JP4769783B2 - Method for producing supported fine particles - Google Patents

Method for producing supported fine particles Download PDF

Info

Publication number
JP4769783B2
JP4769783B2 JP2007281355A JP2007281355A JP4769783B2 JP 4769783 B2 JP4769783 B2 JP 4769783B2 JP 2007281355 A JP2007281355 A JP 2007281355A JP 2007281355 A JP2007281355 A JP 2007281355A JP 4769783 B2 JP4769783 B2 JP 4769783B2
Authority
JP
Japan
Prior art keywords
fine particles
supported
particles
pores
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007281355A
Other languages
Japanese (ja)
Other versions
JP2008098177A (en
Inventor
孝之 阿部
祐二 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youtec Co Ltd
Original Assignee
Youtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co Ltd filed Critical Youtec Co Ltd
Priority to JP2007281355A priority Critical patent/JP4769783B2/en
Publication of JP2008098177A publication Critical patent/JP2008098177A/en
Application granted granted Critical
Publication of JP4769783B2 publication Critical patent/JP4769783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、担持微粒子及びその製造方法に係わり、特に、表面に細孔を有する微粒子に超微粒子又は薄膜を担持する担持微粒子及びその製造方法に関する。   The present invention relates to a supported fine particle and a method for producing the same, and more particularly to a supported fine particle for carrying ultrafine particles or a thin film on fine particles having pores on the surface and a method for producing the same.

従来の担持微粒子の一例として燃料電池のアノード用電極触媒が挙げられる。このアノード用電極触媒には、Pt−Ru合金の使用が有力となっており、この電極触媒はウエットプロセスによって調製される。   An example of a conventional supported fine particle is an anode electrode catalyst for a fuel cell. As the anode electrode catalyst, use of a Pt—Ru alloy is dominant, and this electrode catalyst is prepared by a wet process.

図9(A),(B)は、従来の燃料電池のアノード用電極触媒の調製方法の一例を説明する断面図である。
まず、図9(A)に示すように、カーボン粒子101を準備する。このカーボン粒子101は、その表面に細孔102を有している。尚、図9ではカーボン粒子の一部の断面を示している。
次いで、前駆体であるPtとRuの錯イオン、例えば[Pt(NH]2+及び[Ru(NH]3+を含む溶液を準備する。次いで、この溶液をカーボン粒子101の細孔内に含浸させる。これにより、カーボン粒子101の細孔内にはPtとRuの錯イオンが担持される。
9A and 9B are cross-sectional views illustrating an example of a conventional method for preparing an anode electrode catalyst for a fuel cell.
First, as shown in FIG. 9A, carbon particles 101 are prepared. The carbon particles 101 have pores 102 on their surfaces. FIG. 9 shows a partial cross section of the carbon particles.
Next, a solution containing complex ions of precursors Pt and Ru, for example, [Pt (NH 3 ) 4 ] 2+ and [Ru (NH 3 ) 6 ] 3+ is prepared. Next, this solution is impregnated into the pores of the carbon particles 101. Thereby, complex ions of Pt and Ru are supported in the pores of the carbon particles 101.

この後、図9(B)に示すように、カーボン粒子101を水素雰囲気下で加熱還元する。これにより、前記錯イオンが還元され、カーボン粒子101の見掛け表面及び細孔内に様々な合金組成を有するPt−Ru合金(予想した組成の合金以外にも例えばPtリッチな合金、Ruリッチな合金等)が多数担持される。また、カーボン粒子の見掛け表面及び細孔内には還元されていないPtイオン(例えば[Pt(NH]2+)も存在する可能性もある。尚、ここでいうカーボン粒子の見掛け表面とは、細孔内表面を含むカーボン粒子の全表面から細孔内表面を除いたカーボン粒子の表面をいう。 Thereafter, as shown in FIG. 9B, the carbon particles 101 are heated and reduced in a hydrogen atmosphere. As a result, the complex ions are reduced, and Pt—Ru alloys having various alloy compositions in the apparent surfaces and pores of the carbon particles 101 (in addition to the alloys having the expected compositions, for example, Pt-rich alloys, Ru-rich alloys). Etc.) are carried in large numbers. In addition, there is a possibility that Pt ions (for example, [Pt (NH 3 ) 4 ] 2+ ) that are not reduced exist in the apparent surface and pores of the carbon particles. Here, the apparent surface of the carbon particles refers to the surface of the carbon particles obtained by removing the inner surface of the pores from the entire surface of the carbon particles including the inner surface of the pores.

上述した燃料電池のアノード用電極触媒には実用化に向けた課題がいくつかあるが、その一つとして調製コストが高いことが挙げられる。この課題を解決するには、Pt使用量を低減させること、電極調製工程を簡略化することが重要である。しかしながら、現在用いられているウエットプロセスでは、改良の糸口が見つからないため、改良指針も立てられない。従って、新たな電極触媒調製法を開発することが望まれている。   The above-mentioned anode electrode catalyst for fuel cells has several problems for practical use, and one of them is high preparation cost. In order to solve this problem, it is important to reduce the amount of Pt used and to simplify the electrode preparation process. However, in the wet process that is currently used, an improvement guideline cannot be established because an improvement clue cannot be found. Therefore, it is desired to develop a new electrode catalyst preparation method.

本発明は上記のような事情を考慮してなされたものであり、その目的は、従来と比べて担持する物質の使用量を少なくすることによりコストを低減させた担持微粒子及びその製造方法を提供することにある。また、本発明の他の目的は、従来と比べて簡略化したプロセスで微粒子に物質を担持することによりコストを低減させた担持微粒子の製造方法を提供することにある。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a supported fine particle whose cost is reduced by reducing the amount of a material to be supported as compared with the conventional method and a method for producing the same. There is to do. Another object of the present invention is to provide a method for producing supported fine particles, in which the cost is reduced by supporting a substance on the fine particles by a process that is simplified as compared with the prior art.

上記課題を解決するため、本発明に係る担持微粒子は、表面に細孔を有する微粒子と、
前記微粒子の見掛け表面に担持された、該微粒子より粒径の小さい超微粒子又は薄膜と、
を具備し、
前記超微粒子又は薄膜は、前記細孔内より前記微粒子の見掛け表面に多く担持されていることを特徴とする。
尚、見掛け表面とは、細孔内表面を含む微粒子の全表面から細孔内表面を除いた微粒子の表面をいう。
In order to solve the above problems, the supported fine particles according to the present invention include fine particles having pores on the surface,
An ultrafine particle or thin film having a particle diameter smaller than that of the fine particles supported on the apparent surface of the fine particles;
Comprising
The ultra fine particles or thin film is supported more on the apparent surface of the fine particles than in the pores.
The apparent surface refers to the surface of the fine particles obtained by removing the inner surface of the fine particles from the entire surface of the fine particles including the inner surface of the fine pores.

上記担持微粒子によれば、微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持する。そして、超微粒子又は薄膜を細孔内より見掛け表面に多く担持する。これにより、従来と比べて担持する物質の使用量を少なくすることができ、それにより担持微粒子のコストを低減させることができる。   According to the supported fine particles, ultrafine particles or thin films having a smaller particle diameter than the fine particles are supported on the apparent surface of the fine particles. Then, more ultrafine particles or thin films are supported on the apparent surface than in the pores. As a result, the amount of the substance to be supported can be reduced as compared with the conventional case, thereby reducing the cost of the supported fine particles.

本発明に係る担持微粒子は、表面に細孔を有する微粒子と、
前記微粒子の見掛け表面に選択的に担持された、該微粒子より粒径の小さい超微粒子又は薄膜と、
を具備し、
前記超微粒子又は薄膜が担持されていない前記細孔を有することを特徴とする。
The supported fine particles according to the present invention include fine particles having pores on the surface,
An ultrafine particle or thin film having a smaller particle diameter than the fine particles selectively supported on the apparent surface of the fine particles;
Comprising
It has the pores on which the ultrafine particles or thin film is not supported.

上記担持微粒子によれば、微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持する。そして、この担持微粒子は超微粒子又は薄膜が担持されていない細孔を有する。これにより、従来と比べて担持する物質の使用量を少なくすることができ、それにより担持微粒子のコストを低減させることができる。   According to the supported fine particles, ultrafine particles or thin films having a smaller particle diameter than the fine particles are supported on the apparent surface of the fine particles. The supported fine particles have pores on which ultrafine particles or thin films are not supported. As a result, the amount of the substance to be supported can be reduced as compared with the conventional case, thereby reducing the cost of the supported fine particles.

また、本発明に係る担持微粒子においては、前記微粒子が電気伝導性を有する物質、例えばカーボンからなることも可能である。また、本発明に係る担持微粒子において、前記超微粒子又は薄膜は、Pt単体、Pt系合金又はPtとの混合物からなることも可能である。
また、本発明に係る担持微粒子において、前記Pt系合金又はPtとの混合物は、Ru、Ir、Pd、Sn、Mo、Os、Rh、Co、Ni、Ag、Ti、V、Cr、Mn、Ge、Fe、Re、W、Zn、Cu、Au及びAsからなる群から選ばれた少なくとも一つとPtとの合金又は混合物であることも可能である。
また、本発明に係る担持微粒子において、前記Ptとの混合物は、Ru、Ir、Pd、Sn、Mo、Os、Rh、Co、Ni、Ag、Ti、V、Cr、Mn、Ge、Fe、Re、W、Zn、Cu、Au及びAsからなる群から選ばれた少なくとも一つの金属の酸化物とPtとの混合物であることも可能である。
In the supported fine particles according to the present invention, the fine particles may be made of a material having electrical conductivity, such as carbon. Further, in the supported fine particles according to the present invention, the ultra fine particles or the thin film may be made of Pt alone, a Pt-based alloy or a mixture with Pt.
Further, in the supported fine particles according to the present invention, the Pt alloy or the mixture with Pt is Ru, Ir, Pd, Sn, Mo, Os, Rh, Co, Ni, Ag, Ti, V, Cr, Mn, Ge. It is also possible to be an alloy or a mixture of Pt and at least one selected from the group consisting of Fe, Re, W, Zn, Cu, Au and As.
In the supported fine particles according to the present invention, the mixture with Pt is Ru, Ir, Pd, Sn, Mo, Os, Rh, Co, Ni, Ag, Ti, V, Cr, Mn, Ge, Fe, Re. It is also possible to be a mixture of Pt with an oxide of at least one metal selected from the group consisting of W, Zn, Cu, Au and As.

また、本発明に係る担持微粒子は、内部の断面形状が多角形を有する真空容器を、前記断面に対してほぼ垂直方向を回転軸として回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜が担持されたことを特徴とする。   In addition, the supported fine particles according to the present invention are agitated or rotated by rotating a vacuum vessel having a polygonal cross-sectional shape about a rotation axis in a direction substantially perpendicular to the cross-section. Sputtering is performed, and ultrafine particles or a thin film having a smaller particle diameter than the fine particles are supported on the apparent surface of the fine particles.

また、本発明に係る担持微粒子は、内部の断面形状が多角形を有する真空容器を、前記断面に対してほぼ垂直方向を回転軸として回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させると共に前記微粒子に振動を加えながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が担持されたことを特徴とする。   In addition, the supported fine particles according to the present invention are agitated or rotated by rotating a vacuum vessel having a polygonal cross-sectional shape about a rotation axis in a direction substantially perpendicular to the cross-section. In addition, by performing sputtering while applying vibration to the fine particles, ultra fine particles or thin films having a smaller particle diameter than the fine particles are supported on the surfaces of the fine particles.

また、本発明に係る担持微粒子は、内部の断面形状が多角形を有する真空容器を直接または間接的に加熱すると共に、前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が担持されたことを特徴とする。   In addition, the supported fine particles according to the present invention directly or indirectly heat a vacuum vessel having an internal cross-sectional shape of a polygon, and rotate the vacuum vessel about a direction substantially perpendicular to the cross-section. Thus, by performing sputtering while stirring or rotating the fine particles in the vacuum vessel, ultra fine particles or thin films having a smaller particle diameter than the fine particles are supported on the surfaces of the fine particles.

また、本発明に係る担持微粒子は、1次電池の電極触媒、2次電池の電極触媒、燃料電池の電極触媒、1次電池の電極材料、2次電池の電極材料、及び燃料電池の電極材料のうち少なくとも一つに用いられることも可能である。
尚、本発明に係る担持微粒子はスパッタリング法により製造することが好ましいが、スパッタリング法に限定されるものではなく、他のドライプロセス法、例えば蒸着法、CVD(chemical vapor deposition)法により製造することも可能である。
The supported fine particles according to the present invention include an electrode catalyst for a primary battery, an electrode catalyst for a secondary battery, an electrode catalyst for a fuel cell, an electrode material for a primary battery, an electrode material for a secondary battery, and an electrode material for a fuel cell. It is also possible to use it for at least one of them.
The supported fine particles according to the present invention are preferably produced by a sputtering method, but are not limited to the sputtering method, and may be produced by other dry process methods such as a vapor deposition method and a CVD (chemical vapor deposition) method. Is also possible.

本発明に係る担持微粒子の製造方法は、重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に、表面に細孔を有する微粒子を収容し、
前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持することを特徴とする。
上記担持微粒子の製造方法によれば、従来と比べて簡略化したプロセスで微粒子に物質を担持することができ、それによりコストを低減することができる。
The method for producing the supported fine particles according to the present invention accommodates fine particles having pores on the surface in a vacuum container having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
Sputtering is performed while stirring or rotating the fine particles in the vacuum vessel by rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis, so that the apparent surface of the fine particles has a particle size smaller than that of the fine particles. It is characterized by carrying small ultrafine particles or thin films.
According to the method for producing the supported fine particles, the substance can be supported on the fine particles by a process that is simplified as compared with the conventional method, thereby reducing the cost.

本発明に係る担持微粒子の製造方法は、内部の断面形状が多角形を有する真空容器内に、表面に細孔を有する微粒子を収容し、
前記微粒子に振動を加えると共に前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持することを特徴とする。
The method for producing the supported fine particles according to the present invention contains fine particles having pores on the surface in a vacuum container having a polygonal cross-sectional shape,
The apparent surface of the fine particles is sputtered while the fine particles in the vacuum vessel are stirred or rotated by applying vibration to the fine particles and rotating the vacuum vessel about a direction substantially perpendicular to the cross section. Further, ultrafine particles or a thin film having a particle diameter smaller than that of the fine particles are supported.

本発明に係る担持微粒子の製造方法は、内部の断面形状が多角形を有する真空容器内に、表面に細孔を有する微粒子を収容し、
前記真空容器を加熱すると共に前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の見掛け表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持することを特徴とする。
The method for producing the supported fine particles according to the present invention contains fine particles having pores on the surface in a vacuum container having a polygonal cross-sectional shape,
The apparent surface of the fine particles by sputtering while heating or vacuuming the fine particles in the vacuum vessel by heating the vacuum vessel and rotating the vacuum vessel about a direction substantially perpendicular to the cross section. Further, ultrafine particles or a thin film having a particle diameter smaller than that of the fine particles are supported.

また、本発明に係る担持微粒子の製造方法において、前記超微粒子又は薄膜は、前記細孔内より前記微粒子の見掛け表面に多く担持されていることが好ましい。
また、本発明に係る担持微粒子の製造方法においては、前記超微粒子又は薄膜が担持されていない前記細孔を有することが好ましい。
In the method for producing supported fine particles according to the present invention, it is preferable that a larger amount of the ultrafine particles or thin film is supported on the apparent surface of the fine particles than in the pores.
Moreover, in the manufacturing method of the carrying | support particle | grains which concern on this invention, it is preferable to have the said pore by which the said ultrafine particle or thin film is not carry | supported.

以上説明したように本発明によれば、従来と比べて担持する物質の使用量を少なくすることによりコストを低減させた担持微粒子及びその製造方法を提供することができる。また、他の本発明によれば、従来と比べて簡略化したプロセスで微粒子に物質を担持することによりコストを低減させた担持微粒子の製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide supported fine particles whose cost is reduced by reducing the amount of a substance to be supported as compared with the prior art and a method for manufacturing the same. In addition, according to another aspect of the present invention, it is possible to provide a method for producing supported fine particles in which the cost is reduced by supporting a substance on the fine particles by a process that is simplified as compared with the prior art.

以下、図面を参照して本発明の実施形態について説明する。
図1(A)〜(C)は、本発明に係る実施の形態による担持微粒子の製造方法を説明する断面図である。
図2は、図1に示す担持微粒子を製造する際に用いる多角バレルスパッタ装置の概略を示す構成図である。
この多角バレルスパッタ装置は、表面に細孔を有する微粒子(粉体)の見掛け表面に、該微粒子より粒径の小さい超微粒子又は薄膜を担持するための装置である。尚、見掛け表面とは、細孔内表面を含む微粒子の全表面から細孔内表面を除いた微粒子の表面をいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIGS. 1A to 1C are cross-sectional views illustrating a method for producing supported fine particles according to an embodiment of the present invention.
FIG. 2 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when the supported fine particles shown in FIG. 1 are manufactured.
This polygonal barrel sputtering apparatus is an apparatus for carrying ultrafine particles or a thin film having a particle diameter smaller than the fine particles on the apparent surface of fine particles (powder) having pores on the surface. The apparent surface refers to the surface of the fine particles obtained by removing the inner surface of the fine particles from the entire surface of the fine particles including the inner surface of the fine pores.

まず、図2に示す多角バレルスパッタ装置について説明する。
多角バレルスパッタ装置は、微粒子3に超微粒子又は薄膜を被覆させる真空容器1を有しており、この真空容器1は直径200mmの円筒部1aとその内部に設置された断面が六角形のバレル(六角型バレル)1bとを備えている。ここで示す断面は、重力方向に対してほぼ平行な断面である。なお、本実施の形態では、六角形のバレル1bを用いているが、これに限定されるものではなく、六角形以外の多角形のバレル(例えば4〜12角形)を用いることも可能である。
First, the polygon barrel sputtering apparatus shown in FIG. 2 will be described.
The polygonal barrel sputtering apparatus has a vacuum vessel 1 for coating fine particles 3 with ultrafine particles or a thin film. The vacuum vessel 1 has a cylindrical portion 1a having a diameter of 200 mm and a hexagonal barrel ( Hexagonal barrel) 1b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon (for example, 4 to 12 squares) can be used. .

真空容器1には回転機構(図示せず)が設けられており、この回転機構により六角型バレル1bを矢印のように回転または反転させたり、或いは振り子のように揺することで該六角型バレル1b内の微粒子3を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により六角型バレルを回転させる際の回転軸は、ほぼ水平方向(重力方向に対して垂直方向)に平行な軸である。また、真空容器1内には円筒の中心軸上に触媒作用を有する物質、またはこの物質を反応性スパッタリングで作り出すことができる物質からなるスパッタリングターゲット2が配置されており、このターゲット2は角度を自由に変えられるように構成されている。これにより、六角型バレル1bを回転または反転させたり、或いは振り子のように揺すりながら被覆処理を行う時、ターゲット2を微粒子3の位置する方向に向けることができ、それによってスパッタ効率を上げることが可能となる。   The vacuum vessel 1 is provided with a rotating mechanism (not shown). By rotating or reversing the hexagonal barrel 1b as indicated by an arrow or shaking like a pendulum by the rotating mechanism, the hexagonal barrel 1b is provided. The coating process is performed while stirring or rotating the fine particles 3 therein. A rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis substantially parallel to the horizontal direction (perpendicular to the gravity direction). In addition, a sputtering target 2 made of a substance having a catalytic action on the central axis of the cylinder or a substance capable of producing this substance by reactive sputtering is disposed in the vacuum vessel 1, and the target 2 has an angle. It is configured to be freely changed. Accordingly, when the coating process is performed while rotating or reversing the hexagonal barrel 1b or shaking like a pendulum, the target 2 can be directed in the direction in which the fine particles 3 are located, thereby increasing the sputtering efficiency. It becomes possible.

ターゲット2を構成する物質は、Pt単体、Pt系合金又はPtとの混合物であることが好ましい。Pt系合金又はPtとの混合物は、例えばRu、Ir、Pd、Sn、Mo、Os、Rh、Co、Ni、Ag、Ti、V、Cr、Mn、Ge、Fe、Re、W、Zn、Cu、Au及びAsからなる金属群から選ばれた少なくとも一つの金属とPtとの合金(2元以上の合金)又は混合物が挙げられる。また、前記金属群から選ばれた複数の金属とPtとの混合物によってターゲット2を構成することも可能である。また、前記金属群から選ばれた少なくとも一つの金属の酸化物とPtとの混合物が挙げられる。また真空容器1内に配置されるターゲット2はPtと他の一種類でもよいが複数種類であってもよい。例えばターゲット2として、Ptと上記した金属群から選ばれた複数の金属それぞれからなる複数のターゲットを並べて配置してもよい。また、Ptターゲットと上記した金属群から選ばれた一つの金属からなるターゲットと、上記した金属群に含まれる金属の酸化物からなるターゲットとを並べて配置してもよい。   The substance constituting the target 2 is preferably Pt alone, a Pt alloy, or a mixture with Pt. Pt-based alloys or mixtures with Pt are, for example, Ru, Ir, Pd, Sn, Mo, Os, Rh, Co, Ni, Ag, Ti, V, Cr, Mn, Ge, Fe, Re, W, Zn, Cu , An alloy (a binary or higher alloy) or a mixture of at least one metal selected from the metal group consisting of Au and As and Pt. It is also possible to configure the target 2 with a mixture of a plurality of metals selected from the metal group and Pt. Moreover, the mixture of the oxide and Pt of the at least 1 metal chosen from the said metal group is mentioned. Further, the target 2 arranged in the vacuum vessel 1 may be Pt or another type, but may be a plurality of types. For example, as the target 2, a plurality of targets each made of Pt and a plurality of metals selected from the above metal group may be arranged side by side. Further, a target made of one metal selected from the Pt target and the above metal group and a target made of an oxide of a metal contained in the above metal group may be arranged side by side.

そして、微粒子3を被覆する物質は、例えばターゲット2を構成する物質である。ターゲット2が複数種類ある場合はこれらの混合物または合金である。またターゲット2が上記した金属群から選ばれた一もしくは複数の金属の混合物または合金から構成されており、かつ反応性スパッタリングが行われる場合、微粒子3を被覆する物質はターゲット2を構成する物質から生成した物質(例えば酸化物)またはこれとターゲット2を構成する物質の混合物である。   And the substance which coat | covers the microparticles | fine-particles 3 is a substance which comprises the target 2, for example. When there are a plurality of types of targets 2, these are mixtures or alloys thereof. In addition, when the target 2 is made of a mixture or alloy of one or more metals selected from the above metal group and reactive sputtering is performed, the substance that coats the fine particles 3 is made from the substance that constitutes the target 2. The generated substance (for example, oxide) or a mixture of the substance and the substance constituting the target 2.

真空容器1には配管4の一端が接続されており、この配管4の他端には第1バルブ12の一方側が接続されている。第1バルブ12の他方側は配管5の一端が接続されており、配管5の他端はターボ分子ポンプ(TMP)10の吸気側に接続されている。ターボ分子ポンプ10の排気側は配管6の一端に接続されており、配管6の他端は第2バルブ13の一方側に接続されている。第2バルブ13の他方側は配管7の一端に接続されており、配管7の他端はポンプ(RP)11に接続されている。また、配管4は配管8の一端に接続されており、配管8の他端は第3バルブ14の一方側に接続されている。第3バルブ14の他方側は配管9の一端に接続されており、配管9の他端は配管7に接続されている。   One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13. The other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11. The pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third valve 14. The other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.

本装置は、真空容器1内の微粒子3を直接加熱するためのヒータ17aと、間接的に加熱するためのヒータ17bを備えている。また、本装置は、真空容器1内の微粒子3に振動を加えるためのバイブレータ18を備えている。また、本装置は、真空容器1の内部圧力を測定する圧力計19を備えている。また、本装置は、真空容器1内に窒素ガスを導入する窒素ガス導入機構15を備えていると共に真空容器1内にアルゴンガスを導入するアルゴンガス導入機構16を備えている。また反応性スパッタリングを行えるように、酸素等を導入できるガス導入機構20も備えている。また、本装置は、ターゲット2と六角型バレル1bとの間に高周波を印加する高周波印加機構(図示せず)を備えている。尚、ターゲット2と六角型バレル1bとの間には直流も印加できるようになっている。   This apparatus includes a heater 17a for directly heating the fine particles 3 in the vacuum vessel 1 and a heater 17b for indirectly heating. In addition, this apparatus includes a vibrator 18 for applying vibration to the fine particles 3 in the vacuum vessel 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. In addition, the apparatus includes a nitrogen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum vessel 1. Moreover, the gas introduction mechanism 20 which can introduce | transduce oxygen etc. is also provided so that reactive sputtering can be performed. In addition, this apparatus includes a high frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1b. A direct current can also be applied between the target 2 and the hexagonal barrel 1b.

次に、上記多角バレルスパッタ装置を用いて、微粒子3の見掛け表面に超微粒子又は薄膜を担持する担持微粒子の製造方法について説明する。   Next, a description will be given of a method for producing supported fine particles in which ultrafine particles or thin films are supported on the apparent surface of the fine particles 3 using the polygon barrel sputtering apparatus.

まず、図1(A)に示す微粒子3の一例としてカーボン粒子を準備する。このカーボン粒子3は、その表面に細孔21を有している。尚、図1(A)ではカーボン粒子の一部の断面を示している。
次いで、図2に示す多角バレルスパッタ装置を用いて図1(A)に示すカーボン粒子3の見掛け表面にPt−Ru合金からなる超微粒子又は薄膜をスパッタリングにより担持させる。尚、見掛け表面とは、細孔内表面を含むカーボン粒子の全表面から細孔内表面を除いたカーボン粒子の表面をいう。
First, carbon particles are prepared as an example of the fine particles 3 shown in FIG. The carbon particles 3 have pores 21 on their surfaces. FIG. 1A shows a partial cross section of the carbon particles.
Next, ultrafine particles or a thin film made of a Pt—Ru alloy is supported on the apparent surface of the carbon particles 3 shown in FIG. 1A by sputtering using a polygonal barrel sputtering apparatus shown in FIG. The apparent surface refers to the surface of the carbon particle obtained by removing the inner surface of the pore from the entire surface of the carbon particle including the inner surface of the pore.

以下、詳細に説明する。
まず、六角型バレル1b内に例えば6グラムのカーボン粒子3を導入する。このカーボン粒子3としては例えば10〜20μmの大きさの導電性カーボン粉体を用いるが、これに限定されるものではなく、他の導電性材料、例えば金属粉末、高分子粉末、酸化物粉末、窒化物粉末又は炭化物粉末を用いることも可能である。本多角バレルスパッタ方法を用いれば、幅広い材料粉体に、触媒作用を有する物質からなる超微粒子又は薄膜を被覆することが可能である。
Details will be described below.
First, for example, 6 grams of carbon particles 3 are introduced into the hexagonal barrel 1b. The carbon particles 3 are, for example, conductive carbon powder having a size of 10 to 20 μm, but are not limited thereto, and other conductive materials such as metal powder, polymer powder, oxide powder, It is also possible to use nitride powder or carbide powder. If this polygonal barrel sputtering method is used, it is possible to coat a wide range of material powders with ultrafine particles or thin films made of a substance having a catalytic action.

次いで、ターボ分子ポンプ10を用いて六角型バレル1b内に高真空状態を作り、ヒータ17で六角型バレルを例えば300℃まで加熱しながら、六角型バレル内を例えば1×10−5Paに減圧する。その後、アルゴンガス導入機構16又は窒素ガス導入機構15によりアルゴン又は窒素などの不活性ガスを六角型バレル1b内に導入する。この際の六角型バレル内の圧力は例えば0.1〜2Pa程度である。場合によっては酸素、窒素、メタンまたは水素との混合ガスを六角型バレル1b内に導入しても良い。そして、回転機構により六角型バレル1bを100 Wで30分間、20rpmで回転させることで、六角型バレル1b内のカーボン粒子3を回転させ、攪拌させる。その際、スパッタリングターゲット2はカーボン粒子3の位置する方向に向けられる。スパッタリングターゲット2にはPt及びRuターゲットを同時に用い、ターゲットカバーを調整して、Pt:Ruのスパッタリング比が52:48となるように設定する。 Next, the turbo molecular pump 10 is used to create a high vacuum state in the hexagonal barrel 1b, and the hexagonal barrel is depressurized to 1 × 10 −5 Pa, for example, while the hexagonal barrel is heated to, for example, 300 ° C. by the heater 17. To do. Thereafter, an inert gas such as argon or nitrogen is introduced into the hexagonal barrel 1b by the argon gas introduction mechanism 16 or the nitrogen gas introduction mechanism 15. The pressure in the hexagonal barrel at this time is, for example, about 0.1 to 2 Pa. In some cases, a mixed gas of oxygen, nitrogen, methane, or hydrogen may be introduced into the hexagonal barrel 1b. And the carbon particle 3 in the hexagonal barrel 1b is rotated and agitated by rotating the hexagonal barrel 1b at 100 W for 30 minutes at 20 rpm by the rotation mechanism. At that time, the sputtering target 2 is directed in the direction in which the carbon particles 3 are located. Pt and Ru targets are simultaneously used for the sputtering target 2 and the target cover is adjusted so that the sputtering ratio of Pt: Ru is 52:48.

その後、高周波印加機構によりターゲット2と六角型バレル1bとの間に高周波を印加することで、図1(B)に示すように、カーボン粒子3の見掛け表面にPt及びRuをスパッタリングする。これにより、図1(C)に示すように、カーボン粒子3の見掛け表面にほぼ均一な合金組成を有するPt−Ru合金からなる超微粒子又は薄膜が担持される。但し、前記超微粒子又は薄膜が細孔内には担持されないか、担持されたとしてもその量は少ない。   Thereafter, a high frequency is applied between the target 2 and the hexagonal barrel 1b by a high frequency application mechanism to sputter Pt and Ru on the apparent surface of the carbon particles 3 as shown in FIG. As a result, as shown in FIG. 1C, ultrafine particles or a thin film made of a Pt—Ru alloy having a substantially uniform alloy composition is supported on the apparent surface of the carbon particles 3. However, even if the ultrafine particles or thin film is not supported in the pores or is supported, the amount is small.

上記実施の形態によれば、六角型バレル自体を回転させることで粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力により定期的に落下させることができる。このため、攪拌効率を飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気力による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉砕を同時かつ効果的に行うことができる。また六角型バレル1b壁面に微粒子が付着しにくくなる。従って、粒径の非常に小さいカーボン粒子に、Pt−Ru合金からなる該カーボン粒子より粒径が更に小さい超微粒子又は薄膜を担持することが可能となる。具体的には、粒径が5nm以上1mm以下のカーボン粒子に、Pt−Ru合金からなる超微粒子又は薄膜を被覆することが可能となる。ここで薄膜及び超微粒子に含まれる不純物は従来方法で調製された触媒と比べて極めて少ないか、またはない。尚、超微粒子は、連続的にカーボン粒子の表面に付着する場合もあるし、単体又は集合体として不連続にカーボン粒子の表面に付着する場合もある。   According to the above embodiment, the powder itself can be rotated and stirred by rotating the hexagonal barrel itself, and further, the powder can be periodically dropped by gravity by making the barrel hexagonal. For this reason, the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling the powder, can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Moreover, it becomes difficult for fine particles to adhere to the wall surface of the hexagonal barrel 1b. Accordingly, it is possible to carry ultrafine particles or a thin film having a particle diameter much smaller than that of the carbon particles made of a Pt—Ru alloy on carbon particles having a very small particle diameter. Specifically, it is possible to coat carbon particles having a particle size of 5 nm or more and 1 mm or less with ultrafine particles or a thin film made of a Pt—Ru alloy. Here, the impurities contained in the thin film and the ultrafine particles are very little or not as compared with the catalyst prepared by the conventional method. In addition, the ultrafine particles may adhere to the surface of the carbon particles continuously, or may adhere to the surface of the carbon particles discontinuously as a single body or an aggregate.

また、本実施の形態では、カーボン粒子3の見掛け表面にPt−Ru合金を一段階でほぼ均一に担持(又は修飾)させることができるので、従来技術に比べて製造工程を簡略化することができる。従って、担持微粒子の製造コストを低減することができる。   Further, in the present embodiment, the Pt—Ru alloy can be supported (or modified) almost uniformly on the apparent surface of the carbon particles 3 in one step, so that the manufacturing process can be simplified as compared with the prior art. it can. Therefore, the manufacturing cost of the supported fine particles can be reduced.

また、従来技術では、カーボン粒子の細孔内に多量のPt及びRuが担持されるのに対し、本実施の形態では、カーボン粒子の細孔内に担持されるPt及びRuの量を少なくすることができる。これにより、従来の燃料電池のアノード用電極触媒と同等の機能を発揮させるのにPt−Ru合金の担持量を非常に少なくすることが可能となる。即ち、Pt−Ru合金の担持量を非常に少なくしても従来と同等の機能を発揮させることができる。従って、従来と比べて担持するPtの使用量を少なくすることができ、それによりコストの低減を実現することができる。燃料電池のアノード用電極触媒に限定されるものではなく、カソード触媒や他の電極触媒にも同様なことが言える。   In the prior art, a large amount of Pt and Ru are supported in the pores of the carbon particles, whereas in this embodiment, the amount of Pt and Ru supported in the pores of the carbon particles is reduced. be able to. As a result, the amount of the Pt—Ru alloy supported can be extremely reduced in order to perform the same function as the anode electrode catalyst of the conventional fuel cell. That is, even if the amount of the Pt—Ru alloy supported is very small, the function equivalent to the conventional one can be exhibited. Therefore, it is possible to reduce the amount of Pt to be carried as compared with the conventional case, thereby realizing cost reduction. The present invention is not limited to anode catalysts for fuel cells, and the same applies to cathode catalysts and other electrode catalysts.

上記の効果を確認するために、多角バレルスパッタ装置を用いてPt−Ru合金を担持したカーボン粒子の電気化学挙動について実験したので、その結果について説明する。   In order to confirm the above effect, an experiment was conducted on the electrochemical behavior of carbon particles carrying a Pt—Ru alloy using a polygonal barrel sputtering apparatus, and the results will be described.

まず、図2に示す多角バレルスパッタ装置を用いて、前述した方法でカーボン粒子にPt−Rt合金を担持した調製試料を準備した。ここで用いたカーボン粒子は、市販のカーボン粉末(三菱化学製の♯3230B)であり、その見掛けの平均粒径は10〜20μmであった。ここで用いたスパッタリング条件は、高周波電源出力が100W、Ar流量が30sccm、カーボン粒子の温度が350℃であった。なお、見掛けの平均粒径とは、顕微鏡で観測した時の集合体(2次粒子)の大きさであり、1次粒子の大きさは10〜30nmである。また、本実施の形態の調製試料と比較するために、市販のPt50原子%(at.%)触媒を市販試料として準備すると共に、スパッタリングによりSiOガラス板上にPt−Ru合金膜を成膜した試料を準備した。 First, using a polygonal barrel sputtering apparatus shown in FIG. 2, a prepared sample in which a Pt—Rt alloy was supported on carbon particles by the method described above was prepared. The carbon particles used here were commercially available carbon powder (# 3230B manufactured by Mitsubishi Chemical Corporation), and the apparent average particle diameter was 10 to 20 μm. The sputtering conditions used here were a high frequency power output of 100 W, an Ar flow rate of 30 sccm, and a carbon particle temperature of 350 ° C. The apparent average particle diameter is the size of the aggregate (secondary particles) when observed with a microscope, and the size of the primary particles is 10 to 30 nm. For comparison with the prepared sample of the present embodiment, a commercially available Pt50 atomic% (at.%) Catalyst is prepared as a commercially available sample, and a Pt—Ru alloy film is formed on the SiO 2 glass plate by sputtering. A prepared sample was prepared.

図3は、SiOガラス板上のPt−Ru合金試料(a)、調製試料(b)及び市販試料(c)それぞれのX線回折(XRD)パターンを測定した結果を示す図である。
この図によれば、調製試料と市販試料の両者とも1本のピークのみ認められているが、調製試料の方が明らかに形状がシャープになっていることがわかる。これは、調製試料の方がより均一な合金組成で担持(修飾)されていることを示している。尚、スパッタリング条件の検討のために調製したSiOガラス板上のPt−Ru合金試料に比べると半値幅がまだ大きくなっているが、スパッタリング条件をさらに調整することにより、調製試料の半値幅を小さくすることは可能である。
FIG. 3 is a diagram showing the results of measuring the X-ray diffraction (XRD) patterns of the Pt—Ru alloy sample (a), the prepared sample (b), and the commercial sample (c) on the SiO 2 glass plate.
According to this figure, only one peak is recognized in both the prepared sample and the commercially available sample, but it can be seen that the shape of the prepared sample is clearly sharper. This indicates that the prepared sample is supported (modified) with a more uniform alloy composition. In addition, although the half width is still larger than the Pt-Ru alloy sample on the SiO 2 glass plate prepared for the examination of the sputtering conditions, the half width of the prepared sample can be reduced by further adjusting the sputtering conditions. It is possible to make it smaller.

図3に示すXRDピーク位置と合金組成は、市販試料が40.21°、調製試料が40.33°であり、両者には違いが認められた。図4は、調製試料及び市販試料それぞれのピーク位置と合金組成について、アーク溶解試料から作成した基準となるピーク位置と合金組成比とを比較した図である。この図により、調製試料及び市販試料それぞれのPt含有量を求めた。   The XRD peak position and alloy composition shown in FIG. 3 were 40.21 ° for the commercial sample and 40.33 ° for the prepared sample, and a difference was observed between the two. FIG. 4 is a diagram comparing the peak position and the alloy composition ratio as a reference created from the arc melting sample with respect to the peak position and the alloy composition of each of the prepared sample and the commercial sample. From this figure, the Pt content of each of the prepared sample and the commercial sample was determined.

アーク溶解試料としては、田中貴金属製のPt(純度99.9%)、Ru(純度99.9%)を用意し、Pt組成が50原子%、70原子%、90原子%になるように調製したPt−Ru合金を使用した。このアーク溶解試料をXRD測定し、この測定結果を基準としてピーク位置と合金組成を比較した。
図4によれば、市販試料は、そのピーク位置が40.21°であることから68.8原子%と求められ、言われている50原子%とは異なっていた。一方、調製試料は、そのピーク位置が40.31°であることから60.3原子%と求められ、前述したスパッタリング比52原子%に近い値となっていた。
As the arc melting sample, Tanaka Kikinzoku Pt (purity 99.9%) and Ru (purity 99.9%) are prepared and prepared so that the Pt composition is 50 atomic%, 70 atomic%, and 90 atomic%. The Pt—Ru alloy used was used. This arc melting sample was subjected to XRD measurement, and the peak position and the alloy composition were compared based on the measurement result.
According to FIG. 4, the commercially available sample was found to be 68.8 atomic% because its peak position was 40.21 °, and was different from the 50 atomic% which is said. On the other hand, since the peak position of the prepared sample was 40.31 °, it was determined to be 60.3 atomic%, which was close to the above-described sputtering ratio of 52 atomic%.

図5は、スパッタリング前のカーボン粒子及びPt−Ru合金を担持した調製試料(担持微粒子)それぞれをSEM(倍率5000倍)により観察した写真及びEDSによりC、Pt、Ruの元素分析した元素マッピングを示す図である。   FIG. 5 shows a photograph obtained by observing a prepared sample (supported fine particles) supporting carbon particles and a Pt—Ru alloy before sputtering with SEM (5000 times magnification) and element mapping of elemental analysis of C, Pt, and Ru by EDS. FIG.

図5では、SEM像からスパッタリング前のカーボン粒子とスパッタリング後の担持微粒子の表面に大きな違いは認められなかったが、EDS測定から、スパッタリング前のカーボン粒子には検出されないPt元素、Ru元素がどちらも担持微粒子の表面にほぼ均一に担持されていることが認められた。このことから、Pt−Ru合金がカーボン粒子の表面にほぼ均一に分散して担持されていることが確認できた。   In FIG. 5, no significant difference was observed between the surface of the carbon particles before sputtering and the supported fine particles after sputtering from the SEM image, but from the EDS measurement, which of the Pt element and the Ru element were not detected in the carbon particles before sputtering. It was also observed that the particles were supported almost uniformly on the surface of the supported fine particles. From this, it was confirmed that the Pt—Ru alloy was supported on the surface of the carbon particles in a substantially uniform manner.

次に、調製試料及び市販試料それぞれの電気化学測定を行った。
電極は、調製試料及び市販試料それぞれを超純水10mlに分散させたものから20μlとり、カーボン電極上に乗せ、乾燥後、濃度が0.01重量%のナフィオン/EtOH溶液で固定した。そして、サイクリックボルタムメトリー(CV)測定、回転電極法による水素酸化測定、COストリッピング測定を行った。
Next, the electrochemical measurement of each of the prepared sample and the commercial sample was performed.
20 μl of each of the prepared sample and the commercially available sample dispersed in 10 ml of ultrapure water was placed on the electrode, placed on a carbon electrode, dried, and fixed with a Nafion / EtOH solution having a concentration of 0.01% by weight. Then, cyclic voltammetry (CV) measurement, hydrogen oxidation measurement by a rotating electrode method, and CO stripping measurement were performed.

図6(A)は、調製試料のCV測定結果である電流・電位曲線を示す図であり、図6(B)は、市販試料のCV測定結果である電流・電位曲線を示す図である。
CVの測定条件は、電解液として1N、HSO(N飽和)を用い、掃引速度を20mV/sとし、電極径を5mmφとした。
FIG. 6A is a diagram showing a current / potential curve which is a CV measurement result of a prepared sample, and FIG. 6B is a diagram showing a current / potential curve which is a CV measurement result of a commercially available sample.
The measurement conditions for CV were 1N, H 2 SO 4 (N 2 saturation) as the electrolyte, the sweep rate was 20 mV / s, and the electrode diameter was 5 mmφ.

図6(A)に示すように、調製試料では、0〜0.2Vの領域に水素吸着、脱着を示すカソード電流、アノード電流が認められた。図6(B)に示すように、市販試料では、CVと類似した電流・電位曲線の形状を示した。このことから、調製試料にはPt−Rt合金が担持されていることが明らかとなった。   As shown in FIG. 6A, in the prepared sample, a cathode current and an anode current indicating hydrogen adsorption and desorption were observed in the region of 0 to 0.2V. As shown in FIG. 6B, the commercially available sample showed a current / potential curve shape similar to CV. From this, it became clear that the Pt—Rt alloy was supported on the prepared sample.

図7(A)は、調製試料及び市販試料それぞれにおいてHSO中で回転電極法による水素酸化測定を行った結果である電流・電位曲線を示す図である。尚、回転電極法は、電気化学測定法の一種であり、電極を一定速度で回転させ、その時の反応電流を測定するものである。通常水素酸化反応や酸素還元反応の解析に用いられる。
回転電極法の測定条件は、電解液として1N、HSO(水素飽和)を用い、掃引速度を20mV/sとし、電極径を5mmφとし、回転速度を1600rpmとした。
FIG. 7A is a diagram showing a current / potential curve as a result of performing hydrogen oxidation measurement by a rotating electrode method in H 2 SO 4 for each of a prepared sample and a commercially available sample. The rotating electrode method is a kind of electrochemical measuring method, in which the electrode is rotated at a constant speed and the reaction current at that time is measured. Usually used for analysis of hydrogen oxidation reaction and oxygen reduction reaction.
The measurement conditions of the rotating electrode method were 1N, H 2 SO 4 (hydrogen saturation) as an electrolyte, a sweep speed of 20 mV / s, an electrode diameter of 5 mmφ, and a rotation speed of 1600 rpm.

図7(A)に示すように、調製試料と市販試料のいずれも0V付近から水素酸化に起因する電流の急激な立ち上がりが認められた。また、調製試料の拡散限界電流は市販試料の約7割の250μAとなっていた。尚、拡散限界電流とは、ほぼ一定となった電流値をいう。
しかしながら、市販試料のPt担持量が3.2μgであるのに対し、調製試料のPt担持量は0.1μgでしたので、調製試料のPt担持量は市販試料の約1/30となっていた。
As shown in FIG. 7A, both the prepared sample and the commercially available sample showed a sudden rise in current due to hydrogen oxidation from around 0V. The diffusion limit current of the prepared sample was about 70% of the commercially available sample, which was 250 μA. The diffusion limit current is a current value that is substantially constant.
However, the Pt carrying amount of the commercial sample was 3.2 μg, whereas the Pt carrying amount of the prepared sample was 0.1 μg, so the Pt carrying amount of the prepared sample was about 1/30 of the commercial sample. .

そこで、図7(A)の電流・電位曲線を単位Pt担持量あたりの限界電流として表すと図7(B)のようになる。図7(B)によれば、Pt担持量あたりの限界電流は、市販試料に比べて調製試料の方が約25倍大きな値を示していることがわかった。つまり、多角バレルスパッタ装置を用いてPt−Ru合金を担持した担持微粒子からなる調製試料(Pt−Ru合金担持触媒)では、PtやRuの担持量を市販試料の1/30まで大幅に減少させても、市販試料と同等の特性を得ることができる。これは、多角バレルスパッタ装置を用いてカーボン粒子の見掛け表面に選択的にPt−Ru合金からなる超微粒子又は薄膜を担持(修飾)させたことに起因していると考えられる。つまり、従来法で調製された触媒の細孔内に担持されたPt−Ru合金は、水素酸化反応にはほとんど寄与していないことを示している。従って、図2に示す多角バレルスパッタ装置は、高効率で低コストな電極触媒調製法を実現するものとして極めて有効である。   Therefore, when the current / potential curve of FIG. 7A is expressed as a limit current per unit Pt loading, FIG. 7B is obtained. According to FIG. 7 (B), it was found that the limit current per Pt loading was about 25 times larger in the prepared sample than in the commercially available sample. In other words, in a prepared sample (Pt-Ru alloy-supported catalyst) made of supported fine particles supporting a Pt-Ru alloy using a polygonal barrel sputtering apparatus, the supported amount of Pt and Ru is greatly reduced to 1/30 of the commercially available sample. However, characteristics equivalent to those of a commercially available sample can be obtained. This is considered to be caused by selectively supporting (modifying) ultrafine particles or a thin film made of a Pt—Ru alloy on the apparent surface of carbon particles using a polygonal barrel sputtering apparatus. That is, it is shown that the Pt—Ru alloy supported in the pores of the catalyst prepared by the conventional method hardly contributes to the hydrogen oxidation reaction. Therefore, the polygonal barrel sputtering apparatus shown in FIG. 2 is extremely effective as a means for realizing a highly efficient and low cost electrode catalyst preparation method.

図8(A)は、COストリッピングの結果を示す電流・電位曲線であり、図8(B)は、COストリッピングによって得られた実際のCO酸化電流を担持されたPt量で規格化した図である。COストリッピングとは、あらかじめ電極表面に吸着させたCOを、電位を+側(アノード側)に印加することで酸化してCOとして電極表面から脱離させることをいう。
尚、図8(A)は各ピーク電流値を1としてノーマライイズしたものである。
COストリッピングの測定条件は、電解液として1N、HSOを用い、掃引速度を20mV/sとし、電極径を5mmφとし、CO吸着を5分間とし、電位を80mVとし、Nパージを30分間とした。
FIG. 8A is a current / potential curve showing the result of CO stripping, and FIG. 8B is a graph in which the actual CO oxidation current obtained by CO stripping is normalized by the amount of supported Pt. FIG. CO stripping means that CO adsorbed on the electrode surface in advance is oxidized by applying a potential to the + side (anode side) and desorbed from the electrode surface as CO 2 .
In FIG. 8A, each peak current value is set to 1 and normalized.
The measurement conditions for CO stripping are 1N, H 2 SO 4 as an electrolyte, a sweep rate of 20 mV / s, an electrode diameter of 5 mmφ, CO adsorption of 5 minutes, a potential of 80 mV, and N 2 purge. 30 minutes.

図8(A)によれば、調製試料と市販試料を比べると調製試料の方がピーク形状がシャープであり、ピーク位置も0.57Vと市販試料より0.12V低電位側にシフトしている。また、CO酸化電流の立ち上がりも低電位側から開始されている。これらのことから、調製試料の方がCO酸化活性がより高いことが明らかである。   According to FIG. 8A, when the prepared sample and the commercial sample are compared, the peak shape of the prepared sample is sharper, and the peak position is also 0.57 V, which is shifted to the lower potential side by 0.12 V from the commercial sample. . The rising of the CO oxidation current is also started from the low potential side. From these, it is clear that the prepared sample has higher CO oxidation activity.

しかし、文献値のアーク溶解法で調製した試料(Pt組成が50原子%のPt−Ru合金)である図8(A)に示す(a)の曲線の酸化ピークと比べると、調製試料はまだ約0.1V高くなっていることから、より半値幅の小さい合金を担持できれば、このピークはさらに0.47Vに近づくものと考えられる。また、図8(A)に示す(b)は、Ptディスク電極についてのCOストリッピングの結果を示す電流・電位曲線である。   However, compared with the oxidation peak of the curve (a) shown in FIG. 8 (A), which is a sample prepared by the arc melting method of the literature value (Pt-Ru alloy having a Pt composition of 50 atomic%), the prepared sample is still Since it is higher by about 0.1 V, it is considered that this peak further approaches 0.47 V if an alloy with a smaller half width is supported. Further, (b) shown in FIG. 8A is a current / potential curve showing the result of CO stripping for the Pt disk electrode.

また、図8(B)に示すように、調製試料では担持Pt量が市販試料の1/5であるにも関わらず、約10倍の酸化電流が観測された。   Further, as shown in FIG. 8 (B), in the prepared sample, although the amount of supported Pt was 1/5 of the commercially available sample, an oxidation current of about 10 times was observed.

CO酸化電流と水素酸化電流の増大については次のように考察した。
図9(B)に示すように、担体であるカーボン粒子101には様々な形状の細孔102を有する。ここで、従来のウエット法では、前駆体であるPtとRuの錯イオンを細孔に含浸して担持させた後、水素雰囲気下で加熱還元して調製されている。その結果、従来のウエット法で調製された試料は、様々な合金組成を有するPt−Ru合金が見掛け表面及び細孔内にも多数担持されていると考えられ、また還元されていないPtイオンも存在するかもしれない。
The increase in the CO oxidation current and the hydrogen oxidation current was considered as follows.
As shown in FIG. 9B, the carbon particles 101 as the carrier have pores 102 having various shapes. Here, the conventional wet method is prepared by impregnating and supporting complex ions of Pt and Ru, which are precursors, in a pore, and then heating and reducing in a hydrogen atmosphere. As a result, in the sample prepared by the conventional wet method, it is considered that a large number of Pt—Ru alloys having various alloy compositions are supported on the apparent surface and in the pores, and Pt ions that are not reduced are also present. May exist.

これに対し、多角バレルスパッタ装置を用いた場合、Pt原子とRu原子が一定の組成比でスパッタリングされることから、図1(C)に示すように、比較的均一な組成を有する合金が主にカーボン粒子3の見掛け表面上に担持されていると考えられる。この担持形態の違いと担持された合金組成の均一化により、本実施の形態による担持微粒子のPt担持量が1.4原子%と従来の担持微粒子に比べて少量であっても、本実施の形態による担持微粒子の方が図6乃至図8に示すように活性が高かったのではないかと考えられる。すなわち、CO酸化反応も水素酸化反応と同様に主にカーボン粒子の見掛け表面に担持されているPt−Ru合金上で起こると考えられる。   On the other hand, when a polygonal barrel sputtering apparatus is used, since Pt atoms and Ru atoms are sputtered at a constant composition ratio, an alloy having a relatively uniform composition is mainly used as shown in FIG. It is considered that the carbon particles 3 are supported on the apparent surface. Due to the difference in the supported form and the homogeneity of the supported alloy composition, even if the amount of supported Pt of the supported fine particles according to the present embodiment is 1.4 atom%, which is a small amount compared with the conventional supported fine particles, It is considered that the supported fine particles according to the form had higher activity as shown in FIGS. That is, it is considered that the CO oxidation reaction occurs mainly on the Pt—Ru alloy supported on the apparent surface of the carbon particles as in the hydrogen oxidation reaction.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。
例えば上記実施の形態では、微粒子の見掛け表面に選択的に超微粒子又は薄膜を担持する方法としてスパッタリング法を用いているが、本発明はこれに限定されるものではなく、スパッタリング法以外のドライプロセス法を用いることも可能であり、例えば蒸着法、CVD法を用いることも可能である。
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the sputtering method is used as a method for selectively supporting ultrafine particles or a thin film on the apparent surface of the fine particles, but the present invention is not limited to this, and a dry process other than the sputtering method is used. For example, a vapor deposition method or a CVD method can also be used.

(A)〜(C)は、本発明に係る実施の形態による担持微粒子の製造方法を説明する断面図である。(A)-(C) are sectional drawings explaining the manufacturing method of the carrying | support microparticles | fine-particles by embodiment which concerns on this invention. 図1に示す担持微粒子を製造する際に用いる多角バレルスパッタ装置の概略を示す構成図である。It is a block diagram which shows the outline of the polygonal barrel sputtering apparatus used when manufacturing the carrying | support fine particle shown in FIG. SiOガラス板上のPt−Ru合金試料(a)、調製試料(b)及び市販試料(c)それぞれのXRDパターンを測定した結果を示す図である。Pt-Ru alloy sample on SiO 2 glass plate (a), a diagram showing a sample prepared (b) and commercially available sample (c) results of measurement of each of the XRD pattern. 調製試料及び市販試料それぞれのピーク位置をアーク溶解試料から作成した基準となるピーク位置と比較した図である。It is the figure which compared the peak position of each of a preparation sample and a commercial sample with the peak position used as the standard created from the arc melting sample. スパッタリング前のカーボン粒子及びPt−Ru合金を担持した調製試料それぞれをSEMにより観察した写真及びEDSによりC、Pt、Ruの元素分析した元素マッピングを示す図である。It is the figure which shows the element mapping which carried out the elemental analysis of the elemental analysis of C, Pt, and Ru by the photograph which observed the carbon particle before sputtering, and each of the preparation samples which carry | supported the Pt-Ru alloy by SEM. (A)は、調製試料のCV測定結果である電流・電位曲線を示す図であり、(B)は、市販試料のCV測定結果である電流・電位曲線を示す図である。(A) is a figure which shows the electric current and electric potential curve which is a CV measurement result of a preparation sample, (B) is a figure which shows the electric current and electric potential curve which is a CV measurement result of a commercial sample. (A)は、調製試料及び市販試料それぞれにおいてHSO中で回転電極法による水素酸化測定を行った結果である電流・電位曲線を示す図であり、(A)の電流・電位曲線を単位Pt担持量あたりの限界電流として表した図である。(A) is a diagram showing a current-potential curve in each prepared sample and commercial sample is a result of the hydrogen oxidation measurement by rotary electrode method in H 2 SO 4, the current-potential curve of the (A) It is the figure represented as a limiting current per unit Pt carrying amount. (A)は、COストリッピングの結果を示す電流・電位曲線であり、(B)は、COストリッピングによって得られた実際のCO酸化電流を担持されたPt量で規格化した図である。(A) is a current / potential curve showing the result of CO stripping, and (B) is a diagram in which the actual CO oxidation current obtained by CO stripping is normalized by the amount of supported Pt. (A),(B)は、従来の燃料電池のアノード用電極触媒の調製方法を説明する断面図である。(A), (B) is sectional drawing explaining the preparation method of the electrode catalyst for anodes of the conventional fuel cell.

符号の説明Explanation of symbols

1…真空容器
1a…円筒部
1b…六角型バレル
2…ターゲット
3…微粒子(カーボン粒子)
4〜9…配管
10…ターボ分子ポンプ(TMP)
11…ポンプ(RP)
12〜14…第1〜第3バルブ
15…窒素ガス導入機構
16…アルゴンガス導入機構
17a,17b…ヒータ
18…バイブレータ
19…圧力計
20…ガス導入機構
21…細孔
101…カーボン粒子
102…細孔
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 1a ... Cylindrical part 1b ... Hexagonal barrel 2 ... Target 3 ... Fine particle (carbon particle)
4-9 ... Piping 10 ... Turbo molecular pump (TMP)
11 ... Pump (RP)
12-14 ... First to third valves 15 ... Nitrogen gas introduction mechanism 16 ... Argon gas introduction mechanism 17a, 17b ... Heater 18 ... Vibrator 19 ... Pressure gauge 20 ... Gas introduction mechanism 21 ... Pore 101 ... Carbon particle 102 ... Fine Hole

Claims (9)

重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に、表面に複数の細孔を有する微粒子を収容し、
前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持する担持微粒子の製造方法であって、
前記担持微粒子における前記超微粒子又は薄膜は、前記複数の細孔内より前記微粒子の見掛け表面に多く担持されており、
前記担持微粒子は、前記超微粒子又は薄膜が担持されていない前記細孔を有し、
前記担持微粒子は、1次電池の電極触媒、2次電池の電極触媒、燃料電池の電極触媒、1次電池の電極材料、2次電池の電極材料、及び燃料電池の電極材料のうち少なくとも一つに用いられるものであることを特徴とする担持微粒子の製造方法。
In a vacuum vessel having a polygonal internal shape with a cross section substantially parallel to the direction of gravity, fine particles having a plurality of pores on the surface are contained,
Sputtering is performed while stirring or rotating the fine particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section as a rotation axis, so that the particle diameter is smaller than the fine particles on the surface of the fine particles. A method for producing a supported fine particle carrying an ultrafine particle or a thin film,
The ultrafine particles or thin film in the supported fine particles are supported more on the apparent surface of the fine particles than in the plurality of pores,
The supported fine particles have the pores on which the ultrafine particles or thin film is not supported,
The supported fine particles are at least one of an electrode catalyst for a primary battery, an electrode catalyst for a secondary battery, an electrode catalyst for a fuel cell, an electrode material for a primary battery, an electrode material for a secondary battery, and an electrode material for a fuel cell. A method for producing supported microparticles, characterized in that it is used in the above.
内部の断面形状が多角形を有する真空容器内に、表面に複数の細孔を有する微粒子を収容し、
前記微粒子に振動を加えると共に前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持する担持微粒子の製造方法であって、
前記担持微粒子における前記超微粒子又は薄膜は、前記複数の細孔内より前記微粒子の見掛け表面に多く担持されており、
前記担持微粒子は、前記超微粒子又は薄膜が担持されていない前記細孔を有し、
前記担持微粒子は、1次電池の電極触媒、2次電池の電極触媒、燃料電池の電極触媒、1次電池の電極材料、2次電池の電極材料、及び燃料電池の電極材料のうち少なくとも一つに用いられるものであることを特徴とする担持微粒子の製造方法。
In a vacuum vessel having a polygonal cross-sectional shape, fine particles having a plurality of pores on the surface are contained,
Sputtering is performed while stirring or rotating the fine particles in the vacuum vessel by applying vibration to the fine particles and rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis. A method for producing a supported fine particle carrying a fine particle or a thin film having a smaller particle diameter than the fine particle,
The ultrafine particles or thin film in the supported fine particles are supported more on the apparent surface of the fine particles than in the plurality of pores,
The supported fine particles have the pores on which the ultrafine particles or thin film is not supported,
The supported fine particles are at least one of an electrode catalyst for a primary battery, an electrode catalyst for a secondary battery, an electrode catalyst for a fuel cell, an electrode material for a primary battery, an electrode material for a secondary battery, and an electrode material for a fuel cell. A method for producing supported microparticles, characterized in that it is used in the above.
内部の断面形状が多角形を有する真空容器内に、表面に複数の細孔を有する微粒子を収容し、
前記真空容器を加熱すると共に前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜を担持する担持微粒子の製造方法であって、
前記担持微粒子における前記超微粒子又は薄膜は、前記複数の細孔内より前記微粒子の見掛け表面に多く担持されており、
前記担持微粒子は、前記超微粒子又は薄膜が担持されていない前記細孔を有し、
前記担持微粒子は、1次電池の電極触媒、2次電池の電極触媒、燃料電池の電極触媒、1次電池の電極材料、2次電池の電極材料、及び燃料電池の電極材料のうち少なくとも一つに用いられるものであることを特徴とする担持微粒子の製造方法。
In a vacuum vessel having a polygonal cross-sectional shape, fine particles having a plurality of pores on the surface are contained,
By heating the vacuum vessel and rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis, sputtering is performed while stirring or rotating the fine particles in the vacuum vessel. A method for producing a supported fine particle carrying a fine particle or a thin film having a smaller particle diameter than the fine particle,
The ultrafine particles or thin film in the supported fine particles are supported more on the apparent surface of the fine particles than in the plurality of pores,
The supported fine particles have the pores on which the ultrafine particles or thin film is not supported,
The supported fine particles are at least one of an electrode catalyst for a primary battery, an electrode catalyst for a secondary battery, an electrode catalyst for a fuel cell, an electrode material for a primary battery, an electrode material for a secondary battery, and an electrode material for a fuel cell. A method for producing supported microparticles, characterized in that it is used in the above.
請求項1乃至3のいずれか一項において、前記微粒子の粒径は、5nm以上20μm以下であることを特徴とする担持微粒子の製造方法。   4. The method for producing supported fine particles according to claim 1, wherein the fine particles have a particle size of 5 nm or more and 20 [mu] m or less. 請求項1乃至4のいずれか一項において、前記微粒子が電気伝導性を有する物質からなることを特徴とする担持微粒子の製造方法。   5. The method for producing supported fine particles according to claim 1, wherein the fine particles are made of a material having electrical conductivity. 請求項1乃至5のいずれか一項において、前記超微粒子又は薄膜は、Pt単体、Pt系合金又はPtとの混合物からなることを特徴とする担持微粒子の製造方法。   6. The method for producing supported fine particles according to claim 1, wherein the ultra fine particles or the thin film is made of a simple substance of Pt, a Pt-based alloy, or a mixture with Pt. 請求項6において、前記Pt系合金又はPtとの混合物は、Ru、Ir、Pd、Sn、Mo、Os、Rh、Co、Ni、Ag、Ti、V、Cr、Mn、Ge、Fe、Re、W、Zn、Cu、Au及びAsからなる群から選ばれた少なくとも一つとPtとの合金又は混合物であることを特徴とする担持微粒子の製造方法。   In Claim 6, the Pt-based alloy or the mixture with Pt is Ru, Ir, Pd, Sn, Mo, Os, Rh, Co, Ni, Ag, Ti, V, Cr, Mn, Ge, Fe, Re, A method for producing supported fine particles, which is an alloy or a mixture of at least one selected from the group consisting of W, Zn, Cu, Au, and As and Pt. 請求項6において、前記Ptとの混合物は、Ru、Ir、Pd、Sn、Mo、Os、Rh、Co、Ni、Ag、Ti、V、Cr、Mn、Ge、Fe、Re、W、Zn、Cu、Au及びAsからなる群から選ばれた少なくとも一つの金属の酸化物とPtとの混合物であることを特徴とする担持微粒子の製造方法。   In Claim 6, the mixture with Pt is Ru, Ir, Pd, Sn, Mo, Os, Rh, Co, Ni, Ag, Ti, V, Cr, Mn, Ge, Fe, Re, W, Zn, A method for producing supported fine particles, which is a mixture of at least one metal oxide selected from the group consisting of Cu, Au and As and Pt. 請求項1乃至8のいずれか一項において、前記微粒子はカーボン粒子であることを特徴とする担持微粒子の製造方法。   9. The method for producing supported fine particles according to claim 1, wherein the fine particles are carbon particles.
JP2007281355A 2007-10-30 2007-10-30 Method for producing supported fine particles Active JP4769783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281355A JP4769783B2 (en) 2007-10-30 2007-10-30 Method for producing supported fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281355A JP4769783B2 (en) 2007-10-30 2007-10-30 Method for producing supported fine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004188175A Division JP4052517B2 (en) 2004-06-25 2004-06-25 Method for producing supported fine particles

Publications (2)

Publication Number Publication Date
JP2008098177A JP2008098177A (en) 2008-04-24
JP4769783B2 true JP4769783B2 (en) 2011-09-07

Family

ID=39380761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281355A Active JP4769783B2 (en) 2007-10-30 2007-10-30 Method for producing supported fine particles

Country Status (1)

Country Link
JP (1) JP4769783B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508130A (en) * 2009-10-14 2013-03-07 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド New multifunctional materials used for in-situ remediation of chlorinated hydrocarbons

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114950B2 (en) * 1992-09-09 1995-12-13 株式会社水谷製作所 Mixing equipment for powder and granules
JP3132267B2 (en) * 1993-11-02 2001-02-05 株式会社村田製作所 Ceramic heat treatment equipment
WO1997043042A1 (en) * 1996-05-14 1997-11-20 E.I. Du Pont De Nemours And Company Catalyst compositions of nanoparticulate metal on a refractory support
JPH11172427A (en) * 1997-12-09 1999-06-29 Matsushita Electron Corp Film forming device
JPH11229115A (en) * 1998-02-09 1999-08-24 Nisshin Steel Co Ltd Preparation of powder having surface covered with fine powder
JP2002361060A (en) * 2000-09-22 2002-12-17 Umeda Industrial Co Ltd Agitating/mixing apparatus
JP3466576B2 (en) * 2000-11-14 2003-11-10 三井鉱山株式会社 Composite material for negative electrode of lithium secondary battery and lithium secondary battery
CN1538900A (en) * 2001-08-03 2004-10-20 ��ʽ����dz�������� Concrete mixer

Also Published As

Publication number Publication date
JP2008098177A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
Brandiele et al. One step forward to a scalable synthesis of platinum–yttrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction
Fu et al. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction
KR101735401B1 (en) Method for forming nitrogen-doped porous graphene envelope
JP6001793B2 (en) Method for producing fuel cell catalyst
Fu et al. Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction
Fu et al. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions
JP6441834B2 (en) Core-shell structured nanosheet, electrode catalyst, and method for producing fuel cell electrode catalyst
WO2005090630A1 (en) Fine particle
Torimoto et al. Ultrathin oxide shell coating of metal nanoparticles using ionic liquid/metal sputtering
US11784316B2 (en) Layered platinum on freestanding palladium nano-substrates for electrocatalytic applications and methods of making thereof
EP2437883A2 (en) Catalyst for electrochemical applications
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
US20210008535A1 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
Zheng et al. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction
Tsai et al. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation
JPWO2007043441A1 (en) Alloy catalyst for fuel cell cathode
Bernsmeier et al. Soft-templated mesoporous RuPt/C coatings with enhanced activity in the hydrogen evolution reaction
WO2007043441A1 (en) Alloy catalyst for fuel cell cathode
JP4052517B2 (en) Method for producing supported fine particles
Shen et al. PtCo-excavated rhombic dodecahedral nanocrystals for efficient electrocatalysis
JP4769783B2 (en) Method for producing supported fine particles
Fu et al. PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction
Umeda et al. Methanol oxidation enhanced by the presence of O 2 at novel Pt–C co-sputtered electrode
Kim et al. Electrochemically plated nickel-decorated ceria nanostructures for direct hydrocarbon solid oxide fuel cell electrodes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4769783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250