JP4770534B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4770534B2
JP4770534B2 JP2006078431A JP2006078431A JP4770534B2 JP 4770534 B2 JP4770534 B2 JP 4770534B2 JP 2006078431 A JP2006078431 A JP 2006078431A JP 2006078431 A JP2006078431 A JP 2006078431A JP 4770534 B2 JP4770534 B2 JP 4770534B2
Authority
JP
Japan
Prior art keywords
rib
heat exchanger
unit elements
hole
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078431A
Other languages
Japanese (ja)
Other versions
JP2007255754A (en
Inventor
拓也 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006078431A priority Critical patent/JP4770534B2/en
Priority to PCT/JP2007/055365 priority patent/WO2007119394A1/en
Priority to US12/281,396 priority patent/US8002023B2/en
Priority to CN2007800100775A priority patent/CN101405559B/en
Publication of JP2007255754A publication Critical patent/JP2007255754A/en
Application granted granted Critical
Publication of JP4770534B2 publication Critical patent/JP4770534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、家庭用の熱交換型換気扇やビルなどの全熱交換型換気装置に使用する積層構造の熱交換器に関するものである。   The present invention relates to a heat exchanger having a laminated structure used for a total heat exchange type ventilation device such as a heat exchange type ventilation fan or a building for home use.

従来、この種の熱交換器は、通風抵抗や熱交換効率などの基本的機能を向上しつつ製造コストを抑えるために、伝熱板とスペーサーとを接合せずに積層することによって熱交換器を形成したものもある(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is a heat exchanger by laminating heat transfer plates and spacers without joining them, in order to improve the basic functions such as ventilation resistance and heat exchange efficiency and to suppress the manufacturing cost. Some of them are formed (see, for example, Patent Document 1).

以下、その熱交換器について、図20(a)、図20(b)、図21を参照しながら説明する。   Hereinafter, the heat exchanger will be described with reference to FIGS. 20 (a), 20 (b), and 21.

図に示すように、合成樹脂よりなるスペーサー101は、伝熱板102間の間隔を保持する間隔リブ103と、間隔リブ103同士を連結する連結リブ104と、間隔リブ103および連結リブ104上に配置された小突起105と、上下に積層したスペーサーの相対する面に、互いに嵌合する凸部106と凹部107を一体成形することによって得られる。伝熱性と透湿性または伝熱性のみを有する伝熱板102は、位置合わせ用穴108を備えたものである。また、位置合わせ用穴108は、スペーサー101と伝熱板102を積層した際に小突起105と嵌合するものである。   As shown in the figure, the spacer 101 made of synthetic resin is provided on the interval rib 103 that holds the interval between the heat transfer plates 102, the connecting rib 104 that connects the interval ribs 103, and the interval rib 103 and the connecting rib 104. The protrusions 106 and the recesses 107 that are fitted to each other are obtained by integrally molding the small protrusions 105 arranged on the opposing surfaces of the vertically stacked spacers. The heat transfer plate 102 having only heat transfer and moisture permeability or heat transfer is provided with an alignment hole 108. The alignment hole 108 is to be fitted to the small protrusion 105 when the spacer 101 and the heat transfer plate 102 are laminated.

熱交換器109はスペーサー101を交互に90度ずらしながら積層し、スペーサー101間に伝熱板102を介在させることによって得られる。また、熱交換器109はスペーサー101の四隅に設けた凸部106と凹部107が嵌合しながらスペーサー101同士を連結保持する。   The heat exchanger 109 is obtained by stacking the spacers 101 while being alternately shifted by 90 degrees and interposing the heat transfer plate 102 between the spacers 101. The heat exchanger 109 connects and holds the spacers 101 while the convex portions 106 and the concave portions 107 provided at the four corners of the spacer 101 are fitted.

上記構成において、一次気流Aと二次気流Bを流通すると、伝熱板102を介して一次気流Aと二次気流Bの間で熱交換する。
特許第3023546号公報
In the above configuration, when the primary airflow A and the secondary airflow B are circulated, heat exchange is performed between the primary airflow A and the secondary airflow B via the heat transfer plate 102.
Japanese Patent No. 3023546

このような従来の熱交換器109はスペーサー101と伝熱板102を接合せずに積層したものであるため、積層のずれに起因する密封性の低下による気流の漏れが増加するという課題があり、積層のずれに起因する密封性の低下による気流の漏れを防止することが要求されている。   Since such a conventional heat exchanger 109 is formed by laminating the spacer 101 and the heat transfer plate 102 without joining, there is a problem in that airflow leakage increases due to a decrease in sealing performance caused by misalignment of the lamination. Therefore, it is required to prevent airflow leakage due to a decrease in hermeticity due to stacking deviation.

また、熱交換器109は合成樹脂よりなるスペーサー101と伝熱板102の二つの部品を別々に用いて形成されるため、部品点数が多く、加工工程が多くなるため、製造コストが高くなるという課題があり、部品点数が少なく、加工工程を少なくすることによる製造コストを低減することが要求されている。   In addition, the heat exchanger 109 is formed by using two parts of the spacer 101 made of synthetic resin and the heat transfer plate 102 separately, so that the number of parts is increased and the number of processing steps is increased, which increases the manufacturing cost. There is a problem, and it is required to reduce the manufacturing cost by reducing the number of parts and processing steps.

また、熱交換器109はスペーサー101の四隅に設けた凸部106と凹部107が嵌合しながらスペーサー101同士を連結保持する構成であるが、スペーサー101を交互に90度ずらしながら積層する工程に不備があり、スペーサー101を同じ方向に積層した場合、スペーサー101に有する凸部106と凹部107は連結保持することが目的であり、スペーサー101は誤った積層方向でも連結保持される。この場合、熱交換器109は伝熱板102毎に同じ方向に通風路が形成され、一次気流Aと二次気流Bを熱交換器109に流通すると、誤って積層した部分については熱交換できない。このように、スペーサー101の積み間違いによって、伝熱板102毎に正しく通風路が形成できないことに起因する熱交換効率が低下するという課題があり、正しく通風路が形成できないことに起因する熱交換効率の低下を防止することが要求されている。   The heat exchanger 109 is configured to hold the spacers 101 while the convex portions 106 and the concave portions 107 provided at the four corners of the spacer 101 are fitted together. When the spacers 101 are stacked in the same direction, the purpose is to connect and hold the convex portions 106 and the concave portions 107 of the spacer 101, and the spacers 101 are connected and held even in the wrong stacking direction. In this case, if the heat exchanger 109 is formed with a ventilation path in the same direction for each heat transfer plate 102 and the primary airflow A and the secondary airflow B are circulated through the heat exchanger 109, heat exchange cannot be performed for the portions that are mistakenly stacked. . As described above, there is a problem that the heat exchange efficiency due to failure to correctly form the ventilation path for each heat transfer plate 102 due to erroneous stacking of the spacers 101 is reduced, and heat exchange due to the failure to correctly form the ventilation path. There is a demand to prevent a decrease in efficiency.

また、熱交換器109はスペーサー101を交互に同じ方向に積層し、誤った積層方向でも連結保持されるため、積み間違いなどの生産不良が起こり、量産性が低くなるという課題があり、単位素子の積み間違いを無くすことによる量産性を向上することが要求されている。   In addition, since the heat exchanger 109 alternately stacks the spacers 101 in the same direction and is connected and held even in the wrong stacking direction, there is a problem that a production failure such as a stacking error occurs and the mass productivity becomes low. There is a demand for improving mass productivity by eliminating mistakes.

本発明は、このような従来の課題を解決するものであり、量産性を向上することができ、また単位素子の積み間違いを無くすことによる量産性を向上することができ、また部品点数が少なく、加工工程を少なくすることによる量産性を向上することができ、また積層のずれを防止することによる量産性を向上することができ、また伝熱板の位置決めを容易に行うことによる量産性を向上することができ、また製造コストを低減することができ、また部品点数が少なく、加工工程を少なくすることによる製造コストを低減することができ、また設備投資を少なくすることによる製造コストを低減することができ、また気流の漏れを防止することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができ、また気密性の高い単位素子を形成することによる気流の漏れを防止することができ、また正しく通風路が形成できないことに起因する熱交換効率の低下を防止することができる熱交換器を提供することを目的としている。   The present invention solves such a conventional problem, can improve the mass productivity, can improve the mass productivity by eliminating stacking errors of unit elements, and has a small number of parts. , Mass productivity can be improved by reducing the number of processing steps, mass productivity can be improved by preventing misalignment of the stack, and mass productivity can be improved by easily positioning the heat transfer plate. It can be improved, the manufacturing cost can be reduced, the number of parts can be reduced, the manufacturing cost can be reduced by reducing the processing steps, and the manufacturing cost can be reduced by reducing the capital investment. Can also prevent airflow leakage, and can prevent airflow leakage due to poor sealing due to incorrect unit element stacking In addition, airflow leakage due to a decrease in sealing performance due to stacking deviation can be prevented, and airflow leakage due to the formation of highly airtight unit elements can be prevented, and a correct ventilation path can be formed. It aims at providing the heat exchanger which can prevent the fall of the heat exchange efficiency resulting from being impossible.

本発明の熱交換器は上記目的を達成するために、伝熱板と前記伝熱板の間隔を保持するための間隔リブと気流の漏れを遮蔽するための遮蔽リブとを樹脂にて一体成形して単位素子を形成し、この単位素子を複数積層することにより前記伝熱板間に通風路が形成され、一次気流と二次気流を前記通風路に流通することにより、前記伝熱板を介して熱交換するようにした熱交換器において、前記単位素子を積層した時に積み間違いが分かる手段を備え、単位素子に貫通穴と二種類の凹部と凸部を備え、第一の凹部と第一の凸部は前記貫通穴の周囲に設け、前記単位素子を積層した時に前記第一の凹部と前記第一の凸部が嵌合し、第二の凹部と第二の凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記第二の凹部と前記第二の凸部が嵌合し、誤って積層した時には前記第二の凸部と隣接する前記単位素子の一部が干渉するものである。 In order to achieve the above object, the heat exchanger according to the present invention integrally forms a heat transfer plate, a spacing rib for maintaining a space between the heat transfer plate and a shielding rib for shielding airflow leakage with resin. A unit element is formed, and a plurality of unit elements are stacked to form a ventilation path between the heat transfer plates, and a primary airflow and a secondary airflow are circulated through the ventilation path, whereby the heat transfer plate is In the heat exchanger configured to exchange heat through the unit element, the unit element includes means for understanding a stacking error when the unit elements are stacked , the unit element includes a through hole, two types of concave parts, and a convex part, One convex portion is provided around the through hole, and when the unit elements are stacked, the first concave portion and the first convex portion are fitted, and the second concave portion and the second convex portion are the unit. When the elements are correctly stacked, the second recesses of the adjacent unit elements and the second Parts are fitted, when the stacked incorrectly those part interferes of the unit element adjacent to the second protrusion.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また正しく通風路が形成できないことに起因する熱交換効率の低下を防止することができる熱交換器が得られる。また、また積層のずれを防止することによる量産性を向上することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。 By this means, mass productivity can be improved by eliminating mistakes in unit element stacking, and air flow leakage due to poor sealing due to unit element misstacking can be prevented, and a correct ventilation path can be established. A heat exchanger that can prevent a decrease in heat exchange efficiency due to the inability to form can be obtained. Further, it is possible to obtain a heat exchanger that can improve the mass productivity by preventing the deviation of the lamination and can prevent the leakage of the airflow due to the decrease in the sealing performance caused by the deviation of the lamination.

また他の手段は、間隔リブおよび遮蔽リブが何れかで連結したものである。   Another means is one in which the spacing rib and the shielding rib are connected together.

この手段により部品点数が少なく、加工工程を少なくすることによる量産性を向上することができ、また部品点数が少なく、加工工程を少なくすることによる製造コストを低減することができる熱交換器が得られる。   By this means, a heat exchanger can be obtained in which the number of parts is small and mass productivity can be improved by reducing the number of processing steps, and the number of parts is small and manufacturing costs can be reduced by reducing the number of processing steps. It is done.

また他の手段は、単位素子は二種類の間隔リブおよび遮蔽リブを備え、第一の間隔リブおよび第一の遮蔽リブと第二の間隔リブおよび第二の遮蔽リブは伝熱板を間に挟んだものである。   In another means, the unit element includes two types of spacing ribs and shielding ribs, and the first spacing ribs and first shielding ribs and the second spacing ribs and second shielding ribs sandwich the heat transfer plate therebetween. It is sandwiched.

この手段により部品点数が少なく、加工工程を少なくすることによる量産性を向上することができ、また部品点数が少なく、加工工程を少なくすることによる製造コストを低減することができ、また気密性の高い単位素子を形成することによる気流の漏れを防止することができる熱交換器が得られる。   By this means, the number of parts can be reduced and the mass productivity can be improved by reducing the number of processing steps, and the manufacturing cost can be reduced by reducing the number of parts and the number of processing steps. A heat exchanger capable of preventing airflow leakage due to formation of a high unit element is obtained.

また他の手段は、積み間違いが分かる手段として、単位素子に凹部と凸部を備え、前記単位素子を正しく積層した時には隣接する前記単位素子の前記凹部と前記凸部が嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉するものである。   Further, as another means for understanding a stacking error, the unit element includes a concave portion and a convex portion, and when the unit elements are correctly stacked, the concave portion and the convex portion of the adjacent unit element are fitted and erroneously When stacked, a part of the unit element adjacent to the convex part interferes.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができ、また積層のずれを防止することによる量産性を向上することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。   By this means, it is possible to improve the mass productivity by eliminating the stacking error of the unit elements, to improve the mass productivity by preventing the deviation of the stacking, and to seal due to the stacking error of the unit elements. It is possible to obtain a heat exchanger that can prevent airflow leakage due to lowering of the airflow, and that can prevent airflow leakage due to lowering of the sealing performance due to the laminating shift.

また他の手段は、遮蔽リブに凹部と凸部を備えたものである。   Another means is that the shielding rib is provided with a concave portion and a convex portion.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができ、また積層のずれを防止することによる量産性を向上することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。   By this means, it is possible to improve the mass productivity by eliminating the stacking error of the unit elements, to improve the mass productivity by preventing the deviation of the stacking, and to seal due to the stacking error of the unit elements. It is possible to obtain a heat exchanger that can prevent airflow leakage due to lowering of the airflow, and that can prevent airflow leakage due to lowering of the sealing performance due to the laminating shift.

また他の手段は間隔リブに凹部と凸部を備えたものである。   Another means is that the interval rib is provided with a concave portion and a convex portion.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができ、また積層のずれを防止することによる量産性を向上することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。   By this means, it is possible to improve the mass productivity by eliminating the stacking error of the unit elements, to improve the mass productivity by preventing the deviation of the stacking, and to seal due to the stacking error of the unit elements. It is possible to obtain a heat exchanger that can prevent airflow leakage due to lowering of the airflow, and that can prevent airflow leakage due to lowering of the sealing performance due to the laminating shift.

また他の手段は、貫通穴に支持棒を通し、単位素子同士を結束したものである。   Another means is that the support elements are passed through the through holes and unit elements are bound together.

この手段により積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。   By this means, it is possible to obtain a heat exchanger that can prevent airflow leakage due to a decrease in hermeticity due to stacking deviation.

また他の手段は、単位素子は穴と貫通穴と凸部を備え、前記穴は伝熱板に設け、この穴の周囲に前記貫通穴を設け、前記凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記貫通穴と嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉するものである。   According to another means, the unit element includes a hole, a through hole, and a convex portion, the hole is provided in a heat transfer plate, the through hole is provided around the hole, and the convex portion correctly stacks the unit elements. Sometimes it is fitted into the through hole of the adjacent unit element, and when it is mistakenly stacked, a part of the unit element adjacent to the convex part interferes.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができ、また積層のずれを防止することによる量産性を向上することができ、また伝熱板の位置決めを容易に行うことによる量産性を向上することができ、また単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができ、また積層のずれに起因する密封性の低下による気流の漏れを防止することができる熱交換器が得られる。   By this means, it is possible to improve mass productivity by eliminating stacking errors of unit elements, to improve mass productivity by preventing misalignment of the stack, and to easily position the heat transfer plate. Can improve mass productivity, prevent leakage of airflow due to poor sealing due to incorrect stacking of unit elements, and prevent leakage of airflow due to poor sealing due to stacking error. A heat exchanger that can be prevented is obtained.

また他の手段は、間隔リブまたは遮蔽リブの少なくとも何れか、または前記間隔リブまたは前記遮蔽リブの少なくとも何れかに連結する位置に貫通穴を設けたものである。   Another means is that a through hole is provided at a position connected to at least one of the spacing rib or the shielding rib, or at least one of the spacing rib or the shielding rib.

この手段により部品点数が少なく、加工工程を少なくすることによる量産性を向上することができる熱交換器が得られる。   By this means, a heat exchanger can be obtained in which the number of parts is small and mass productivity can be improved by reducing the number of processing steps.

また他の手段は、方形の単位素子を伝熱面に対して平行に90度回転しながら積層したものである。   In another means, rectangular unit elements are stacked while being rotated 90 degrees parallel to the heat transfer surface.

この手段により設備投資を少なくすることによる製造コストを低減することができる熱交換器が得られる。   By this means, a heat exchanger that can reduce the manufacturing cost by reducing the capital investment can be obtained.

また他の手段は、方形の単位素子において、貫通穴を四隅に設けたものである。   Another means is a rectangular unit element in which through holes are provided at four corners.

この手段により単位素子の積み間違いを無くすことによる量産性を向上することができる熱交換器が得られる。   By this means, it is possible to obtain a heat exchanger that can improve the mass productivity by eliminating the mistake of stacking unit elements.

本発明によれば量産性を向上することができるという効果のある熱交換器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger with the effect that mass productivity can be improved can be provided.

また、単位素子の積み間違いを無くすことによる量産性を向上することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that has an effect of improving mass productivity by eliminating the stacking error of unit elements.

また、部品点数が少なく、加工工程を少なくすることによる量産性を向上することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that has an effect of reducing the number of parts and improving the mass productivity by reducing the number of processing steps.

また、積層のずれを防止することによる量産性を向上することができるという効果のある熱交換器を提供できる。   Further, it is possible to provide a heat exchanger having an effect of improving the mass productivity by preventing the deviation of the stack.

また、伝熱板の位置決めを容易に行うことによる量産性を向上することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger having an effect of improving the mass productivity by easily positioning the heat transfer plate.

また、製造コストを低減することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that has an effect of reducing the manufacturing cost.

また、部品点数が少なく、加工工程を少なくすることによる製造コストを低減することができるという効果のある熱交換器を提供できる。   Further, it is possible to provide a heat exchanger that has an effect that the number of parts is small and the manufacturing cost can be reduced by reducing the number of processing steps.

また、設備投資を少なくすることによる製造コストを低減することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide an effective heat exchanger that can reduce the manufacturing cost by reducing the capital investment.

また、気流の漏れを防止することができるという効果のある熱交換器を提供できる。   Moreover, the heat exchanger with the effect that the leakage of an airflow can be prevented can be provided.

また、単位素子の積み間違いに起因する密封性の低下による気流の漏れを防止することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that is effective in preventing airflow leakage due to a decrease in sealing performance caused by erroneous stacking of unit elements.

また、積層のずれに起因する密封性の低下による気流の漏れを防止することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that has an effect of preventing leakage of airflow due to a decrease in sealing performance caused by misalignment of the layers.

また、気密性の高い単位素子を形成することによる気流の漏れを防止することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that is effective in preventing airflow leakage due to the formation of highly airtight unit elements.

また、正しく通風路が形成できないことに起因する熱交換効率の低下を防止することができるという効果のある熱交換器を提供できる。   Moreover, the heat exchanger with the effect that the fall of the heat exchange efficiency resulting from not being able to form a ventilation path correctly can be prevented can be provided.

本発明の請求項1記載の発明は、伝熱板と前記伝熱板の間隔を保持するための間隔リブと気流の漏れを遮蔽するための遮蔽リブとを樹脂にて一体成形して単位素子を形成し、この単位素子を複数積層することにより前記伝熱板間に通風路が形成され、一次気流と二次気流を前記通風路に流通することにより、前記伝熱板を介して熱交換するようにした熱交換器において、前記単位素子を積層した時に積み間違いが分かる手段を備え、単位素子に貫通穴と二種類の凹部と凸部を備え、第一の凹部と第一の凸部は前記貫通穴の周囲に設け、前記単位素子を積層した時に前記第一の凹部と前記第一の凸部が嵌合し、第二の凹部と第二の凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記第二の凹部と前記第二の凸部が嵌合し、誤って積層した時には前記第二の凸部と隣接する前記単位素子の一部が干渉するものであり、単位素子を積層した際に積み間違いが分かる手段を備えたことにより、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また単位素子の積み間違いによって、伝熱板毎に同じ方向に通風路が形成され、一次気流と二次気流を熱交換器に流通すると、誤って積層した部分については熱交換がされない。単位素子を積層した際に積み間違いが分かる手段を備えたことにより、単位素子の積み間違いによって、伝熱板毎に正しく通風路が形成できないことに起因する熱交換効率の低下を防止することができる。また、第一の凹部と第一の凸部は単位素子を積層した際に第一の凹部と第一の凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また貫通穴の周囲に設けた嵌合構造が、単位素子を積層する際に発生する位置ずれを防止することにより量産性を向上することができる。更に第二の凹部と第二の凸部は単位素子を正しく積層した時には隣接する単位素子の第二の凹部と第二の凸部が嵌合し、誤って積層した時には第二の凸部と隣接する単位素子の一部が干渉するため、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また第二の凹部と第二の凸部は単位素子を積層した際に第二の凹部と第二の凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記第二の嵌合構造が単位素子を積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。 According to a first aspect of the present invention, a unit element is formed by integrally molding a heat transfer plate, a spacing rib for maintaining a space between the heat transfer plate, and a shielding rib for shielding airflow leakage with resin. By forming a plurality of unit elements, a ventilation path is formed between the heat transfer plates, and a primary airflow and a secondary airflow are circulated through the ventilation path to exchange heat through the heat transfer plate. In the heat exchanger, the unit element is provided with means for understanding a stacking error when the unit elements are stacked , the unit element is provided with a through hole, two kinds of concave parts and convex parts, and the first concave part and the first convex part. Is provided around the through hole, and when the unit elements are stacked, the first concave portion and the first convex portion are fitted, and the second concave portion and the second convex portion correctly stack the unit elements. When the second concave portion and the second convex portion of the adjacent unit elements are fitted, When the stacked I are those partially interferes of the unit element adjacent to the second convex portion, by providing a means for mistakes seen stacked upon stacking unit elements, stacking errors of the unit element Can be easily confirmed, and by correcting the stacking error, defects in the production process can be reduced, and mass productivity can be improved. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. Further, if the unit elements are stacked incorrectly, a ventilation path is formed in the same direction for each heat transfer plate, and if the primary airflow and the secondary airflow are circulated to the heat exchanger, heat exchange is not performed on the erroneously stacked portions. By providing a means to recognize the stacking error when the unit elements are stacked, it is possible to prevent the heat exchange efficiency from being lowered due to the incorrect stacking of unit elements due to the inability to form a correct ventilation path for each heat transfer plate. it can. In addition, since the first concave portion and the first convex portion are fixed to each other when the first concave portion and the first convex portion are fitted when the unit elements are stacked, the unit elements are displaced. Decrease in sealing performance due to the air flow can be prevented, air current leakage can be prevented, and the fitting structure provided around the through hole prevents misalignment that occurs when unit elements are stacked. By doing so, mass productivity can be improved. Furthermore, when the second concave portion and the second convex portion are correctly stacked, the second concave portion and the second convex portion of the adjacent unit element are fitted, and when the unit elements are mistakenly stacked, the second convex portion and Since adjacent unit elements interfere with each other, it is possible to easily check for unit stacking errors. By correcting the stacking faults, it is possible to reduce defects in the production process and improve mass productivity. Can do. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. In addition, the second concave portion and the second convex portion are fixed to each other by fitting the second concave portion and the second convex portion when the unit elements are stacked. It is possible to prevent the deterioration of the sealing performance caused by this, to prevent the leakage of airflow, and to prevent the misalignment that occurs when the second fitting structure stacks unit elements. Can be improved.

また、本発明の請求項2記載の発明は、間隔リブおよび遮蔽リブが何れかで連結したものであり、単位素子の間隔リブおよび遮蔽リブは何れかで連結しているため、間隔リブおよび遮蔽リブを有する単位素子が一回の樹脂成形で一体に形成でき、量産性を向上することができ、更に金型内に伝熱板を挿入してから射出成形するインサート射出成形を用いると、一回の成形で伝熱板と間隔リブと遮蔽リブが一体成形され、単位素子を形成できることにより加工工程が少なくでき、更に量産性を向上することができ、また、部品点数が少なく、製造コストを低減することができる。   In the invention according to claim 2 of the present invention, the spacing rib and the shielding rib are connected to each other, and the spacing rib and the shielding rib of the unit element are connected to each other. Unit elements having ribs can be integrally formed by a single resin molding, so that mass productivity can be improved. Further, when insert injection molding is used in which injection molding is performed after inserting a heat transfer plate into a mold, The heat transfer plate, the spacing rib, and the shielding rib are integrally formed by one-time molding, and the unit elements can be formed, so that the number of processing steps can be reduced, the mass productivity can be improved, the number of parts is small, and the manufacturing cost is reduced. Can be reduced.

また、本発明の請求項3記載の発明は、単位素子は二種類の間隔リブおよび遮蔽リブを備え、第一の間隔リブおよび第一の遮蔽リブと第二の間隔リブおよび第二の遮蔽リブは伝熱板を間に挟んだものであり、金型内に伝熱板を挿入してから射出成形するインサート射出成形を用いた場合、溶融した樹脂を伝熱板表面側から金型内に射出すると、射出圧力が高いため溶融した樹脂は、伝熱板表面の第一の間隔リブおよび第一の遮蔽リブを成形すると共に、和紙などの紙類で構成された伝熱板を貫通し、伝熱板裏面の第二の間隔リブおよび第二の遮蔽リブと連結する形で形成することができるので、一回の成形で伝熱板と間隔リブと遮蔽リブが一体成形され、単位素子を形成できることにより加工工程が少なくでき、量産性を向上することができ、また、部品点数が少なく、製造コストを低減することができる。また伝熱板表面の第一の間隔リブおよび第一の遮蔽リブと伝熱板裏面の第二の間隔リブおよび第二の遮蔽リブがインサート射出成形する際に伝熱板を間に挟んで一体形成されるので、気密性の高い単位素子が形成でき、この単位素子を積層することにより、気流の漏れを防止することができる熱交換器が得られる。   According to a third aspect of the present invention, the unit element includes two types of spacing ribs and shielding ribs, and the first spacing rib, the first shielding rib, the second spacing rib, and the second shielding rib. The heat transfer plate is sandwiched between them. When insert injection molding is used, in which the heat transfer plate is inserted into the mold and then injection molded, the molten resin is introduced into the mold from the surface of the heat transfer plate. When injected, the molten resin because of the high injection pressure forms the first spacing rib and the first shielding rib on the surface of the heat transfer plate, and penetrates the heat transfer plate made of paper such as Japanese paper, Since the heat transfer plate can be formed so as to be connected to the second spacing rib and the second shielding rib on the back surface of the heat transfer plate, the heat transfer plate, the spacing rib and the shielding rib are integrally formed by one molding, and the unit element is formed. Because it can be formed, the number of processing steps can be reduced, and mass productivity can be improved. Further, it is possible to a small number of parts, to reduce the manufacturing cost. Also, the first spacing rib and the first shielding rib on the surface of the heat transfer plate and the second spacing rib and the second shielding rib on the back surface of the heat transfer plate are integrated with the heat transfer plate sandwiched between them during insert injection molding. Since the unit elements are formed, a highly airtight unit element can be formed, and by stacking the unit elements, a heat exchanger capable of preventing airflow leakage can be obtained.

また、本発明の請求項4記載の発明は、積み間違いが分かる手段として、単位素子に凹部と凸部を備え、前記単位素子を正しく積層した時には隣接する前記単位素子の前記凹部と前記凸部が嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉するものであり、単位素子を正しく積層した時には隣接する前記単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉するため、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また凹部と凸部は単位素子を積層した際に凹部と凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子を積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, according to a fourth aspect of the present invention, as means for understanding a stacking error, the unit element includes a recess and a projection, and when the unit elements are correctly stacked, the recess and the projection of the adjacent unit element are provided. When part of the unit elements adjacent to the convex part interferes with each other when they are stacked and mistakenly stacked, the concave part and the convex part of the adjacent unit elements are fitted when the unit elements are correctly stacked. , When a unit is mistakenly stacked, a part of the unit element adjacent to the convex part interferes, so it is possible to easily check the unit element stacking error, and to reduce defects in the production process by correcting the stacking error. And mass productivity can be improved. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. In addition, since the concave and convex portions are fixed to each other by fitting the concave and convex portions when the unit elements are stacked, it is possible to prevent the sealing performance from being deteriorated due to the deviation of the unit elements. The airflow can be prevented from leaking, and the productivity can be improved by preventing the misalignment that occurs when the fitting structure stacks the unit elements.

また、本発明の請求項5記載の発明は、遮蔽リブに凹部と凸部を備えたものであり、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉するため、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また凹部と凸部は単位素子を積層した際に凹部と凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子を積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, the invention according to claim 5 of the present invention is provided with the concave portion and the convex portion on the shielding rib, and when the unit elements are correctly stacked, the concave portion and the convex portion of the adjacent unit elements are fitted and mistakenly. When stacked, a part of the unit element adjacent to the convex part interferes, so it is possible to easily check the unit element stacking error, and by correcting the stacking error, it is possible to reduce defects in the production process, Mass productivity can be improved. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. In addition, since the concave and convex portions are fixed to each other by fitting the concave and convex portions when the unit elements are stacked, it is possible to prevent the sealing performance from being deteriorated due to the deviation of the unit elements. The airflow can be prevented from leaking, and the productivity can be improved by preventing the misalignment that occurs when the fitting structure stacks the unit elements.

また、本発明の請求項6記載の発明は、間隔リブに凹部と凸部を備えたものであり、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉するため、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また凹部と凸部は単位素子を積層した際に凹部と凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子を積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, the invention according to claim 6 of the present invention is provided with the concave and convex portions on the interval rib, and when the unit elements are correctly stacked, the concave and convex portions of the adjacent unit elements are fitted and mistakenly. When stacked, a part of the unit element adjacent to the convex part interferes, so it is possible to easily check the unit element stacking error, and by correcting the stacking error, it is possible to reduce defects in the production process, Mass productivity can be improved. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. In addition, since the concave and convex portions are fixed to each other by fitting the concave and convex portions when the unit elements are stacked, it is possible to prevent the sealing performance from being deteriorated due to the deviation of the unit elements. The airflow can be prevented from leaking, and the productivity can be improved by preventing the misalignment that occurs when the fitting structure stacks the unit elements.

また、本発明の請求項記載の発明は、貫通穴に支持棒を通し、単位素子同士を結束したものであり、単位素子を積層した際に、単位素子同士を結束することにより、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。 In the invention according to claim 7 of the present invention, the support rods are passed through the through holes and the unit elements are bound to each other. When the unit elements are stacked, the unit elements are bound to each other. It is possible to prevent a decrease in sealing performance due to the deviation of the air flow, and to prevent airflow leakage.

また、本発明の請求項記載の発明は、単位素子は穴と貫通穴と凸部を備え、前記穴は伝熱板に設け、この穴の周囲に前記貫通穴を設け、前記凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記貫通穴と嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉するものであり、金型内に伝熱板を挿入してから射出成形するインサート射出成形を用いた場合、伝熱板に設けた穴は、樹脂金型に伝熱板を挿入する際の位置決めを容易に行うことができ、量産性を向上することができる。また単位素子を正しく積層した時には隣接する単位素子の貫通穴と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉するため、単位素子の積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子の積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また貫通穴と凸部は単位素子を積層した際に貫通穴と凸部が嵌合することにより、単位素子同士が互いに固定するため、単位素子のずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子を積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。 In the invention according to claim 8 of the present invention, the unit element includes a hole, a through hole, and a convex portion, the hole is provided in a heat transfer plate, the through hole is provided around the hole, and the convex portion is When the unit elements are correctly stacked, the unit elements are fitted with the through holes of the adjacent unit elements, and when the unit elements are stacked incorrectly, a part of the unit elements adjacent to the convex portions interfere with each other in the mold. When insert injection molding is used in which injection molding is performed after the heat transfer plate is inserted, the holes provided in the heat transfer plate can be easily positioned when the heat transfer plate is inserted into the resin mold. Can be improved. In addition, when unit elements are correctly stacked, the through holes and protrusions of adjacent unit elements are fitted, and when they are stacked incorrectly, part of the unit elements adjacent to the protrusions interferes, making it easy to stack unit elements. By correcting the stacking error, defects in the production process can be reduced and mass productivity can be improved. In addition, it is possible to prevent a decrease in sealing performance due to erroneous stacking of unit elements, and to prevent airflow leakage. In addition, the through-hole and the convex portion are fixed to each other by fitting the through-hole and the convex portion when the unit elements are stacked, thereby preventing deterioration of the sealing performance due to the deviation of the unit elements. Therefore, the airflow can be prevented from leaking, and the mass productivity can be improved by preventing the misalignment that occurs when the fitting structure stacks the unit elements.

また、本発明の請求項記載の発明は、間隔リブまたは遮蔽リブの少なくとも何れか、または前記間隔リブまたは前記遮蔽リブの少なくとも何れかに連結する位置に貫通穴を設けたものであり、単位素子の間隔リブおよび遮蔽リブは何れかで連結し、且つ樹脂で構成されているため、間隔リブまたは遮蔽リブの少なくとも何れか、または間隔リブまたは遮蔽リブの少なくとも何れかに連結する位置に貫通穴を設けることにより、間隔リブと遮蔽リブと貫通穴を有する単位素子が一回の樹脂成形で一体に形成でき、量産性を向上することができる。 According to a ninth aspect of the present invention, a through hole is provided at a position connected to at least one of the spacing rib or the shielding rib, or at least one of the spacing rib or the shielding rib. Since the interval rib and the shielding rib of the element are connected to each other and are made of resin, the through-hole is formed at a position to be connected to at least one of the interval rib or the shielding rib or at least one of the interval rib or the shielding rib. By providing the unit element having the spacing rib, the shielding rib, and the through hole can be integrally formed by a single resin molding, and mass productivity can be improved.

また、本発明の請求項1記載の発明は、方形の単位素子を伝熱面に対して平行に90度回転しながら積層したものであり、一つの単位素子を90度回転しながら交互に積層するだけで熱交換器が形成できるため、一つの金型を設けるだけでよく、製造コストを低減することができる。 The invention of claim 1 0, wherein the present invention, the unit element of the square is formed by laminating while rotating parallel to 90 degrees with respect to the heat transfer surface, one unit element alternately while rotating 90 degrees Since the heat exchanger can be formed only by laminating, it is only necessary to provide one mold, and the manufacturing cost can be reduced.

また、本発明の請求項1記載の発明は、方形の単位素子において、貫通穴を四隅に設けたものであり、貫通穴を方形の単位素子の四隅に設けたことにより、単位素子を誤って積層した時には、貫通穴の周囲に設けた凸部と隣接する単位素子の一部が干渉している状態が、熱交換器側面から容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。 The invention of claim 1 1, wherein the present invention is the unit element of the square, which was provided with through holes at the four corners, by providing the through holes at the four corners of the unit element of the square, accidentally unit elements When stacking, it is easy to confirm from the side of the heat exchanger that the convex part provided around the through hole and a part of the adjacent unit element interfere with each other. Defects in the production process can be reduced, and mass productivity can be improved.

(実施の形態1)
図1は熱交換器の概略斜視図、図2(a)はX方向から見た単位素子の概略斜視図、図2(b)はY方向から見た単位素子の概略斜視図、図3は熱交換器の概略分解斜視図、図4(a)は単位素子を正しく積層した熱交換器の概略斜視図、図4(b)はA−A断面の熱交換器の概略斜視図、図4(c)はA−A断面の熱交換器の概略拡大斜視図、図5(a)は単位素子を誤って積層した熱交換器の概略斜視図、図5(b)は熱交換器の概略拡大斜視図、図6(a)は単位素子を正しく積層した熱交換器の概略斜視図、図6(b)はB−B断面の熱交換器の概略斜視図、図6(c)はB−B断面の熱交換器の概略拡大斜視図、図7(a)は単位素子を誤って積層した熱交換器の概略斜視図、図7(b)はC−C断面の熱交換器の概略斜視図、図7(c)はC−C断面の熱交換器の概略拡大斜視図、図8は伝熱板の概略斜視図、図9(a)は単位素子を正しく積層した熱交換器の概略斜視図、図9(b)はB−B断面の熱交換器の概略斜視図、図9(c)はB−B断面の熱交換器の概略拡大斜視図、図10(a)は単位素子を誤って積層した熱交換器の概略斜視図、図10(b)はC−C断面の熱交換器の概略斜視図、図10(c)はC−C断面の熱交換器の概略拡大斜視図、図11は熱交換器の概略量産工程図、図12は射出成形金型の概略断面図、図13(a)は単位素子を正しく積層した熱交換器の概略斜視図、図13(b)はB−B断面の熱交換器の概略斜視図、図13(c)はB−B断面の熱交換器の概略拡大斜視図である。
(Embodiment 1)
1 is a schematic perspective view of a heat exchanger, FIG. 2A is a schematic perspective view of a unit element viewed from the X direction, FIG. 2B is a schematic perspective view of a unit element viewed from the Y direction, and FIG. 4 is a schematic exploded perspective view of the heat exchanger, FIG. 4A is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, and FIG. 4B is a schematic perspective view of a heat exchanger taken along the line AA. FIG. 5C is a schematic enlarged perspective view of a heat exchanger having an AA cross section, FIG. 5A is a schematic perspective view of a heat exchanger in which unit elements are mistakenly stacked, and FIG. 5B is a schematic view of the heat exchanger. 6 (a) is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, FIG. 6 (b) is a schematic perspective view of a heat exchanger having a BB cross section, and FIG. 7B is a schematic enlarged perspective view of a heat exchanger having a cross section B, FIG. 7A is a schematic perspective view of a heat exchanger in which unit elements are mistakenly stacked, and FIG. 7B is a schematic view of a heat exchanger having a CC cross section. Perspective view (C) is a schematic enlarged perspective view of a heat exchanger having a CC cross section, FIG. 8 is a schematic perspective view of a heat transfer plate, FIG. 9 (a) is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, and FIG. 9 (b) is a schematic perspective view of a heat exchanger having a BB cross section, FIG. 9 (c) is a schematic enlarged perspective view of a heat exchanger having a BB cross section, and FIG. FIG. 10B is a schematic perspective view of a heat exchanger having a CC cross section, FIG. 10C is a schematic enlarged perspective view of the heat exchanger having a CC cross section, FIG. Is a schematic mass production process diagram of a heat exchanger, FIG. 12 is a schematic cross-sectional view of an injection mold, FIG. 13A is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, and FIG. FIG. 13C is a schematic perspective view of the heat exchanger having the B cross section, and FIG. 13C is a schematic enlarged perspective view of the heat exchanger having the B-B cross section.

図1、図2(a)、2(b)、図3、図4(a)、4(b)、4(c)において、熱交換器1aは一辺が120mmの方形で厚みが2.5mmの単位素子2aを交互に90度回転しながら積層し、支持棒3にて単位素子2a同士を結束することにより構成され、伝熱板4の間に形成された通風路5に、一次気流Aと二次気流Bを流通すると、一次気流Aと二次気流Bとは伝熱板4を介して直交しながら熱交換を行う。   1, 2 (a), 2 (b), FIG. 3, 4 (a), 4 (b), 4 (c), the heat exchanger 1 a is a square with a side of 120 mm and a thickness of 2.5 mm. The unit elements 2a are stacked while being alternately rotated by 90 degrees, and the unit elements 2a are bound together by the support rod 3, and the primary airflow A is formed in the ventilation path 5 formed between the heat transfer plates 4. When the secondary airflow B is circulated, the primary airflow A and the secondary airflow B exchange heat while being orthogonal to each other via the heat transfer plate 4.

図2(a)および図2(b)の単位素子2aは、伝熱板4のX方向表面に第一の間隔リブ6a、第一の遮蔽リブ7a、遮蔽リブ凹部8、貫通穴9、第一の凸部として貫通穴凸部10、第二の凸部として積層確認凸部11、位置決め凸部12、位置決め貫通穴13a、遮蔽リブ注入口14a、間隔リブ注入口15を備え、伝熱板4のY方向表面に第二の間隔リブ6aa、第二の遮蔽リブ7aa、貫通穴9、位置決め貫通穴13aa、遮蔽リブ凸部16、第一の凹部として貫通穴凹部17、第二の凹部として積層確認凹部18、位置決め平面部19を備え、第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaが伝熱板4を間に挟むように、樹脂にて一体成形して得られる。   2 (a) and 2 (b) includes a first spacing rib 6a, a first shielding rib 7a, a shielding rib recess 8, a through hole 9, a first hole on the surface of the heat transfer plate 4 in the X direction. A through hole convex portion 10 as one convex portion, a stacking confirmation convex portion 11, a positioning convex portion 12, a positioning through hole 13a, a shielding rib inlet 14a, and a spacing rib inlet 15 as a second convex portion, and a heat transfer plate 4 on the surface in the Y direction, the second spacing rib 6aa, the second shielding rib 7aa, the through hole 9, the positioning through hole 13aa, the shielding rib convex portion 16, the first concave portion as the through hole concave portion 17, and the second concave portion as the second concave portion. The stacking confirmation concave portion 18 and the positioning flat surface portion 19 are provided so that the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa sandwich the heat transfer plate 4 therebetween. , Obtained by integral molding with resin.

伝熱板4のX方向表面において、第一の間隔リブ6aは高さ1mm、幅1mmで所定間隔に6本形成し、第一の遮蔽リブ7aは伝熱板4の向かい合う一組の両端で第一の間隔リブ6aと平行に高さ1mm、幅5mmに形成する。遮蔽リブ凹部8は第一の遮蔽リブ7aの上面に、凹高さ0.5mm、幅2.5mmに通風路5に沿って凹形状に形成し、第一の遮蔽リブ7aと遮蔽リブ凹部8の断面は階段状に形成される。遮蔽リブ注入口14aは台形状で第一の遮蔽リブ7aと連結し、通風路5内に形成し、遮蔽リブ凹部8と同じ凸高さに形成する。貫通穴9は単位素子2aの四隅であって、第一の遮蔽リブ7aに穴を設け、この貫通穴9の穴の周囲に凸高さ0.4mmの貫通穴凸部10を設ける。積層確認凸部11は貫通穴凸部10に連結し、方形の単位素子2aの対角する2箇所に凸高さ0.4mmで設ける。位置決め凸部12は第一の間隔リブ6aの上面に凸高さ1.7mmで2個設け、位置決め貫通穴13aは第一の間隔リブ6aに凸高さ1.0mmで2個の円筒を設け、間隔リブ注入口15は第一の間隔リブ6aの上面に凹高さ0.5mmに第一の間隔リブ6aの段を落とすような形状に形成する。   On the surface of the heat transfer plate 4 in the X direction, six first spacing ribs 6a are formed at a predetermined interval with a height of 1 mm and a width of 1 mm, and the first shielding ribs 7a are formed at a pair of opposite ends of the heat transfer plate 4. The first spacing rib 6a is formed in parallel to the height 1 mm and the width 5 mm. The shielding rib recess 8 is formed on the upper surface of the first shielding rib 7a in a concave shape with a concave height of 0.5 mm and a width of 2.5 mm along the ventilation path 5, and the first shielding rib 7a and the shielding rib concave portion 8 are formed. The cross section is formed stepwise. The shielding rib inlet 14 a is trapezoidal and is connected to the first shielding rib 7 a, is formed in the ventilation path 5, and has the same convex height as the shielding rib recess 8. The through holes 9 are the four corners of the unit element 2 a, and holes are provided in the first shielding rib 7 a, and the through hole convex portions 10 having a convex height of 0.4 mm are provided around the through holes 9. The stacking confirmation convex portion 11 is connected to the through hole convex portion 10 and provided at two diagonal positions of the square unit element 2a with a convex height of 0.4 mm. Two positioning projections 12 are provided on the upper surface of the first spacing rib 6a with a projection height of 1.7 mm, and the positioning through holes 13a are provided on the first spacing rib 6a with two cylinders with a projection height of 1.0 mm. The spacing rib inlet 15 is formed on the upper surface of the first spacing rib 6a so as to drop the step of the first spacing rib 6a to a concave height of 0.5 mm.

伝熱板4のY方向表面において、第二の間隔リブ6aaは第一の間隔リブ6aと直交し、高さ1mm、幅1mmで所定間隔に6本形成し、第二の遮蔽リブ7aaは伝熱板4の向かい合う一組の両端で第二の間隔リブ6aaと平行に高さ1mm、幅5mmに形成する。遮蔽リブ凸部16は第二の遮蔽リブ7aaの上面に、凸高さ0.4mm、幅2.4mmに通風路5に沿って凸形状に形成し、第二の遮蔽リブ7aaと遮蔽リブ凸部16の断面は階段状に形成される。貫通穴9は単位素子2aの四隅であって、第二の遮蔽リブ7aaに穴を設け、この貫通穴9の穴の周囲に凹高さ0.5mmの貫通穴凹部17を設ける。積層確認凹部18は貫通穴凹部17に連結し、方形の単位素子2aの対角する2箇所に凹高さ0.5mmで設ける。位置決め平面部19は伝熱板4を挟んで位置決め凸部12の反対側に凸高さ1.0mmの円柱を2箇所設け、位置決め貫通穴13aaは伝熱板4を挟んで位置決め貫通穴13aの反対側に凸高さ1.0mmで2個の円筒を設ける。   On the surface of the heat transfer plate 4 in the Y direction, the second spacing ribs 6aa are orthogonal to the first spacing ribs 6a, and are formed at a predetermined interval with a height of 1 mm and a width of 1 mm, and the second shielding ribs 7aa are transmitted. A pair of opposite ends of the hot plate 4 are formed to have a height of 1 mm and a width of 5 mm in parallel with the second spacing rib 6aa. The shielding rib convex part 16 is formed on the upper surface of the second shielding rib 7aa in a convex shape with a convex height of 0.4 mm and a width of 2.4 mm along the ventilation path 5, and the second shielding rib 7aa and the shielding rib convex The section of the portion 16 is formed in a step shape. The through holes 9 are the four corners of the unit element 2 a, and holes are provided in the second shielding rib 7 aa, and a through hole concave portion 17 having a concave height of 0.5 mm is provided around the through hole 9. The stacking confirmation recesses 18 are connected to the through-hole recesses 17 and provided at two opposite corners of the rectangular unit element 2a with a recess height of 0.5 mm. The positioning flat surface portion 19 is provided with two columns having a convex height of 1.0 mm on the opposite side of the positioning convex portion 12 with the heat transfer plate 4 interposed therebetween, and the positioning through hole 13aa is located between the positioning heat transfer plate 4 and the positioning through hole 13a. Two cylinders with a convex height of 1.0 mm are provided on the opposite side.

図4(a)、4(b)、4(c)に示すように、第一の間隔リブ6aと第二の間隔リブ6aaは単位素子2aを交互に90度回転しながら積層した時に、隣接する第一の間隔リブ6aと第二の間隔リブ6aaが重なり合うように形成され、伝熱板4を一定の間隔に保持する働がある。本実施の形態では、第一の間隔リブ6aおよび第二の間隔リブ6aaの凸高さを1mmとしたので、伝熱板4は2mm毎に積層される。   As shown in FIGS. 4 (a), 4 (b), and 4 (c), the first spacing rib 6a and the second spacing rib 6aa are adjacent to each other when the unit elements 2a are stacked while being alternately rotated by 90 degrees. The first spacing rib 6a and the second spacing rib 6aa are formed so as to overlap each other, and have a function of holding the heat transfer plate 4 at a constant spacing. In the present embodiment, since the convex height of the first spacing rib 6a and the second spacing rib 6aa is 1 mm, the heat transfer plate 4 is laminated every 2 mm.

図4(a)、4(b)、4(c)に示すように、第一の遮蔽リブ7aと第二の遮蔽リブ7aaは単位素子2aを交互に90度回転しながら積層した時に、隣接する第一の遮蔽リブ7aと第二の遮蔽リブ7aaが重なり合うように形成され、熱交換器1aの通風路5を流通する一次気流Aおよび二次気流Bが熱交換器1aの端面から気流が漏れないように遮蔽する働きと、伝熱板4を一定の間隔に保持する働きがある。   As shown in FIGS. 4 (a), 4 (b), and 4 (c), the first shielding rib 7a and the second shielding rib 7aa are adjacent to each other when the unit elements 2a are stacked while being alternately rotated by 90 degrees. The first shielding rib 7a and the second shielding rib 7aa are formed so as to overlap each other, and the primary airflow A and the secondary airflow B flowing through the ventilation path 5 of the heat exchanger 1a are generated from the end face of the heat exchanger 1a. There is a function of shielding so as not to leak and a function of holding the heat transfer plate 4 at a constant interval.

なお第一の遮蔽リブ7a、第二の遮蔽リブ7aaは熱交換器1aの伝熱板4を一定容積内で広く取るために、方形の単位素子2aの両端部に形成する構成としたが、熱交換器の設計や量産性などにより適宜決定する。   In addition, although the 1st shielding rib 7a and the 2nd shielding rib 7aa were set as the structure formed in the both ends of the square unit element 2a in order to take the heat-transfer plate 4 of the heat exchanger 1a widely within a fixed volume, It is determined appropriately depending on the design and mass productivity of the heat exchanger.

図4(a)、4(b)、4(c)に示すように、遮蔽リブ凹部8と遮蔽リブ凸部16は単位素子2aを交互に90度回転しながら正しく積層した時には、隣接する遮蔽リブ凹部8の凹部と遮蔽リブ凸部16の凸部が嵌合するよう形成される。熱交換器1aは第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaに設けた遮蔽リブ凹部8と遮蔽リブ凸部16の嵌合により、単位素子2a同士が互いに固定化され、且つ単位素子2aを積層する際に発生する位置ずれを防止する。熱交換器1aの側面における気流の遮蔽は、図4(c)に示すように隣接する第一の遮蔽リブ7aおよび第二の遮蔽リブ7aa同士が重なり合うことにより行われ、遮蔽リブ凹部8の凹部と遮蔽リブ凸部16の凸部の嵌合も気流の遮蔽を行う。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaは必ず重なり合うようにし、遮蔽リブ凹部8と遮蔽リブ凸部16の嵌合は、気流が漏れない程度に高さ方向に0.1mmの積層逃がし部20aを設けた。なお0.1mmの高さ方向の積層逃がし部20aを設けたが、単位素子2aを正しく積層した時には、熱交換器1aの側面における気流の遮蔽と単位素子2a同士の嵌合ができれば良く、熱交換器の設計や製造精度により適宜決定する。   As shown in FIGS. 4 (a), 4 (b), and 4 (c), the shielding rib recesses 8 and the shielding rib projections 16 are adjacent to each other when the unit elements 2a are correctly stacked while rotating 90 degrees alternately. The concave portion of the rib concave portion 8 and the convex portion of the shielding rib convex portion 16 are formed to be fitted. In the heat exchanger 1a, the unit elements 2a are fixed to each other by the fitting of the shielding rib recesses 8 and the shielding rib projections 16 provided in the first shielding rib 7a and the second shielding rib 7aa, and the unit elements 2a This prevents the positional deviation that occurs when the layers are stacked. The airflow shielding on the side surface of the heat exchanger 1a is performed by overlapping the adjacent first shielding rib 7a and second shielding rib 7aa as shown in FIG. The fitting of the convex portions of the shielding rib convex portion 16 also shields the airflow. In this specification, in consideration of mold manufacturing accuracy and resin molding accuracy, the first shielding rib 7 a and the second shielding rib 7 aa are always overlapped, and the shielding rib recess 8 and the shielding rib projection 16 are formed. For the fitting, a stacking relief portion 20a of 0.1 mm was provided in the height direction to such an extent that airflow did not leak. Although the stacking relief part 20a in the height direction of 0.1 mm is provided, when the unit elements 2a are correctly stacked, it is only necessary to shield the air flow on the side surface of the heat exchanger 1a and fit the unit elements 2a to each other. It is determined appropriately according to the design and manufacturing accuracy of the exchanger.

図5(a)、5(b)に示すように、単位素子2aを交互に90度回転せず、誤って積層した時には、遮蔽リブ凸部16の凸部は隣接する第一の間隔リブ6aと干渉し、隣接する単位素子2a同士が嵌合できず、熱交換器1aの側面から確認すると単位素子2a同士に隙間があり、容易に単位素子2aの積み間違いを確認することができる。   As shown in FIGS. 5 (a) and 5 (b), when the unit elements 2a are not rotated alternately by 90 degrees and are stacked incorrectly, the projections of the shielding rib projections 16 are adjacent to the first spacing ribs 6a. The adjacent unit elements 2a cannot be fitted to each other, and when confirmed from the side surface of the heat exchanger 1a, there is a gap between the unit elements 2a, and it is possible to easily confirm the stacking error of the unit elements 2a.

熱交換器1aは、単位素子2aを積層した際に積み間違いが分かる手段として、第一の遮蔽リブ7a、第二の遮蔽リブ7aaに遮蔽リブ凹部8と遮蔽リブ凸部16を備えたことにより、単位素子2aを正しく積層した時には隣接する単位素子2aの遮蔽リブ凹部8の凹部と遮蔽リブ凸部16の凸部が嵌合し、誤って積層した時には遮蔽リブ凸部16の凸部と隣接する単位素子2aの一部(第一の間隔リブ6a)が干渉するため、単位素子2aの積み間違いを容易に確認することができる構成となっている。   The heat exchanger 1a is provided with the shielding rib concave portion 8 and the shielding rib convex portion 16 on the first shielding rib 7a and the second shielding rib 7aa as means for understanding the stacking error when the unit elements 2a are stacked. When the unit elements 2a are correctly laminated, the concave portions of the shielding rib concave portions 8 of the adjacent unit elements 2a and the convex portions of the shielding rib convex portions 16 are fitted, and when the unit elements 2a are mistakenly laminated, the convex portions of the shielding rib convex portions 16 are adjacent. Since a part of the unit element 2a (the first spacing rib 6a) interferes, the unit element 2a can be easily checked for stacking errors.

なお遮蔽リブ凹部8および遮蔽リブ凸部16は単位素子2aの第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaに設けたが、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   The shielding rib concave portion 8 and the shielding rib convex portion 16 are provided on the first shielding rib 7a and the second shielding rib 7aa of the unit element 2a. However, when the unit elements are correctly stacked, the concave portion and the convex portion of the adjacent unit element are provided. As long as they are fitted and mistakenly stacked, a part of the unit element adjacent to the convex part interferes, and the same effect can be obtained even if a heat exchanger having another configuration is used.

この明細書における干渉とは、単位素子2aを誤って積層した時に凸部と隣接する単位素子2aの一部が当たり、隣接する単位素子2a同士が嵌合できず隙間ができる状態のことである。また、単位素子2aを正しく積層するとは、単位素子2aに備えた凹部と凸部の嵌合構造が互いに嵌合し、気流の漏れが無く、熱交換器の基本性能が発揮できる状態のことであり、単位素子2aを誤って積層するとは、単位素子2aに備えた凸部と単位素子2aの一部が干渉し、隣接する単位素子2aの間に隙間ができ、気流の漏れが有り、熱交換器の基本性能が発揮できない状態のことである。   The interference in this specification is a state in which when the unit elements 2a are mistakenly stacked, a part of the unit elements 2a adjacent to the convex portion hits, and the adjacent unit elements 2a cannot be fitted to each other and a gap is formed. . In addition, when the unit elements 2a are correctly laminated, the concave and convex fitting structures provided in the unit elements 2a are fitted to each other, there is no airflow leakage, and the basic performance of the heat exchanger can be exhibited. Yes, if the unit elements 2a are mistakenly stacked, the convex portions provided in the unit elements 2a and a part of the unit elements 2a interfere with each other, a gap is formed between the adjacent unit elements 2a, airflow is leaked, This means that the basic performance of the exchanger cannot be demonstrated.

図6(a)、6(b)、6(c)に示すように、第一の凹部および第一の凸部として設けた貫通穴凹部17と貫通穴凸部10は単位素子2aを交互に90度回転しながら正しく積層した時には、隣接する貫通穴凹部17の凹部と貫通穴凸部10の凸部が嵌合するよう形成される。熱交換器1aは単位素子2aの四隅に設けた貫通穴凹部17と貫通穴凸部10の嵌合により、単位素子2a同士が互いに固定化され、且つ単位素子2aを積層する際に発生する位置ずれを防止する。熱交換器1aの四隅における気流の遮蔽は、図6(c)に示すように隣接する第一の遮蔽リブ7aおよび第二の遮蔽リブ7aa同士が重なり合うことにより行われ、貫通穴凹部17の凹部と貫通穴凸部10の凸部の嵌合も気流の遮蔽を行う。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaは必ず重なり合うようにし、貫通穴凹部17と貫通穴凸部10の嵌合は、気流が漏れない程度に高さ方向に0.1mmの積層逃がし部20bを設けた。なお0.1mmの高さ方向の積層逃がし部20bを設けたが、単位素子2aを正しく積層した時には、熱交換器1aの四隅における気流の遮蔽と単位素子2a同士の嵌合ができれば良く、熱交換器の設計や製造精度により適宜決定する。   As shown in FIGS. 6 (a), 6 (b), and 6 (c), the through-hole recess 17 and the through-hole protrusion 10 provided as the first recess and the first protrusion alternately form the unit elements 2a. When correctly stacked while rotating 90 degrees, the concave portions of the adjacent through hole concave portions 17 and the convex portions of the through hole convex portions 10 are formed so as to be fitted. The heat exchanger 1a is a position generated when the unit elements 2a are stacked and the unit elements 2a are stacked by fitting the through-hole concave portions 17 and the through-hole convex portions 10 provided at the four corners of the unit elements 2a. Prevent misalignment. Airflow shielding at the four corners of the heat exchanger 1a is performed by overlapping the adjacent first shielding rib 7a and second shielding rib 7aa as shown in FIG. The fitting of the projections of the through-hole projections 10 also shields the airflow. In this specification, in consideration of mold manufacturing accuracy and resin molding accuracy, the first shielding rib 7a and the second shielding rib 7aa are necessarily overlapped, and the through-hole concave portion 17 and the through-hole convex portion 10 For the fitting, a stacking relief portion 20b of 0.1 mm was provided in the height direction to such an extent that the airflow did not leak. Although the stacking relief part 20b in the height direction of 0.1 mm is provided, when the unit elements 2a are correctly stacked, it is only necessary to shield the air flow at the four corners of the heat exchanger 1a and fit the unit elements 2a to each other. It is determined appropriately according to the design and manufacturing accuracy of the exchanger.

なお貫通穴凹部17および貫通穴凸部10は単位素子2aの単位素子2aの四隅に設けたが、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、間隔リブまたは遮蔽リブの少なくとも何れか、または間隔リブまたは遮蔽リブの少なくとも何れかに連結する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   The through-hole concave portion 17 and the through-hole convex portion 10 are provided at the four corners of the unit element 2a of the unit element 2a. However, when the unit elements are correctly stacked, the concave and convex portions of the adjacent unit elements are fitted, As long as the structure is connected to at least one of the shielding ribs, or at least one of the spacing ribs and the shielding ribs, the same operation and effect can be obtained even if a heat exchanger having another configuration is used.

図6(a)、6(b)、6(c)に示すように、第二の凹部および第二の凸部として設けた積層確認凹部18と積層確認凸部11は単位素子2aを交互に90度回転しながら正しく積層した時には、隣接する積層確認凹部18の凹部と積層確認凸部11の凸部が嵌合するよう形成される。熱交換器1aは方形の単位素子2aの対角する2箇所に設けた積層確認凹部18と積層確認凸部11の嵌合により、単位素子2a同士が互いに固定化され、且つ単位素子2aを積層する際に発生する位置ずれを防止する。熱交換器1aの四隅における気流の遮蔽は、図6(c)に示すように隣接する第一の遮蔽リブ7aおよび第二の遮蔽リブ7aa同士が重なり合うことにより行われ、積層確認凹部18の凹部と積層確認凸部11の凸部の嵌合も気流の遮蔽を行う。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaは必ず重なり合うようにし、積層確認凹部18と積層確認凸部11の嵌合は、気流が漏れない程度に高さ方向に0.1mmの積層逃がし部20cを設けた。なお0.1mmの高さ方向の積層逃がし部20cを設けたが、単位素子2aを正しく積層した時には、熱交換器1aの四隅における気流の遮蔽と単位素子2a同士の嵌合ができれば良く、熱交換器の設計や製造精度により適宜決定する。   As shown in FIGS. 6 (a), 6 (b), and 6 (c), the stacking confirmation recesses 18 and the stacking confirmation projections 11 provided as the second recesses and the second projections alternately form the unit elements 2a. When the layers are correctly laminated while rotating 90 degrees, the concave portions of the adjacent lamination confirmation concave portions 18 and the convex portions of the lamination confirmation convex portions 11 are formed to be fitted. In the heat exchanger 1a, the unit elements 2a are fixed to each other and the unit elements 2a are stacked by fitting the stacking confirmation concave portions 18 and the stacking confirmation convex portions 11 provided at two diagonal positions of the square unit element 2a. This prevents misalignment that occurs when Airflow shielding at the four corners of the heat exchanger 1a is performed by overlapping the adjacent first shielding rib 7a and second shielding rib 7aa as shown in FIG. And the fitting of the convex portions of the stacking confirmation convex portion 11 also shields the airflow. In this specification, in consideration of mold manufacturing accuracy and resin molding accuracy, the first shielding rib 7a and the second shielding rib 7aa are necessarily overlapped, and the stacking confirmation concave portion 18 and the stacking confirmation convex portion 11 are formed. For the fitting, a stacking relief portion 20c of 0.1 mm was provided in the height direction to such an extent that airflow did not leak. Although the stacking relief portion 20c in the height direction of 0.1 mm is provided, when the unit elements 2a are correctly stacked, it is only necessary to shield the airflow at the four corners of the heat exchanger 1a and fit the unit elements 2a to each other. It is determined appropriately according to the design and manufacturing accuracy of the exchanger.

図7(a)、7(b)、7(c)に示すように、単位素子2aを交互に90度回転せず、誤って積層した時には、積層確認凸部11の凸部は隣接する第二の遮蔽リブ7aaと干渉し、隣接する単位素子2a同士が嵌合できず、熱交換器1aの側面から確認すると単位素子2a同士に隙間があり、容易に単位素子2aの積み間違いを確認することができる構成となっている。   As shown in FIGS. 7 (a), 7 (b), and 7 (c), when the unit elements 2a are not rotated alternately by 90 degrees and are stacked incorrectly, the protrusions of the stacking confirmation protrusion 11 are adjacent to each other. Interfering with the two shielding ribs 7aa, the adjacent unit elements 2a cannot be fitted to each other, and when confirmed from the side surface of the heat exchanger 1a, there is a gap between the unit elements 2a, and it is easy to confirm a stacking error of the unit elements 2a. It has a configuration that can.

なお積層確認凹部18および積層確認凸部11は単位素子2aの対角にそれぞれ2個設けたが、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   Although the stacking confirmation recess 18 and the stacking confirmation protrusion 11 are provided at two diagonals of the unit element 2a, when the unit elements are correctly stacked, the recesses and the projections of the adjacent unit elements are fitted to each other and the stacking is erroneously performed. In this case, if the structure is such that a part of the unit element adjacent to the convex portion interferes, the same operation and effect can be obtained even if a heat exchanger having another configuration is used.

図8に示す伝熱板4は一辺が119mmの方形で、厚さが0.2〜0.01mm、好ましくは0.1〜0.01mmの和紙、防燃紙、伝熱性と透湿性と気体遮蔽性を有する特殊加工紙、透湿膜、または伝熱性のみを有するポリエステル系、ポリスチレン系のABS、AS、PS、ポリオレフィン系のPP、PEなどの樹脂シート、樹脂フィルムなどで構成される。伝熱板4の四隅には貫通穴9を4個設け、方形の伝熱板4の一つの対角線上に位置決め穴21を2個設け、この伝熱板4を樹脂金型に挿入し、インサート射出成形を用いて単位素子2aを一体成形する。伝熱板4を樹脂金型内に挿入する際、伝熱板4を位置決め、固定するためのピンを樹脂金型に設けておき、樹脂金型のピンと伝熱板4の位置決め穴21によって伝熱板4の位置決めを行う。   The heat transfer plate 4 shown in FIG. 8 has a rectangular shape with a side of 119 mm and a thickness of 0.2 to 0.01 mm, preferably 0.1 to 0.01 mm, Japanese paper, flameproof paper, heat transfer, moisture permeability, and gas. It is composed of a specially processed paper having a shielding property, a moisture permeable film, or a resin sheet such as polyester, polystyrene, ABS, AS, PS, polyolefin PP or PE having only heat conductivity, a resin film, or the like. Four through-holes 9 are provided at the four corners of the heat transfer plate 4, two positioning holes 21 are provided on one diagonal line of the square heat transfer plate 4, and the heat transfer plate 4 is inserted into a resin mold. The unit element 2a is integrally formed using injection molding. When the heat transfer plate 4 is inserted into the resin mold, a pin for positioning and fixing the heat transfer plate 4 is provided in the resin mold, and the heat transfer plate 4 and the positioning hole 21 of the heat transfer plate 4 are used to transfer the heat transfer plate 4. The hot plate 4 is positioned.

図9(a)、9(b)、9(c)に示すように、位置決め貫通穴13a、13aaは伝熱板4の位置決め穴21の周囲に形成され、位置決め凸部12の凸部は単位素子2aを交互に90度回転しながら正しく積層した時には、隣接する位置決め貫通穴13a、13aaと嵌合するように形成され、位置決め平面部19は隣接する位置決め貫通穴13aの穴を塞ぐように形成される。   As shown in FIGS. 9A, 9B, and 9C, the positioning through holes 13a and 13aa are formed around the positioning hole 21 of the heat transfer plate 4, and the convex portion of the positioning convex portion 12 is a unit. When the elements 2a are correctly stacked while being alternately rotated by 90 degrees, they are formed so as to be fitted to the adjacent positioning through holes 13a, 13aa, and the positioning flat portion 19 is formed so as to block the holes of the adjacent positioning through holes 13a. Is done.

熱交換器1aは単位素子2aの対角線上に設けた位置決め貫通穴13a、13aaと位置決め凸部12の嵌合により、単位素子2a同士が互いに固定化され、且つ単位素子2aを積層する際に発生する位置ずれを防止する。熱交換器1aの中央部における気流の遮蔽は、図9(c)に示すように隣接する位置決め平面部19と位置決め貫通穴13aおよび位置決め凸部12の凸部下面と位置決め貫通穴13aaが重なり合うことにより行われ、位置決め貫通穴13a、13aaの穴と位置決め凸部12の凸部の嵌合も気流の遮蔽を行う。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、位置決め平面部19と位置決め貫通穴13aおよび位置決め凸部12の凸部下面と位置決め貫通穴13aaは必ず重なり合うようにし、位置決め貫通穴13a、13aaと位置決め凸部12の嵌合は、気流が漏れない程度に高さ方向に0.3mmの積層逃がし部20dを設けた。なお0.3mmの高さ方向の積層逃がし部20dを設けたが、単位素子2aを正しく積層した時には、熱交換器1aの中央部における気流の遮蔽と単位素子2a同士の嵌合ができれば良く、熱交換器の設計や製造精度により適宜決定する。   The heat exchanger 1a occurs when the unit elements 2a are fixed to each other by stacking the unit elements 2a by fitting the positioning through holes 13a, 13aa provided on the diagonal line of the unit elements 2a and the positioning projections 12 to each other. To prevent misalignment. As shown in FIG. 9C, the airflow shielding at the central portion of the heat exchanger 1a is such that the adjacent positioning flat surface portion 19 and positioning through hole 13a and the bottom surface of the positioning convex portion 12 overlap the positioning through hole 13aa. The fitting of the positioning through holes 13a and 13aa and the convex portions of the positioning convex portion 12 also shields the airflow. In this specification, in consideration of mold manufacturing accuracy and resin molding accuracy, the positioning flat surface portion 19 and the positioning through-hole 13a and the lower surface of the positioning convex portion 12 and the positioning through-hole 13aa are always overlapped, The through holes 13a, 13aa and the positioning convex portion 12 were fitted with a 0.3 mm laminated escape portion 20d in the height direction so as not to leak airflow. Although the stacking relief part 20d in the height direction of 0.3 mm is provided, when the unit elements 2a are correctly stacked, it is only necessary to shield the air flow at the center of the heat exchanger 1a and to fit the unit elements 2a, It is determined as appropriate according to the design and manufacturing accuracy of the heat exchanger.

図10(a)、10(b)、10(c)に示すように、単位素子2aを交互に90度回転せず、誤って積層した時には、位置決め凸部12の凸部は隣接する位置決め平面部19と干渉し、隣接する単位素子2a同士が嵌合できず、熱交換器1aの側面から確認すると単位素子2a同士に隙間があり、容易に単位素子2aの積み間違いを確認することができる構成となっている。   As shown in FIGS. 10 (a), 10 (b), and 10 (c), when the unit elements 2a are not rotated alternately by 90 degrees and are stacked by mistake, the convex portions of the positioning convex portions 12 are adjacent to the positioning planes. When the unit elements 2a interfere with each other and cannot be fitted to each other and are confirmed from the side surface of the heat exchanger 1a, there is a gap between the unit elements 2a, and it is possible to easily check the stacking error of the unit elements 2a. It has a configuration.

なお、位置決め貫通穴13a、13aa、位置決め凸部12および位置決め平面部19は単位素子2aの対角線上にそれぞれ2個設けたが、単位素子を正しく積層した時には隣接する単位素子の穴と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   The positioning through-holes 13a, 13aa, the positioning convex portion 12 and the positioning flat portion 19 are each provided on the diagonal of the unit element 2a. However, when the unit elements are correctly stacked, the holes and convex portions of the adjacent unit elements are not formed. Similar effects can be obtained even if heat exchangers with other configurations are used as long as they have a structure in which a part of the unit element adjacent to the convex portion interferes when they are fitted and mistakenly stacked.

図6(c)、図8に示すように、伝熱板4と樹脂を一体成形して形成された単位素子2aにおいて、伝熱板4の貫通穴9は第一の遮蔽リブ7a、第二の遮蔽リブ7aaの貫通穴9と同じ位置で、単位素子2aに貫通する穴が形成され、この穴の周囲に貫通穴凸部10および貫通穴凹部17が形成される。   As shown in FIGS. 6C and 8, in the unit element 2a formed by integrally molding the heat transfer plate 4 and the resin, the through hole 9 of the heat transfer plate 4 has the first shielding rib 7a and the second shielding rib 7a. A hole penetrating the unit element 2a is formed at the same position as the through hole 9 of the shielding rib 7aa, and the through hole convex portion 10 and the through hole concave portion 17 are formed around the hole.

図6(c)、図9(c)に示すように、貫通穴9、貫通穴凸部10および貫通穴凹部17は第一の遮蔽リブ7a、第二の遮蔽リブ7aaに連結する位置に構成し、位置決め貫通穴13a、13aa、位置決め凸部12および位置決め平面部19は第一の間隔リブ6a、第二の間隔リブ6aaに連結する位置に構成しているため、一回の樹脂成形でこれらを有する単位素子2aが形成できる。   As shown in FIG. 6C and FIG. 9C, the through hole 9, the through hole convex portion 10, and the through hole concave portion 17 are configured to be connected to the first shielding rib 7a and the second shielding rib 7aa. Since the positioning through holes 13a, 13aa, the positioning convex portion 12 and the positioning flat surface portion 19 are configured to be connected to the first spacing rib 6a and the second spacing rib 6aa, these are formed by a single resin molding. Can be formed.

なお、貫通穴9、貫通穴凸部10および貫通穴凹部17は第一の遮蔽リブ7a、第二の遮蔽リブ7aaに連結する位置に形成し、位置決め貫通穴13a、13aa、位置決め凸部12および位置決め平面部19は第一の間隔リブ6a、第二の間隔リブ6aaに連結する位置に形成したが、貫通穴9、貫通穴凸部10、貫通穴凹部17、位置決め貫通穴13a、13aa、位置決め凸部12および位置決め平面部19は第一の間隔リブ6a、第二の間隔リブ6aaまたは第一の遮蔽リブ7a、第二の遮蔽リブ7aaの少なくとも何れか、または第一の間隔リブ6a、第二の間隔リブ6aaまたは第一の遮蔽リブ7a、第二の遮蔽リブ7aaの少なくとも何れかに連結する位置に設け、伝熱板4と樹脂を一体成形して単位素子2aを得る際に、一回の樹脂成形で一体に形成できれば良く、その他の構成を用いても同様の作用効果を得ることができる。   The through-hole 9, the through-hole convex portion 10 and the through-hole concave portion 17 are formed at positions where they are connected to the first shielding rib 7a and the second shielding rib 7aa, and the positioning through-holes 13a and 13aa, the positioning convex portion 12 and The positioning flat surface portion 19 is formed at a position connected to the first spacing rib 6a and the second spacing rib 6aa. However, the through-hole 9, the through-hole convex portion 10, the through-hole concave portion 17, the positioning through-holes 13a and 13aa, and the positioning The convex portion 12 and the positioning flat surface portion 19 include at least one of the first spacing rib 6a, the second spacing rib 6aa or the first shielding rib 7a, the second shielding rib 7aa, or the first spacing rib 6a, When the unit element 2a is obtained by integrally forming the heat transfer plate 4 and the resin at a position where it is connected to at least one of the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa. If integrally formed with the resin molded well, it is possible to obtain the same effect even by using other configurations.

図11、図12に熱交換器1aの製造工程および製造方法を示す。切断工程22は伝熱板4を所定の大きさに切断する。   11 and 12 show a manufacturing process and a manufacturing method of the heat exchanger 1a. The cutting step 22 cuts the heat transfer plate 4 into a predetermined size.

次の成形工程23は伝熱板4を射出成形金型24に挿入し、射出成形機にて伝熱板4と樹脂を一体成形するインサート射出成形工法で単位素子2aが得られる。この樹脂としては熱可塑性樹脂を適用し、樹脂の種類としては、ポリエステル系、ポリスチレン系のABS、AS、PS、またはポリオレフィン系のPP、PEなどが用いられる。また熱可塑性樹脂の中にガラス繊維または炭素繊維の無機充填剤を添加した樹脂を用いても良い。無機充填剤の添加量は樹脂の重量に対して1〜50重量%、更に好ましくは10〜30重量%であり、樹脂に無機充填剤を添加すると、樹脂成形品の単位素子2aは強度と反りや収縮性の物性が向上することと、一体成形する伝熱板4と樹脂との接着性が向上する。これは化学結合による接着性が向上するのではなく、無機充填剤と伝熱板4との繊維の絡まりが強くなった物理結合が向上するものである。無機充填剤の添加量は樹脂の重量に対して多く混入すると、樹脂成形品の強度と反りや収縮性の物性が向上するが、50重量%以上になると、射出成形する時の溶融した樹脂の流動性が低下するため、樹脂成形品が得られない場合があり、無機充填剤の添加量は樹脂成形品の必要強度、樹脂物性、射出成形機の仕様などにより適宜決定する。   In the next molding step 23, the unit element 2a is obtained by an insert injection molding method in which the heat transfer plate 4 is inserted into the injection mold 24 and the heat transfer plate 4 and the resin are integrally formed by an injection molding machine. As this resin, a thermoplastic resin is applied. As the type of resin, polyester-based, polystyrene-based ABS, AS, PS, polyolefin-based PP, PE, or the like is used. Further, a resin obtained by adding an inorganic filler of glass fiber or carbon fiber to a thermoplastic resin may be used. The addition amount of the inorganic filler is 1 to 50% by weight, more preferably 10 to 30% by weight with respect to the weight of the resin. When the inorganic filler is added to the resin, the unit element 2a of the resin molded product has strength and warpage. In addition, the shrinkable physical properties are improved, and the adhesion between the heat transfer plate 4 and the resin to be integrally molded is improved. This does not improve the adhesiveness due to the chemical bond, but improves the physical bond in which the fiber entanglement between the inorganic filler and the heat transfer plate 4 becomes strong. If a large amount of the inorganic filler is added relative to the weight of the resin, the strength, warpage and shrinkage properties of the resin molded product will be improved. Since the fluidity decreases, a resin molded product may not be obtained, and the amount of the inorganic filler added is appropriately determined depending on the required strength of the resin molded product, the physical properties of the resin, the specifications of the injection molding machine, and the like.

この成形工程23は、溶融した樹脂を伝熱板4のX方向からから射出成形金型24内に射出すると、樹脂流路を通り、金型のゲート部から単位素子2aに設けた遮蔽リブ注入口14aおよび間隔リブ注入口15から流入し、更に溶融した樹脂は射出圧力が高いため、伝熱板4のX方向表面の第一の間隔リブ6aおよび第一の遮蔽リブ7aを成形すると共に、和紙などの紙類で構成された伝熱板4を貫通し、伝熱板4Y方向表面の第二の間隔リブ6aaおよび第二の遮蔽リブ7aaと連結する形で形成することができるので、一回の成形で伝熱板4と第一の間隔リブ6a、第二の間隔リブ6aaと第一の遮蔽リブ7a、第二の遮蔽リブ7aaを有する単位素子2aを形成することができる。   In this molding step 23, when the molten resin is injected into the injection mold 24 from the X direction of the heat transfer plate 4, it passes through the resin flow path and the shielding rib provided on the unit element 2a from the gate portion of the mold. Since the molten resin flowing in from the inlet 14a and the interval rib injection port 15 and the molten resin has a high injection pressure, the first interval rib 6a and the first shielding rib 7a on the surface in the X direction of the heat transfer plate 4 are formed, Since it can be formed so as to penetrate the heat transfer plate 4 made of paper such as Japanese paper and to be connected to the second spacing rib 6aa and the second shielding rib 7aa on the surface of the heat transfer plate 4Y. The unit element 2a having the heat transfer plate 4 and the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa can be formed by one-time molding.

単位素子2aを樹脂成形する射出成形金型24はランナーレスにする手段を備え、ランナーレスにする手段として、オープンゲート式またはバルブゲート式のホットランナーを使用する。ヒータ25によりランナー・ゲート部を加熱制御して溶融樹脂を常に流動化状態に保てるため、樹脂成形時に廃材となるスプル・ランナー26が出ず、樹脂材料費削減と省資源化することができる。また成形品の単位素子2aのみを射出成形金型24から連続的に取り出せるので成形サイクルを短縮することができる。   The injection mold 24 for resin-molding the unit element 2a includes a runner-less means, and an open-gate or valve-gate hot runner is used as a runner-less means. Since the molten resin can always be kept fluidized by controlling the runner / gate portion with the heater 25, the sprue runner 26 which becomes a waste material at the time of resin molding does not come out, and the resin material cost can be reduced and the resources can be saved. Further, since only the unit element 2a of the molded product can be continuously taken out from the injection mold 24, the molding cycle can be shortened.

この明細書のスプルとは、射出成形金型24において成形材料の流路の一部で円錐形の部分を指し、ランナーとは射出成形金型24においてキャビティに溶融樹脂を流し込む径路のうち、スプルからゲートまでの部分を指す。   The sprue in this specification refers to a conical part of the flow path of the molding material in the injection mold 24, and the runner refers to the sprue of the paths through which molten resin flows into the cavity in the injection mold 24. The part from the gate to the gate.

またバルブゲート式のホットランナーはゲート開閉機能を有するので、溶融樹脂が射出成形金型24から注入される単位素子2aの遮蔽リブ注入口14aおよび間隔リブ注入口15においてバリができないため、単位素子2aを積層した際に隣接する単位素子2a同士がバリによって干渉することがなく、隙間無く単位素子2aを積層することができる。   Further, since the valve gate type hot runner has a gate opening / closing function, the burr cannot be formed at the shielding rib injection port 14a and the interval rib injection port 15 of the unit element 2a into which the molten resin is injected from the injection mold 24. When the 2a is stacked, the adjacent unit elements 2a do not interfere with each other by burrs, and the unit elements 2a can be stacked without any gap.

次の積層工程27は単位素子2aを交互に90度回転しながら積層し、単位素子2aの四隅に設けた貫通穴9に支持棒3を挿入する工程である。   The next laminating step 27 is a step of laminating the unit elements 2a while alternately rotating by 90 degrees, and inserting the support bars 3 into the through holes 9 provided at the four corners of the unit elements 2a.

次の結束工程28は貫通穴9に挿入した支持棒3の両端に止め具を付設し単位素子2a同士を結束することによって熱交換器1aを得る工程である。また、支持棒3は熱可塑性樹脂などよりなるものであって、支持棒3の両端を熱によって溶融し単位素子2a同士を締め付けた状態で固化させることにより結束するものであってもよい。なお本発明における結束とは、単位素子2a同士を機械的拘束により固定化したものである。   The next bundling step 28 is a step of obtaining the heat exchanger 1a by attaching a stopper to both ends of the support rod 3 inserted into the through hole 9 and bundling the unit elements 2a. The support rod 3 may be made of a thermoplastic resin or the like, and may be bound by melting both ends of the support rod 3 with heat and solidifying the unit elements 2a in a clamped state. The term “bundling” in the present invention means that the unit elements 2a are fixed by mechanical restraint.

熱交換器1aは第一の間隔リブ6aおよび第一の遮蔽リブ7aに連結する位置に溶融樹脂を注入する遮蔽リブ注入口14aおよび間隔リブ注入口15を備え、第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaが何れかで連結している構成である。また遮蔽リブ注入口14aおよび間隔リブ注入口15は、単位素子2aを積層した時に隣接する単位素子2aが干渉しないように逃がす手段を備え、逃がす手段として、第一の間隔リブ6aおよび第一の遮蔽リブ7aに段落としを設ける。また段落としとして第一の遮蔽リブ7aに連結し、通風路5内に遮蔽リブ注入口14aを設ける。   The heat exchanger 1a includes a shielding rib inlet 14a and a spacing rib inlet 15 for injecting molten resin at positions connected to the first spacing rib 6a and the first shielding rib 7a. The second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa are connected by any one of them. Further, the shielding rib injection port 14a and the interval rib injection port 15 include means for allowing the adjacent unit elements 2a not to interfere when the unit elements 2a are stacked, and the first interval rib 6a and the first interval ribs are used as the means for releasing. A paragraph is provided on the shielding rib 7a. Further, as a paragraph, it is connected to the first shielding rib 7 a and a shielding rib inlet 14 a is provided in the ventilation path 5.

図4(a)、4(b)、4(c)に示すように、遮蔽リブ注入口14aは通風路5内に段落としを設けたことにより、溶融樹脂が金型から注入される遮蔽リブ注入口14aにおいてバリが万一発生しても、単位素子2aを積層した際に隣接する単位素子2a同士は段落しによってバリを逃がすことにより干渉せず、更に前記バリは通風路5内に位置するため、隣接する単位素子2aとの通風路5空間によってバリを逃がすことにより更に干渉せず、隙間無く単位素子2aを積層することができる。   As shown in FIGS. 4 (a), 4 (b), and 4 (c), the shielding rib injection port 14a is provided with a paragraph in the ventilation path 5, so that the molten resin is injected from the mold. Even if burrs are generated at the inlet 14a, the adjacent unit elements 2a do not interfere with each other when the unit elements 2a are stacked, and the burrs are located in the ventilation path 5 without interfering with each other. Therefore, the unit element 2a can be stacked without a gap without causing further interference by releasing the burr by the space of the ventilation path 5 with the adjacent unit element 2a.

図13(a)、13(b)、13(c)に示すように、第一の間隔リブ6aに設けた間隔リブ注入口15は単位素子2aを交互に90度回転しながら正しく積層した時には、隣接する第二の間隔リブ6aaと重なり合うが、間隔リブ注入口15は第一の間隔リブ6aの上面に凹高さ0.5mmに第一の間隔リブ6aを段落しするような形状のため、溶融樹脂が金型から注入される間隔リブ注入口15においてバリが万一発生しても、単位素子2aを積層した際に隣接する単位素子2a同士は逃がす手段によってバリを逃がすことにより干渉せず、隙間無く単位素子2aを積層することができる。   As shown in FIGS. 13 (a), 13 (b), and 13 (c), when the interval rib injection port 15 provided in the first interval rib 6a is correctly stacked while alternately rotating the unit elements 2a by 90 degrees. The gap rib inlet 15 overlaps with the adjacent second gap rib 6aa, but has a shape that forms the first gap rib 6a with a concave height of 0.5 mm on the upper surface of the first gap rib 6a. Even if burrs are generated at the interval rib injection port 15 where molten resin is injected from the mold, when the unit elements 2a are stacked, the adjacent unit elements 2a interfere with each other by releasing the burrs. Therefore, the unit elements 2a can be stacked without a gap.

この明細書における段落しとは、溶融樹脂が金型から単位素子2aに注入される注入口において、バリが万一発生しても、単位素子2aを積層した際に隣接する単位素子2a同士が干渉しないように、周囲の樹脂リブより凸高さを下げることである。   In this specification, the term “paragraph” means that even if burrs occur at the injection port through which molten resin is injected from the mold into the unit element 2a, the adjacent unit elements 2a are stacked when the unit elements 2a are stacked. In order to avoid interference, the convex height is lowered from the surrounding resin ribs.

なお、間隔リブ注入口15の段落しは第一の間隔リブ6aの上面に設け、遮蔽リブ注入口14aの段落しは第一の遮蔽リブ7aに連結するように設けたが、溶融樹脂を注入する注入口は、第一の間隔リブ6aまたは第一の遮蔽リブ7aの少なくとも何れかに連結し、通風路5内に設け、バリを逃がすように段落しにする構成であれば良く、その他の構成を用いても同様の作用効果を得ることができる。   The gap rib inlet 15 is provided on the upper surface of the first gap rib 6a, and the shield rib inlet 14a is provided so as to be connected to the first shield rib 7a. The inlet to be connected may be connected to at least one of the first spacing rib 6a or the first shielding rib 7a, provided in the ventilation path 5, and may be configured to be separated so as to escape the burr. Even if the configuration is used, the same effect can be obtained.

上記構成により、熱交換器1aは、単位素子2aを積層した際に積み間違いが分かる手段として、第一の遮蔽リブ7a、第二の遮蔽リブ7aaに遮蔽リブ凹部8と遮蔽リブ凸部16を備えたことにより、単位素子2aを正しく積層した時には隣接する単位素子2aの遮蔽リブ凹部8の凹部と遮蔽リブ凸部16の凸部が嵌合し、誤って積層した時には遮蔽リブ凸部16の凸部と隣接する単位素子2aの一部(第一の間隔リブ6a)が干渉するため、単位素子2aの積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子2aの積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また遮蔽リブ凹部8の凹部と遮蔽リブ凸部16の凸部は単位素子2aを積層した際に凹部と凸部が嵌合することにより、単位素子2a同士が互いに固定するため、単位素子2aのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子2aを積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   With the above configuration, the heat exchanger 1a has the first and second shielding ribs 7a and 7aa with the shielding rib concave portion 8 and the shielding rib convex portion 16 as means for understanding the stacking error when the unit elements 2a are stacked. As a result, when the unit elements 2a are correctly stacked, the concave portions of the shielding rib concave portions 8 of the adjacent unit elements 2a and the convex portions of the shielding rib convex portions 16 are fitted. Since a part of the unit element 2a adjacent to the convex portion (first spacing rib 6a) interferes, it is possible to easily check the stacking error of the unit elements 2a, and to correct the stacking error, thereby causing a defective production process. Can be reduced, and mass productivity can be improved. In addition, it is possible to prevent the sealing performance from being lowered due to erroneous stacking of the unit elements 2a, and to prevent airflow leakage. Further, since the concave portion of the shielding rib concave portion 8 and the convex portion of the shielding rib convex portion 16 are fixed to each other by fitting the concave portion and the convex portion when the unit elements 2a are stacked, the unit elements 2a are fixed to each other. Decrease in sealing performance due to misalignment can be prevented, airflow leakage can be prevented, and the fitting structure can prevent mass misalignment that occurs when the unit elements 2a are stacked. Can be improved.

また単位素子2aの積み間違いによって、伝熱板4毎に同じ方向に通風路5が形成され、一次気流Aと二次気流Bを熱交換器1aに流通すると、誤って積層した部分については熱交換がされない。単位素子2aを積層した際に積み間違いが分かる手段を備えたことにより、単位素子2aの積み間違いによって、伝熱板4毎に正しく通風路5が形成できないことに起因する熱交換効率の低下を防止することができる。   Further, when the unit elements 2a are stacked incorrectly, the ventilation path 5 is formed in the same direction for each heat transfer plate 4, and when the primary airflow A and the secondary airflow B are circulated through the heat exchanger 1a, Not exchanged. By providing means for understanding the stacking error when the unit elements 2a are stacked, the heat exchange efficiency is reduced due to the fact that the ventilation path 5 cannot be formed correctly for each heat transfer plate 4 due to the stacking error of the unit elements 2a. Can be prevented.

また熱交換器1aは、単位素子2aに貫通穴9と、第一の凹部と第一の凸部として貫通穴凹部17および貫通穴凸部10と、第二の凹部と第二の凸部として積層確認凹部18および積層確認凸部11を備えたことにより、第一の凹部と第一の凸部は単位素子2aを積層した際に貫通穴凹部17と貫通穴凸部10が嵌合することにより、単位素子2a同士が互いに固定するため、単位素子2aのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また貫通穴9の周囲に設けた前記第一の嵌合構造が、単位素子2aを積層する際に発生する位置ずれを防止することにより量産性を向上することができる。更に第二の凹部と第二の凸部は単位素子2aを正しく積層した時には隣接する単位素子2aの積層確認凹部18と積層確認凸部11が嵌合し、誤って積層した時には積層確認凸部11と隣接する単位素子2aの一部(第二の遮蔽リブ7aa)が干渉するため、単位素子2aの積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子2aの積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また第二の凹部と第二の凸部は単位素子2aを積層した際に積層確認凹部18と積層確認凸部11が嵌合することにより、単位素子2a同士が互いに固定するため、単位素子2aのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記第二の嵌合構造が単位素子2aを積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, the heat exchanger 1a includes a through-hole 9 in the unit element 2a, a first concave portion and a first convex portion as a through-hole concave portion 17 and a through-hole convex portion 10, and a second concave portion and a second convex portion. By providing the stacking confirmation concave portion 18 and the stacking confirmation convex portion 11, the first concave portion and the first convex portion are fitted with the through hole concave portion 17 and the through hole convex portion 10 when the unit elements 2a are stacked. As a result, the unit elements 2a are fixed to each other, so that it is possible to prevent deterioration of the sealing performance due to the deviation of the unit elements 2a and to prevent airflow leakage. Further, the first fitting structure provided around the through hole 9 can prevent mass misalignment that occurs when the unit elements 2a are stacked, thereby improving mass productivity. Further, when the unit elements 2a are correctly stacked, the second concave portion and the second convex portion are fitted with the stacking confirmation concave portion 18 and the stacking confirmation convex portion 11 of the adjacent unit element 2a. 11 and a part (second shielding rib 7aa) of the adjacent unit element 2a interfere with each other, so that it is possible to easily check the stacking error of the unit elements 2a. It can be reduced and mass productivity can be improved. In addition, it is possible to prevent the sealing performance from being lowered due to erroneous stacking of the unit elements 2a, and to prevent airflow leakage. In addition, the second concave portion and the second convex portion are fixed to each other by uniting the stacking confirmation concave portion 18 and the stacking confirmation convex portion 11 when the unit elements 2a are stacked. It is possible to prevent the sealing performance from being lowered due to the deviation of the air flow, to prevent the leakage of the air flow, and to prevent the positional deviation that occurs when the second fitting structure stacks the unit elements 2a. Thus, mass productivity can be improved.

また熱交換器1aは、単位素子2aを積層した際に貫通穴9に支持棒3を通し、単位素子2a同士を結束したことにより、単位素子2aのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。   Moreover, the heat exchanger 1a prevents the deterioration of the sealing performance due to the deviation of the unit elements 2a by passing the support rod 3 through the through hole 9 when the unit elements 2a are stacked and binding the unit elements 2a. And air flow leakage can be prevented.

また熱交換器1aは、伝熱板4に位置決め穴21を備え、単位素子2aに位置決め貫通穴13a、13aaと位置決め凸部12と位置決め平面部19を備えたことにより、金型内に伝熱板4を挿入してから射出成形するインサート射出成形を用いた場合、伝熱板4に設けた位置決め穴21の穴は、樹脂金型に伝熱板4を挿入する際の位置決めを容易に行うことができ、量産性を向上することができる。また単位素子2aを正しく積層した時には隣接する単位素子2aの位置決め貫通穴13a、13aaの穴と位置決め凸部12の凸部が嵌合し、誤って積層した時には位置決め凸部12の凸部と隣接する単位素子2aの一部(位置決め平面部19)が干渉するため、単位素子2aの積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子2aの積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また貫通穴と凸部は単位素子2aを積層した際に位置決め貫通穴13a、13aaの穴と位置決め凸部12の凸部が嵌合することにより、単位素子2a同士が互いに固定するため、単位素子2aのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子2aを積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, the heat exchanger 1a is provided with the positioning hole 21 in the heat transfer plate 4, and the positioning through holes 13a and 13aa, the positioning convex portion 12, and the positioning flat surface portion 19 in the unit element 2a. When insert injection molding is used in which injection molding is performed after the plate 4 is inserted, the holes of the positioning holes 21 provided in the heat transfer plate 4 facilitate positioning when the heat transfer plate 4 is inserted into the resin mold. And mass productivity can be improved. Further, when the unit elements 2a are correctly stacked, the holes of the positioning through holes 13a and 13aa of the adjacent unit elements 2a and the convex portions of the positioning convex portions 12 are fitted, and when the unit elements 2a are erroneously stacked, adjacent to the convex portions of the positioning convex portions 12 Since a part of the unit element 2a (positioning plane part 19) interferes, it is possible to easily check the stacking error of the unit elements 2a, and it is possible to reduce defects in the production process by correcting the stacking error. , Mass productivity can be improved. In addition, it is possible to prevent the sealing performance from being lowered due to erroneous stacking of the unit elements 2a, and to prevent airflow leakage. Further, when the unit elements 2a are stacked, the through holes and the convex portions are fixed to each other by fitting the positioning through holes 13a and 13aa and the convex portions of the positioning convex portions 12 so that the unit elements 2a are fixed to each other. By preventing the deterioration of the sealing performance due to the displacement of 2a, the leakage of airflow can be prevented, and the fitting structure prevents the displacement caused when the unit elements 2a are stacked. , Mass productivity can be improved.

また熱交換器1aは、単位素子2aの第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaは何れかで連結しているため、第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaを有する単位素子2aが一回の樹脂成形で一体に形成でき、量産性を向上することができ、更に金型内に伝熱板4を挿入してから射出成形するインサート射出成形を用いると、一回の成形で伝熱板4と第一の間隔リブ6a、第二の間隔リブ6aaと第一の遮蔽リブ7a、第二の遮蔽リブ7aaが一体成形され、単位素子2aを形成できることにより加工工程が少なくでき、更に量産性を向上することができ、また、部品点数が少なく、製造コストを低減することができる。   Moreover, since the 1st space | interval rib 6a of the unit element 2a, the 2nd space | interval rib 6aa, the 1st shielding rib 7a, and the 2nd shielding rib 7aa are connected in any one, the heat exchanger 1a is 1st. The unit element 2a having the spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa can be integrally formed by a single resin molding, and mass productivity can be improved. Further, when insert injection molding is used in which injection molding is performed after the heat transfer plate 4 is inserted into the mold, the heat transfer plate 4, the first spacing rib 6a, the second spacing rib 6aa, and the first molding are performed in one molding. Since the one shielding rib 7a and the second shielding rib 7aa are integrally formed and the unit element 2a can be formed, the number of processing steps can be reduced, the mass productivity can be improved, the number of parts is small, and the manufacturing cost is reduced. Can be reduced.

また熱交換器1aは、溶融した樹脂を伝熱板4のX方向からから射出成形金型24内に射出すると、樹脂流路を通り、金型のゲート部から単位素子2aに設けた遮蔽リブ注入口14aおよび間隔リブ注入口15から流入し、更に溶融した樹脂は射出圧力が高いため、伝熱板4のX方向表面の第一の間隔リブ6aおよび第一の遮蔽リブ7aを成形すると共に、和紙などの紙類で構成された伝熱板4を貫通し、伝熱板4Y方向表面の第二の間隔リブ6aaおよび第二の遮蔽リブ7aaと連結する形で形成することができるので、一回の成形で伝熱板4と第一の間隔リブ6a、第二の間隔リブ6aaと第一の遮蔽リブ7a、第二の遮蔽リブ7aaを有する単位素子2aを形成することができることにより、加工工程が少なくでき、量産性を向上することができ、また、部品点数が少なく、製造コストを低減することができる。また伝熱板4X方向表面の第一の間隔リブ6aおよび第一の遮蔽リブ7aと伝熱板Y方向表面の第二の間隔リブ6aaおよび第二の遮蔽リブ7aaがインサート射出成形する際に伝熱板4を間に挟んで一体形成されるので、気密性の高い単位素子2aが形成でき、この単位素子2aを積層することにより、気流の漏れを防止することができる熱交換器1aが得られる。   Further, when the heat exchanger 1a injects molten resin from the X direction of the heat transfer plate 4 into the injection mold 24, the heat exchanger 1a passes through the resin flow path, and the shielding rib provided on the unit element 2a from the gate portion of the mold. Since the molten resin flowing from the inlet 14a and the interval rib injection port 15 and the molten resin has a high injection pressure, the first interval rib 6a and the first shielding rib 7a on the surface in the X direction of the heat transfer plate 4 are molded. Since it can be formed in such a manner that it penetrates the heat transfer plate 4 made of paper such as Japanese paper and is connected to the second spacing rib 6aa and the second shielding rib 7aa on the surface in the heat transfer plate 4Y direction. By forming the unit element 2a having the heat transfer plate 4 and the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa by one molding, Reduce processing steps and improve mass productivity Bets can be, also, the number of parts is small, it is possible to reduce the manufacturing cost. Further, when the first spacing rib 6a and the first shielding rib 7a on the surface of the heat transfer plate 4X direction and the second spacing rib 6aa and the second shielding rib 7aa on the surface of the heat transfer plate Y direction are subjected to insert injection molding. Since the heat plate 4 is integrally formed with the heat plate 4 interposed therebetween, a highly airtight unit element 2a can be formed. By stacking the unit elements 2a, a heat exchanger 1a that can prevent airflow leakage is obtained. It is done.

また熱交換器1aは、単位素子2aの第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaは何れかで連結し、且つ樹脂で構成されているため、第一の間隔リブ6a、第二の間隔リブ6aaまたは第一の遮蔽リブ7a、第二の遮蔽リブ7aaの少なくとも何れか、または第一の間隔リブ6a、第二の間隔リブ6aaまたは第一の遮蔽リブ7a、第二の遮蔽リブ7aaの少なくとも何れかに連結する位置に貫通穴9を設けたことにより、第一の間隔リブ6a、第二の間隔リブ6aaと第一の遮蔽リブ7a、第二の遮蔽リブ7aaと貫通穴9を有する単位素子2aが一回の樹脂成形で一体に形成でき、量産性を向上することができる。   In the heat exchanger 1a, the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa of the unit element 2a are connected to each other and are made of resin. Therefore, at least one of the first spacing rib 6a, the second spacing rib 6aa or the first shielding rib 7a, the second shielding rib 7aa, or the first spacing rib 6a, the second spacing rib 6aa. Alternatively, by providing the through hole 9 at a position connected to at least one of the first shielding rib 7a and the second shielding rib 7aa, the first spacing rib 6a, the second spacing rib 6aa and the first shielding rib. The unit element 2a having the rib 7a, the second shielding rib 7aa, and the through hole 9 can be integrally formed by a single resin molding, and the mass productivity can be improved.

また熱交換器1aは、単位素子2aを方形に構成したために、一つの単位素子2aを90度回転しながら交互に積層するだけで熱交換器1aが形成できるため、一つの金型を設けるだけでよく、製造コストを低減することができる。   In addition, since the heat exchanger 1a has a rectangular unit element 2a, the heat exchanger 1a can be formed by simply laminating one unit element 2a while rotating 90 degrees, so only one mold is provided. The manufacturing cost can be reduced.

また熱交換器1aは、貫通穴9を方形の単位素子2aの四隅に設けたことにより、単位素子2aを誤って積層した時には、貫通穴9の周囲に設けた積層確認凸部11と隣接する単位素子2aの一部(第二の遮蔽リブ7aa)が干渉している状態が、熱交換器1a側面から容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。   Further, the heat exchanger 1a is provided with the through holes 9 at the four corners of the rectangular unit element 2a, so that when the unit elements 2a are mistakenly stacked, the heat exchanger 1a is adjacent to the stacking confirmation convex portion 11 provided around the through hole 9. The state in which a part of the unit element 2a (second shielding rib 7aa) interferes can be easily confirmed from the side surface of the heat exchanger 1a, and the defect in the production process is reduced by correcting the stacking error. And mass productivity can be improved.

また熱交換器1aは、単位素子2aの第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaは何れかで連結し、且つ樹脂で構成されているため、第一の間隔リブ6aに間隔リブ注入口15を設け、第一の遮蔽リブ7aに連結する位置に遮蔽リブ注入口14aを設けたことにより、成形工程23において、伝熱板4を射出成形金型24に挿入し、射出成形機にて伝熱板4と樹脂を一体成形するインサート射出成形工法で単位素子2aを成形する際、間隔リブ注入口15および遮蔽リブ注入口14aから溶融樹脂が注入することによって、第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaを有する単位素子2aが一回の樹脂成形で一体に形成でき、量産性を向上することができる。またインサート射出成形工法を用いたことにより、一回の成形で伝熱板4と第一の間隔リブ6a、第二の間隔リブ6aaと第一の遮蔽リブ7a、第二の遮蔽リブ7aaが一体成形され、単位素子2aを形成できることにより加工工程が少なくでき、更に量産性を向上することができ、また、部品点数が少なく、製造コストを低減することができる。   In the heat exchanger 1a, the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa of the unit element 2a are connected to each other and are made of resin. Therefore, the spacing rib inlet 15 is provided in the first spacing rib 6a, and the shielding rib inlet 14a is provided at a position connected to the first shielding rib 7a. Is inserted into the injection mold 24, and when the unit element 2a is molded by the insert injection molding method in which the heat transfer plate 4 and the resin are integrally molded by an injection molding machine, the interval rib injection port 15 and the shielding rib injection port 14a are used. By injecting the molten resin, the unit elements 2a having the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa are integrally formed by a single resin molding. And mass production It is possible to above. Further, by using the insert injection molding method, the heat transfer plate 4 and the first spacing rib 6a, the second spacing rib 6aa, the first shielding rib 7a, and the second shielding rib 7aa are integrated in one molding. By being molded and being able to form the unit element 2a, the number of processing steps can be reduced, the mass productivity can be further improved, the number of parts can be reduced, and the manufacturing cost can be reduced.

また間隔リブ注入口15および遮蔽リブ注入口14aは、単位素子2aを積層した際に隣接する単位素子2aが干渉しないように逃がす手段として、第一の間隔リブ6aおよび第一の遮蔽リブ7aに段落としを備えているため、溶融樹脂が射出成形金型24から注入される単位素子2aの間隔リブ注入口15および遮蔽リブ注入口14aにおいてバリが万一発生しても、単位素子2aを積層した際に隣接する単位素子2a同士は逃がす手段によってバリを逃がすことにより干渉せず、隙間無く単位素子2aを積層することができ、気流の漏れを防止することができる。   The spacing rib injection port 15 and the shielding rib injection port 14a are provided on the first spacing rib 6a and the first shielding rib 7a as means for releasing the adjacent unit elements 2a so as not to interfere when the unit elements 2a are stacked. Since the paragraph is provided, the unit element 2a is laminated even if burrs are generated in the interval rib injection port 15 and the shielding rib injection port 14a of the unit element 2a into which the molten resin is injected from the injection mold 24. Then, adjacent unit elements 2a do not interfere with each other by escaping burrs by means of escaping, so that the unit elements 2a can be stacked without any gap, and airflow leakage can be prevented.

また遮蔽リブ注入口14aの段落としは、第一の遮蔽リブ7aに連結し、通風路5内に設けたことにより、溶融樹脂が射出成形金型24から注入される単位素子2aの注入口においてバリが万一発生しても、単位素子2aを積層した際に隣接する単位素子2a同士は段落しによってバリを逃がすことにより干渉せず、更に前記バリは通風路5内に位置するため、隣接する単位素子との通風路5空間によってバリを逃がすことにより更に干渉せず、隙間無く単位素子2aを積層することができ、気流の漏れを防止することができる。   Further, as the paragraph of the shielding rib injection port 14a, it is connected to the first shielding rib 7a and provided in the ventilation path 5, so that the molten resin is injected from the injection mold 24 at the injection port of the unit element 2a. Even if burrs are generated, the adjacent unit elements 2a when the unit elements 2a are stacked do not interfere with each other by escaping the burrs, and further, the burrs are located in the ventilation path 5 so that they are adjacent to each other. The unit element 2a can be stacked without any gap by allowing the burr to escape through the space of the ventilation path 5 with the unit element to be formed, and the leakage of airflow can be prevented.

また単位素子2aを樹脂成形する射出成形金型24にランナーレスにする手段を備えたことにより、樹脂成形時に廃材となるスプル・ランナー26が出ず、樹脂材料費削減により製造コストを低減することができ、また省資源化することができる。   Further, by providing the injection mold 24 for resin molding the unit element 2a with a means for making runnerless, no sprue runner 26 which becomes a waste material at the time of resin molding is produced, and the manufacturing cost can be reduced by reducing the resin material cost. Can also save resources.

またランナーレスにする手段として、ホットランナーを使用したことにより、射出成形金型24のランナー・ゲート部をヒータ25で加熱制御して常に流動化状態に保てるため、樹脂成形時に廃材となるスプル・ランナー26が出ず、樹脂材料費削減により製造コストを低減することができ、また省資源化することができる。また成形品の単位素子2aのみを射出成形金型24から連続的に取り出せるので成形サイクルの短縮ができ、量産性を向上することができる。   In addition, as a means to make runnerless, by using a hot runner, the runner gate part of the injection mold 24 is heated and controlled by the heater 25 so that it is always in a fluidized state. The runner 26 does not come out, the manufacturing cost can be reduced by reducing the resin material cost, and the resource can be saved. Further, since only the unit element 2a of the molded product can be continuously taken out from the injection mold 24, the molding cycle can be shortened and the mass productivity can be improved.

またオープンゲート式のホットランナーを使用したことにより、射出成形金型24のランナー・ゲート部をヒータ25で加熱制御して常に流動化状態に保てるため、樹脂成形時に廃材となるスプル・ランナー26が出ず、樹脂材料費削減により製造コストを低減することができ、また省資源化することができる。また成形品の単位素子2aのみを射出成形金型24から連続的に取り出せるので成形サイクルの短縮ができ、量産性を向上することができる。   In addition, the use of an open gate type hot runner allows the runner gate portion of the injection mold 24 to be heated and controlled by the heater 25 so that it is always in a fluidized state. In addition, the manufacturing cost can be reduced and the resource can be saved by reducing the resin material cost. Further, since only the unit element 2a of the molded product can be continuously taken out from the injection mold 24, the molding cycle can be shortened and the mass productivity can be improved.

またゲート開閉機能を有するバルブゲート式のホットランナーを使用したことにより、溶融樹脂が射出成形金型24から注入される単位素子2aの間隔リブ注入口15および遮蔽リブ注入口14aにおいてバリができないため、単位素子2aを積層した際に隣接する単位素子2a同士がバリによって干渉することがなく、隙間無く単位素子2aを積層することができ、気流の漏れを防止することができる。   Further, since a valve gate type hot runner having a gate opening / closing function is used, burrs cannot be formed at the interval rib injection port 15 and the shielding rib injection port 14a of the unit element 2a into which the molten resin is injected from the injection mold 24. When the unit elements 2a are stacked, the adjacent unit elements 2a do not interfere with each other by the burr, and the unit elements 2a can be stacked without a gap, thereby preventing airflow leakage.

(実施の形態2)
図14は熱交換器の概略斜視図、図15(a)はX方向から見た単位素子の概略斜視図、図15(b)はY方向から見た単位素子の概略斜視図、図16(a)は単位素子を正しく積層した熱交換器の概略斜視図、図16(b)はD−D断面の熱交換器の概略斜視図、図16(c)はD−D断面の熱交換器の概略拡大斜視図、図17(a)は単位素子を誤って積層した熱交換器の概略斜視図、図17(b)はE−E断面の熱交換器の概略斜視図、図17(c)はE−E断面の熱交換器の概略拡大斜視図、図18(a)は単位素子を正しく積層した熱交換器の概略斜視図、図18(b)はF−F断面の熱交換器の概略斜視図、図18(c)はF−F断面の熱交換器の概略拡大斜視図、図19(a)は単位素子を誤って積層した熱交換器の概略斜視図、図19(b)はG−G断面の熱交換器の概略斜視図、図19(c)はG−G断面の熱交換器の概略拡大斜視図である。
(Embodiment 2)
14 is a schematic perspective view of the heat exchanger, FIG. 15A is a schematic perspective view of the unit element viewed from the X direction, FIG. 15B is a schematic perspective view of the unit element viewed from the Y direction, and FIG. a) is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, FIG. 16B is a schematic perspective view of a heat exchanger having a DD section, and FIG. 16C is a heat exchanger having a DD section. 17 (a) is a schematic perspective view of a heat exchanger in which unit elements are stacked by mistake, FIG. 17 (b) is a schematic perspective view of a heat exchanger having a cross section taken along line EE, and FIG. 17 (c). ) Is a schematic enlarged perspective view of a heat exchanger having an EE cross section, FIG. 18A is a schematic perspective view of a heat exchanger in which unit elements are correctly stacked, and FIG. 18B is a heat exchanger having a FF cross section. 18 (c) is a schematic enlarged perspective view of a heat exchanger having an F-F cross section, and FIG. 19 (a) is a schematic perspective view of a heat exchanger in which unit elements are mistakenly stacked. FIG. 19 (b) schematic perspective view of a heat exchanger of cross-section G-G, FIG. 19 (c) is a schematic enlarged perspective view of a heat exchanger of cross-section G-G.

実施の形態1と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in the first embodiment are designated by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図14、図15(a)、15(b)、図16(a)、16(b)、16(c)において、熱交換器1bは一辺が120mmの方形で厚みが2.0mmの単位素子2bを交互に90度回転しながら積層し、支持棒3にて単位素子2b同士を結束することにより構成され、伝熱板4の間に形成された通風路5に、一次気流Aと二次気流Bを流通すると、一次気流Aと二次気流Bとは伝熱板4を介して直交しながら熱交換を行う。   14, 15 (a), 15 (b), 16 (a), 16 (b), and 16 (c), the heat exchanger 1 b is a unit element having a side of 120 mm and a thickness of 2.0 mm. 2b are alternately rotated by 90 degrees, and the unit elements 2b are bound together by the support rod 3, and the primary air flow A and the secondary air flow are formed in the ventilation path 5 formed between the heat transfer plates 4. When the air flow B is circulated, the primary air flow A and the secondary air flow B exchange heat while being orthogonal to each other via the heat transfer plate 4.

図15(a)および図15(b)の単位素子2bは、伝熱板4のX方向表面に第一の間隔リブ6a、間隔リブ凸部29、第一の遮蔽リブ7a、貫通穴9、貫通穴9の一部の周囲に設ける凸部として貫通穴一部凸部30、位置決め凸部12、位置決め貫通穴13a、遮蔽リブ注入口14b、間隔リブ注入口15を備え、伝熱板4のY方向表面に第二の間隔リブ6aa、間隔リブ凹部31、第二の遮蔽リブ7aa、貫通穴9、位置決め貫通穴13aa、貫通穴9の一部の周囲に設ける凹部として貫通穴一部凹部32、位置決め平面部19を備え、第一の間隔リブ6a、第二の間隔リブ6aaおよび第一の遮蔽リブ7a、第二の遮蔽リブ7aaが伝熱板4を間に挟むように、樹脂にて一体成形して得られる。   15A and 15B includes a first spacing rib 6a, a spacing rib protrusion 29, a first shielding rib 7a, a through hole 9, on the surface of the heat transfer plate 4 in the X direction. As a convex portion provided around a part of the through hole 9, a through hole partial convex portion 30, a positioning convex portion 12, a positioning through hole 13 a, a shielding rib injection port 14 b, and a spacing rib injection port 15 are provided. Through hole partial recess 32 as a recess provided around the second spacing rib 6aa, spacing rib recess 31, second shielding rib 7aa, through hole 9, positioning through hole 13aa, and through hole 9 on the Y-direction surface. The first flat ribs 6a, the second flat ribs 6aa, the first shield ribs 7a, and the second shield ribs 7aa are made of resin so as to sandwich the heat transfer plate 4 therebetween. Obtained by integral molding.

伝熱板4のX方向表面において、第一の間隔リブ6aは高さ1mm、幅1mmで所定間隔に6本形成し、第一の遮蔽リブ7aは伝熱板4の向かい合う一組の両端で第一の間隔リブ6aと平行に高さ1mm、幅5mmに形成する。間隔リブ凸部29は第一の間隔リブ6aの上面の両端に、凸高さ0.4mm、幅1mm、長さ15mmに凸形状に形成する。遮蔽リブ注入口14bは台形状で第一の遮蔽リブ7aと連結し、通風路5の外側に、伝熱板4から凸高さ0.5mmに形成する。貫通穴9は単位素子2bの四隅であって、第一の遮蔽リブ7aに4箇所穴を設ける。貫通穴一部凸部30は貫通穴9の4箇所の穴の一部として、方形の単位素子2bの対角する2箇所に、貫通穴9の穴の周囲に凸高さ0.4mmの凸形状を形成する。位置決め凸部12は第一の間隔リブ6aの上面に凸高さ1.7mmで2個設け、位置決め貫通穴13aは第一の間隔リブ6aに凸高さ1.0mmで2個の円筒を設け、間隔リブ注入口15は第一の間隔リブ6aの上面に凹高さ0.5mmに第一の間隔リブ6aの段を落とすような形状に形成する。   On the surface of the heat transfer plate 4 in the X direction, six first spacing ribs 6a are formed at a predetermined interval with a height of 1 mm and a width of 1 mm, and the first shielding ribs 7a are formed at a pair of opposite ends of the heat transfer plate 4. The first spacing rib 6a is formed in parallel to the height 1 mm and the width 5 mm. The spacing rib projections 29 are formed in a convex shape with a convex height of 0.4 mm, a width of 1 mm, and a length of 15 mm at both ends of the upper surface of the first spacing rib 6a. The shielding rib inlet 14b is trapezoidal and is connected to the first shielding rib 7a, and is formed on the outer side of the ventilation path 5 with a convex height of 0.5 mm from the heat transfer plate 4. The through holes 9 are the four corners of the unit element 2b, and four holes are provided in the first shielding rib 7a. The through-hole partial convex portion 30 is a convex portion having a convex height of 0.4 mm around the through-hole 9 at two opposite corners of the rectangular unit element 2b as a part of the four holes of the through-hole 9. Form a shape. Two positioning projections 12 are provided on the upper surface of the first spacing rib 6a with a projection height of 1.7 mm, and the positioning through holes 13a are provided on the first spacing rib 6a with two cylinders with a projection height of 1.0 mm. The spacing rib inlet 15 is formed on the upper surface of the first spacing rib 6a so as to drop the step of the first spacing rib 6a to a concave height of 0.5 mm.

伝熱板4のY方向表面において、第二の間隔リブ6aaは第一の間隔リブ6aと直交し、高さ1mm、幅1mmで所定間隔に6本形成し、第二の遮蔽リブ7aaは伝熱板4の向かい合う一組の両端で第二の間隔リブ6aaと平行に高さ1mm、幅5mmに形成する。間隔リブ凹部31は第二の間隔リブ6aaの上面の両端に、凹高さ0.5mm、幅1mm、長さ15.1mmに凹形状に形成する。貫通穴9は単位素子2bの四隅であって、第二の遮蔽リブ7aaに4箇所穴を設ける。貫通穴一部凹部32は貫通穴9の4箇所の穴の一部として、方形の単位素子2bの対角する2箇所に、貫通穴9の穴の周囲に凹高さ0.5mmの凹形状を形成する。位置決め平面部19は伝熱板4を挟んで位置決め凸部12の反対側に凸高さ1.0mmの円柱を2箇所設け、位置決め貫通穴13aaは伝熱板4を挟んで位置決め貫通穴13aの反対側に凸高さ1.0mmで2個の円筒を設ける。   On the surface of the heat transfer plate 4 in the Y direction, the second spacing ribs 6aa are orthogonal to the first spacing ribs 6a, and are formed at a predetermined interval with a height of 1 mm and a width of 1 mm, and the second shielding ribs 7aa are transmitted. A pair of opposite ends of the hot plate 4 are formed to have a height of 1 mm and a width of 5 mm in parallel with the second spacing rib 6aa. The spacing rib recesses 31 are formed in a concave shape on both ends of the upper surface of the second spacing rib 6aa to have a recess height of 0.5 mm, a width of 1 mm, and a length of 15.1 mm. The through holes 9 are the four corners of the unit element 2b, and four holes are provided in the second shielding rib 7aa. The through-hole partial recesses 32 are part of the four holes of the through-hole 9 and are formed in a concave shape with a concave height of 0.5 mm around the hole of the through-hole 9 at two diagonal positions of the rectangular unit element 2b. Form. The positioning flat surface portion 19 is provided with two columns having a convex height of 1.0 mm on the opposite side of the positioning convex portion 12 with the heat transfer plate 4 interposed therebetween, and the positioning through hole 13aa is located between the positioning heat transfer plate 4 and the positioning through hole 13a. Two cylinders with a convex height of 1.0 mm are provided on the opposite side.

図16(a)、16(b)、16(c)に示すように、第一の間隔リブ6aと第二の間隔リブ6aaは単位素子2aを交互に90度回転しながら積層した時に、隣接する第一の間隔リブ6aと第二の間隔リブ6aaが重なり合うように形成され、伝熱板4を一定の間隔に保持する働がある。本実施の形態では、第一の間隔リブ6aおよび第二の間隔リブ6aaの凸高さを1mmとしたので、伝熱板4は2mm毎に積層される。   As shown in FIGS. 16 (a), 16 (b), and 16 (c), the first spacing rib 6a and the second spacing rib 6aa are adjacent to each other when the unit elements 2a are stacked while being alternately rotated by 90 degrees. The first spacing rib 6a and the second spacing rib 6aa are formed so as to overlap each other, and have a function of holding the heat transfer plate 4 at a constant spacing. In the present embodiment, since the convex height of the first spacing rib 6a and the second spacing rib 6aa is 1 mm, the heat transfer plate 4 is laminated every 2 mm.

図16(a)、16(b)、16(c)に示すように、間隔リブ凸部29と間隔リブ凹部31は単位素子2bを交互に90度回転しながら正しく積層した時には、隣接する間隔リブ凸部29の凸部と間隔リブ凹部31の凹部が嵌合するよう形成される。熱交換器1bは第一の間隔リブ6aおよび第二の間隔リブ6aaに設けた間隔リブ凸部29と間隔リブ凹部31の嵌合により、単位素子2b同士が互いに固定化され、且つ単位素子2bを積層する際に発生する位置ずれを防止する。熱交換器1bの伝熱板4を一定の間隔に保持する構成は、図16(c)に示すように隣接する第一の間隔リブ6aおよび第二の間隔リブ6aa同士が重なり合うことにより行われ、間隔リブ凸部29の凸部と間隔リブ凹部31の凹部の嵌合も伝熱板4を一定の間隔に保持する。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、第一の間隔リブ6aおよび第二の間隔リブ6aaは必ず重なり合うようにし、間隔リブ凸部29と間隔リブ凹部31の嵌合は、高さ方向に0.1mmの積層逃がし部20eを設けた。なお0.1mmの高さ方向の積層逃がし部20eを設けたが、単位素子2bを正しく積層した時に、熱交換器1bの伝熱板4が一定の間隔に保たれれば良く、熱交換器の設計や製造精度により適宜決定する。   As shown in FIGS. 16 (a), 16 (b), and 16 (c), the interval rib protrusion 29 and the interval rib recess 31 are adjacent to each other when the unit elements 2b are correctly stacked while being rotated 90 degrees alternately. The convex part of the rib convex part 29 and the concave part of the space | interval rib recessed part 31 are formed so that it may fit. In the heat exchanger 1b, the unit elements 2b are fixed to each other by the fitting of the spacing rib protrusions 29 and the spacing rib recesses 31 provided on the first spacing rib 6a and the second spacing rib 6aa, and the unit elements 2b This prevents the positional deviation that occurs when the layers are stacked. The configuration in which the heat transfer plate 4 of the heat exchanger 1b is held at a constant interval is performed by overlapping the adjacent first interval ribs 6a and second interval ribs 6aa as shown in FIG. 16 (c). The fitting of the convex portions of the spacing rib convex portions 29 and the concave portions of the spacing rib concave portions 31 also holds the heat transfer plate 4 at a constant interval. In this specification, in consideration of the manufacturing accuracy of the mold and the accuracy of resin molding, the first spacing rib 6a and the second spacing rib 6aa are necessarily overlapped, and the spacing rib convex portion 29 and the spacing rib concave portion 31 are formed. For fitting, a stacking relief portion 20e of 0.1 mm was provided in the height direction. Although the stacking relief portion 20e in the height direction of 0.1 mm is provided, it is sufficient if the heat transfer plate 4 of the heat exchanger 1b is kept at a constant interval when the unit elements 2b are correctly stacked. It is determined appropriately according to the design and manufacturing accuracy.

図17(a)、17(b)、17(c)に示すように、単位素子2bを交互に90度回転せず、誤って積層した時には、間隔リブ凸部29の凸部は隣接する第二の遮蔽リブ7aaと干渉し、隣接する単位素子2b同士が嵌合できず、熱交換器1bの側面から確認すると単位素子2b同士に隙間があり、容易に単位素子2bの積み間違いを確認することができる構成となっている。   As shown in FIGS. 17 (a), 17 (b), and 17 (c), when the unit elements 2b are not rotated alternately by 90 degrees and are stacked by mistake, the protrusions of the spacing rib protrusions 29 are adjacent to each other. Interfering with the second shielding rib 7aa, the adjacent unit elements 2b cannot be fitted to each other, and when confirmed from the side surface of the heat exchanger 1b, there is a gap between the unit elements 2b, and the unit element 2b is easily confirmed to be stacked incorrectly. It has a configuration that can.

なお間隔リブ凸部29および間隔リブ凹部31は単位素子2bの第一の間隔リブ6aおよび第二の間隔リブ6aaに設けたが、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   The spacing rib convex portion 29 and the spacing rib concave portion 31 are provided in the first spacing rib 6a and the second spacing rib 6aa of the unit element 2b. However, when the unit elements are correctly stacked, the concave portion and the convex portion of the adjacent unit elements are provided. As long as they are fitted and mistakenly stacked, a part of the unit element adjacent to the convex part interferes, and the same effect can be obtained even if a heat exchanger having another configuration is used.

図18(a)、18(b)、18(c)に示すように、貫通穴一部凹部32と貫通穴一部凸部30は単位素子2bを交互に90度回転しながら正しく積層した時には、隣接する貫通穴一部凹部32の凹部と貫通穴一部凸部30の凸部が嵌合するよう形成される。熱交換器1bは方形の単位素子2bの対角する2箇所に設けた貫通穴一部凹部32と貫通穴一部凸部30の嵌合により、単位素子2b同士が互いに固定化され、且つ単位素子2bを積層する際に発生する位置ずれを防止する。熱交換器1bの四隅における気流の遮蔽は、図18(c)に示すように隣接する第一の遮蔽リブ7aおよび第二の遮蔽リブ7aa同士が重なり合うことにより行われ、貫通穴一部凹部32の凹部と貫通穴一部凸部30の凸部の嵌合も気流の遮蔽を行う。この明細書では、金型の製造精度と樹脂成形の精度を考慮して、第一の遮蔽リブ7aおよび第二の遮蔽リブ7aaは必ず重なり合うようにし、貫通穴一部凹部32と貫通穴一部凸部30の嵌合は、気流が漏れない程度に高さ方向に0.1mmの積層逃がし部20fを設けた。なお0.1mmの高さ方向の積層逃がし部20fを設けたが、単位素子2bを正しく積層した時には、熱交換器1bの四隅における気流の遮蔽と単位素子2b同士の嵌合ができれば良く、熱交換器の設計や製造精度により適宜決定する。   As shown in FIGS. 18 (a), 18 (b) and 18 (c), when the through-hole partial recesses 32 and the through-hole partial protrusions 30 are correctly stacked while alternately rotating the unit elements 2b by 90 degrees. The concave portions of the adjacent through hole partial concave portions 32 and the convex portions of the through hole partial convex portions 30 are formed to be fitted. In the heat exchanger 1b, the unit elements 2b are fixed to each other by fitting the through-hole partial concave portions 32 and the through-hole partial convex portions 30 provided at two diagonal positions of the rectangular unit element 2b. Misalignment that occurs when the elements 2b are stacked is prevented. Airflow shielding at the four corners of the heat exchanger 1b is performed by overlapping the adjacent first and second shielding ribs 7a and 7aa as shown in FIG. The fitting of the concave portion and the convex portion of the through-hole partial convex portion 30 also shields the airflow. In this specification, in consideration of mold manufacturing accuracy and resin molding accuracy, the first shielding rib 7a and the second shielding rib 7aa are always overlapped, and the through-hole partial recess 32 and the through-hole partial The fitting of the convex part 30 provided the laminated relief part 20f of 0.1 mm in the height direction so that the airflow did not leak. Although the stacking relief part 20f in the height direction of 0.1 mm is provided, when the unit elements 2b are stacked correctly, it is only necessary to shield the air flow at the four corners of the heat exchanger 1b and fit the unit elements 2b to each other. It is determined appropriately according to the design and manufacturing accuracy of the exchanger.

図19(a)、19(b)、19(c)に示すように、単位素子2bを交互に90度回転せず、誤って積層した時には、貫通穴一部凸部30の凸部は隣接する第二の遮蔽リブ7aaと干渉し、隣接する単位素子2b同士が嵌合できず、熱交換器1bの側面から確認すると単位素子2b同士に隙間があり、容易に単位素子2bの積み間違いを確認することができる構成となっている。   As shown in FIGS. 19 (a), 19 (b), and 19 (c), when the unit elements 2b are not alternately rotated by 90 degrees and are stacked incorrectly, the protrusions of the through-hole partial protrusions 30 are adjacent to each other. The adjacent unit elements 2b cannot be fitted to each other, and there is a gap between the unit elements 2b when confirmed from the side surface of the heat exchanger 1b. The configuration can be confirmed.

なお貫通穴一部凹部32および貫通穴一部凸部30は貫通穴9の4箇所の穴の一部として、方形の単位素子2bの対角する2箇所に設けた。例えば、貫通穴9の4箇所に貫通穴一部凹部32の凹部と貫通穴一部凸部30の凸部を設けた場合、誤って単位素子2aを積層した時にも隣接する単位素子2aの貫通穴一部凹部32の凹部と貫通穴一部凸部30の凸部が嵌合し、単位素子2aの積み間違いが分からないため、貫通穴一部凹部32および貫通穴一部凸部30は貫通穴9の4箇所の穴の一部に備えた。この明細書では貫通穴9の4箇所の穴の一部として、方形の単位素子2bの対角する2箇所に設けが、貫通穴9の穴の一部とは、単位素子を正しく積層した時には隣接する単位素子の凹部と凸部が嵌合し、誤って積層した時には凸部と隣接する単位素子の一部が干渉する構造であれば、その他の構成の熱交換器を用いても同様の作用効果を得ることができる。   In addition, the through-hole partial recessed part 32 and the through-hole partial convex part 30 were provided in two places diagonally of the square unit element 2b as a part of four holes of the through-hole 9. FIG. For example, when the concave portion of the through-hole partial concave portion 32 and the convex portion of the through-hole partial convex portion 30 are provided at four locations of the through-hole 9, even when the unit elements 2a are mistakenly stacked, the adjacent unit element 2a penetrates. Since the concave portion of the hole partial concave portion 32 and the convex portion of the through hole partial convex portion 30 are fitted and the unit element 2a is not stacked correctly, the through hole partial concave portion 32 and the through hole partial convex portion 30 pass through. It prepared in a part of four holes of the hole 9. FIG. In this specification, as part of the four holes of the through-hole 9, the rectangular unit element 2 b is provided at two opposite corners. The part of the hole of the through-hole 9 means that the unit elements are correctly stacked. As long as the concave and convex portions of the adjacent unit elements are fitted together and a part of the unit elements adjacent to the convex portion interferes when they are mistakenly stacked, the same applies even if a heat exchanger of other configuration is used. An effect can be obtained.

熱交換器1bは単位素子2bを積層した時に隣接する単位素子2bが干渉しないように逃がす手段を備え、逃がす手段として、第一の遮蔽リブ7aに連結し、通風路5の外側に遮蔽リブ注入口14bの段落としを設けた構成である。   The heat exchanger 1b is provided with a means for allowing the adjacent unit elements 2b to interfere with each other when the unit elements 2b are stacked, and is connected to the first shielding rib 7a as a means for escape, and the shielding rib is provided outside the ventilation path 5. It is the structure which provided as the paragraph of the entrance 14b.

図14に示すように、遮蔽リブ注入口14bは通風路5の外側に段落としを設けたことにより、溶融樹脂が金型から注入される遮蔽リブ注入口14bにおいてバリが万一発生しても、単位素子2bを積層した際に隣接する単位素2b同士は段落しによってバリを逃がすことにより干渉せず、更に前記バリは通風路5の外側に位置するため、隣接する単位素子2bとの空間を大きくでき、バリを逃がすことにより更に干渉せず、隙間無く単位素子2bを積層することができる。   As shown in FIG. 14, the shielding rib injection port 14b is provided with a paragraph outside the ventilation path 5, so that even if a burr occurs in the shielding rib injection port 14b through which molten resin is injected from the mold. When the unit elements 2b are stacked, the adjacent unit elements 2b do not interfere with each other by escaping burrs by breaking, and the burrs are located outside the ventilation path 5, so that the space between the adjacent unit elements 2b The unit element 2b can be stacked without a gap without causing further interference by releasing the burr.

なお、遮蔽リブ注入口14bの段落しは第一の遮蔽リブ7aに連結するように設けたが、溶融樹脂を注入する注入口は、第一の遮蔽リブ7aの少なくとも何れかに連結し、通風路5の外側に設け、バリを逃がすように段落しにする構成であれば良く、その他の構成を用いても同様の作用効果を得ることができる。   Although the shielding rib inlet 14b is connected to the first shielding rib 7a, the inlet for injecting the molten resin is connected to at least one of the first shielding ribs 7a for ventilation. Any structure may be used as long as it is provided on the outside of the path 5 so that the burrs are escaped, and similar effects can be obtained by using other structures.

上記構成により、熱交換器1bは、単位素子2bを積層した際に積み間違いが分かる手段として、第一の間隔リブ6a、第二の間隔リブ6aaに間隔リブ凸部29と間隔リブ凹部31を備えたことにより、単位素子2bを正しく積層した時には隣接する単位素子2bの間隔リブ凸部29の凸部と間隔リブ凹部31の凹部が嵌合し、誤って積層した時には間隔リブ凸部29の凸部と隣接する単位素子2bの一部(第二の遮蔽リブ7aa)が干渉するため、単位素子2bの積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子2bの積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また間隔リブ凸部29の凸部と間隔リブ凹部31の凹部は単位素子2bを積層した際に凹部と凸部が嵌合することにより、単位素子2b同士が互いに固定するため、単位素子2bのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子2bを積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   With the above configuration, the heat exchanger 1b includes the first ribs 6a and the second ribs 6aa with the rib rib protrusions 29 and the rib rib recesses 31 as means for understanding the stacking error when the unit elements 2b are stacked. As a result, when the unit elements 2b are correctly stacked, the protrusions of the interval rib protrusions 29 of the adjacent unit elements 2b and the recesses of the interval rib recesses 31 are fitted. Since a part (second shielding rib 7aa) of the unit element 2b adjacent to the convex part interferes, it is possible to easily check the stacking error of the unit elements 2b, and to correct the stacking error, thereby producing a defective production process. Can be reduced, and mass productivity can be improved. In addition, it is possible to prevent the sealing performance from being lowered due to erroneous stacking of the unit elements 2b, and to prevent airflow leakage. Further, since the convex portions of the spacing rib convex portion 29 and the concave portion of the spacing rib concave portion 31 are fixed to each other by fitting the concave portion and the convex portion when the unit elements 2b are stacked, the unit elements 2b are fixed to each other. Decrease in sealing performance due to deviation can be prevented, leakage of airflow can be prevented, and the fitting structure can prevent mass misalignment that occurs when the unit elements 2b are stacked. Can be improved.

また熱交換器1bは、単位素子2bに貫通穴9を備え、この貫通穴9の一部の周囲として、方形の単位素子2bの対角する2箇所に貫通穴一部凹部32および貫通穴一部凸部30を備えたことにより、単位素子2bを正しく積層した時には隣接する単位素子2bの貫通穴一部凹部32と貫通穴一部凸部30が嵌合し、誤って積層した時には貫通穴一部凸部30と隣接する単位素子2bの一部(第二の遮蔽リブ7aa)が干渉するため、単位素子2bの積み間違いを容易に確認することができ、積み間違いを修正することによって生産工程の不良を低減することができ、量産性を向上することができる。また単位素子2bの積み間違いに起因する密封性の低下を防止することができ、気流の漏れを防止することができる。また単位素子2bを積層した際に貫通穴一部凹部32と貫通穴一部凸部30が嵌合することにより、単位素子2b同士が互いに固定するため、単位素子2bのずれに起因する密封性の低下を防止することができ、気流の漏れを防止することができ、また前記嵌合構造が単位素子2bを積層する際に発生する位置ずれを防止することにより、量産性を向上することができる。   Further, the heat exchanger 1b includes a through hole 9 in the unit element 2b, and a part of the through hole partial recess 32 and the through hole are provided at two positions opposite to the rectangular unit element 2b as a periphery of a part of the through hole 9. When the unit elements 2b are correctly stacked, the through-hole partial recesses 32 and the through-hole partial protrusions 30 of the adjacent unit elements 2b are fitted together, and when the unit elements 2b are stacked incorrectly, the through-holes are provided. Since a part of the convex part 30 and a part of the adjacent unit element 2b (second shielding rib 7aa) interfere with each other, it is possible to easily check the stacking error of the unit element 2b and to produce by correcting the stacking error. Process defects can be reduced, and mass productivity can be improved. In addition, it is possible to prevent the sealing performance from being lowered due to erroneous stacking of the unit elements 2b, and to prevent airflow leakage. Further, when the unit elements 2b are stacked, the through-hole partial concave portions 32 and the through-hole partial convex portions 30 are fitted to each other so that the unit elements 2b are fixed to each other. Can be prevented, the airflow can be prevented from leaking, and the fitting structure can improve the mass productivity by preventing the positional deviation that occurs when the unit elements 2b are stacked. it can.

また遮蔽リブ注入口14bの段落としは、第一の遮蔽リブ7aに連結し、通風路5の外側に設けたことにより、溶融樹脂が射出成形金型24から注入される単位素子2bの注入口においてバリが万一発生しても、単位素子2bを積層した際に隣接する単位素子2b同士は段落しによってバリを逃がすことにより干渉せず、更に前記バリは通風路5の外側に位置するため、隣接する単位素子2bとの空間を大きくでき、バリを逃がすことにより更に干渉せず、隙間無く単位素子2bを積層することができ、気流の漏れを防止することができる。   Further, as the paragraph of the shielding rib injection port 14b, the injection port of the unit element 2b into which the molten resin is injected from the injection mold 24 by being connected to the first shielding rib 7a and provided outside the ventilation path 5 is provided. Even if burrs are generated in the case, the unit elements 2b adjacent to each other when the unit elements 2b are stacked do not interfere with each other by escaping the burrs, and further, the burrs are located outside the ventilation path 5. The space between the adjacent unit elements 2b can be increased, and the unit elements 2b can be stacked without any gap without further interference by escaping burrs, thereby preventing airflow leakage.

本発明は、家庭用の熱交換型換気扇やビルなどの全熱交換型換気装置に使用する積層構造の熱交換器に関するものである。   The present invention relates to a heat exchanger having a laminated structure used for a total heat exchange type ventilation device such as a heat exchange type ventilation fan or a building for home use.

本発明の実施の形態1による熱交換器の概略斜視図1 is a schematic perspective view of a heat exchanger according to Embodiment 1 of the present invention. (a)同X方向から見た単位素子の概略斜視図、(b)同Y方向から見た単位素子の概略斜視図(A) The schematic perspective view of the unit element seen from the X direction, (b) The schematic perspective view of the unit element seen from the Y direction 同熱交換器の概略分解斜視図Schematic exploded perspective view of the heat exchanger (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同A−A断面の熱交換器の概略斜視図、(c)同A−A断面の熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element correctly, (b) The schematic perspective view of the heat exchanger of the AA cross section, (c) The schematic expansion of the heat exchanger of the AA cross section Perspective view (a)同単位素子を誤って積層した熱交換器の概略斜視図、(b)同熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element accidentally, (b) The schematic enlarged perspective view of the heat exchanger (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同B−B断面の熱交換器の概略斜視図、(c)同B−B断面の熱交換器の概略拡大斜視図(A) Schematic perspective view of a heat exchanger in which the same unit elements are correctly stacked, (b) Schematic perspective view of a heat exchanger in the BB cross section, (c) Schematic enlargement of the heat exchanger in the BB cross section Perspective view (a)同単位素子を誤って積層した熱交換器の概略斜視図、(b)同C−C断面の熱交換器の概略斜視図、(c)同C−C断面の熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element accidentally, (b) The schematic perspective view of the heat exchanger of the CC section, (c) The outline of the heat exchanger of the CC section Enlarged perspective view 同伝熱板の概略斜視図Schematic perspective view of the heat transfer plate (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同B−B断面の熱交換器の概略斜視図、(c)同B−B断面の熱交換器の概略拡大斜視図(A) Schematic perspective view of a heat exchanger in which the same unit elements are correctly stacked, (b) Schematic perspective view of a heat exchanger in the BB cross section, (c) Schematic enlargement of the heat exchanger in the BB cross section Perspective view (a)同単位素子を誤って積層した熱交換器の概略斜視図、(b)同C−C断面の熱交換器の概略斜視図、(c)同C−C断面の熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element accidentally, (b) The schematic perspective view of the heat exchanger of the CC section, (c) The outline of the heat exchanger of the CC section Enlarged perspective view 同熱交換器の概略量産工程図Schematic mass production process diagram of the heat exchanger 同射出成形金型の概略断面図Schematic cross section of the same injection mold (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同B−B断面の熱交換器の概略斜視図、(c)同B−B断面の熱交換器の概略拡大斜視図(A) Schematic perspective view of a heat exchanger in which the same unit elements are correctly stacked, (b) Schematic perspective view of a heat exchanger in the BB cross section, (c) Schematic enlargement of the heat exchanger in the BB cross section Perspective view 本発明の実施の形態2による熱交換器の概略斜視図Schematic perspective view of a heat exchanger according to Embodiment 2 of the present invention (a)同X方向から見た単位素子の概略斜視図、(b)同Y方向から見た単位素子の概略斜視図(A) The schematic perspective view of the unit element seen from the X direction, (b) The schematic perspective view of the unit element seen from the Y direction (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同D−D断面の熱交換器の概略斜視図、(c)同D−D断面の熱交換器の概略拡大斜視図(A) Schematic perspective view of a heat exchanger in which the same unit elements are correctly stacked, (b) Schematic perspective view of a heat exchanger with the DD cross section, (c) Schematic enlargement of the heat exchanger with the DD cross section Perspective view (a)同単位素子を誤って積層した熱交換器の概略斜視図、(b)同E−E断面の熱交換器の概略斜視図、(c)同E−E断面の熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element accidentally, (b) The schematic perspective view of the heat exchanger of the EE cross section, (c) The outline of the heat exchanger of the EE cross section Enlarged perspective view (a)同単位素子を正しく積層した熱交換器の概略斜視図、(b)同F−F断面の熱交換器の概略斜視図、(c)同F−F断面の熱交換器の概略拡大斜視図(A) Schematic perspective view of a heat exchanger in which the same unit elements are correctly stacked, (b) Schematic perspective view of a heat exchanger with the same FF cross section, (c) Schematic enlargement of the heat exchanger with the same FF cross section Perspective view (a)同単位素子を誤って積層した熱交換器の概略斜視図、(b)同G−G断面の熱交換器の概略斜視図、(c)同G−G断面の熱交換器の概略拡大斜視図(A) The schematic perspective view of the heat exchanger which laminated | stacked the same unit element accidentally, (b) The schematic perspective view of the heat exchanger of the GG cross section, (c) The outline of the heat exchanger of the GG cross section. Enlarged perspective view (a)従来の熱交換器109のスペーサー101をX方向から見た概略斜視図、(b)従来の熱交換器109のスペーサー101をY方向から見た概略斜視図(A) The schematic perspective view which looked at the spacer 101 of the conventional heat exchanger 109 from the X direction, (b) The schematic perspective view which looked at the spacer 101 of the conventional heat exchanger 109 from the Y direction 従来の熱交換器109を示す概略斜視図Schematic perspective view showing a conventional heat exchanger 109

符号の説明Explanation of symbols

1a 熱交換器
1b 熱交換器
2a 単位素子
2b 単位素子
3 支持棒
4 伝熱板
5 通風路
6a 第一の間隔リブ
6aa 第二の間隔リブ
7a 第一の遮蔽リブ
7aa 第二の遮蔽リブ
8 遮蔽リブ凹部
9 貫通穴
10 貫通穴凸部
11 積層確認凸部
12 位置決め凸部
13a 位置決め貫通穴
13aa 位置決め貫通穴
14a 遮蔽リブ注入口
14b 遮蔽リブ注入口
15 間隔リブ注入口
16 遮蔽リブ凸部
17 貫通穴凹部
18 積層確認凹部
19 位置決め平面部
20a 積層逃がし部
20b 積層逃がし部
20c 積層逃がし部
20d 積層逃がし部
20e 積層逃がし部
20f 積層逃がし部
21 位置決め穴
22 切断工程
23 成形工程
24 射出成形金型
25 ヒータ
26 スプル・ランナー
27 積層工程
28 結束工程
29 間隔リブ凸部
30 貫通穴一部凸部
31 間隔リブ凹部
32 貫通穴一部凹部
DESCRIPTION OF SYMBOLS 1a Heat exchanger 1b Heat exchanger 2a Unit element 2b Unit element 3 Support rod 4 Heat-transfer plate 5 Ventilation path 6a 1st space | interval rib 6aa 2nd space | interval rib 7a 1st shielding rib 7aa 2nd shielding rib 8 Shielding Rib concave portion 9 Through hole 10 Through hole convex portion 11 Stacking confirmation convex portion 12 Positioning convex portion 13a Positioning through hole 13aa Positioning through hole 14a Shielding rib injection port 14b Shielding rib injection port 15 Interval rib injection port 16 Shielding rib convex portion 17 Through hole Recessed portion 18 Lamination confirmation recessed portion 19 Positioning plane portion 20a Laminated relief portion 20b Laminated relief portion 20c Laminated relief portion 20d Laminated relief portion 20e Laminated relief portion 20f Laminated relief portion 21 Positioning hole 22 Cutting step 23 Molding step 24 Injection mold 25 Heater 26 Sprue Runner 27 Lamination process 28 Bundling process 29 Spacing rib protrusion 0 through hole part protrusion 31 spacing rib recess 32 through hole portion recess

Claims (11)

伝熱板と前記伝熱板の間隔を保持するための間隔リブと気流の漏れを遮蔽するための遮蔽リブとを樹脂にて一体成形して単位素子を形成し、この単位素子を複数積層することにより前記伝熱板間に通風路が形成され、一次気流と二次気流を前記通風路に流通することにより、前記伝熱板を介して熱交換するようにした熱交換器において、前記単位素子を積層した時に積み間違いが分かる手段を備え、
単位素子に貫通穴と二種類の凹部と凸部を備え、第一の凹部と第一の凸部は前記貫通穴の周囲に設け、前記単位素子を積層した時に前記第一の凹部と前記第一の凸部が嵌合し、第二の凹部と第二の凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記第二の凹部と前記第二の凸部が嵌合し、誤って積層した時には前記第二の凸部と隣接する前記単位素子の一部が干渉することを特徴とする熱交換器。
A unit element is formed by integrally molding a spacing rib for maintaining a gap between the heat transfer plate and the heat transfer plate and a shielding rib for shielding airflow leakage to form a unit element, and a plurality of the unit elements are stacked. In the heat exchanger in which a ventilation path is formed between the heat transfer plates, and heat exchange is performed via the heat transfer plate by circulating a primary airflow and a secondary airflow to the ventilation path, the unit It has a means to understand stacking errors when stacking elements,
The unit element includes a through hole, two types of recesses and projections, the first recess and the first projection are provided around the through hole, and the first recess and the first when the unit elements are stacked. One convex part is fitted, and the second concave part and the second convex part are fitted with the second concave part and the second convex part of the adjacent unit element when the unit elements are correctly stacked. incorrect heat exchanger you, wherein a part of the unit element adjacent to the second convex portion is interference when stacked.
間隔リブおよび遮蔽リブが何れかで連結していることを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the spacing rib and the shielding rib are connected to each other. 単位素子は二種類の間隔リブおよび遮蔽リブを備え、第一の間隔リブおよび第一の遮蔽リブと第二の間隔リブおよび第二の遮蔽リブは伝熱板を間に挟んだことを特徴とする請求項2記載の熱交換器。 The unit element has two types of spacing ribs and shielding ribs, and the first spacing ribs and the first shielding ribs and the second spacing ribs and the second shielding ribs sandwich the heat transfer plate between them. The heat exchanger according to claim 2. 積み間違いが分かる手段として、単位素子に凹部と凸部を備え、前記単位素子を正しく積層した時には隣接する前記単位素子の前記凹部と前記凸部が嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉することを特徴とする請求項3記載の熱交換器。 As a means for understanding the stacking error, the unit element is provided with a concave portion and a convex portion. The heat exchanger according to claim 3, wherein a part of the unit elements adjacent to each other interferes. 遮蔽リブに凹部と凸部を備えたことを特徴とする請求項4記載の熱交換器。 The heat exchanger according to claim 4, wherein the shielding rib includes a concave portion and a convex portion. 間隔リブに凹部と凸部を備えたことを特徴とする請求項4記載の熱交換器。 The heat exchanger according to claim 4, wherein the spacing rib includes a concave portion and a convex portion. 貫通穴に支持棒を通し、単位素子同士を結束したことを特徴とする請求項1〜6のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6 , wherein unit elements are bundled by passing a support rod through the through hole. 単位素子は穴と貫通穴と凸部を備え、前記穴は伝熱板に設け、この穴の周囲に前記貫通穴を設け、前記凸部は前記単位素子を正しく積層した時には隣接する前記単位素子の前記貫通穴と嵌合し、誤って積層した時には前記凸部と隣接する前記単位素子の一部が干渉することを特徴とする請求項記載の熱交換器。 The unit element includes a hole, a through hole, and a convex portion, the hole is provided in a heat transfer plate, the through hole is provided around the hole, and the convex portion is adjacent to the unit element when the unit elements are correctly stacked. 8. The heat exchanger according to claim 7, wherein a part of the unit element adjacent to the convex portion interferes when the through hole is fitted and mistakenly stacked. 間隔リブまたは遮蔽リブの少なくとも何れか、または前記間隔リブまたは前記遮蔽リブの少なくとも何れかに連結する位置に貫通穴を設けたことを特徴とする請求項記載の熱交換器。 The heat exchanger according to claim 8 , wherein a through hole is provided at a position connected to at least one of the spacing rib and the shielding rib, or at least one of the spacing rib and the shielding rib. 方形の単位素子を伝熱面に対して平行に90度回転しながら積層したことを特徴とする請求項記載の熱交換器。 The heat exchanger according to claim 9, wherein the rectangular unit elements are stacked while being rotated by 90 degrees parallel to the heat transfer surface. 方形の単位素子において、貫通穴を四隅に設けたことを特徴とする請求項1記載の熱交換器。 In the unit element of the square, the heat exchanger according to claim 1 0, wherein the provision of the through holes at the four corners.
JP2006078431A 2006-03-22 2006-03-22 Heat exchanger Expired - Fee Related JP4770534B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006078431A JP4770534B2 (en) 2006-03-22 2006-03-22 Heat exchanger
PCT/JP2007/055365 WO2007119394A1 (en) 2006-03-22 2007-03-16 Heat exchanger and its manufacturing method
US12/281,396 US8002023B2 (en) 2006-03-22 2007-03-16 Heat exchanger and its manufacturing method
CN2007800100775A CN101405559B (en) 2006-03-22 2007-03-16 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078431A JP4770534B2 (en) 2006-03-22 2006-03-22 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2007255754A JP2007255754A (en) 2007-10-04
JP4770534B2 true JP4770534B2 (en) 2011-09-14

Family

ID=38630174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078431A Expired - Fee Related JP4770534B2 (en) 2006-03-22 2006-03-22 Heat exchanger

Country Status (2)

Country Link
JP (1) JP4770534B2 (en)
CN (1) CN101405559B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011268661B2 (en) 2010-06-24 2015-11-26 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
WO2013157040A1 (en) 2012-04-18 2013-10-24 三菱電機株式会社 Heat-exchange element and air conditioner
WO2013157045A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Heat exchange element
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
CN103342560B (en) * 2013-07-11 2015-02-11 深圳和泰源材料科技有限公司 Heat exchanging component made of ceramic materials and preparation method thereof
CN103512416B (en) 2013-10-14 2015-12-30 洛阳瑞昌石油化工设备有限公司 The plate type heat exchanger of Efficient non-metallic corrosion resistant heat-exchanger rig and this heat-exchanger rig of tool
CN104911878B (en) * 2014-03-14 2018-12-25 青岛海尔滚筒洗衣机有限公司 A kind of superposing type heat exchanger
CA2958480C (en) 2014-08-19 2022-10-25 Nortek Air Solutions Canada, Inc. Liquid to air membrane energy exchangers
CN104596329B (en) * 2015-01-20 2017-05-10 江苏和平动力机械有限公司 Light-weight cooling chip component
EP3985322A3 (en) 2015-05-15 2022-08-31 Nortek Air Solutions Canada, Inc. Air conditioning system with a liquid to air membrane energy exchanger
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
CN108027221B (en) 2015-06-26 2021-03-09 北狄空气应对加拿大公司 Three-fluid liquid-gas film energy exchanger
CN109073265B (en) 2016-03-08 2021-09-28 北狄空气应对加拿大公司 System and method for providing cooling to a thermal load
JP6504367B2 (en) * 2016-03-28 2019-04-24 パナソニックIpマネジメント株式会社 Heat exchanger
WO2018191806A1 (en) 2017-04-18 2018-10-25 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
US11306979B2 (en) * 2018-12-05 2022-04-19 Hamilton Sundstrand Corporation Heat exchanger riblet and turbulator features for improved manufacturability and performance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920755B2 (en) * 1981-12-22 1984-05-15 スタンダ−ド・オイル・カンパニ− Electrochemical reduction method of terephthalic acid
JPH0842988A (en) * 1994-05-24 1996-02-16 Daikin Ind Ltd Heat exchanging element
JPH08110076A (en) * 1994-10-11 1996-04-30 Matsushita Seiko Co Ltd Heat exchanging element
JPH09184693A (en) * 1995-12-28 1997-07-15 Ebara Corp Heat exchanging element
JP3023546B2 (en) * 1996-12-04 2000-03-21 ゴールド工業株式会社 Heat exchanger elements
JPH10246590A (en) * 1997-03-04 1998-09-14 Toshiba Corp Heat-exchange element

Also Published As

Publication number Publication date
CN101405559A (en) 2009-04-08
CN101405559B (en) 2012-06-27
JP2007255754A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4770534B2 (en) Heat exchanger
US8002023B2 (en) Heat exchanger and its manufacturing method
JP2007285691A (en) Heat exchanger
JP4816517B2 (en) Heat exchange element
JP6521912B2 (en) Fuel cell single cell and method of manufacturing the same
JP2008070046A (en) Heat exchange element
JP5040127B2 (en) Fuel cell and fuel cell stack
JP6206438B2 (en) Laminated rotor and manufacturing method thereof
JP4765706B2 (en) Manufacturing method of heat exchanger
EP3053213B1 (en) Fuel cell sub-assembly and method of making it
JP6536693B2 (en) Fuel cell stack seal structure and method of manufacturing the same
JP2015055459A (en) Tank structure of header plate-less heat exchanger
JP5773232B2 (en) Fuel cell
JP6682637B2 (en) Method for manufacturing gasket integrated with separator for fuel cell
KR20190006104A (en) Manufacturing method of counter-flow type heat exchanger
US20080264852A1 (en) Filtration Cassettes
JP6249611B2 (en) Laminated structure
JP2009252627A (en) Separator with gasket and method for manufacturing the same, stack member gasket integral type separator and method for manufacturing the same
JP2017062094A (en) Heat exchange element
JP2007035323A (en) Manufacturing method of fuel cell separator
JP2007101053A (en) Heat exchanging element
JP2008141904A (en) Manufacturing method for stator core
CN210570173U (en) Heat recovery device
KR101144108B1 (en) Vibration welding method for manufacturing manifold for fuel cell
WO2023243313A1 (en) Stacked structure, and heat-exchange-type ventilation device and air purification device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4770534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees