by construction location, weight, etc., and it is thin as a whole laminate and has excellent workability such as press work.Furthermore, after heat foaming treatment, it has excellent vibration damping, sound insulation, heat insulation, etc. Provided something that could be demonstrated.

しかし該特許文献3に開示の技術には、次の点で更に改善の余地が残されている。即ち、発泡後の状態で満足のいく制振性や遮音性などを与えるには、発泡後の状態で相当の厚さを確保しなければならず、そのためには未発泡状態の樹脂層を厚肉にするか発泡倍率を高める必要がある。ところが、未発泡樹脂層を厚肉にすると、金属板との積層体を成形加工する際に未発泡樹脂層が亀裂を起こしたり金属板から剥離したりし易くなる。未発泡樹脂層を薄くしてやれば、こうした問題は軽減されるが、発泡後の厚さが不十分となって満足のいく制振性や遮音性などが得られ難くなる。   However, the technique disclosed in Patent Document 3 still has room for improvement in the following points. That is, in order to provide satisfactory vibration damping and sound insulation in the state after foaming, it is necessary to secure a considerable thickness in the state after foaming. It is necessary to make meat or increase the expansion ratio. However, when the non-foamed resin layer is thickened, the non-foamed resin layer is easily cracked or peeled off from the metal plate when the laminate with the metal plate is molded. If the unfoamed resin layer is made thinner, these problems are reduced, but the thickness after foaming becomes insufficient, and it becomes difficult to obtain satisfactory vibration damping properties and sound insulation properties.

他の方策として、未発泡樹脂層の発泡倍率を高める方法も考えられる。しかし、加熱発泡タイプの発泡剤によって得られる発泡倍率には限界があり、発泡樹脂層としてある程度の肉厚を確保するには、未発泡状態でそれなりの厚さを確保しておかねばならず、未発泡状態の樹脂層厚さを過度に薄くすることはできない。即ち、発泡性樹脂層の未発泡状態での成形加工性と発泡後の樹脂層厚さの間には相反する傾向があり、双方を同時に満足させることは難しい。
特開2002−356574号公報 特開平6−48326号公報 特開2004−42649号公報
As another measure, a method of increasing the expansion ratio of the unfoamed resin layer is also conceivable. However, there is a limit to the expansion ratio obtained by the heat-foaming type foaming agent, and in order to ensure a certain thickness as the foamed resin layer, it is necessary to ensure a certain thickness in an unfoamed state, The resin layer thickness in the unfoamed state cannot be excessively reduced. That is, there is a tendency to conflict between the moldability of the foamable resin layer in an unfoamed state and the thickness of the resin layer after foaming, and it is difficult to satisfy both at the same time.
JP 2002-356574 A JP-A-6-48326 JP 2004-42649 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、剛性の金属板と発泡性樹脂を複合することで、未発泡状態では金属板と未発泡樹脂層が一体となって優れた成形加工性を示し、成形加工後の発泡工程では高い発泡倍率を示して厚肉の発泡樹脂層を形成し、優れた制振性や遮音性、断熱性、剛性などに優れた金属複合発泡成形体を与える様な発泡性樹脂積層金属板を提供することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is to combine a rigid metal plate and a foamable resin so that the metal plate and the unfoamed resin layer are integrated in an unfoamed state. Excellent molding processability and high foaming ratio in the foaming process after molding to form a thick foamed resin layer. Excellent vibration damping, sound insulation, heat insulation, rigidity, etc. Another object of the present invention is to provide a foamable resin laminated metal plate which gives a metal composite foamed molded product.

上記課題を解決することのできた本発明の発泡性樹脂積層金属板は、熱可塑性樹脂と加熱発泡性発泡剤および有機変性された薄片状無機質粉末を含む少なくとも1層の加熱発泡性樹脂層が金属板と積層されてなり、積層後に成形加工してから加熱発泡されるものであるところに特徴を有している。   The foamable resin-laminated metal plate of the present invention that has solved the above-mentioned problems is that the heat-foamable resin layer comprising at least one layer containing a thermoplastic resin, a heat-foamable foaming agent, and an organically modified flaky inorganic powder is a metal It is characterized in that it is laminated with a plate, and is heated and foamed after being molded after lamination.

本発明で使用する前記熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂から選ばれる1種もしくは2種以上の混合物が好ましく使用できる。これらの中でも特に好ましいのは、前記薄片状無機質粉末に対し親和性基を有している樹脂であり、親和性基の具体例としては酸基(カルボキシル基)、水酸基、アミノ基、アミド基などが挙げられる。   As the thermoplastic resin used in the present invention, one or a mixture of two or more selected from polyolefin resins, polystyrene resins, polyester resins, and polyamide resins can be preferably used. Among these, a resin having an affinity group for the flaky inorganic powder is particularly preferable. Specific examples of the affinity group include an acid group (carboxyl group), a hydroxyl group, an amino group, an amide group, and the like. Is mentioned.

こうした好適要件を満たす樹脂の中でも、金属材との複合体としての安定性(耐久性)や成形加工性、耐熱性、加熱発泡性、コストなどを総合的に考慮して特に好ましいのは、酸変性されたポリオレフィン系樹脂(中でもポリエチレンやポリプロピレン)である。   Among the resins that satisfy these preferable requirements, it is particularly preferable that the stability (durability) as a composite with a metal material, molding processability, heat resistance, heat foamability, cost, etc. are comprehensively taken into consideration. It is a modified polyolefin resin (especially polyethylene or polypropylene).

本発明の発泡性樹脂積層金属板は、上記の様に未発泡状態で所望の形状に成形加工できると共に、成形加工後に加熱発泡処理することで樹脂層を発泡させて制振性や遮音性、断熱性、剛性などを発揮するもので、該加熱発泡性樹脂層は、当該発泡性樹脂層中に含まれる発泡剤の発泡開始温度よりも低い温度で、金属板と積層接合されたものである。接合法に制限はなく、硬化性接着剤(1液硬化型や2液硬化型)や粘着剤、或はホットメルト型接着剤を用いる方法などが採用できる。   The foamable resin laminated metal plate of the present invention can be molded into a desired shape in an unfoamed state as described above, and the resin layer is foamed by heating and foaming after the molding process so as to suppress vibration and sound insulation. It exhibits heat insulation, rigidity, etc., and the heat-foamable resin layer is laminated and bonded to a metal plate at a temperature lower than the foaming start temperature of the foaming agent contained in the foamable resin layer. . There is no restriction | limiting in a joining method, The method of using a curable adhesive (1 liquid curing type and 2 liquid curing type), an adhesive, or a hot-melt-type adhesive agent etc. are employable.

また、本発明に係る発泡性樹脂積層金属板の積層形態としては、金属板の片面に発泡性樹脂を積層した2層構造、金属板の表裏両面に発泡性樹脂を積層した3層構造、更には2枚の金属板の間に発泡性樹脂層をサンドイッチ状に挟み込んだ3層構造などが例示されるが、用途によっては発泡性樹脂層や金属層を複数重ね合わせて多層積層構造とし、制振性や遮音性などを一段と高めた構造とすることも可能である。   Moreover, as a lamination | stacking form of the foamable resin laminated metal plate which concerns on this invention, the two-layer structure which laminated | stacked foamable resin on the single side | surface of a metal plate, the three-layer structure which laminated | stacked foamable resin on the front and back both surfaces of a metal plate, Is exemplified by a three-layer structure in which a foamable resin layer is sandwiched between two metal plates, but depending on the application, a plurality of foamable resin layers and metal layers are stacked to form a multilayer laminated structure. It is also possible to make the structure further improved in sound insulation and sound insulation.

また発泡性樹脂層も、単層のほか2層以上の多層構造とすることもでき、用途によっては発泡性樹脂層の層間や表面に非発泡性の樹脂層を積層して金属板と重ね合わせた多層積層構造とすることも可能である。   Also, the foamable resin layer can be a single layer or a multilayer structure of two or more layers. Depending on the application, a non-foamable resin layer is laminated on the surface of the foamable resin layer or on the surface, and the metal plate is overlaid. It is also possible to have a multilayer structure.

本発明によれば、熱可塑性樹脂と加熱発泡剤および有機変性された薄片状無機質粉末を含み、未発泡状態で相対的に薄肉の発泡性樹脂層を金属板と積層することで、未発泡状態では金属板と未発泡樹脂層が一体となって優れた成形加工性を示す。しかも、成形加工後の加熱発泡工程では、有機変性された薄片状無機質粉末が樹脂マトリクス内に薄片状となって拡散(分散)することによりガスバリア性を発揮して発泡倍率を高め、厚肉の発泡樹脂層を形成することで、制振性、遮音性、断熱性、剛性の卓越した発泡樹脂積層複合金属成形体を与える。   According to the present invention, a thermoplastic resin, a heating foaming agent, and an organically modified flaky inorganic powder are laminated, and a relatively thin-walled foamable resin layer in an unfoamed state is laminated with a metal plate, so that an unfoamed state Then, the metal plate and the unfoamed resin layer are integrated to show excellent moldability. In addition, in the heating and foaming step after the molding process, the organically modified flaky inorganic powder becomes flaky and diffuses (disperses) in the resin matrix, thereby demonstrating gas barrier properties and increasing the foaming ratio. By forming the foamed resin layer, a foamed resin laminated composite metal molded body having excellent vibration damping properties, sound insulation properties, heat insulation properties, and rigidity is provided.

中でも、有機変性された薄片状無機質粉末と酸変性されたポリオレフィン系樹脂を使用したものは、加熱発泡時における熱可塑性樹脂マトリックス内での薄片状無機質粉末の拡散(分散)が促進され、該粉末によるガスバリア性の向上と軟化樹脂の伸張粘度の上昇が相まって発泡倍率が一段と高まり、卓越した性能の複合発泡成形体を得ることができる。   Among them, the one using an organically modified flaky inorganic powder and an acid-modified polyolefin resin promotes the diffusion (dispersion) of the flaky inorganic powder in the thermoplastic resin matrix at the time of heating and foaming. Combined with the improvement in gas barrier properties and the increase in the extensional viscosity of the softening resin, the foaming ratio is further increased, and a composite foam molded article with excellent performance can be obtained.

本発明の発泡性樹脂積層金属板は、上記の様に熱可塑性樹脂と加熱発泡性発泡剤および有機変性された薄片状無機質粉末を含む少なくとも1層の加熱発泡性樹脂層が金属板と積層されてなるもので、上記樹脂層が未発泡状態では該樹脂層自体が薄肉であって、積層された金属板を一体として任意の形状に成形加工することができる。そして任意の形状に成形加工した後に、上記熱可塑性樹脂の軟化温度以上で且つ発泡剤の発泡開始温度以上に加熱処理すると、該樹脂層は発泡し、樹脂層内に多数の気泡を含む制振性、断熱性、吸音性などに優れた発泡樹脂層となる。   As described above, the foamable resin laminated metal plate of the present invention has at least one heat-foamable resin layer containing a thermoplastic resin, a heat-foamable foaming agent, and an organically modified flaky inorganic powder laminated with the metal plate. Thus, when the resin layer is in an unfoamed state, the resin layer itself is thin, and the laminated metal plates can be integrally molded into an arbitrary shape. Then, after molding and processing into an arbitrary shape, when the heat treatment is performed at a temperature equal to or higher than the softening temperature of the thermoplastic resin and equal to or higher than the foaming start temperature of the foaming agent, the resin layer is foamed, and the vibration damping containing a large number of bubbles in the resin layer The foamed resin layer has excellent properties, heat insulation, sound absorption, and the like.

この際、前記樹脂中に含まれる薄片状の無機質粉末は、有機変性されていることで薄片が更に微細な燐片状に分離して軟化したマトリクス樹脂中に拡散(分散)し、軟化した樹脂層全体の伸張粘度を高めると共に、拡散(分散)した燐片状の無機質粉末は発生ガスが層外へ放散されるのを抑制し、その結果として発泡倍率が著しく高められる。   At this time, the flaky inorganic powder contained in the resin is diffused (dispersed) in the matrix resin softened by separating the flakes into finer flakes by organic modification, and the softened resin In addition to increasing the extensional viscosity of the entire layer, the diffused (dispersed) flaky inorganic powder prevents the generated gas from being diffused out of the layer, and as a result, the expansion ratio is significantly increased.

即ち本発明では、発泡性樹脂層中に有機変性された薄片状の無機質粉末を含有させることで、当該樹脂層が加熱発泡する際の発泡倍率を大幅に増大できるのである。そのため、未発泡状態では相対的に薄肉の樹脂層であっても、発泡倍率の増大によって発泡後の樹脂層を厚くすることができ、それに伴って発泡後の複合材は卓越した制振性や断熱性、遮音性、剛性を発揮し得るものとなる。   That is, in the present invention, the foaming ratio when the resin layer is heated and foamed can be greatly increased by containing the organically modified flaky inorganic powder in the foamable resin layer. Therefore, even if the resin layer is relatively thin in the unfoamed state, the resin layer after foaming can be thickened by increasing the foaming ratio, and as a result, the composite material after foaming has excellent vibration damping properties and It can exhibit heat insulation, sound insulation and rigidity.

以下、本発明で使用する構成素材について詳細に説明すると共に、積層構造や積層方法などについて詳細に説明していく。   Hereinafter, the constituent materials used in the present invention will be described in detail, and the laminated structure and the lamination method will be described in detail.

まず本発明で使用する熱可塑性樹脂は、発泡樹脂層の主体となるもので、発泡処理時点では熱で溶融して発泡剤や薄片状無機質粉末の分散媒体となり、冷却固化した状態で気泡の外壁を構成して多孔質層を構成する上で欠くことのできない成分であり、熱可塑性を有し熱溶融状態で適度の粘性を示し、冷却により固化して適度の強度を示すものであればよく、種々の熱可塑性樹脂を使用できる。工業的規模で好ましく使用されるのは、ポリオレフィン系樹脂やポリオキシエチレン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などである。これらは単独で使用できる他、必要に応じて任意の組合せで2種以上を適宜併用してもよい。   First, the thermoplastic resin used in the present invention is the main component of the foamed resin layer. At the time of foaming, the thermoplastic resin melts with heat to become a dispersion medium for the foaming agent and the flaky inorganic powder, and in the cooled and solidified state, the outer wall of the bubble As long as it is a component that is indispensable for constituting a porous layer, and has thermoplasticity, exhibits an appropriate viscosity in a heat-melted state, and solidifies upon cooling to exhibit an appropriate strength. Various thermoplastic resins can be used. Preferably used on an industrial scale are polyolefin resins, polyoxyethylene resins, polyester resins, polystyrene resins, polyamide resins, and the like. These can be used alone, or two or more of them may be appropriately used in any combination as required.

これらの中でも特に好ましいのはポリオレフィン系樹脂であり、好ましい具体例としては、エチレンやプロピレンなどの単独重合体や共重合体、これらのモノマーと他のα−オレフィン(プロピレン−1、1−ブテン、1−ヘキセンなど)との各種共重合体、あるいは更に、エチレンとアクリル系モノマーやビニル系モノマーとの共重合体などである。これらの中でも、発泡樹脂層としての特性(物性や化学的特性、取扱い性)やコスト等を考慮して特に好ましいのは、α−オレフィン系重合体に属するポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンとのランダム若しくはブロック共重合体である。   Among these, polyolefin resins are particularly preferable, and preferable specific examples include homopolymers and copolymers such as ethylene and propylene, these monomers and other α-olefins (propylene-1, 1-butene, 1-hexene, etc.), or copolymers of ethylene with acrylic monomers and vinyl monomers. Among these, in consideration of the properties (physical properties, chemical properties, handling properties) and cost as the foamed resin layer, polyethylene, polypropylene, random of polyethylene and polypropylene belonging to α-olefin polymers are particularly preferable. Or it is a block copolymer.

上記オレフィン系樹脂の中でもとりわけ好ましいのは、発泡性や発泡樹脂としての物理的乃至化学的特性の観点から、MRF(メルトフローレート:JIS K7210に規定される「熱可塑性プラスチックの流れ試験法」のA法によって測定される値)が
0.1〜50g/10分の範囲のものである。
Among the olefin resins, particularly preferred is MRF (Melt Flow Rate: Thermoplastic Flow Test Method stipulated in JIS K7210) from the viewpoint of foamability and physical or chemical properties as a foamed resin. The value measured by method A) is in the range of 0.1 to 50 g / 10 min.

上記熱可塑性樹脂は、薄片状無機質粉末に対し親和性基を有しているものが好ましく、親和性基の好ましい具体例としては、酸基(カルボキシル基)、水酸基、アミノ基、アミド基などが挙げられる。ちなみに、これらの親和性基を分子中に有する熱可塑性樹脂を使用すると、その溶融物を薄片状無機質粉末と混練したときに、該樹脂溶融物への前記無機質粉末の分散性が向上し、より均一に分散できるからである。   The thermoplastic resin preferably has an affinity group for the flaky inorganic powder, and specific examples of the affinity group include an acid group (carboxyl group), a hydroxyl group, an amino group, and an amide group. Can be mentioned. Incidentally, when a thermoplastic resin having these affinity groups in the molecule is used, when the melt is kneaded with the flaky inorganic powder, the dispersibility of the inorganic powder in the resin melt is improved, and more This is because it can be uniformly dispersed.

こうした親和性基の中でも特に好ましいのは酸基であり、追って詳述する如く酸変性などによって薄片状無機質粉末との親和性を高めた変性熱可塑性樹脂は極めて好適である。その様な“酸変性”としては、前述した様な樹脂を構成するポリマーを事後的に酸化処理してポリマーの主鎖もしくは側鎖に酸基を導入したもの、あるいはオレフィン系モノマーと共に少量のアクリル酸やメタクリル酸、無水マレイン酸などの酸基を有するモノマーを共重合させたものが挙げられるが、勿論これらに制限されるものではない。   Among these affinity groups, an acid group is particularly preferable, and a modified thermoplastic resin whose affinity with the flaky inorganic powder is enhanced by acid modification as described in detail later is very suitable. Such “acid-modified” means that the polymer constituting the resin as described above is subsequently oxidized to introduce acid groups into the main chain or side chain of the polymer, or a small amount of acrylic together with the olefinic monomer. Although what copolymerized the monomer which has acid groups, such as an acid, methacrylic acid, and maleic anhydride, is mentioned, Of course, it is not restrict | limited to these.

次に加熱発泡性の発泡剤とは、熱可塑性樹脂層中に配合される成分で、成形加工前の段階では発泡せず、成形加工後に熱処理を加えることで発泡して発泡樹脂層を形成するために不可欠の成分であり、加熱分解型の発泡剤、例えば、アゾジカルボンアミド、アゾジカルボン酸バリウム、N,N′−ジニトロソペンタメチレンテトラミン、4,4−オキシビス(ベンゼンスルホニルヒドラジド)、ヒドラゾジカルボンアミド、ジフェニルスルホン−3,3−ジスルホニルヒドラジド、p−トルエンスルホニルセミカルバジド、トリヒドラジノトリアジン、ビウレア、炭酸水素ナトリウム、炭酸亜鉛、熱膨張性マイクロカプセル、発泡剤マスターバッチ品など、或は加熱蒸発型の発泡剤、例えばペンタン、ブタン、ヘキサン、ヘプタンの如き低級炭化水素、塩化メチレンやトリクロロエチレンなどハロゲン化オレフィン、ベンゼン、トルエン等の芳香族炭化水素、などが例示される。これらは単独で使用できる他、必要により任意の組合せで2種以上を併用してもよく、使用する熱可塑性樹脂の軟化点や加熱発泡のための加熱温度などに応じて、適宜選択して用いられる。   Next, the heat-foamable foaming agent is a component blended in the thermoplastic resin layer, and does not foam before the molding process, but forms a foamed resin layer by foaming by applying heat treatment after the molding process. Components that are indispensable for thermal decomposition, such as azodicarbonamide, barium azodicarboxylate, N, N'-dinitrosopentamethylenetetramine, 4,4-oxybis (benzenesulfonylhydrazide), hydrazo Dicarbonamide, diphenylsulfone-3,3-disulfonylhydrazide, p-toluenesulfonyl semicarbazide, trihydrazinotriazine, biurea, sodium hydrogen carbonate, zinc carbonate, thermally expandable microcapsules, foaming agent master batch products, etc. or heating Evaporating foaming agents, such as pentane, butane, hexane, heptane, etc. Hydrogen, halogenated olefins such as methylene chloride and trichlorethylene, benzene, aromatic hydrocarbons such as toluene, and the like are exemplified. These may be used alone, or two or more may be used in any combination as necessary. Depending on the softening point of the thermoplastic resin to be used, the heating temperature for heating foaming, etc., it is appropriately selected and used. It is done.

なおこれら発泡剤の多くは微粉末状であり、上述した様な熱可塑性樹脂中に満遍なく均一に分散させることは技術的に難しいので、通常は、組み合わされる熱可塑性樹脂の一部に該発泡剤微粉末を予め混合したマスターバッチ品を作製しておき、これを熱可塑性樹脂と共に溶融混合する方法を採用するのがよい。しかし、熱可塑性樹脂中に発泡剤を均一に混入させ得る方法であれば、勿論この方法に限定される理由はない。   Many of these foaming agents are in the form of fine powder, and it is technically difficult to uniformly disperse them uniformly in the thermoplastic resin as described above. Therefore, the foaming agent is usually added to a part of the thermoplastic resin to be combined. A master batch product in which fine powders are mixed in advance is prepared, and it is preferable to adopt a method in which this is melt mixed with a thermoplastic resin. However, there is of course no reason limited to this method as long as the foaming agent can be uniformly mixed in the thermoplastic resin.

また、本発明で使用する薄片状無機質粉末とは、薄片状の結晶が層状に重なり合った構造の無機質粉末をいい、該薄片状物が熱可塑性樹脂層内に薄片状となって分散することでガスバリア効果を発揮し、加熱軟化時における樹脂の伸張粘性を高める作用とも相まって、発泡剤由来のガス泡が層外へ放散するのを抑え、その結果として発泡倍率を高める作用を発揮する。従ってこの無機質粉末は、薄片状の結晶が重なり合った構造の粉末で、溶融した熱可塑性樹脂層内でそれらが微細な燐片状に分離しつつ拡散する特性を備えたものであればよく、その具体例としては、薄片状(層状)無機質粉末、例えば、モンモリロナイト(ベントナイト)、クレー、ハイデライト、ノントロナイト、サポナイト、バイデライト、ヘクトライト、スティブンサイト等の粘土鉱物、バーミキュライト、ハロイサイト等の天然雲母または膨潤性雲母等を用いることができ、天然物でも合成品でもよい。   In addition, the flaky inorganic powder used in the present invention refers to an inorganic powder having a structure in which flaky crystals are laminated in layers, and the flaky material is dispersed in the form of flaky particles in the thermoplastic resin layer. Combined with the effect of increasing the elongational viscosity of the resin at the time of heat softening, the gas barrier effect is exhibited, and the foaming agent-derived gas bubbles are prevented from escaping out of the layer, and as a result, the effect of increasing the expansion ratio is exhibited. Therefore, the inorganic powder may be any powder having a structure in which flaky crystals are overlapped and has a characteristic of diffusing while separating into fine flakes in the molten thermoplastic resin layer. Specific examples include flaky (layered) inorganic powders, for example, montmorillonite (bentonite), clay minerals such as clay, hydelite, nontronite, saponite, beidellite, hectorite, stevensite, natural minerals such as vermiculite and halloysite. Mica or swellable mica can be used, and may be natural or synthetic.

これらの中でも発泡倍率や取扱い作業性などの観点から特に好ましいのはベントナイトである。また上記薄片状無機質粉末は、それ自身が層状物の集合体であって、分散媒中で薄片状に分離して拡散するが、本発明ではこの粉末に下記の様な有機変性を加えておくことで、分散媒中での分離・拡散を促進させることにより、ガスバリア効果の更なる向上を図っている。   Among these, bentonite is particularly preferable from the viewpoints of expansion ratio and handling workability. The flaky inorganic powder itself is an aggregate of layered materials, and separates and diffuses into a flaky shape in a dispersion medium. In the present invention, the following organic modification is added to the powder. Thus, the gas barrier effect is further improved by promoting separation / diffusion in the dispersion medium.

即ち、薄片状無機質粉末に付与される有機変性とは、変性により薄片状無機質粉末の層間に官能基を導入することをいい、官能基の導入に用いる有機化剤としては、1〜4級アンモニウム塩、4級ホスホニウム塩、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、2−エチルヘキシルアンモニウムイオン、ドデシルアンモニウムイオン、ラウリルアンモニウムイオン、オクタデシルアンモニウムイオン、ジオクチルジメチルアンモニウムイオン、トリオクチルアンモニウムイオン、ジオクタデシルジメチルアンモニウムイオン、トリオクタデシルアンモニウムイオン等が挙げられる。これらの有機変性処理によって、薄片状の層間に存在する金属カチオンをそれらの4級塩などで置換・導入すると、層間の分離が促進され、微細燐片状で樹脂マトリクス全体に拡散し、ガスバリア促進作用がより効果的に発揮される。   That is, the organic modification imparted to the flaky inorganic powder refers to introducing a functional group between the layers of the flaky inorganic powder by modification, and the organic agent used for the introduction of the functional group is 1-4 to quaternary ammonium. Salt, quaternary phosphonium salt, hexyl ammonium ion, octyl ammonium ion, 2-ethylhexyl ammonium ion, dodecyl ammonium ion, lauryl ammonium ion, octadecyl ammonium ion, dioctyl dimethyl ammonium ion, trioctyl ammonium ion, dioctadecyl dimethyl ammonium ion, tri An octadecyl ammonium ion etc. are mentioned. By these organic modification treatments, when metal cations existing between flaky layers are replaced / introduced by their quaternary salts, etc., separation between layers is promoted and diffused into the entire resin matrix in the form of fine flakes, promoting gas barriers The action is exhibited more effectively.

本発明の発泡性樹脂積層金属板は、上記の様に熱可塑性樹脂と加熱発泡性発泡剤および有機変性された薄片状無機質粉末を含む加熱発泡性樹脂層の少なくとも1層が金属板と接合されたもので、金属板としては、最も汎用性の高い鋼板やステンレス鋼板などの鉄基金属板を始めとして、銅、アルミニウム、チタンなどの非鉄金属板、或はそれらの金属を含む各種合金が全て使用できる。また、これらの金属板にめっき処理や化成処理などの表面処理を施した金属板も勿論使用できる。   As described above, the foamable resin laminated metal plate of the present invention has at least one layer of a heat-foamable resin layer containing a thermoplastic resin, a heat-foamable foaming agent and an organically modified flaky inorganic powder bonded to the metal plate. As for metal plates, not only iron-based metal plates such as the most versatile steel plates and stainless steel plates, but also non-ferrous metal plates such as copper, aluminum and titanium, or various alloys containing these metals are all available. Can be used. Of course, metal plates obtained by subjecting these metal plates to surface treatment such as plating treatment or chemical conversion treatment can also be used.

発泡性樹脂層と金属板との積層形態としては、金属板の片面もしくは両面に発泡性樹脂層を重ね合わせた2層もしくは3層構造、あるいは2枚の金属板の間に発泡性樹脂をサンドイッチ状に挟み込んだ3層構造、或は更に、発泡性樹脂層を挟んで3枚以上の金属板を重ね合わせて制振性を高めた多層積層構造などが含まれる。また用途によっては、1または2以上の発泡性樹脂層と共に非発泡性の樹脂層を組み合せて金属板と積層一体化した多層積層構造とすることも可能である。   The laminate form of the foamable resin layer and the metal plate is a two-layer or three-layer structure in which the foamable resin layer is superimposed on one or both sides of the metal plate, or the foamable resin is sandwiched between two metal plates. A sandwiched three-layer structure, or a multilayer laminated structure in which three or more metal plates are overlapped with a foamable resin layer interposed therebetween to improve vibration damping properties are included. Depending on the application, it is also possible to form a multilayer laminated structure in which one or two or more foamable resin layers are combined with a non-foamable resin layer and laminated and integrated with a metal plate.

尚、発泡性樹脂層と金属板の接合には、ホットメルト系接着剤を用いた熱接着、一液型や二液型の硬化性接着剤を用いた接合接着、粘着剤を用いた粘着接合などが、用途に応じて適宜使い分けられる。また使用する熱可塑性樹脂の種類によっては、必要により発泡性樹脂層の表面を活性化処理しておき、発泡のための熱を利用して金属板に直接熱接着することも可能である。   For bonding the foamable resin layer and the metal plate, thermal bonding using a hot melt adhesive, bonding bonding using a one-pack type or two-pack curable adhesive, and pressure bonding using a pressure-sensitive adhesive. Are appropriately used depending on the application. Depending on the type of thermoplastic resin to be used, the surface of the foamable resin layer may be activated if necessary, and directly heat-bonded to the metal plate using heat for foaming.

発泡性樹脂と金属板を積層接合する際には、当然のことながら、該発泡性樹脂層中に含まれる発泡剤の発泡開始温度未満で接合される。従って、本発明の発泡性樹脂積層金属板は、成形加工前の平板状では未発泡状態で薄肉の樹脂層が金属板と積層されたもので、様々の加工法、たとえば曲げ加工やプレス加工、張出し加工など、任意の加工法で任意の形状に成形加工することができ、加工時の変形によって樹脂層が金属板から剥離したり亀裂を起こしたりする様な恐れは殆どない。   When laminating and joining the foamable resin and the metal plate, it is natural that the joining is performed below the foaming start temperature of the foaming agent contained in the foamable resin layer. Therefore, the foamable resin laminated metal plate of the present invention is a flat plate shape before molding processing in which a thin resin layer is laminated with a metal plate in an unfoamed state, and various processing methods such as bending and pressing, It can be formed into an arbitrary shape by an arbitrary processing method such as overhanging, and there is almost no fear that the resin layer is peeled off from the metal plate or cracked due to deformation during the processing.

ところで、成形加工性の観点からすると、発泡性樹脂層の厚さは薄い方が好ましいが、あまりに薄過ぎると、加熱発泡時における樹脂層内への気泡保持能が低下し、十分な肉厚の発泡樹脂層が得られ難くなる。従って、制振性や断熱性、遮音性などの目的に応じてその効果を有効に発揮させるには、未発泡樹脂層としての厚さを好ましくは0.1mm程度以上、より好ましくは0.5mm以上にするのがよい。一方、未発泡樹脂層が厚くなり過ぎると、該樹脂層の構造強度が高くなって成形加工性が阻害されるばかりか、成形加工時に樹脂層が金属板の変形に追従しきれなくなって割れたり剥離したりし易くなるので、該樹脂層の厚さは3.0mm程度以下、より好ましくは2.0mm程度以下に抑えるのがよい。   By the way, from the viewpoint of moldability, it is preferable that the thickness of the foamable resin layer is thin. However, if it is too thin, the ability to retain bubbles in the resin layer at the time of heating and foaming decreases, and the thickness of the foamable resin layer is sufficient. It becomes difficult to obtain a foamed resin layer. Accordingly, in order to effectively exhibit the effect according to the purpose such as vibration damping property, heat insulation property, sound insulation property, the thickness as the unfoamed resin layer is preferably about 0.1 mm or more, more preferably 0.5 mm. It is good to do it above. On the other hand, if the unfoamed resin layer becomes too thick, not only will the structural strength of the resin layer increase and molding processability will be hindered, but the resin layer will not be able to follow the deformation of the metal plate during the molding process and may crack. The thickness of the resin layer is preferably about 3.0 mm or less, and more preferably about 2.0 mm or less because it is easy to peel off.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例
下記の熱可塑性樹脂、発泡剤、薄片状無機質粉末を表1に示す配合比率で使用し、これらを、東洋精機社製のラボプラストミル(モデル「75C100」)を用いて160℃、20rpmで30分間混練することにより、均一に練和した。なお発泡剤は、微粉末状で熱可塑性樹脂マトリクス内へ均一に分散させるのが困難であるため、熱可塑性樹脂の一部に発泡剤を予め混合分散させたマスターバッチとして配合した。
マトリクス樹脂:
樹脂1…ポリエチレン:日本ポリケム社製の商品名「LE120」、MFR=0.3
樹脂2…ポリエチレン:日本ポリケム社製の商品名「YF30」、MFR=1.1
酸変性樹脂:マレイン酸変性ポリエチレン(三洋化成社製の商品名「ユーメックス2000」)
発泡剤:
ポリエチレンマスターバッチ品[永和化成社製商品名「バンスレンH5340」、MFR=4.0、発泡剤/ポリエチレン=50/50(質量比)]
薄片状無機質粉末:
有機変性ベントナイト(ホージュン社製の商品名「エスベンNX」)、または無変性ベントナイト(和光純薬社製)
得られた混練物を使用し、ホットプレス(神藤金属社製の圧縮成型機)を用いて温度:160℃、圧力:0.5Kgfでプレス成形することにより、厚さ2.0mmの発泡性樹脂シートを得た。
Example The following thermoplastic resin, foaming agent and flaky inorganic powder were used in the blending ratios shown in Table 1, and these were used at 160 ° C., 20 rpm using a lab plast mill (model “75C100”) manufactured by Toyo Seiki Co., Ltd. For 30 minutes to knead uniformly. Since the foaming agent is in the form of fine powder and difficult to uniformly disperse in the thermoplastic resin matrix, it was blended as a master batch in which the foaming agent was mixed and dispersed in part of the thermoplastic resin.
Matrix resin:
Resin 1 ... Polyethylene: Product name “LE120” manufactured by Nippon Polychem Co., Ltd., MFR = 0.3
Resin 2 ... Polyethylene: trade name “YF30” manufactured by Nippon Polychem, MFR = 1.1
Acid-modified resin: Maleic acid-modified polyethylene (trade name “Yumex 2000” manufactured by Sanyo Kasei Co., Ltd.)
Foaming agent:
Polyethylene master batch product [trade name “Vanslen H5340” manufactured by Eiwa Chemical Co., Ltd., MFR = 4.0, foaming agent / polyethylene = 50/50 (mass ratio)]
Flaky inorganic powder:
Organic modified bentonite (trade name “Esven NX” manufactured by Hojun Co., Ltd.) or unmodified bentonite (manufactured by Wako Pure Chemical Industries, Ltd.)
By using the obtained kneaded material and press molding at a temperature of 160 ° C. and a pressure of 0.5 kgf using a hot press (compression molding machine manufactured by Shinfuji Metal Co., Ltd.), a foamable resin having a thickness of 2.0 mm A sheet was obtained.

得られた各発泡性樹脂シートを、ホットメルト接着剤(三井化学社製の商品名「アドマー」)を用いて、アルミニウム合金板(JIS規格の5182:厚さ0.6mm)に160℃で1分間加熱圧着し、2層積層板を得た。また、上記発泡性樹脂シートの両面側に、上記と同じホットメルト接着剤を用いて上記と同じアルミニウム合金板を加熱圧着し、サンドイッチ構造の3層複合積層板を得た。   Each foamable resin sheet obtained was heated to 160 ° C. on an aluminum alloy plate (JIS standard 5182: thickness 0.6 mm) using a hot melt adhesive (trade name “Admer” manufactured by Mitsui Chemicals, Inc.). A two-layer laminate was obtained by thermocompression bonding for a minute. Further, the same aluminum alloy plate as described above was thermocompression bonded to both sides of the foamable resin sheet using the same hot melt adhesive as described above to obtain a three-layer composite laminate having a sandwich structure.

得られた複合積層板について、夫々下記の方法で発泡倍率を測定すると共に、加工性を評価した。   About the obtained composite laminated board, the foaming ratio was measured by the following method, respectively, and workability was evaluated.

[発泡倍率]
各供試積層板を夫々10mm×80mmのサイズに裁断し、加熱炉に装入して230℃で15分間加熱することにより樹脂層を発泡させてから冷却する。得られた発泡樹脂積層板における発泡樹脂層の厚さを、無作為に選択した5箇所以上で測定することによって平均厚さ(t)を求め、発泡前の樹脂層の平均厚さ(t)とから下記式によって平均発泡倍率を求めた。
平均発泡倍率=(t/t
[Foaming ratio]
Each test laminate is cut to a size of 10 mm × 80 mm, charged in a heating furnace and heated at 230 ° C. for 15 minutes to foam the resin layer and then cooled. The average thickness (t 1 ) is obtained by measuring the thickness of the foamed resin layer in the obtained foamed resin laminate at five or more randomly selected locations, and the average thickness (t of the resin layer before foaming (t 0 ) and the average foaming ratio was determined by the following formula.
Average foaming ratio = (t 1 / t 0 )

[加工性]
各供試積層板から幅110mm×長さ180mmのサンプルを切り出し、下記構成のプレス試験機にかけて加工性を評価した。
プレス機:油圧80トンプレス
金型:LDH試験金型(図1参照)
図中、1はダイ(直径:105.65mm、肩:R=6.35mm)、2はパンチ頭部(R=50.8mmの球頭)、3は供試積層板、4はブランクホルダー、5はロックビードを表す。
成形速度:4mm/min、
BHF(しわ押え力):200kN、
潤滑剤:鋼用潤滑剤
評価法:成形後の供試積層板の樹脂層側を目視観察し、下記の基準で評価した。
◎;割れも剥離も認められない、○;膨出先端部またはロックビード部に僅かな剥離もしくは割れが認められる、×;膨出部で顕著な剥離または割れが観察される。
[Machinability]
A sample having a width of 110 mm and a length of 180 mm was cut out from each of the test laminates, and the processability was evaluated using a press tester having the following configuration.
Press machine: Hydraulic 80 ton press Mold: LDH test mold (see Fig. 1)
In the figure, 1 is a die (diameter: 105.65 mm, shoulder: R = 6.35 mm), 2 is a punch head (R = 50.8 mm ball head), 3 is a test laminate, 4 is a blank holder, 5 represents a lock bead.
Molding speed: 4 mm / min,
BHF (wrinkle presser force): 200kN,
Lubricant: Lubricant for steel Evaluation method: The resin layer side of the test laminate after molding was visually observed and evaluated according to the following criteria.
A: No cracking or peeling is observed, B: Slight peeling or cracking is observed at the bulging tip or lock bead, X: Remarkable peeling or cracking is observed at the bulging part.

結果を表1に一括して示す。   The results are collectively shown in Table 1.

Figure 0004783184
Figure 0004783184

表1からも明らかな様に、薄片状の無機質粉末として有機変性品を使用したものでは、加熱前の樹脂シート厚さは薄く優れた加工性が得られると共に、加熱による発泡倍率は何れも高い値が得られている。これに対し比較例では、薄片状無機質粉末を配合しなかった場合は勿論のこと、たとえ薄片状の無機質粉末を用いた場合でも、該無機質粉末が有機変性されていないものでは、無機質粉末無添加の場合と同レベルの発泡倍率しか得られていない。   As is clear from Table 1, when the organically modified product is used as the flaky inorganic powder, the resin sheet thickness before heating is thin and excellent workability is obtained, and the foaming ratio by heating is high. The value is obtained. In contrast, in the comparative example, not only when the flaky inorganic powder was not blended, but also when the flaky inorganic powder was used, the inorganic powder was not organically modified and the inorganic powder was not added. Only the expansion ratio of the same level as in the case of is obtained.

実施例で採用した加工性の評価試験法を示す説明図である。It is explanatory drawing which shows the workability evaluation test method employ | adopted in the Example.

符号の説明Explanation of symbols

1 ダイ
2 パンチ
3 供試積層板
4 ブランクホルダー
5 ロックビード
1 Die 2 Punch 3 Test laminate 4 Blank holder 5 Lock bead

Claims (8)

熱可塑性樹脂と加熱発泡性発泡剤および有機変性された薄片状無機質粉末を含む少なくとも1層の加熱発泡性樹脂層が金属板と積層されてなり、積層後に成形加工してから加熱発泡されるものであることを特徴とする発泡性樹脂積層金属板。   At least one layer of a heat-foamable resin layer containing a thermoplastic resin, a heat-foamable foaming agent and an organically modified flaky inorganic powder is laminated with a metal plate, and after being laminated, it is molded and heat-foamed A foamable resin-laminated metal plate characterized by the above. 前記熱可塑性樹脂は、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂から選ばれる少なくとも1種である請求項1に記載の発泡性樹脂積層金属板。   The foamable resin laminated metal plate according to claim 1, wherein the thermoplastic resin is at least one selected from polyolefin resins, polystyrene resins, polyester resins, and polyamide resins. 前記熱可塑性樹脂は、前記薄片状無機質粉末に対し親和性基を有している請求項1または2に記載の発泡性樹脂積層金属板。   The foamable resin laminated metal plate according to claim 1, wherein the thermoplastic resin has an affinity group for the flaky inorganic powder. 前記熱可塑性樹脂として、酸変性されたポリオレフィン系樹脂が含まれている請求項3に記載の発泡性樹脂積層金属板。   The foamable resin laminated metal plate according to claim 3, wherein the thermoplastic resin contains an acid-modified polyolefin resin. 前記熱可塑性樹脂がポリオレフィン系樹脂である請求項2〜4のいずれかに記載の発泡性樹脂積層金属板。 The foamable resin laminated metal plate according to any one of claims 2 to 4, wherein the thermoplastic resin is a polyolefin resin. 前記加熱発泡性樹脂層は、当該発泡性樹脂層中に含まれる発泡剤の発泡開始温度よりも低い温度で金属板と積層接合されたものである請求項1〜5のいずれかに記載の発泡性樹脂積層金属板。   The foam according to any one of claims 1 to 5, wherein the heat-foamable resin layer is laminated and bonded to a metal plate at a temperature lower than a foaming start temperature of a foaming agent contained in the foamable resin layer. Resin laminated metal plate. 前記発泡性樹脂層の片面側に金属板が積層されたものである請求項1〜6のいずれかに記載の発泡性樹脂積層金属板。   The foamable resin laminated metal plate according to any one of claims 1 to 6, wherein a metal plate is laminated on one side of the foamable resin layer. 前記発泡性樹脂層の両面側に金属板が積層されたものである請求項1〜6のいずれかに記載の発泡性樹脂積層金属板。   The foamable resin laminated metal plate according to any one of claims 1 to 6, wherein metal plates are laminated on both sides of the foamable resin layer.
JP2006077358A 2006-03-20 2006-03-20 Expandable resin laminated metal sheet Expired - Fee Related JP4783184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077358A JP4783184B2 (en) 2006-03-20 2006-03-20 Expandable resin laminated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077358A JP4783184B2 (en) 2006-03-20 2006-03-20 Expandable resin laminated metal sheet

Publications (2)

Publication Number Publication Date
JP2007253353A JP2007253353A (en) 2007-10-04
JP4783184B2 true JP4783184B2 (en) 2011-09-28

Family

ID=38628079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077358A Expired - Fee Related JP4783184B2 (en) 2006-03-20 2006-03-20 Expandable resin laminated metal sheet

Country Status (1)

Country Link
JP (1) JP4783184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433639B2 (en) 2017-11-14 2022-09-06 Hanwha Chemical Corporation Lightweight sandwich steel sheet using polyamide, and manufacturing method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090522A (en) * 2007-10-05 2009-04-30 Kobe Steel Ltd Composite board and composite molded object
US8322201B2 (en) * 2008-01-09 2012-12-04 Dow Global Technologies Llc Device and method for assessing the machinability of laminates
JP4469899B2 (en) * 2008-02-18 2010-06-02 株式会社神戸製鋼所 Method for producing composite molded body
JP5172416B2 (en) * 2008-03-27 2013-03-27 株式会社神戸製鋼所 Foamed resin coated metal sheet and unfoamed resin coated metal sheet
JP2010065564A (en) * 2008-09-09 2010-03-25 Kobe Steel Ltd Heat ray shielding cover
JP5685072B2 (en) * 2010-12-15 2015-03-18 積水化学工業株式会社 Thermally foamable particles and foam production method
JP2015040898A (en) * 2013-08-20 2015-03-02 ヤマハ株式会社 Percussion instrument pad and method for manufacturing percussion instrument pad
JP6665471B2 (en) * 2014-09-30 2020-03-13 大日本印刷株式会社 LAMINATED SHEET, FOAM LAMINATED SHEET, AND PROCESS FOR PRODUCING THEM
JP2018203884A (en) * 2017-06-05 2018-12-27 Psジャパン株式会社 Polystyrene resin composition, production method, and foam molding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898243A (en) * 1981-12-07 1983-06-11 株式会社トクヤマ Manufacture of laminate
JP3117678B2 (en) * 1997-10-29 2000-12-18 積水化学工業株式会社 Method for producing polyolefin resin foamable composite sheet
JP2002356574A (en) * 2001-03-05 2002-12-13 Sekisui Chem Co Ltd Foamable thermoplastic resin composition, thermoplastic resin foamed material and laminated composite
JP5048926B2 (en) * 2004-02-04 2012-10-17 エスケー化研株式会社 Thermal insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433639B2 (en) 2017-11-14 2022-09-06 Hanwha Chemical Corporation Lightweight sandwich steel sheet using polyamide, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2007253353A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4783184B2 (en) Expandable resin laminated metal sheet
JP6544591B2 (en) Formable lightweight composite
JP4559513B2 (en) Laminate and composite molded body
US20070261224A1 (en) Methods and articles in having a fringed microprotrusion surface structure
JPS6228240A (en) Composite molded shape
JP4991345B2 (en) Laminated sheet for thermoforming and packaging container
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
EP0138557A2 (en) Vibration-damping material
JP4381941B2 (en) Laminate for automotive interior ceiling materials
JP2009090522A (en) Composite board and composite molded object
JP5471118B2 (en) Extruded foam with excellent heat insulation performance
WO2002064361A1 (en) Laminated resin material
JP4326001B2 (en) Expandable resin laminated metal sheet
JP5849507B2 (en) Extruded foam with excellent heat insulation performance
JP2003246037A (en) Decorative board
JP4610139B2 (en) Multilayer polypropylene resin foam board and assembly box thereof
JPS6228239A (en) Composite molded shape
JPS6228238A (en) Composite molded shape
KR20150083332A (en) Lightweight composites for car interior part containing thermally expandable microcapsule and method of manufacturing of the same
JPH0346997Y2 (en)
JP4523350B2 (en) Polystyrene resin laminated foam sheet
JP5915017B2 (en) Method for producing extruded foam excellent in heat insulation performance
JPS6228237A (en) Composite molded shape
JPH07251477A (en) Foamed metal structure and its manufacture
JPS61213140A (en) Glass fiber reinforced resin composite body sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4783184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees